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Abstract
Given the black-box nature of machine learning
models, a plethora of explainability methods have
been developed to decipher the factors behind in-
dividual decisions. In this paper, we introduce a
novel problem of black-box (probabilistic) expla-
nation certification. We ask the question: Given
a black-box model with only query access, an
explanation for an example and a quality metric
(viz. fidelity, stability), can we find the largest
hypercube (i.e., ℓ∞ ball) centered at the example
such that when the explanation is applied to all ex-
amples within the hypercube, (with high probabil-
ity) a quality criterion is met (viz. fidelity greater
than some value)? Being able to efficiently find
such a trust region has multiple benefits: i) insight
into model behavior in a region, with a guaran-
tee; ii) ascertained stability of the explanation; iii)
explanation reuse, which can save time, energy
and money by not having to find explanations for
every example; and iv) a possible meta-metric to
compare explanation methods. Our contributions
include formalizing this problem, proposing solu-
tions, providing theoretical guarantees for these
solutions that are computable, and experimentally
showing their efficacy on synthetic and real data.

1. Introduction
Numerous feature based local explanation methods have
been proposed (Ribeiro et al., 2016; Lundberg & Lee, 2017;
Simonyan et al., 2013; Lapuschkin et al., 2016; Selvaraju
et al., 2016; Dhurandhar et al., 2022; Ramamurthy et al.,
2020; Dhurandhar et al., 2023) to explain individual deci-
sions of black-box models (Goodfellow et al., 2016). How-
ever, these methods in general do not come with guarantees
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of how stable and widely applicable the explanations are
likely to be. One typically has to find explanations indepen-
dently for each individual example of interest by invoking
these methods as many times. This situation motivates the
following question considered in our work: Given a black-
box model with only query access, an explanation for an
example and a quality metric (viz. fidelity, stability), can
we find the largest hypercube (i.e. ℓ∞ ball) centered at the
example such that when the explanation is applied to all
examples within the hypercube, (with high probability) a
quality criterion is met (viz. fidelity > than some value)?
Answering this question affirmatively has benefits such as:
i) providing insight into the behavior of the model over a re-
gion with a quality guarantee, a.k.a. a trust region that could
aid in recourse; ii) ascertaining stability of explanations,
which has recently been shown to be important (Liao et al.,
2022) for stakeholders performing model improvement, do-
main learning, adapting control and capability assessment;
iii) explanation reuse, which can save on queries leading to
savings in time, energy and even money (Dhurandhar et al.,
2019); and iv) serving as a possible meta-metric to compare
explanation methods. We demonstrate the last three benefits
in Section 7.

Since we assume only query access to the black-box model,
the setting is model agnostic and hence quite general. Fur-
thermore, note that the explanation methods being certified
could be model agnostic or white-box. Our certification
methods require only that the explanation method can com-
pute explanations for different examples, with no assump-
tions regarding its internal mechanism. We discuss general
applicability in Appendix F. As such, our contributions are
the following: 1) We formalize the problem of explanation
certification. 2) We propose an approach called Explanation
certify (Ecertify) with three strategies of increasing com-
plexity. 3) We theoretically analyze the whole approach by
providing finite sample exponentially decaying bounds that
can be estimated in practice, along with asymptotic bounds
and further analysis of special cases. 4) We empirically
evaluate the quality of the proposed approach on synthetic
and real data, demonstrating its utility.
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2. Problem Formulation
Before we formally define our problem note that vectors
are in bold, matrices are in capital letters unless otherwise
specified or obvious from the context, all operations between
vectors and scalars are element-wise, [[n]] denotes the set
{1, ..., n} for any positive integer n and log(.) is base 2.

Let X × Y denote the input-output space where X ⊆ Rd.
We are given a predictive model1 g : Rd → R, an example
x0 ∈ Rd for which we have a local explanation function
ex0

: Rd → R (viz. linear like in LIME or rule lists or
decision trees) and a quality metric h : R2 → R (higher
the better, viz. fidelity, stability, etc.). Note that ex0(x)
denotes the explanation computed for x0 applied to x. For
instance, if the explanation is linear, we multiply the feature
importance vector of x0 with x. We could also have non-
linear explanations too, such as a (shallow) tree or a (small)
rule list (Wang & Rudin, 2015). Also for ease of exposition,
let us henceforth just refer to the quality metric as fidelity
(defined in eq. 14), although our approach should apply to
any such metric. Given the above and a threshold θ, our
goal is to find the largest ℓ∞ ball B∞(x0, w) centered at x0

with radius (or half-width) w such that ∀x ∈ B∞(x0, w),
fx0(x) ≜ h (ex0(x), g(x)) ≥ θ. Formally,

max w s.t. fx0
(x) ≥ θ ∀x ∈ B∞(x0, w). (1)

We say that a half-width w or region B∞(x0, w) is certified
if the constraint in equation 1 holds for w, and violating
if not. Problem 1 is a challenging search problem even
if we fix a w, since certifying the corresponding region is
infeasible as the set is uncountably infinite. Moreover, we
do not have an upper bound on w a priori. Thus for arbitrary
g(.), given that we have just query access and a finite query
budget, we can only aim to approximately certify a region.
Our desire is that the proposed methods will correctly certify
a region with high probability, converging to certainty as the
budget tends to infinity, while also being computationally
efficient. The latter is important as one might want to obtain
such trust regions for explanations on entire datasets, which
may be very large. Sometimes, we equivalently state we
query f(.) rather than querying g(.) and computing f(.).

3. Related Work
Explainable AI (XAI) has gained prominence (Gunning,
2017) over the last decade with the proliferation of deep
neural models (Goodfellow et al., 2016) which are typically
opaque. Many explanation techniques (Ribeiro et al., 2016;
Lundberg & Lee, 2017; Selvaraju et al., 2016; Sundararajan
et al., 2017; Dhurandhar et al., 2022; Ramamurthy et al.,
2020; Montavon et al., 2017; Bach et al., 2015) have been

1One can assume one-hot encoding or frequency map approach
(Dhurandhar et al., 2019) for discrete features.

proposed to address this issue and appropriate trust in these
models. However, it is unclear how widely applicable are
the provided explanations and whether they are consistent
over neighboring examples. In this work, we provide this
complementary perspective where rather than proposing yet
another explainability method, we propose a way to cer-
tify explanations from existing methods by finding a region
around an explained example where the explanation might
still be valid. This has benefits like those mentioned in the
introduction, as well as possibly leading to more robust ex-
planation methods as we discuss later. The need for stable
explanations (Liao et al., 2022), possible recourse (Ustun
et al., 2019) and even robust recourse (Pawelczyk et al.,
2023; Maragno et al., 2023; Hamman et al., 2023; Black
et al., 2021) further motivate our problem, where the lat-
ter methods try to find robust counterfactual explanations
– not certify a given explanation – using white/black-box
access. Our work also complements works in formal expla-
nations (Ignatiev, 2020; Arenas et al., 2022), which try to
find feature based explanations that satisfy criterion such
as sufficient reason (or prime implicants) and are typically
restricted to tree based models or quantized neural networks.
Strategies such as model counting have been proposed here
to certify non-formal explanations; however, besides being
restricted to the aforementioned models and criterion, they
require white box access and are challenging to scale.

Another related area, adversarial robustness (Muhammad
& Bae, 2022), also studies the problem of certification
(e.g. Katz et al. (2017); Gehr et al. (2018); Weng et al.
(2018a); Dvijotham et al. (2018); Raghunathan et al. (2018);
Cohen et al. (2019); Tjeng et al. (2019); Chen et al. (2019))
but for the robustness of a single model to changes in the
input, where no explanation is involved. Robustness certifi-
cation can be seen as a special case of our problem where
the explanation is a constant function. Within the robust-
ness certification literature, randomized smoothing meth-
ods are more similar to our work in also using only query
(a.k.a. black-box) access to the model. However, they certify
a smoothed version of the original model (Li et al., 2023),
where an example is perturbed using Gaussian smoothing to
facilitate robustness guarantees. We are not aware of robust-
ness certification works that use only query access to certify
the original model. Zeroth order (ZO) optimization meth-
ods have been proposed for adversarial attacks (Chen et al.,
2017; Tu et al., 2019; Zhao et al., 2019), i.e., finding adver-
sarial examples. In the experiments, we adapt a ZO method
from a state-of-the-art toolbox (Liu et al., 2022) to our set-
ting, and show that our proposed methods scale much better
while still being accurate. In Weng et al. (2018b), extreme
value theory is used for robustness certification, providing
only asymptotic bounds for a special case of our problem
(see Section 6.1). Moreover, their approach assumes access
to gradients and is therefore not black-box.
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Figure 1. Illustration of our three certification strategies. (a) depicts
one of the final steps of the unif strategy, while (b) and (c) depict
two consecutive close-to-final steps of unifI and adaptI respectively.
The setup is the same as in Section 7 with d = 2, Q = 1000. The
boxes have width w = 0.5 which is the optimal width. The star
in the center denotes the example whose explanation we want to
certify, while the orange lines are level sets for fidelity (θ = 0.75).
The methods’ different behaviors are apparent: unif queries exam-
ples uniformly at random, while unifI uniformly samples proto-
types (blue stars) and then queries examples around these proto-
types (green blobs). From one step to the next, unifI doubles the
number of prototypes and halves the number of examples queried
around each prototype. Contrastingly, adaptI, in the innermost
loop, halves the number of prototypes where it adaptively queries
more around prototypes close to low fidelity examples (lower left
and upper right corners).

4. Method
Our approach comprises Algorithms 1 and 2. Given the
problem elements x0, f, θ defined in Section 2, Algorithm
1 outputs the largest half-width w that it claims is certified.
Each iteration of Algorithm 1 decides which region to cer-
tify next based on whether the previous region was certified
or not. The actual certification of a region happens in Al-
gorithm 2, where we provide three strategies s to do so. If
Algorithm 2 certifies a region, defined by lower and upper
bounding half-widths lb and ub, then Algorithm 1 will either
double ub or choose it to be midway between the current
ub and B, where B is an upper bound on half-widths to be
considered. Otherwise, if the region is found to be violating,
the next ub is the midpoint between B and lb, the width
of the last certified region. Algorithm 1 will continue for
a pre-specified number of iterations Z, after which it will
output the largest certified region it found.

Some remarks on Algorithm 1: i) The lower bound lb will
typically be 0 initially, unless one already knows a region
that is surely certified. As we discuss later, if g(.) is known
to be Lipschitz for instance and the explanation function is
linear, then one could also set a higher lb value. ii) Although
the end goal is to certify a hypercube around x0, Algorithm
1 asks Algorithm 2 to certify regions between hypercubes
with half-widths lb and ub. This is because the region with
half-width lb has already been certified at that juncture,
and hence when certifying a larger region ub we need not
waste queries on examples that lie inside lb. We do this
by sampling examples from the larger hypercube and only
querying those that lie outside the smaller one.2 iii) Other

2we set σ ∝ 1
d

in Algorithm 1 since, with increasing dimension

Algorithm 1 Explanation certify (Ecertify). Code will be
available at https://github.com/Trusted-AI/
AIX360.
Input: example to be certified x0, quality metric f(.) (viz.
fidelity), threshold θ, number of regions to check Z, query
budget per region Q, lower and upper bounding half-widths
(lb, ub) of initial region, and certification strategy to use
(s = {unif, unifI, adaptI}).
Initialize: w = 0, B = ∞
if f(x0) < θ then Output: -1 # Even x0 fails certifica-

tion.
for z = 1 to Z do

σ = ub−lb
d #Standard deviation of Gaussians in unifI

and adaptI
(t, b) = Certify(lb, ub,Q, θ, f(.),x0, σ, s)
# Find half-width of hypercube to certify.
if t == True then

w = ub, lb = ub, ub = min
(
B+ub

2 , 2ub
)

else
B = min {|bi − xi| s.t. |bi − xi| > lb ∀i ∈ [[d]]},
ub = B+lb

2
Output: w

ways of updating the upper bound B are in Appendix E.

In Algorithm 2 we present three strategies: unif, unifI and
adaptI. The first strategy, uniform (unif), is a simple uniform
random sampling strategy that simply queries g(.) in the
region specified by Algorithm 1. If the fidelity is met for all
examples queried then a boolean value of True is returned,
else False is returned along with the example where the
fidelity was the worst. In the second strategy, uniform in-
cremental (unifI), we uniformly randomly sample at each
iteration (i.e. from 1 to ⌊log(Q)⌋) a set of n examples and
then using them as centers of a Gaussian we sample ⌊ q

n⌋ ex-
amples. Again examples belonging to the region are queried
and True or False (with the failing example) is returned.
This method in a sense is performing a dynamic grid search
over the region in an incremental fashion in an attempt to
certify it. Our third, and possibly, most promising strategy
is adaptive incremental (adaptI), where like in unifI we uni-
formly at random sample centers or prototypical examples,
but then adaptively decide how many examples to sample
around each prototype depending on how promising it was
in finding the minimum quality example. So at each stage
in the innermost loop we choose half of the most promising
prototypes and sample more around them until we reach a
single prototype or find a violating example. This method
thus focuses the queries in regions where it is most likely to
find a violating example.

it becomes easier for an example sampled from a Gaussian to lie
outside the hypercube as all dimensions need to lie within the
specified ranges.
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Algorithm 2 (t, b) = Certify(lb, ub,Q, θ, f(.),x0, s)

Let R = [x0+ub,x0−ub]\ [x0+ lb,x0− lb] be the region
to query in and let q = ⌊ Q

log(Q)⌋
# Choose sampling strategy as Uniform, Uniform Incremen-
tal or Adaptive Incremental
if s == unif then

Uniformly sample Q examples r1, ..., rQ ∈ R and
query f(.)
Let r = argmin

{r1,...,rQ}
f(ri)

if f(r) ≥ θ then Output(True,0) else
Output: (False, r)

else if s == unifI then
for i = 1 to ⌊log(Q)⌋ do

Let n = min(2i, q)
Uniformly sample n examples (a.k.a. prototypes)
r1, ..., rn in R
Sample ⌊ q

n⌋ examples (in R) from each Gaussian
N (rj , σ

2I) (j ∈ [[n]]) and query f(.)
Let r be the minimum fidelity example amongst the
q queried examples
if f(r) < θ then Output: (False, r)

Output: (True,0)
else if s == adaptI then

for i = 1 to ⌊log(Q)⌋ do
if i2i ≤ q then n = 2i, k = i else n = 2k

Let m = n
Uniformly sample m examples (a.k.a. prototypes)
r1, ..., rm in R
for j = 1 to ⌈log(n)⌉ do

Sample ⌊ q
m⌈log(n)⌉⌋ examples (in R) from each

Gaussian N (rk, σ
2I) where rk belongs to (se-

lected) m prototypical examples and query f(.)
Find the minimum fidelity example (mfe) for
each of the m Gaussians
if the mfe amongst these is r and f(r) < θ then

Output: (False, r)
Otherwise, select the ⌈m

2 ⌉ prototypes which are
associated with the lowest minimum fidelity
examples and set m = ⌈m

2 ⌉
Output: (True,0)

5. Analysis
In this section, we provide probabilistic performance guar-
antees for Algorithms 1 and 2. We also verify that the total
query budget used by each strategy is at most Q. Without
loss of generality (w.l.o.g.) assume x0 is at the origin, i.e.,
x0 = 0. Then any hypercube of (half-) width w, where
w ≥ 0, can be denoted by [−w,w]d, and d is the dimension-
ality of the space. Let f∗

w be the minimum fidelity value in
[−w,w]d, and let f̂∗

w be the estimated minimum fidelity in
that region based on the methods mentioned in Algorithm 2.

Note that we always have f∗
w ≤ f̂∗

w.

Given the above notation, the output of Algorithm 1 is a
region [−w,w]d that is claimed to be certified, implying
f̂∗
w ≥ θ. However, the condition that we would ideally like

to hold is f∗
w ≥ θ, involving the unknown f∗

w. Thus, we
would like f̂∗

w to be close to f∗
w. In what follows, we provide

bounds on the probability that f̂∗
w and f∗

w differ by at most ϵ,
i.e., P [f̂∗

w − f∗
w ≤ ϵ] ≥ 1− p, for any ϵ > 0 and p ∈ [0, 1].

One way to interpret our bounds is as follows:3 Fix a value
for ϵ and suppose that the region [−w,w]d is actually vio-
lating, by a “margin” of at least ϵ: f∗

w ≤ θ − ϵ. Then the
probability that Algorithm 1 incorrectly certifies [−w,w]d

(f̂∗
w ≥ θ) is at most p. On the other hand, if [−w,w]d is

truly certified, then f̂∗
w ≥ f∗

w ≥ θ and Algorithm 1 also
certifies the region. In the last case, if θ− ϵ < f∗

w < θ, then
[−w,w]d is violating but within the specified margin ϵ so
we do not insist on a guarantee.

We note for our first result below that Algorithm 1 doubles or
halves the range every time we certify or fail to certify a re-
gion respectively. Hence, to certify the final region [−w,w]d

we will take m = O(log(w)) steps. W.l.o.g. assume the
number of subsets of [−w,w]d certified by the algorithm is
c ≤ m. Let w1 ≤ · · · ≤ wc denote the upper bounds (ub
in Algorithm 1) of the certified regions in increasing order,
where wc = w. Let us also denote the fidelity of an exam-
ple x in between two hypercubes [−j, j]d, [−i, i]d where
j ≥ i ≥ 0 by f

(x)
j,i .The following lemma is a consequence

of certification in a region being independent of certification
in a disjoint region (all proofs in Appendix).

Lemma 1. The probability that f̂∗
w and f∗

w differ by at most
ϵ decomposes over regions as follows:

P
[
f̂∗
w − f∗

w ≤ ϵ
]
= 1−

c∏
i=1

P
[
f̂∗
wi,wi−1

− f∗
w > ϵ

]
≥ max

i∈{1,...,c}
P
[
f̂∗
wi,wi−1

− f∗
w ≤ ϵ

]
, (2)

where w0 = 0.

From equation 2 it is clear that we need to lower bound
P [f̂∗

wi,wi−1
− f∗

w ≤ ϵ] ∀i ∈ {1, ..., c}. Since the mathe-
matical form of the bounds will be similar ∀i, let us for
simplicity of notation denote the fidelities for the ith region
by just the integer subscript i, i.e., denote f̂∗

wi,wi−1
by f̂∗

i

and similarly the fidelities for other examples in that region.
We thus now need to lower bound P [f̂∗

i − f∗
w ≤ ϵ] for the

three different certification strategies in Algorithm 2.

Uniform Strategy: This is the simplest strategy where
we sample and query Q examples uniformly in the re-

3Another way is to regard p as given and solve for ϵ to get a
(1− p)-confidence interval [f̂∗

w − ϵ, f̂∗
w] for f∗

w.
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gion we want to certify. Let U denote the uniform dis-
tribution over the input space in the ith region and let
F (u)
i (.) denote the cumulative distribution function (cdf)

of the fidelities induced by this uniform distribution, i.e.,
F (u)
i (v) ≜ Pr∼U [f

(r)
i ≤ v] for some real v and r in the ith

region.

Lemma 2. Given the above notation we can lower bound
the probability of unif in a region i,

P [f̂∗
i − f∗

w ≤ ϵ] ≥ 1− exp (−QF (u)
i (f∗

w + ϵ)) (3)

Uniform Incremental Strategy: In this strategy, we sample
n ≤ q samples uniformly ⌊log(Q)⌋ times. Then using each
of them as centers we sample ⌊ q

n⌋ examples and query
them. Let the cdfs induced by each of the centers through
Gaussian sampling be denoted by F

Nj,k

i (.), where j denotes
the iteration number that goes up to ⌊log(Q)⌋ and k the kth

sampled prototype/center.

Lemma 3. Given the above notation we can lower bound
the probability of unifI in a region i,

P [f̂∗
i − f∗

w ≤ ϵ] ≥

1− exp

(
− max

j∈{1,...,⌊log(Q)⌋},k∈{1,...,n}

⌊ q
n

⌋
F

Nj,k

i (f∗
w + ϵ)

)
(4)

The above expression conveys the insight that if we find a
good prototype rj,k (i.e. close to f∗

i ) then F
Nj,k

i (f∗
w + ϵ)

will be high, leading to a higher (i.e., better) lower bound
than in the uniform case.

Adaptive Incremental Strategy: This strategy explores
adaptively in more promising areas of the input space, un-
like the other two strategies. As with unifI, let the cdfs
induced by each of the centers through Gaussian sampling
be denoted by F

Nj,k

i (.), where j denotes the iteration num-
ber that goes up to ⌊log(Q)⌋ and k the kth sampled prototype
for a given n.

Lemma 4. Given the above notation and assuming w.l.o.g.
F

Nj,k

i (.) ≤ F
Nj,k+1

i (.) ∀j ∈ {1, ..., ⌊log(Q)⌋}, k ∈
{1, ..., n − 1} i.e., the first prototype produces the worst
estimates of the minimum fidelity, while the nth prototype
produces the best, we can lower bound the probability of
adaptI in a region i,

P [f̂∗
i − f∗

w ≤ ϵ] ≥

1− exp

(
− max

j∈{1,...,⌊log(Q)⌋}

⌊
(n− 1)q

n log n

⌋
F

Nj,n

i (f∗
w + ϵ)

)
(5)

We see above that we sample exponentially more around
the most promising prototypes (see Lemma 4 proof in Ap-
pendix), unlike the uniform strategies which do not adapt.

Hence, in practice we are likely to estimate f∗
w more accu-

rately with adaptI especially in high dimensions.

Remark: It is easy to see (when the cdfs Fi(f
∗
w + ϵ) ̸= 0)

that for all the three methods asymptotically (i.e., as Q →
∞) the lower bound on P [f̂∗

i − f∗
w ≤ ϵ] approaches 1 at

exponential rate for arbitrarily small ϵ, which is reassuring
as it implies that we should certify correctly a region given
enough number of queries. For smaller Q, as mentioned be-
fore, the convergence will heavily depend on the specifics of
each sampling strategy. This is also seen in the experiments
(see Tables 6 and 8). Moreover, Fi(f

∗
w + ϵ) = 0 is unlikely

to happen in practice as can be surmised from Proposition 2
in the Appendix. Now we can also lower bound equation 2
for each strategy.

Theorem 1. Based on Lemmas 1, 2, 3 and 4 we have,

P [f̂∗
w − f∗

w ≤ ϵ] ≥ (6)

1− min
i∈[[c]]

exp (−QF (u)
wi

(f∗
w + ϵ))

unif

1− min
i∈[[c]]

exp

(
− max

j∈[[⌊log(Q)⌋]],k∈[[n]]

⌊
q
n

⌋
F

Nj,k
wi (f∗

w + ϵ)

)
unifI

1− min
i∈[[c]]

exp

(
− max

j∈[[⌊log(Q)⌋]]

⌊
(n−1)q
n logn

⌋
F

Nj,n
wi (f∗

w + ϵ)

)
adaptI

We also have the following proposition regarding the num-
ber of queries used by each strategy.

Proposition 1. unif, unifI and adaptI query the black-box
at most Q times in any call to Algorithm 2.

6. Bound Estimation and Special Cases
In Section 5, we derived (with minimal assumptions) finite
sample bounds on the probability of estimated and true
minimum fidelities being close, which is directly related to
correct certification. However, the cdfs Fi(.) are generally
unknown. In Section 6.1, we discuss the estimation of
our bounds, and we also provide alternative asymptotic
bounds that are cdf-free. In Section 6.2, we first provide a
partial characterization of Fi(.) for a piecewise linear black-
box and then discuss settings where the trust region can be
identified even more efficiently using our strategies.

6.1. Bound Estimation

Cdf Fi(.) Estimation: An attractive property of our bounds
is that the cdfs are all one-dimensional, irrespective of the
dimensionality of the input space. Hence, it is efficient
to estimate the corresponding (univariate) densities. More
specifically, given fidelity values sampled in a region by
any of the three strategies, one can estimate a distribution
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of these fidelities using standard techniques such as kernel
density estimation. The only challenge is that the point of
evaluation f∗

w + ϵ is unknown because f∗
w is unknown. We

propose using f̂∗
w or θ as proxies for f∗

w. Since the bounds
depend only on subsets that are certified, if we assume that
these certifications are correct (i.e. f∗

w ≥ θ), then using
f̂∗
w should provide (somewhat) optimistic bounds (since
f̂∗
w ≥ f∗

w) while, θ will provide conservative ones. As we
shall see in the experiments, both proxies are close.

Asymptotic (Cdf-free) Bounds: Rather than finite sample
bounds that depend on cdfs Fi, one could instead take an
asymptotic (Q → ∞) perspective and obtain results that
are free of Fi. Extreme Value Theory (EVT) (Smith, 2003)
is useful in this regard. Given our setting where the mini-
mum fidelity f∗

i in each region i is finite, we can assume
Fi(f

∗
i + ϵ) ≈ ηϵκ as ϵ → 0 for some η > 0, κ > 0 as

is standard in EVT (Smith, 2003). This would apply to
all three strategies. We state an explicit asymptotic result
for the case of i.i.d. fidelity samples, as it naturally follows
from EVT. This i.i.d. case covers the unif strategy and an
i.i.d. version of unifI discussed in the Appendix. Here in
addition to the empirical minimum fidelity f̂∗

i , we also use
the second-smallest empirical value, denoted as ˆ̂f∗

i . Then
the result of de Haan (1981) (also re-derived in De Carvalho
(2011)) implies the following.

Corollary 1. For the unif and i.i.d. unifI strategies, as Q →
∞, we have

P
[
f̂∗
i − f∗

i ≤ ϵ
]
=

(
1 +

ˆ̂f∗
i − f̂∗

i

ϵ

)−κ

. (7)

Corollary 1 is reminiscent of Lemmas 2–4 except that
the region-specific minimum f∗

i has taken the place of
the overall minimum f∗

w. However, the two coincide for
i = i∗ ∈ argmini f

∗
i . For i = i∗, the right-hand side

of equation 7 is a valid lower bound on the probability
P [f̂∗

w − f∗
w ≤ ϵ] in Theorem 1, as we discuss further in

the Appendix. In our experiments, we estimate i∗ using
the empirical minimum fidelities as î = argmini f̂

∗
i . The

exponent κ, as argued in de Haan (1981), can be taken to
be κ = d/2, and thus the bound is completely determined
given the fidelity samples.

6.2. Special Cases

Characterizing cdfs Fi(.) for piecewise linear black-box:
In Appendix B we provide a (partial) characterization of the
cdfs Fi(.) for piecewise linear black-box functions, which
cover widely used models such as neural networks with
ReLU activations (Hanin & Rolnick, 2019), trees and tree
ensembles, including oblique trees (Murthy et al., 1994) and
model trees (Gama, 2004). This characterization assumes a
linear explanation function and a commonly defined fidelity

function (Dhurandhar et al., 2022; Ramamurthy et al., 2020).

More Efficient Certification: In Appendix C we discuss
how having a black-box model that is Lipschitz or piecewise
linear can further speed up our methods. In the Lipschitz
case we can automatically (i.e. without querying) certify a
region and set a non-trivial lb value with additional speedups
possible. In the piecewise linear case instead of a head start
(i.e. higher lb) we could stop our search early.

7. Experiments
One of the primary goals of the synthetic and real data ex-
periments is to verify the accuracy and judge the efficiency
of our methods. For the real HELOC dataset (FICO, 2018b)
we additionally report interesting insights that can be ob-
tained by finding trust regions. Moreover, we show the
query savings obtainable with such an approach as well as
qualitatively and quantitatively study the similarity of ex-
planations within a trust region to the certified explanation
compared with those outside. Since the problem setup is
novel there aren’t existing baselines in the explainability
literature. Nonetheless, we adapt a ZO toolbox (Liu et al.,
2022) to be usable in our setup as the ZO methods are po-
tentially the closest to be used for our problem. We refer
to this method as ZO+, where our Ecertify algorithm calls
this toolbox as a routine similar to our three strategies. In
all the experiments the quality metric is fidelity as defined
in eqn. 14 (in the Appendix), results are averaged over 10
runs, Q is varied from 10 to 10000, Z is set to 10, θ = 0.75
(in the main paper) and we used 4-core machines with 64
GB RAM and 1 NVIDIA A100 GPU.

Synthetic Setup: We create a piecewise linear function with
three pieces where the center piece lies between [−2, 2] in
each dimension, has an angle of 45 degrees with each axis,
and passes through the origin. The other two pieces start at
−2 and 2 respectively and are orthogonal to the center piece.
The example we want to explain is at the origin. We vary
dimensions d from 1 to 10000. In the main paper we report
results for the explanation being a hyperplane with slope
0.75 passing through the origin. The optimal half-width is
thus 1

d . Other variations are reported in the Appendix.

Real Setup: We experiment on two image datasets, namely
ImageNet (Deng et al., 2009) (224× 224 dimensions) and
CIFAR10 (Krizhevsky, 2009) (32×32 dimensions), and two
tabular datasets, HELOC (FICO, 2018b) (23 dimensional)
and Arrhythmia (Vanschoren et al., 2013) (195 dimensional).
The model for tabular datasets is Gradient Boosted trees
(with default settings) in scikit-learn (Pedregosa et al., 2011).
For ImageNet we used a ResNet50 and for CIFAR10 we
used a VGG11 model. We also consider arguably the two
most popular local explainers: LIME and SHAP. To have a
more representative selection of examples to find explana-
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Table 1. Synthetic results for x = [0]d, Z = 10, θ = 0.75, explanation is slope 0.75 hyperplane and optimal half-width w is 1
d

. Standard
errors for w, bounds computed using Theorem 1 and EVT bounds for unif and unifI are in Tables 3, 6 and 7 respectively in the Appendix.

d Q
unif unifI adaptI ZO+

w Time (s) w Time (s) w Time (s) w Time (s)

1

10 1 .001 1 .001 1 .001 1 .012
102 1 .006 1 .004 1 .002 1 1.221
103 1 .055 1 .041 1 .026 1 1.724
104 1 .53 1 .418 1 .189 1 1.641

10

10 .06 .001 .037 .001 .142 .001 .3 .012
102 .082 .003 .06 .007 .08 .003 .1 .125
103 .09 .036 .085 .049 .11 .044 .1 1.354
104 .1 .363 .117 .615 .1 .551 .1 14.944

102

10 .012 .001 .006 .001 .007 .001 .05 .031
102 .012 .005 .007 .012 .008 .005 .025 .3
103 .011 .054 .009 .158 .01 .09 .012 4.072
104 .01 .632 .01 1.692 .01 .51 .009 55.87

103

10 5 × 10−4 .003 3 × 10−4 .004 5 × 10−4 .002 .037 .307

102 6 × 10−4 .011 .001 .073 6 × 10−4 .044 .012 2.579

103 8 × 10−4 .077 .001 1.074 8 × 10−4 .511 .003 28.335

104 .001 .588 .001 13.786 9 × 10−4 5.097 .001 288.523

104

10 6.3 × 10−5 .012 5.1 × 10−5 .098 5.8 × 10−5 .021 .006 3.76

102 6.6 × 10−5 .072 7.7 × 10−5 1.187 7.8 × 10−5 .43 .004 34.602

103 8.3 × 10−5 .771 8.4 × 10−5 12.452 8.5 × 10−5 7.91 8.4 × 10−4 391.494

104 8.9 × 10−5 4.83 9.1 × 10−5 112.58 9.4 × 10−5 88.342 9.3 × 10−5 4384.76

tions and half-widths, we chose five prototypical examples
(Gurumoorthy et al., 2019) from each dataset. We show one
to two examples for each dataset in the main paper where
the others are in the Appendix. More details such as ex-
plainer settings, certification strategy settings (etc.) for each
dataset are in the Appendix.

Observations: i) Accuracy and Efficiency: From the syn-
thetic experiments, we see in Table 1 that although all meth-
ods converge close to the true certified half-width, our meth-
ods are an order of magnitude or more efficient than ZO+.
Also they seem to converge faster (in terms of queries) in
high dimensions (100 to 10000 dimensions). Comparing
between our methods it seems unif is best (and sufficient)
for lowish dimensions (up to 100), while unifI is preferable
in the intermediate range (1000) and adaptI is best when
the dimensionality is high (10000). Thus the incremental
and finally adaptive abilities seem to have an advantage as
the search space increases. Although we query (at most) Q
times in each strategy, adaptI and unifI are typically slower
than unif because we sample from n different Gaussians
log(Q) times as opposed to sampling Q examples with a
single function call. This however, will not always happen
if a violating example is found faster, as seen for adaptI on
some real datasets in Figure 2. We also report our Theorem 1
bounds (estimated as in Section 6.1) on the probability of
closeness and the (additional) time to compute them in Ta-
ble 6 in the Appendix. As can be seen the bounds converge
fast to 1 especially for adaptI and are efficient to compute
(at most a few minutes). EVT bounds based on Corollary 1,
shown in Table 7, are also high enough to be meaningful
for unifI and improve with increasing Q, but become looser
with increasing input dimensionality.

From the experiments on real data, we again see from Fig-

ure 2 that our methods are significantly faster than ZO+,
while they still converge to (roughly) the same half-widths
in most cases. The running times are especially higher in
the LIME image cases because LIME has to create masks
for each image we certify. We also observe that adaptI is
generally faster in most cases because it finds the violating
examples faster that the other strategies. As such, in terms
of convergence of the estimated half-width with increasing
number of queries balanced against efficiency, we observe
that unif is probably best for HELOC and Arrythmia which
are low dimensional datasets, unifI is best for CIFAR10
which has dimension close to 1000, this also holds for non-
linear explanation methods such as RISE as seen in Figure
12 in Appendix H, and adaptI is best for ImageNet which
has 40K+ dimensions. Probability bounds are reported in
Table 8 for ImageNet. Here again like in the synthetic case
we see fast convergence especially for adaptI with the bound
computation being efficient.

ii) Compare XAI methods: Interestingly, our analysis can
also be used to compare XAI methods. We observe that
LIME widths are typically much larger than those found for
SHAP, and hence the explanations are more generalizable
beyond the specific example. This however, does not mean
that LIME is always more robust than SHAP as the quality
of the explanation depends on the desired fidelity. SHAP
typically has fidelity of 1 at x0, while LIME may have lower
fidelity at x0 but generalizes farther in the sense of fidelity
remaining above the threshold. For instance, in row 4 in
Figure 2 LIME has a fidelity of 0.87 which is greater than
our set threshold of 0.75. The explanation here considers
AvgMlnFile and NumSatisfactoryTrades as important fac-
tors, while SHAP considers ExternalRiskEstimate as the
most important factor. The latter is more informative for
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Figure 2. Each row corresponds to a dataset (Row #: 1-ImageNet, 2-CIFAR10, 3-Arrhythmia, 4,5-HELOC). First two columns are LIME
half-width and timing results, while the last two columns are the same for SHAP. Our methods are significantly faster than ZO+, while
still converging to similar w in most cases. It seems unif, unifI and adaptI are best for low (100s or lower), intermediate (≈ 1000) and
high dimensions (10000s) respectively. Trusting the converged upon half-widths, one can also compare XAI methods as discussed below.

the specific example but doesn’t generalize as well nearby.
The last row shows the downside of generalizability where
LIME fidelity even for the example we want to explain is
lower than our threshold of 0.75 and so we return −1, but
SHAP produces a trust region. Thus, one could select which
method to use based on the desired threshold for the quality
metric. As such, this type of analysis can be used to com-
pare XAI methods on individual examples, on regions, as
well as on entire datasets, and across different models.

iii) Query savings: In Figure 3, we demonstrate a practical
use of our method for explanation re-use and savings in
model queries. We take random subsets of the HELOC
dataset of size 10% to 100%. For each subset independently,

we find the number of samples (left axis in Figure 3(left)) for
which we need to compute and certify LIME explanations
so that the certified regions cover the rest of the samples in
the subset. For each explanation, we say that a sample is
covered if the top 60% (as ranked by LIME) of the sample’s
features fall within the region. If a sample lies in multiple
regions we randomly pick one. Figure 3(right) shows that
considering the top 60% is sufficient for the actual fidelities
of covered points to satisfy the threshold θ = 0.75 with high
probability. The right axis in Figure 3(left) shows that we
can save 80% of queries given that LIME by default queries
5K times per explanation. More details are in Appendix E.3.
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Figure 3. Left we see sample and query savings using adaptI on
HELOC dataset for LIME, where Q = 1000. With an order of
magnitude less samples and with less than 20% queries of those
needed by LIME we can find explanations for the dataset. Right
we see means and standard deviations for the actual fidelities of the
covered samples for each subset. As can be seen when considering
the entire (effective) dataset (rightmost point), our regions satisfy
the θ constraint with high probability.

Table 2. Similarities (± standard errors) for explanations computed
for examples covered by a certified region (inside w), and for
(random) examples outside the region on the HELOC dataset. As
can be seen the explanations for examples that lie within our trust
regions are significantly more similar to the certified explanation
than those that lie outside it. Best results are bolded.

Metric Value inside w outside w

Top-5 intersection mean 0.85 ±0.0215 0.77 ±0.0165

median 0.87 ±0.0270 0.79 ±0.0207

Spearman’s Rank mean 0.74 ±0.0230 0.61 ±0.0191

Correlation median 0.76 ±0.0288 0.63 ±0.0239

iv) Explanation stability: In this experiment, we empirically
evaluate the stability of explanations for examples covered
by the certified width or trust region of examples in the HE-
LOC dataset. We use the same setting as used in the query
savings experiment, with adaptI as our certification strategy,
θ = 0.75 and with LIME as the explanation method. Once
we have certified an explanation for an example, we find ex-
amples within its certified region and compute explanations
for them. Our goal here is to see if the certified explanation
is more similar to the explanations for examples within the
certified region as opposed to those outside of it. This is
more of a qualitative assessment of the region in addition to
our method returning a trust region satisfying a certain level
of fidelity (≥ θ).

To measure the similarity between the explanations we use
two metrics: Top-k intersection (fraction of features that
appear within top k in both the explanations, we set k=5),
and Spearman rank correlation (compares the ordering of
features, magnitude of 1 means perfect correlation between
two ranked lists). We compute the mean and median of
these metrics for explanations of 22 randomly chosen (to
be certified) examples from the training data that cover
non-overlapping regions. We observe in Table 2 that for
explanations computed outside the region (randomly chosen
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Figure 4. Visualization of a certified explanation (black) for a ran-
domly chosen example in the HELOC dataset along with expla-
nations for examples lying within the trust region (nine green
pentagons on the left) and those (randomly chosen nine) lying
outside the trust region (orange pentagons on the right). The ex-
planations depict the feature importances for the top-5 features
based on the certified explanation. f1, f4, f15, f18 and f5 denote
‘ExternalRiskEstimate’, ‘AverageMInFile’, ‘MSinceMostRecentIn-
qexcl7days’, ‘NetFractionRevolvingBurden’ and ‘NumSatisfacto-
ryTrades’ respectively. As can be seen explanations for examples
within our trust region are significantly more similar to the certified
explanation than those outside of it.

100 examples), both Top-k intersection and Spearman rank
correlation are much worse than those within the region,
hence suggesting that the explanations computed for exam-
ples inside the certified region are indeed more similar and
consistent with the certified explanation. A visual portrayal
of this is seen in Figure 4, where for a randomly chosen
example we see that its explanation is closer (as depicted
by the shapes of the pentagon) to explanations of examples
within its certified region than those outside of it.

8. Discussion
Rather than certified hypercubes, one could also find hyper-
rectangles or even arbitrary ℓp balls (not just ℓ∞) with our
strategies for which too the main theoretical results should
apply. This would nonetheless require extra book-keeping to
correctly demarcate the certified (and violating) boundaries
in each case. From a practical standpoint the strategies could
also return the nearest violating example (i.e. fidelity < θ)
than the minimum fidelity one reducing the search space
even faster. Moreover, the outer For loop in unifI and adaptI
can be parallelized.

Based on our work there are multiple interesting directions
to investigate in the future: i) Applicability to other expla-
nation method types such as exemplar based explanation,
contrastive explanations etc. ii) New certification algorithms
inspired from multi-armed bandits, bayesian optimization
and hyperparameter optimization, iii) More intelligent ways
of assigning the query budget when an upper bound on the
certification region is known, iv) Applicability to manifolds
and v) Designing new explanation methods. We discuss
each of these in Appendix F.
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Impact Statement
Our contributions could have significant impact in evalu-
ating explanation methods as well as trustworthiness of
black-box models in real world deployments. Not to men-
tion for Explanation-As-A-Service applications our work
can greatly reduce cost as one would require much fewer
queries to the black-box model to obtain the desired number
of faithful explanations. One must be cognizant of the fact
though that our approaches do rely on random sampling and
have probabilistic guarantees, hence in any particular case
it is possible that the half-widths reported may be differ-
ent than the true half-widths. Also results may vary run to
run. Possible mitigation is by averaging over multiple runs
and/or using sufficient query budget.
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A. Proofs for Results in Section 5
Lemma 1 proof. To prove the first equality, we recall that f̂∗

w is the minimum of the fidelities sampled from [−w,w]d, while
f̂∗
wi,wi−1

is the minimum over the samples restricted to the ith region [−wi, wi]\[−wi−1, wi−1]. Since [−w,w]d is the
disjoint union of these regions, it follows that

f̂∗
w = min

i∈{1,...,c}
f̂∗
wi,wi−1

(8)

and
P
[
f̂∗
w > f∗

w + ϵ
]
= P

[
f̂∗
w1,w0

> f∗
w + ϵ, . . . , f̂∗

wc,wc−1
> f∗

w + ϵ
]
.

Since samples in different regions are independent, the joint probability above factors to yield the equality in the lemma
(after taking the complement).

The inequality in the lemma follows from bounding all but the smallest of the P
[
f̂∗
wi,wi−1

> f∗
w + ϵ

]
factors by 1. The

inequality is tight if the argmin corresponding to equation 8 is a single region,

i∗ = argmin
i∈{1,...,c}

f̂∗
wi,wi−1

,

and ϵ is small enough so that f∗
w + ϵ < f∗

wi,wi−1
for i ̸= i∗ (recall that f∗

wi,wi−1
is the true minimum fidelity in the region

[−wi, wi]\[−wi−1, wi−1]). In this case,

P
[
f̂∗
wi,wi−1

> f∗
w + ϵ

]
= P

[
f̂∗
wi,wi−1

≥ f∗
wi,wi−1

]
= 1, i ̸= i∗,

and
c∏

i=1

P
[
f̂∗
wi,wi−1

− f∗
w > ϵ

]
= P

[
f̂∗
wi∗ ,wi∗−1

− f∗
w > ϵ

]
= min

i∈{1,...,c}
P
[
f̂∗
wi,wi−1

− f∗
w > ϵ

]
.

From equation 2 it is clear that we need to lower bound P [f̂∗
wi,wi−1

− f∗
wi,wi−1

≤ ϵ] ∀i ∈ {1, ..., c}. Since, the mathematical
form of the bounds will be similar ∀i, let us for simplicity of notation denote the fidelities for the ith region by just the suffix
i, i.e., denote f∗

wi,wi−1
by f∗

i and similarly the minimum estimated fidelity and fidelities for other examples in that region.
We thus now need to lower bound P [f̂∗

i − f∗
w ≤ ϵ] for the three different certification strategies proposed in Algorithm 2.

Uniform Strategy: This is the simplest strategy where we sample and query Q examples uniformly in the region we want
to certify. Let U denote the uniform distribution over the input space in the ith region and let F (u)

i (.) denote the cumulative
distribution function (cdf) of the fidelities induced by this uniform distribution, i.e. F (u)

i (v) ≜ Pr∼U [f̂
(r)
i ≤ v] for some

real v and r belonging to the ith region. Then if f̂ (r1)
i , ..., f̂

(rQ)
i are the fidelities of the Q examples sampled by this strategy,

we have

Lemma 2 proof.

P [f̂∗
i − f∗

w ≤ ϵ] = 1− P [f̂∗
i > f∗

w + ϵ]

= 1−
Q∏

j=1

P [f̂
(rj)
i > f∗

w + ϵ]

= 1− (1− F (u)
i (f∗

w + ϵ))Q

≥ 1− exp (−QF (u)
i (f∗

w + ϵ)) (9)

In the last step we use the following inequality for x ∈ [0, 1], (1− x)n ≤ exp−nx.
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Uniform Incremental Strategy: In this strategy, we sample n ≤ q samples uniformly ⌊log(Q)⌋ times. Then using each of
them as centers we sample ⌊ q

n⌋ examples and query them. Let the cdfs induced by each of the centers through Gaussian
sampling be denoted by F

Nj,k

i (.), where j denotes the iteration number that goes up to ⌊log(Q)⌋ and k the kth sampled
prototype/center. With an analogous definition as before and similar steps we get,

Lemma 3 proof.

P [f̂∗
i − f∗

w ≤ ϵ] = 1−
⌊log(Q)⌋∏

j=1

n=min(2j ,q)∏
k=1

(
1− F

Nj,k

i (f∗
w + ϵ)

)⌊ q
n ⌋

≥ 1− exp

−
⌊log(Q)⌋∑

j=1

n=min(2j ,q)∑
k=1

⌊ q
n

⌋
F

Nj,k

i (f∗
w + ϵ)


≥ 1− exp

−
⌊log(Q)⌋∑

j=1

max
k∈{1,...,n}

⌊ q
n

⌋
F

Nj,k

i (f∗
w + ϵ)


≥ 1− exp

(
− max

j∈{1,...,⌊log(Q)⌋},k∈{1,...,n}

⌊ q
n

⌋
F

Nj,k

i (f∗
w + ϵ)

)
(10)

The above expressions convey the insight that if we find a good prototype rj,k implying that FNj,k

i (f∗
w + ϵ) is high it will

lead to a higher (i.e. better) lower bound than in the uniform case. Intuitively, if we find a good prototype, exploring the
region around it should be beneficial to find a good estimate of f∗

i .

Adaptive Incremental Strategy: This is possibly the most interesting strategy, where we explore adaptively in more
promising areas of the input space unlike the other two strategies. Here too let the cdfs induced by each of the centers through
Gaussian sampling be denoted by F

Nj,k

i (.), where j denotes the iteration number that goes up to ⌊log(Q)⌋ and k the kth

sampled prototype/center for a given n. W.l.o.g. assume F
Nj,k

i (.) ≤ F
Nj,k+1

i (.) ∀j ∈ {1, ..., ⌊log(Q)⌋}, k ∈ {1, ..., n− 1}
i.e. the first prototype produces the worst estimates of the minimum fidelity, while the nth prototype produces the best4.

Lemma 4 proof. Now we know that for j ∈ {1, ..., ⌊log(Q)⌋},

n =

{
2j if j2j ≤ q

2l otherwise, where l is the largest j such that j2j ≤ q
(11)

then the number of examples that will be sampled around the kth prototype will be,

⌊
(2v − 1)q

n log n

⌋
where, v =


1 if k ∈ {1, ...,

⌊
n
2

⌋
}

2 else if k ∈ {
⌈
n
2

⌉
, ...,

⌊
3n
4

⌋
}

...
...

log(n) else if k = n

(12)

4When sampling not always will the best cdf produce the best estimate, although it will be most likely (i.e. highest probability). We
assume this probability to be 1 for each cdf based on its position in the ordering of cdfs for clarity of exposition. One could multiply by
these probabilities for posterity, but it doesn’t change the nature of the bound or its interpretation.
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Then we have,

P [f̂∗
i − f∗

w ≤ ϵ] = 1−
⌊log(Q)⌋∏

j=1

n∏
k=1

(
1− F

Nj,k

i (f∗
w + ϵ)

)⌊ (2v−1)q
n log n

⌋

≥ 1− exp

−
⌊log(Q)⌋∑

j=1

n∑
k=1

⌊
(2v − 1)q

n log n

⌋
F

Nj,k

i (f∗
w + ϵ)


≥ 1− exp

(
− max

j∈{1,...,⌊log(Q)⌋}

⌊
(n− 1)q

n log n

⌋
F

Nj,n

i (f∗
w + ϵ)

)
(13)

Proposition 1 proof. For the unif strategy we query Q times uniformly so its obvious that the query budget will be Q.

For unifI we query n ≤ q samples ⌊log(Q)⌋ times and then using them as centers query ⌊ q
n⌋ examples each time. Given

that q = ⌊ Q
log(Q)⌋, the total number of queries is thus n⌊ q

n⌋⌊log(Q)⌋ = n⌊ Q
log(Q)n⌋⌊log(Q)⌋ ≤ Q. This value however will

be very close to Q which is what we want.

For adaptI too one can verify that the total query budget will be close but utmost Q. This is because we sample and
query ⌊ q

m⌈log(n)⌉⌋ examples for m prototypes ⌈log(n)⌉⌊log(Q)⌋ times making the total query budget used equal to
⌊ q
m⌈log(n)⌉⌋m⌈log(n)⌉⌊log(Q)⌋ ≤ q⌊log(Q)⌋ ≤ Q.

Proposition 2. Fi(f
∗
w + ϵ) = 0 iff all sets of inputs in region i corresponding to fidelities in [f∗

w, f
∗
w + ϵ] have measure zero

w.r.t. the sampling densities that are non-zero everywhere in region i.

Proof. First direction, all sets of inputs in region i corresponding to values in [f∗
w, f

∗
w + ϵ] having measure zero =⇒

Fi(f
∗
w + ϵ) = 0: Since all sets of inputs in region i corresponding to values in [f∗

w, f
∗
w + ϵ] have measure zero this

would imply that the probability of getting any value in [f∗
w, f

∗
w + ϵ] would also have measure zero and hence the sum of

these probabilities/measures would also be zero. Second direction, one or more sets of inputs corresponding to values in
[f∗

w, f
∗
w + ϵ] having non-zero measure =⇒ Fi(f

∗
w + ϵ) ̸= 0: If ∃ a set of inputs in region i whose values lie in [f∗

w, f
∗
w + ϵ]

with non-zero measure p then Fi(f
∗
w + ϵ) ≥ p > 0 , since this set will contribute a probability mass of p to its corresponding

value in [f∗
w, f

∗
w + ϵ].

The densities are non-zero since, we sample using Uniform for unif and Gaussians for unifI and adaptI in each bounded
region.

B. Characterizing cdfs Fi(.) for a piecewise linear black-box
Several popular classes of models are piecewise linear or piecewise constant, for example neural networks with ReLU
activations (Hanin & Rolnick, 2019), trees and tree ensembles, including oblique trees (Murthy et al., 1994) and model
trees (Gama, 2004). We provide a partial characterization of the cdfs Fi(.) for such piecewise linear black-box functions
g : Rd → [0, 1], a linear explanation function ey : Rd → [0, 1] estimated for the point y ∈ Rd, and the following fidelity
function (Dhurandhar et al., 2022; 2023; Ramamurthy et al., 2020):

fy(x) ≜ 1− |g(x)− ey(x)|. (14)

Assume that the black-box g has t ≤ p linear pieces within the ith region Ri.

In the sth piece, s = 1, . . . , t, g can be represented as a linear function gs(x) = βT
s x, where βs ∈ Rd. Moreover, the sth

piece is geometrically a polytope, which we denote as Pi,s ⊂ Rd. The explanation ey(x) = αT
yx is linear throughout.

Thus within the sth piece, the difference ∆s(x) = gs(x) − ey(x) that determines the fidelity equation 14 is also linear,
∆s(x) = (βs − αy)

Tx.

15



Trust Regions for Explanations via Black-Box Probabilistic Certification

Let us first consider the unif strategy where examples are sampled uniformly from Ri. The distribution of fidelity values is a
mixture of t distributions, one corresponding to each linear piece of g:

Fi(·) =
t∑

s=1

πsFi,s(·), (15)

where
∑t

s=1 πs = 1. In the uniform case, the probability πs that the sth piece is active is given by the ratio of volumes
πs = vol(Pi,s ∩Ri)/vol(Ri). The cdf Fi,s, or, equivalently, the corresponding probability density function (pdf), is largely
determined by the pdf of ∆s(x). The property of the latter pdf that is clearest to reason about is its support. The endpoints
of the support can be determined by solving two linear programs, ∆s,min/max = min/maxx∈Pi,s∩Ri

(βs − αy)
Tx. (The

shape of the pdf can be derived for example by first determining the corresponding cdf F∆s , which is again a ratio of
volumes F∆s(δ) = vol(Pi,s ∩Ri ∩{x : (βs −αy)

Tx ≤ δ})/vol(Pi,s ∩Ri), is harder to determine; intuitively, the density
at a value δ is proportional to the volume of the δ-level set of ∆s(x) intersected with the polytope, vol({x : (βs −αy)

Tx =
δ}∩Pi,s∩Ri).) Given the pdf of ∆s(x), the absolute value operation in equation 14 corresponds to folding the pdf over the
vertical axis, and the 1− operation flips and shifts the result. Overall, we can conclude that Fi,s is supported on an interval
that is determined by ∆s,min and ∆s,max. A larger difference vector (βs − αy) in the sth piece will tend to produce larger
∆s,min, ∆s,max in magnitude, and hence lower fidelities. The minimum fidelity f∗

i corresponds to the largest |∆s,min|,
|∆s,max| over s. The weight πs of the sth component in the mixture depends on the volume vol(Pi,s ∩Ri).

We now consider how the above reasoning changes for the unifI and adaptI strategies. First, instead of a single uniform
distribution of examples, we have a mixture of Gaussians Nj,k indexed by iteration number j and prototype k. Hence
equation 15 is augmented with summations over j and k, and πs, Fi,s gain indices to become πj,k

s , F j,k
i,s . Second, instead

of volumes, the weight πj,k
s is given by a ratio of probabilities under each Gaussian: πj,k

s = PNj,k
(Pi,s ∩Ri)/PNj,k

(Ri).
Third, we now have multiple pdfs of ∆s(x) to consider, one for each Gaussian Nj,k, and their shapes depend on how each
Gaussian weights the points in Pi,s ∩ Ri. What does not change however is the support [∆s,min,∆s,max] of ∆s(x), as
this is a geometric quantity depending on the black-box g and explanation ey but not the distribution (uniform, Nj,k, or
otherwise). Hence, the same statements above apply regarding the relationship between the the difference vectors (βs − αy)
and the range of fidelities, mediated by ∆s,min, ∆s,max.

C. More Efficient Certification Details
1) Lipschitz Black-box: Let the black-box function be denoted by g(.) : Rd → R and the explanation function by
ey(.) : Rd → R, where the subscript y denotes that the explanation function was estimated at y ∈ Rd. Let us assume the
explanation function is linear i.e., ey(x) = αT

yx (viz. in LIME and variants), where αy ∈ Rd. Let the (in)fidelity function
(complement of the fidelity function) for some explanation function ey(.) be then defined as,

f̄(x) ≜ |g(x)− ey(x)| (16)

Now for certification, we would want to find a rectangular region R in the input space such that f̄(x) ≤ θ̄ ∀x ∈ R, where θ̄
is our certification level (complement of θ) and R is symmetric around x. Given that the black-box is l-lipschitz we would
have,

|g(x)− g(y)| ≤ l||x− y|| (17)

for some l > 0. Assume for simplicity that g(x) = ex(x), i.e., the explanation function perfectly mimics the black-box if it
is estimated at the same input x. In other words, infidelity is zero if the estimation is at the same example. Even if we allow
for some error it does not fundamentally change the results5, but our simplifying assumption conveys the main idea more
clearly in our opinion.

To certify a region R around x we now want to find ∀y ∈ R, |g(y)− ex(y)| ≤ θ̄. Upper bounding the left hand side and
forcing it to be ≤ θ̄ will give us a conservative estimate of the region around x which will be certified without having to

5Final bound is shifted proportional to the error.
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query it. Let us thus now upper bound this quantity,

|g(y)− ex(y)| = |ex(x)− ex(y) + g(y)− ex(x)|
≤ |ex(x)− ex(y)|+ |g(y)− ex(x)|
= |αT

x(x− y)|+ |g(y)− g(x)|
≤ ||αx|| · ||x− y||+ l||x− y||
= ||x− y|| (||αx||+ l) (18)

The derivation mainly uses Cauchy-Schwartz inequality and that g(.) is l-lipschitz. Therefore, we can now readily obtain a
certification region Rx which is a hypercube around x such that

Rx ⊆
{
y, where ||x− y|| ≤ θ̄

||αx||+ l

}
(19)

The region Rx can be used to set the initial lower bounds when calling Algorithm 1, rather than the typical zero. Thus, we
already would have a non-trivial region that is certified before we even make a single query for reasonable values of θ̄.

Interestingly, one could potentially apply this approach in an alternating fashion where once a certain region is certified
by our algorithm we could try to estimate how far beyond it, again conservatively, will the infidelity not worsen below θ̄.
However, this will have to be done more carefully as our algorithm may not have certified a region with certainty and hence
errors may cascade.

2) Piecewise Linear Black-box: In general, knowing that the black-box is piecewise linear with say p pieces may not help
boost our certification algorithm. However, if the fidelity is computed in a way which corresponds to the number of pieces
then that can potentially be very useful. For instance, again assume the explanation function is linear ey(x) = αT

yx, and
that fidelity in this case is computed as the correlation between the explanation and the corresponding linear piece βx in
the black-box function (which can be estimated) as follows: f(x) ≜ |βT

xαy|
||βx||·||αy|| . In such a case, we would know that the

maximum number of fidelities we would encounter for an explanation would be utmost p. So at any stage in our algorithm if
we encounter p different values for fidelity and if all of them are ≥ θ, then we would know that the entire input space is
certified and can stop our search.

D. Topics Related to Extreme Value Theory
i.i.d. unifI strategy To facilitate the application of EVT, we use a variant of the unifI strategy that samples examples in an
i.i.d. manner, as opposed to requiring a fixed number ⌊ q

n⌋ of samples from each Gaussian component (see Algorithm 2)
which is not i.i.d. The key is to regard the examples as being drawn from a mixture distribution, specifically a mixture of
Gaussian mixtures. As in Algorithm 2, the outer mixture consists of ⌊log(Q)⌋ Gaussian mixtures indexed by i, and each
Gaussian mixture has n components where n = min(2i, q). Instead of drawing the same number of samples from each
Gaussian mixture and each Gaussian, we use uniform mixture weights. The overall mixture distribution is therefore

⌊log(Q)⌋∑
i=1

1

⌊log(Q)⌋

ni=min(2i,q)∑
j=1

1

ni
Ni,j(rj , σ

2I).

As with the unifI strategy, we first sample the centers rj uniformly, and then sample Q examples from the above mixture
distribution for querying the black-box model.

Proof of Corollary 1 A direct translation of the results of de Haan (1981), De Carvalho (2011, Thm. 2.3) is as follows:

P

f̂∗
i − f∗

i ≤
ˆ̂f∗
i − f̂∗

i

(1− p)−1/κ − 1︸ ︷︷ ︸
ϵEVT
i

 = 1− p. (20)

We then set the quantity ϵEVT
i equal to a given tolerance ϵ and solve for the corresponding value of 1− p. After a bit of

algebra, this yields the expression in the corollary.
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Using Corollary 1 as an alternative to Theorem 1 As discussed in the main text, Corollary 1 differs from Lemmas 2–4
in having the region-specific minimum f∗

i instead of f∗
w, but for i = i∗ ∈ argmini f

∗
i , we have f∗

i∗ = f∗
w. Hence

P
[
f̂∗
i∗ − f∗

w ≤ ϵ
]
= P

[
f̂∗
i∗ − f∗

i∗ ≤ ϵ
]
=

(
1 +

ˆ̂f∗
i∗ − f̂∗

i∗

ϵ

)−κ

.

On the other hand, Lemma 1 implies that (recalling the shorthand f̂∗
i = f̂∗

wi,wi−1
)

P
[
f̂∗
w − f∗

w ≤ ϵ
]
≥ max

i∈{1,...,c}
P
[
f̂∗
i − f∗

w ≤ ϵ
]
≥ P

[
f̂∗
i∗ − f∗

w ≤ ϵ
]
.

Hence

P
[
f̂∗
w − f∗

w ≤ ϵ
]
≥

(
1 +

ˆ̂f∗
i∗ − f̂∗

i∗

ϵ

)−κ

,

and Corollary 1 for i = i∗ provides a valid alternative to Theorem 1 as claimed.

More interpretable simplification of ϵEVT
i We now provide an upper bound on the confidence interval width ϵEVT

i in
equation 20 that is simpler to interpret. Denoting this upper bound as ϵ̂EVT

i , it follows that

P
[
f̂∗
i − f∗

i ≤ ϵ̂EVT
i

]
≥ 1− p,

i.e., [f̂∗
i − ϵ̂EVT

i , f̂∗
i ] is also (at least) a (1− p)-confidence interval for the minimum fidelity f∗

i .

To bound ϵEVT
i from above, it is equivalent to bounding the denominator ((1− p)−1/κ − 1) from below since the numerator

ˆ̂f∗
i − f̂∗

i is non-negative. We regard the denominator as a function of 1/κ, D(1/κ) = ((1 − p)−1/κ − 1). This is an
exponential function and hence convex in 1/κ. It is therefore bounded from below by its tangent line at 1/κ = 0:

D

(
1

κ

)
≥ D(0) +

D′(0)

κ
= 0− log(1− p)

κ
=

log(1/(1− p))

κ
.

Hence

ϵEVT
i ≤ ϵ̂EVT

i =
κ( ˆ̂f∗

i − f̂∗
i )

log(1/(1− p))
. (21)

The upper bound in equation 21 is proportional to parameter κ of the extreme value distribution and to the difference
( ˆ̂f∗

i − f̂∗
i ) between the smallest and second-smallest observed fidelities. It also depends logarithmically on the confidence

level 1− p. As noted in Section 6.2, κ is often taken to be d/2 (de Haan, 1981) (recall that d is the input dimension). In this
case, ϵ̂EVT

i is proportional to the dimension. The upper bound becomes tighter as 1/κ → 0, i.e., in the limit of high κ and
high dimension.

E. Experimental Details and More Results
In our implementation of Ecertify, we also have an additional exit condition that checks how close lb and ub are in any
iteration of Z. If the difference is less than 0.1

d , we return the current best solution. This prevents the strategies from trying
to find samples in this very narrow (low volume) region, which can be difficult.

Choices for the upper bound B: In Section 4, we introduced the variable B (from Algorithm 1) that bounds the
half-widths to consider from above. Recall that in Algorithm 1, once a violator (b) is found, we shrink the candidate region
by setting the new ub to be the midpoint between B and lb (the width of the last certified region), and B was set to be the
minimum of all the coordinates of b that exceed lb. In this experiment, we consider other choices for setting B: i) to the
maximum value and ii) to the mean value of the coordinates of b that exceed lb.

We choose the synthetic data set-up as described in Section 7 for this experiment as the true certified half-widths are known
(1/d). In Figures 5 and 6, we report the found w’s and timings for the three variations of B (for each of the three strategies).
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Table 3. Synthetic results for x = [0]d, Z = 10, θ = 0.75, explanation is slope 0.75 hyperplane and optimal half-width is 1
d

with standard
errors (rounded to 3 decimal places, where if value is 0 after rounding we do not state it).

d Q
unif unifI adaptI ZO+

w Time (s) w Time (s) w Time (s) w Time (s)

1

10 1 .001 1 .001 1 .001 1 .012
102 1 .006 1 .004 1 .002 1 1.221
103 1 .055 1 .041 1 .026 1 1.724
104 1 .53 1 .418 1 .189 1 1.641

10

10 .06 ± .027 .001 .037 ± .028 .001 .142 ± .12 .001 .3 ± .07 .012
102 .082 ± .019 .003 .06 ± .023 .007 .08 ± .02 .003 .1 .125
103 .09 ± .018 .036 .085 ± .019 .049 .11 ± .02 .044 .1 1.354
104 .1 ± .016 .363 .117 ± .008 .615 .1 ± .01 .551 .1 14.944

102

10 .012 ± .005 .001 .006 ± .002 .001 .007 ± .09 .001 .05 .031
102 .012 ± .003 .005 .007 ± .002 .012 .008 ± .002 .005 .025 .3
103 .011 ± .004 .054 .009 ± .001 .158 .01 ± .001 .09 .012 4.072
104 .01 ± .003 .632 .01 ± .001 1.692 .01 ± .001 .51 .009 55.87

103

10 5 × 10−4 .003 3 × 10−4 .004 5 × 10−4 .002 .037 ± .008 .307

102 6 × 10−4 .011 .001 .073 6 × 10−4 .044 .012 2.579

103 8 × 10−4 .077 .001 1.074 8 × 10−4 .511 .003 28.335

104 .001 .588 .001 13.786 9 × 10−4 5.097 .001 288.523

104

10 6.3 × 10−5 .012 5.1 × 10−5 .098 5.8 × 10−5 .021 .006 ± .001 3.76

102 6.6 × 10−5 .072 7.7 × 10−5 1.187 7.8 × 10−5 .43 .004 34.602

103 8.3 × 10−5 .771 8.4 × 10−5 12.452 8.5 × 10−5 7.91 8.4 × 10−4 391.494

104 8.9 × 10−5 4.83 9.1 × 10−5 112.58 9.4 × 10−5 88.342 9.3 × 10−5 4384.76

Table 4. Synthetic results for x = [0]d, Z = 10, θ = 0.9, explanation is slope 0.9 hyperplane and optimal half-width is 1
d

with standard
errors (rounded to 3 decimal places, where if value is 0 after rounding we do not state it).

d Q
unif unifI adaptI ZO+

w Time (s) w Time (s) w Time (s) w Time (s)

1

10 1 .001 1 .001 1 .001 1 .011
102 1 .004 1 .005 1 .002 1 1.122
103 1 .06 1 .04 1 .024 1 1.678
104 1 .55 1 .42 1 .181 1 1.666

10

10 .071 ± .022 .001 .039 ± .027 .001 .133 ± .11 .001 .2 ± .09 .015
102 .083 ± .017 .002 .063 ± .019 .005 .08 ± .02 .003 .1 .128
103 .11 ± .012 .032 .081 ± .021 .051 .11 ± .01 .048 .1 1.411
104 .1 ± .011 .369 .115 ± .009 .623 .1 ± .008 .573 .1 14.871

102

10 .013 ± .004 .001 .006 ± .002 .001 .008 ± .08 .001 .053 .034
102 .013 ± .003 .005 .006 ± .003 .014 .009 ± .001 .004 .027 .35
103 .01 ± .005 .051 .01 ± .002 .162 .012 ± .001 .11 .011 4.113
104 .01 ± .002 .655 .01 ± .001 1.679 .01 .56 .01 58.12

103

10 5.3 × 10−4 .003 5.7 × 10−4 .004 5.9 × 10−4 .002 .028 ± .01 .317

102 6.3 × 10−4 .014 9.2 × 10−4 .077 7.9 × 10−4 .042 .009 2.636

103 8.5 × 10−4 .079 .001 1.051 9.1 × 10−4 .563 .002 29.638

104 .001 .613 .001 12.673 9.9 × 10−4 5.165 .001 291.122

104

10 6.7 × 10−5 .011 6.1 × 10−5 .123 6.6 × 10−5 .03 .004 ± .001 3.83

102 7.4 × 10−5 .074 7.9 × 10−5 1.221 8.2 × 10−5 .48 .002 36.671

103 8.7 × 10−5 .777 8.9 × 10−5 12.53 9.3 × 10−5 8.16 8.6 × 10−4 401.821

104 9.5 × 10−5 5.01 9.6 × 10−5 101.99 9.9 × 10−5 90.112 9.6 × 10−5 4517.119
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Table 5. Synthetic results for x = [0]d, Z = 10, θ = 0.5, explanation is slope 0.5 hyperplane and optimal half-width is 1
d

with standard
errors (rounded to 3 decimal places, where if value is 0 after rounding we do not state it).

d Q
unif unifI adaptI ZO+

w Time (s) w Time (s) w Time (s) w Time (s)

1

10 1 .001 1 .001 1 .001 1 .015
102 1 .005 1 .005 1 .004 1 1.312
103 1 .051 1 .039 1 .023 1 1.756
104 1 .51 1 .432 1 .181 1 1.611

10

10 .07 ± .028 .001 .032 ± .025 .001 .122 ± .13 .001 .24 ± .08 .011
102 .078 ± .012 .004 .061 ± .022 .005 .08 ± .02 .003 .1 .133
103 .09 ± .01 .04 .083 ± .015 .047 .12 ± .01 .046 .1 1.211
104 .1 ± .013 .351 .109 ± .005 .622 .1 ± .05 .566 .1 15.175

102

10 .012 ± .006 .001 .007 ± .001 .001 .008 ± .08 .001 .06 .037
102 .011 ± .003 .006 .008 ± .002 .014 .008 ± .002 .006 .023 .312
103 .011 ± .002 .051 .009 ± .001 .151 .012 ± .001 .10 .013 4.178
104 .01 ± .002 .611 .01 ± .002 1.633 .01 ± .001 .46 .01 58.62

103

10 5.2 × 10−4 .004 4.8 × 10−4 .005 5.3 × 10−4 .002 .023 ± .008 .365

102 6 × 10−4 .016 8 × 10−4 .075 7.3 × 10−4 .046 .009 2.677

103 8.1 × 10−4 .075 .001 1.033 8.8 × 10−4 .525 .003 27.547

104 .001 .595 .001 12.976 9.9 × 10−4 4.98 .001 285.479

104

10 6.4 × 10−5 .01 6.1 × 10−5 .101 6.8 × 10−5 .019 .003 ± .002 3.82

102 6.7 × 10−5 .073 7.9 × 10−5 1.234 8.1 × 10−5 .46 .002 33.1

103 8.2 × 10−5 .775 8.5 × 10−5 12.437 8.9 × 10−5 8.12 8.5 × 10−4 389.352

104 9.1 × 10−5 4.78 9.4 × 10−5 115.01 9.7 × 10−5 90.103 9.4 × 10−5 4291.438

In Figure 5, we observe that for smaller dimensions (≈ 10s) the choice of B has negligible effect, but for higher dimensions
taking the minimum provides much more accurate estimates of the true half-width albeit slightly conservative, while both
max and mean choices overestimate the true half-width. The reason for this is as follows: note that once the upper bound B
is set, the resulting certified half-width w could at best converge to B, and thus setting B to be the maximum (or mean) of
the violator (b)’s coordinates can be overly optimistic.

In Figure 6, we observe min also enjoys the benefit of faster running time, since it brings about the largest reduction
in (candidate) widths to consider. This analysis supports our choice of using min in Algorithm 1 as well as in our
implementation.
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Figure 5. Certified half-widths vs. dimensions plots for the synthetic data set-up with different choices of setting B for the proposed 3
strategies. Note that, choosing min is (slightly) conservative as it is almost always below the true certified width (the black solid curve)
and both max and mean overestimate the true width (the y-axis is in log-scale).

LIME setting: For tabular classification datasets (heloc and arrhythmia), we obtained LIME explanations by using 1000
samples around each instance, and with top 5 features in the explanation. We did not discretize continuous features. We
constructed the linear explanation using the coefficients and intercepts from the explanation to apply it to other instances.

For images applying LIME explanations is not straightforward since each image has its own mask based on the superpixels
it identifies. Hence to apply explanations across images we identified coefficient values for each pixel in the input image and
then depending on the (absolute value of the) mask for a sampled image in the current to be certified region summed the
relevant coefficients. This intuitively is equivalent multiplying coefficients with feature values for an example. We also
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Figure 6. Timing charts for the 3 strategies with different choices for B. We see that choosing min results in shorter run-times for all three
strategies (the y-axis is in log-scale) since it brings about the largest reduction in candidate spatial widths to consider.

reduced the neighbourhood sample size for LIME to 100 (for CIFAR10) and to 10 (for ImageNet) as this mask finding
procedure was time consuming, especially when the certification was done with a high query budget.

SHAP setting: For SHAP, we used the model agnostic KernelSHAP explainer and used mean values of features from
training data as the background values. We obtained shapley values for an instance by taking 10 features and 1000
explanation samples (nsamples) for tabular, and 1000 features and 500 nsamples for image datasets. To apply the
obtained SHAP explanation on other examples, we obtained an equivalent linear regression model from the shapley values
following (Amparore et al., 2021).

E.1. Additional Synthetic Experiments

As mentioned in the main paper we report results here on more cases along with their standard errors. In Table 3 we
see results of Table 1 with standard errors. Tables 4 and 5 report results for θ = 0.9 and θ = 0.5 respectively where the
explanations are hyperplanes having a θ slope with all the axes. As we can see the insights discussed in the main paper carry
over for these cases too.

E.2. Additional Real Experiments

In Figures 7, 8, 9 and 10 we see qualitatively similar behavior6 as discussed in the main paper, where in terms of half-widths,
in general, unif seems to be the best for the lower dimensional datasets such as HELOC and Arrhythmia, while unifI is best
for CIFAR10 and adaptI is best for ImageNet. Again adaptI seems to be the fastest, possibly because of the high efficiency
in rejection sampling and it honing on to the violating examples in a region with (much) fewer queries than the allotted
budget Q on average.

E.3. Query savings using certified explanations

In this section, we demonstrate a practical use-case of our method in explanation re-use and savings on queries while
computing explanations for a payload sample on a deployed model. The idea is to find certified regions at a given fidelity
level θ for few samples in the dataset, and then compute the number of samples covered by those regions. For the covered
samples, we can simply re-use the already computed corresponding (certified) explanations instead of computing them anew.

For this experiment, we choose the HELOC dataset (FICO, 2018a) and a Gradient Boosted Tree model as also used in other
experiments, and the LIME explainer to certify. In the experiment, we sample random subsets of increasing size from the
original training set (fractions from 0.1 to 1.0), and for each such subset we find how many training examples are required
to cover that entire subset of examples. To find the samples needed to cover the subset, we employ a sequential covering
approach. In each iteration, we pick an instance at random from the subset and compute and certify its explanation. We then
update the subset by removing all instances that are covered by the certified region for the explanation. We say a region

6In Figure 8 ZO+ exited without returning a half-width for Q = 10 on CIFAR10 and hence it is not plotted for that value. For
prototype 2 using LIME ZO+ again exited immediately for Q = 10000 and hence the zero values for time and half-width.
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Figure 7. Rows 1-4 above correspond to prototypes 2-5 from the ImageNet dataset. The first prototype results are in the main paper. First
two columns are LIME half-width and timing results, while last two columns are SHAP half-width and timing results respectively.
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Figure 8. Rows 1-4 above correspond to prototypes 2-5 from the CIFAR10 dataset. The first prototype results are in the main paper. First
two columns are LIME half-width and timing results, while last two columns are SHAP half-width and timing results respectively.
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Figure 9. Rows 1-4 above correspond to prototypes 2-5 from the arrhythmia dataset. The first prototype results are in the main paper. First
two columns are LIME half-width and timing results, while last two columns are SHAP half-width and timing results respectively.
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Figure 10. Rows 1-3 above correspond to prototypes 3-5 from the HELOC dataset. The first two prototype results are in the main paper.
First two columns are LIME half-width and timing results, while last two columns are SHAP half-width and timing results respectively.

covers a training example if a fraction of the example’s feature values fall inside the certified region. For this demonstration,
we choose θ = 0.75 and the fraction to be the top 60% of features as ranked by the LIME explanation. This was sufficient
for the fidelity constraint to be satisfied with high probability (see Figure 3(right)). One could choose higher fractions,
however, since HELOC has < 7000 (train) examples and hence does not densely fill the input space the coverage reduces
with increasing fraction (at 80% almost no other examples are covered). Thus, we chose 60% where the fidelity constraint is
(mostly) met, but we still get significant coverage. This fraction could be higher for more densely populated datasets (even
100%), where one could still see substantial coverage and query savings. Note that there are a few samples for which even
an explanation computed for the sample itself has fidelity less than θ. We ignore such samples from the subsets and hence
the x-axis in the figures state effective subset size.

In Figure 3(left) in the main paper, we show that we need an order of magnitude fewer samples to cover the entire subset. In
Figure 3(right), we show the means and standard deviations of the actual fidelities of the covered samples for which we did
not compute explanations explicitly, and instead used a certified explanation from another sample. As can be seen the mean
fidelity values are above the threshold, and the standard deviation bars shrink as the subset size grows.

These results suggest that even if we pick samples randomly from a dataset to certify, we would need an order of magnitude
fewer samples to cover the dataset, with corresponding savings in not having to compute explanations for covered examples.
At the same time, the covered examples satisfy the fidelity threshold θ with high probability.

F. Discussion Section
Rather than certified hypercubes, one could also find hyper-rectangles or even arbitrary ℓp balls (not just ℓ∞) with our
strategies for which too the main theoretical results should apply. This would nonetheless require extra book-keeping to
correctly demarcate the certified (and violating) boundaries in each case. From a practical standpoint the strategies could
also return the nearest violating example (i.e. fidelity < θ) than the minimum fidelity one reducing the search space even
faster. Moreover, the outer For loop in unifI and adaptI can be parallelized.

There are multiple interesting future directions which we discuss below.
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Applicability to other explanation method types: Although our experiments considered feature based explanations,
one could apply our approach even to contrastive (Dhurandhar et al., 2018; Wachter et al., 2017) or exemplar (Kim et al.,
2016; Gurumoorthy et al., 2019) based explanations, as long as one can apply the given explanation (e.g. a class-changing
perturbation) to different examples and measure the resulting quality. For instance, in the case of contrastive explanations,
one could apply the same perturbations that change the class of one input example to other examples and check if the same
class change occurs. This would be a potential quality metric in this case.

Multi-armed bandits, Bayesian optimization and Hyperparameter optimization: Multi-armed bandit algorithms
(Slivkins, 2019) could possibly be adapted to our setting, especially those designed for infinitely many arms (Auer et al.,
2003). We note however that they typically make assumptions such as Lipschitzness, local smoothness or bounded
near-optimality dimension (Bubeck et al., 2011), which we did not have to make for our main results.

If we assume some prior knowledge or structure on the search space, then Bayesian optimization methods (Frazier, 2018) can
probably be adapted to our problem. However, it isn’t clear what assumptions would be reasonable in the explanation setting
and hence we proposed solutions that would work with no such assumptions. But if we have some additional information
about the hypothesis class of the black-box function then one could possibly leverage methods from Bayesian optimization.

It is worth mentioning that our certification strategies have relations to methods employed in hyperparameter optimization
(Tong Yu, 2020), where efficient search of the hyperparameter space is needed. However, in addition to the domain being
completely different, methods in hyperparameter optimization try to find hyperparameter values that will result in the best
performing model w.r.t. a certain quality metric such as accuracy. In our case, we do not have an already provided model
that we wish to optimize and for which we have to assign computational resources to train. Rather, we have to decipher an
intelligent way to find low fidelity examples in a compact region of the input space. It is a priori unclear how the query
budget can be effectively assigned and used (viz. sampling prototypes, perturbing them, etc.) in such a setup. Moreover,
theoretical results in their domain typically involve making additional assumptions about the loss behavior with more
training, something that wasn’t required for us to prove the bounds, not to mention them having little relevance in our setup.

Known upper bound: If a priori we know an upper bound on the certification region, there could be more intelligent ways
of assigning the query budget to Certify() in Algorithm 1, rather than simply a fixed budget of Q. One could possibly keep
querying in the region until the certification criterion is violated. If a violation is found then the new region to certify would
be the hypercube contained within the closest dimension of this example to the input. Now repeat the process with the
remaining query budget in this new region. Once we exhaust the query budget declare the current region being certified as a
valid certified region.

Applicability to manifolds: It would be desirable to adapt these methods to work on lower dimensional manifolds. As a
first step, one could simply apply the current methods to the latent space (e.g. as learned by an auto-encoder) rather than the
input space. Thus, although the regions will be hypercubes in the latent space they will be more free-form in the input space
which might be interesting.

Designing new explanation methods: One could design new explanation methods that maximize the size of the certification
region while also being faithful. Ideas from constraint generation (Dash et al., 2018) could be used here where the identified
violating examples would serve as the constraints that get added when finding a suitable explanation possibly leading to
more robust explanations.

G. Bound computation
In Tables 6 and 8 we see the bounds computed using Theorem 1 for the synthetic and real data experiments.
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Table 6. Bounds computed based on Theorem 1 for the synthetic results reported in Table 1. ϵ was set to 0.01 and kernel density estimation
(kde) using the scipy library with default settings was done to estimate the distribution of fidelities. The cdfs were computed based using
the true f∗ in the region, as well as two proxies for f∗, namely f̂∗ i.e. minimum estimated fidelity for the respective region based on the
fidelities returned by the algorithms, and θ i.e. fidelity threshold passed as input to the algorithms. Also time to compute the bounds is
reported given that we have the fidelities already available for samples from running the respective strategies. The time is an average
over three options for f∗ mentioned above each of which takes similar time. As can be seen the bounds using f∗ or its estimate f̂∗ are
quite close, while the bounds using θ as a proxy for f∗ are slightly conservative. We can see that adaptI converges to probability 1 the
fastest in terms of Q, probably because of its ability to hone in on the low fidelity regions leading to higher values of the cdf and hence
tighter bounds. In terms of time, unif is the fastest since we just have to estimate a single cdf for each region we certify. For adaptI,
approximately log(Q) cdfs have to be estimated per region, while for unifI it is ≈ q(1 + log log(Q)), which leads to the higher time.
Nonetheless, in practical terms, all bounds seem to be reasonably efficient to compute (within ∼ 6 minutes here).

d Q
unif unifI adaptI

f∗ f̂∗ θ Time (s) f∗ f̂∗ θ Time (s) f∗ f̂∗ θ Time (s)

1

10 0.001 0.001 0.001 0.123 0.001 0.001 0.001 0.127 0.001 0.001 0.001 0.135
102 0.457 0.457 0.457 0.158 0.764 0.764 0.764 1.312 0.971 0.971 0.971 0.411
103 1.000 1.000 1.000 0.213 1.000 1.000 1.000 12.623 1.000 1.000 1.000 0.801
104 1.000 1.000 1.000 0.727 1.000 1.000 1.000 368.671 1.000 1.000 1.000 3.638

10

10 0.001 0.001 0.001 0.125 0.001 0.001 0.001 0.129 0.001 0.001 0.001 0.132
102 0.461 0.461 0.445 0.162 0.764 0.764 0.691 1.396 0.962 0.962 0.949 0.405
103 1.000 1.000 1.000 0.217 1.000 1.000 1.000 13.142 1.000 1.000 1.000 0.793
104 1.000 1.000 1.000 0.79 1.000 1.000 1.000 370.263 1.000 1.000 1.000 3.792

102

10 0.001 0.001 0.001 0.127 0.001 0.001 0.001 0.127 0.001 0.001 0.001 0.130
102 0.466 0.468 0.461 0.161 0.771 0.773 0.768 1.387 0.972 0.971 0.967 0.431
103 1.000 1.000 1.000 0.209 1.000 1.000 1.000 13.128 1.000 1.000 1.000 0.828
104 1.000 1.000 1.000 0.789 1.000 1.000 1.000 370.527 1.000 1.000 1.000 3.716

103

10 0.001 0.001 0.000 0.129 0.001 0.001 0.001 0.127 0.001 0.001 0.000 0.137
102 0.455 0.455 0.441 0.163 0.778 0.780 0.772 1.411 0.970 0.971 0.965 0.429
103 1.000 1.000 0.981 0.222 1.000 1.000 1.000 13.172 1.000 1.000 0.995 0.811
104 1.000 1.000 1.000 0.733 1.000 1.000 1.000 371.321 1.000 1.000 1.000 3.712

104

10 0.001 0.001 0.000 0.130 0.001 0.001 0.000 0.125 0.001 0.001 0.000 0.140
102 0.449 0.450 0.444 0.153 0.765 0.765 0.759 1.344 0.972 0.972 0.969 0.401
103 1.000 1.000 0.998 0.235 1.000 1.000 0.999 12.763 1.000 1.000 1.000 0.789
104 1.000 1.000 1.000 0.766 1.000 1.000 1.000 373.891 1.000 1.000 1.000 3.601

Table 7. Probability lower bounds from EVT for the synthetic results reported in Table 1 (same as Table 6). As discussed in Section 6 and
Appendix D, the bounds apply to the unif and i.i.d. unifI strategies and are based on Corollary 1. Ideally, one should apply Corollary 1
with i = i∗ ∈ argmini f

∗
i , but since i∗ is not known to the algorithms, we use î ∈ argmini f̂

∗
i as an approximation. As in Table 6,

ϵ = 0.01, and the exponent κ in Corollary 1 is set to d/2. We make the following observations: 1) The bounds for i.i.d. unifI in particular
are high enough to be meaningful. 2) At the same time, the bounds in Table 7 are weaker than those in Table 6. This appears to be the
price of using an easily computable asymptotic expression rather than estimating cdfs. While the Q = 10 results in Table 7 might appear
to be better, we recall that EVT holds in the limit of large Q so the Q = 10 values are questionable. We include them for completeness to
match Table 6. 3) The bounds in Table 7 do suffer somewhat from increasing dimension d, due to the exponent κ = d/2. 4) The bounds
for i.i.d. unifI are much better than for unif. This supports the intuition that if one of the prototypes from unifI happens to be good (having
close to minimum fidelity), then sampling more densely around it is better than sampling uniformly throughout.

d Q unif i.i.d. unifI

1

10 0.624 0.654
102 0.9 0.875
103 0.989 0.981
104 0.998 0.998

10

10 0.077 0.575
102 0.191 0.553
103 0.244 0.563
104 0.317 0.645

102

10 0.066 0.451
102 0.081 0.513
103 0.081 0.493
104 0.083 0.558

103

10 0.016 0.416
102 0.081 0.471
103 0.141 0.479
104 0.109 0.484

104

10 0.02 0.364
102 0.05 0.436
103 0.05 0.454
104 0.07 0.515
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Table 8. Below we see the (estimated) lower bounds on the probability in Theorem 1 and the additional time to compute them for the
example in the main paper on ImageNet (Figure 1 first row), given that we have the fidelities already available for samples from running
the respective strategies. ϵ was set to 0.01 and kernel density estimation (kde) using the scipy library with default settings was done to
estimate the distribution of fidelities. The cdfs were computed based on two proxies for f∗ (which is unknown): i) f̂∗ i.e. minimum
estimated fidelity for the respective region based on the fidelities returned by the algorithms and ii) θ i.e. fidelity threshold passed as input
to the algorithms. The latter would provide a conservative estimate of our bounds since, f∗ ≥ θ for a certified region. We can see that
adaptI converges to probability 1 the fastest in terms of Q, probably because of its ability to hone in on the low fidelity regions leading to
higher values of the cdf and hence tighter bounds. In terms of time, unif is the fastest since we just have to estimate a single cdf for each
region we certify. For adaptI, approximately log(Q) cdfs have to be estimated per region, while for unifI it is ≈ q(1+ log log(Q)), which
leads to the higher time. Nonetheless, in practical terms, all bounds seem to be reasonably efficient to compute (within ∼ 6 minutes here).

Explanation method Criterion Strategies f∗ proxy Q
10 100 1000 10000

LIME

time (s)

unif f̂∗ 0.1350 0.1750 0.2250 0.7350
θ 0.1289 0.1612 0.2023 0.7011

unifI f̂∗ 0.1543 1.4000 13.9179 373.9050
θ 0.1399 1.2234 12.7832 365.1237

adaptI f̂∗ 0.1620 0.4200 0.8100 3.8220
θ 0.1494 0.4012 0.7914 3.5822

bounds

unif f̂∗ 0.0000 0.4833 1.0000 1.000
θ 0.0000 0.4665 0.9892 1.000

unifI f̂∗ 0.0002 0.7746 1.0000 1.000
θ 0.0001 0.7582 0.9862 1.000

adaptI f̂∗ 0.0002 0.9668 1.0000 1.000
θ 0.0002 0.9589 1.0000 1.000

SHAP

time (s)

unif f̂∗ 0.1470 0.1860 0.2340 0.8110
θ 0.1298 0.1821 0.2218 0.7981

unifI f̂∗ 0.1656 1.5200 14.1200 375.3340
θ 0.1581 1.4827 12.2371 369.4216

adaptI f̂∗ 0.1710 0.5100 0.8900 3.9870
θ 0.1601 0.4897 0.8691 3.7456

bounds

unif f̂∗ 0.0000 0.4550 0.9840 1.0000
θ 0.0000 0.4417 0.9612 1.0000

unifI f̂∗ 0.0003 0.7844 1.0000 1.0000
θ 0.0001 0.7519 0.9831 1.0000

adaptI f̂∗ 0.0003 0.9384 1.0000 1.0000
θ 0.0003 0.9272 1.0000 1.0000

H. Certifying non-linear explanations: RISE
Here we choose another explanation method, RISE (Petsiuk et al., 2018), for image models and demonstrate how it can
be certified within our framework. RISE is a random sampling based model agnostic explanation method that outputs a
saliency mask as the explanation for the predicted class, given a model and an input image. Below we outline the steps to
find trust regions associated with such an explanation.

Once we have obtained such an explanation (which is simply importance weights for each pixel) using RISE for an
input image, we obtain the model’s score (for the predicted class) when the explanation (or normalized mask) is applied
(elementwise multiplication) to the image and the product is passed to the model. This score gives a measure of how good
the local approximation (i.e., explanation) of the model is, without an explicit functional form of the explanation such as
in LIME. We apply the same mask on sampled images (during certification) and query the model to get their respective
scores. Here again fidelity is the quality metric, which similar to our other experiments, is one minus the absolute difference
between an image’s (prediction) score for the class of the input image and its score with the mask applied to it.

In the experiment depicted in Figure 12 we certify two randomly chosen examples from CIFAR10. We find that the results
are qualitatively similar to those in the main paper for LIME and SHAP. Again, all methods converge to similar half-widths.

This experiment further reinforces the fact that our certification strategies are generally applicable with them being agnostic
to both the model and the explanation method.
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Figure 11. Visualizing trends for the results in Table 8, where f∗ proxy is θ (conservative estimate). Results are qualitatively similar
when f∗ proxy is f̂∗. Left two figures are bounds and timing for LIME respectively. Right two figures are bounds and timing for SHAP
respectively.
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Figure 12. Half-widths and timing charts for the certification strategies based on RISE explanations for two randomly chosen CIFAR-10
examples (1st example: left two figures, 2nd example: right two figures). ZO+ exited prematurely without converging for RISE so we do
not report results for it here.
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