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Abstract

Variance reduction techniques are designed to
decrease the sampling variance, thereby accel-
erating convergence rates of first-order (FO) and
zeroth-order (ZO) optimization methods. How-
ever, in composite optimization problems, ZO
methods encounter an additional variance called
the coordinate-wise variance, which stems from
the random gradient estimation. To reduce this
variance, prior works require estimating all partial
derivatives, essentially approximating FO infor-
mation. This approach demands O(d) function
evaluations (d is the dimension size), which in-
curs substantial computational costs and is pro-
hibitive in high-dimensional scenarios. This paper
proposes the Zeroth-order Proximal Double Vari-
ance Reduction (ZPDVR) method, which utilizes
the averaging trick to reduce both sampling and
coordinate-wise variances. Compared to prior
methods, ZPDVR relies solely on random gradi-
ent estimates, calls the stochastic zeroth-order
oracle (SZO) in expectation O(1) times per itera-
tion, and achieves the optimal O(d(n+κ) log(1ϵ ))
SZO query complexity in the strongly convex and
smooth setting, where κ represents the condition
number and ϵ is the desired accuracy. Empirical
results validate ZPDVR’s linear convergence and
demonstrate its superior performance over other
related methods.
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1. Introduction
This paper considers the following composite finite-sum
optimization problem,

min
x∈Rd

F (x) = f(x) + ψ(x),

with f(x) =
1

n

n∑
i=1

fi(x),
(1)

where fi(x) : Rd → R is a µ-strongly convex andL-smooth
function , and ψ(x) : Rd → R is a convex and non-smooth
function, such as the ℓ1 regularization. This formulation
is prevalent in several critical applications, such as signal
compression (Jenatton et al., 2011), image recovery (Chen
et al., 2021), sparse model training (Beck & Teboulle, 2009;
Yun et al., 2021). In this study, we assume that only the
zeroth-order (ZO) oracle (i.e., the value of function f(x)) is
available. Under this condition, we explore the ZO variance
reduction method to achieve the linear convergence rate for
the above composite optimization problem (1) with only
random gradient estimates.

ZO optimization methods approximate the directional
derivative information by utilizing either the function value
or the difference in function values, and employ this esti-
mate to minimize the objective function (Liu et al., 2020).
Due to their exclusive reliance on function evaluations, ZO
optimization methods simplify algorithm implementation
(Nesterov & Spokoiny, 2017; Liu et al., 2020) and are in-
creasingly employed in scenarios where gradient informa-
tion is either inaccessible or impractical, such as in neural
network black-box attacks and robotic stiffness control (Tu
et al., 2019; Li et al., 2023). Recently, Malladi et al. (2023)
have capitalized on the benefits of ZO optimization methods
for fine-tuning large language models, achieving a compa-
rable performance to first-order (FO) methods while signif-
icantly reducing memory usage. Furthermore, Chen et al.
(2023a) employ ZO methods to train the ResNet-20 model
from scratch, illustrating the practicality of these methods
in large-scale machine learning applications.

To decrease the variance resulting from the random sam-
pling and accelerate the convergence rate of ZO optimiza-
tion methods for finite-sum optimization problems (i.e.,
minx∈Rd

∑n
i=1 fi(x)), researchers have introduced various
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Table 1. Summary of SZO query complexity and expected SZO queries per iteration of different methods. FO and ZO represent first-order
and zeroth-order methods, respectively. PGD is the proximal gradient descent method.

Methods SZO query complexity Expected SZO queries per iteration

FO PGD O(dnκ log( 1
ϵ
)) O(nd)

PSVRG (Xiao & Zhang, 2014) O(d(n+ κ) log( 1
ϵ
)) O(d)

ZO SEGA (Hanzely et al., 2018) O(dnκ log( 1
ϵ
)) O(n)

ZPDVR (ours) O(d(n+ κ) log( 1
ϵ
)) O(1)

variance reduction techniques tailored for diverse settings,
encompassing non-convex and non-convex non-smooth
problems (Fang et al., 2018; Ji et al., 2019; Chen et al.,
2023b; Kazemi & Wang, 2023), spanning from central-
ized to decentralized scenarios (Yi et al., 2022; Lin et al.,
2023). In addition to the sampling variance, ZO gradient
estimates also suffer from high inherent gradient approxi-
mation variance, which is O(d) times the value of gradient
norm ∥∇f(x)∥2 (Nesterov & Spokoiny, 2017; Liu et al.,
2018). This variance stems from the random directional
gradient estimation in ZO methods and can be eliminated by
estimating each partial derivative along the coordinate direc-
tions instead of random directions. Consequently, we refer
to this variance as the coordinate-wise variance through-
out this paper. For the unconstrained finite-sum optimiza-
tion problem, the FO optimality condition indicates that
the coordinate-wise variance will automatically diminish as
x→ x∗.

However, in the context of the composite optimization prob-
lem (1) as well as the constrained optimization problem,
a crucial characteristic is that ∥∇f(x∗)∥2 is generally not
equal to 0 at the optimal point x∗. Therefore, the coordinate-
wise variance persists even after reaching the optimal point
x∗. Consequently, this non-vanishing variance induced by
the random gradient estimate inhibits the convergence to
the optimal point x∗, which leads to inferior performance.
Prior ZO variance reduction methods for the composite opti-
mization problem (Liu et al., 2018; Kazemi & Wang, 2023)
usually adopt stochastic variance reduction gradient (SVRG)
techniques (Johnson & Zhang, 2013; Nguyen et al., 2017;
Fang et al., 2018) to eliminate the inherent sampling vari-
ance and approximate the gradient by computing all partial
gradient estimations to circumvent the coordinate-wise vari-
ance. Deriving all partial gradient estimations requires Ω(d)
function evaluations to make a step, which is prohibitive for
high-dimensional problems and hinders the application of
ZO variance reduction methods.

In this work, we employ the averaging trick and introduce a
novel gradient estimator for the gradient ∇f(x), utilizing
only random gradient estimates. This proposed estimator
calculates the difference between the random gradient esti-
mate and the vector value of the current estimator along the

same direction and uses the average scheme to refine esti-
mation errors. We demonstrate that this gradient estimator
can progressively reduce the coordinate-wise variance. Fur-
thermore, by combining the proposed estimator with SVRG
techniques, we present the Zeroth-order Proximal Double
Variance Reudction method, ZPDVR, which can reduce the
inherent variances — both the random sampling variance
and the coordinate-wise variance, in the ZO composite opti-
mization problem, using only the random gradient estimate.
We also conduct a comprehensive analysis of ZPDVR and
prove that the stochastic zeroth-order oracle (SZO) query
complexity (the number of function estimations) of ZPDVR
is O(d(n + κ) log(1ϵ )) and it only calls O(1) SZO in ex-
pectation per iteration. As shown in Table 1, compared to
other related FO and ZO methods, ZPDVR obtains the low-
est SZO query complexity and exhibits the fewest SZO calls
in expectation per iteration, which underscores its compu-
tational efficiency. The main contributions of this work are
summarized as follows:

• We propose a novel ZO variance reduction method
for the composite optimization problem (1) using only
random gradient estimates, ZPDVR, which reduce the
inherent variances induced by random sampling and
random gradient estimation. ZPDVR calls the SZO
O(1) times in expectation per iteration, which demon-
strates efficiency in updating parameters per iteration
and exhibits applicability in high-dimensional scenar-
ios.

• We conduct a convergence analysis of ZPDVR, and
derive the O(d(n+κ) log 1

ϵ ) SZO query complexity for
ZPDVR, which aligns with the best-know SZO query
complexity of SVRG methods and requires fewer SZO
function evaluations than other related FO and ZO
methods. The optimal convergence property further
demonstrates the computational efficiency of ZPDVR.

Notation. Let x∗ denote the optimal point of the function
F , specifically x∗ = argminx∈Rd F (x), and [n] represent
the set {1, . . . , n}. For the µ-strongly convex and L-smooth
function fi, i ∈ [n], there exist two constants µ,L > 0 and
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µ ≤ L such that

fi(x1) ≥ fi(x2) + ⟨∇f(x2), x1 − x2⟩+
µ

2
∥x1 − x2∥2,

fi(x1) ≤ fi(x2) + ⟨∇f(x2), x1 − x2⟩+
L

2
∥x1 − x2∥2,

for ∀x1, x2 ∈ Rd. For the convex function ψ, the following
inequality holds for ∀x1, x2 ∈ Rd

ψ(x1) ≥ ψ(x2) + ⟨∂ψ(x2), x1 − x2⟩ ,

where ∂ψ(x) is the subgradient of ψ at the point x.
The proximal operator, denoted as proxηψ, is defined as
proxηψ(x) = argminx′∈Rd ψ(x) + η

2∥x− x′∥2. κ = L
µ is

the condition number of the function f , and η denotes the
constant learning rate. If f(x) = O(g(x)), it implies there
is a positive constant M > 0 such that |f(x)| ≤ Mg(x).
f(x) = Ω(g(x)) indicates that there is a positive constant
C such that C|g(x)| ≤ |f(x)|.

2. Related Work
Variance Reduction. Variance reduction methods leverage
the control variate technique (Rubinstein & Marcus, 1985)
to reduce inherent sampling variance in stochastic gradient
descent (SGD). Specifically, for the strongly convex and
smooth finite-sum optimization problem, FO variance re-
duction methods attain the best-know O((κ + n) log(1ϵ ))
gradient evaluations (Gower et al., 2020) , resulting in a sig-
nificant acceleration of O(nκ log( 1ϵ )) in SGD. The classic
SVRG method (Johnson & Zhang, 2013) adopts a double-
loop structure, maintaining a snapshot of model parameters
to compute the full gradient in the outer loop and construct-
ing an unbiased gradient estimate in the inner loop. Allen-
Zhu & Hazan (2016) and Reddi et al. (2016) extend SVRG
into the non-convex setting and derive an improved query
complexity than gradient descent (GD) by a factor of O(n

1
3 ).

Subsequent work (Fang et al., 2018) leverages the stochastic
path-integrated differential estimator, proposing SPIDER
with O(n

1
2 ϵ) query complexity for non-convex finite-sum

optimization problems. Diverging from the double-loop
structure, Kovalev et al. (2020) and Li et al. (2021) pro-
pose loop-less SVRG methods that execute the coin-flip
process independently of prior knowledge about the con-
dition number. In cases where only a gradient sketch is
available, Hanzely et al. (2018) and Gower et al. (2021) de-
velop gradient estimators via a sketch-and-project process,
progressively diminishing the estimation variance.

Zeroth-order Optimization. ZO optimization methods
leverage the function evaluation to approximate the gra-
dient and utilize this estimate to minimize the objective
function. Nesterov & Spokoiny (2017) introduce the Gaus-
sian smooth technique and achieve the O(dnκ log( 1ϵ )) SZO
query complexity for ZO-GD in the strongly convex and

smooth scenario. The convergence properties of ZO-SGD
for non-convex problems are analyzed by Ghadimi & Lan
(2013). Ye et al. (2018) integrate Hessian information into
gradient estimation and propose a Hessian-aware ZO opti-
mization method. Berahas et al. (2022) derive bounds on
the number of samples and the sampling radius to ensure
the convergence of ZO-GD with different ZO gradient esti-
mators. Compared to the FO methods, the query complexity
of ZO methods exhibits a dependence on the dimension size
d (Liu et al., 2020).

Zeroth-order Variance Reduction. Combining with
SVRG, Liu et al. (2018) introduce the ZO-SVRG method
for non-convex finite-sum problems. Subsequently, Ji et al.
(2019) improve the SZO query complexity of ZO-SVRG,
surpassing both ZO-GD and ZO-SGD in the non-convex
finite-sum setting and aligning with the results of FO SVRG
methods. For the composite optimization problem (1),
Huang et al. (2019) present the convergence property of
ZO proximal SVRG (ZPSVRG) method for non-convex
non-smooth problems, and demonstrate that only utilizing
the random gradient estimate incurs additional bias and the
FO gradient information is necessary. Kazemi & Wang
(2023) improve the iterative complexity of ZPSVRG for the
non-convex non-smooth problem.

3. Methodology
This section presents details of ZPDVR. We first introduce
the random stochastic gradient estimator in ZO methods and
demonstrate the undiminished variance when employing it
in composite optimization problems. Then, we delineate
how the proposed method ZPDVR can reduce the two types
of variances.

3.1. Gradient Estimate in Zeroth-Order Optimization

When only function evaluations are available, here, we
utilize the Gaussian smoothing technique (Nesterov &
Spokoiny, 2017) to derive the decent direction. Specifi-
cally, for the smoothing constant v and the random vector
u ∼ N (0, Id), the directional derivative of fi in the direc-
tion u for the smooth function fi, i ∈ [n], can be estimated
as:

∇̂fi(x, u, v) =
fi(x+ vu)− fi(x)

v
u. (2)

Similarly, we define

∇̂f(x, u, v) = 1

n

n∑
i=1

fi(x+ vu)− fi(x)

v
u, (3)

as the approximation of the full directional gradient.

Since the smoothing constant v is fixed, for simplicity, we
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leave out v in these gradient estimations and set

∇̂fi(x, u) := ∇̂fi(x, u, v),

and

∇̂f(x, u) := ∇̂f(x, u, v),

in the rest of the paper. Under the smoothness condition,
the following lemma and corollary show that these estima-
tors defined in Eq.(2) and Eq.(3) are nearly unbiased in
expectation. The proof is deferred to Appendix B.

Lemma 3.1. Let the random vector u drawn from the mul-
tivariate Gaussian distribution N (0, Id). For the L-smooth
function fi and any x ∈ Rd, i ∈ [n], the estimator in Eq.(2)
satisfies:

∇̂fi(x, u) = uu⊤∇fi(x) +
Lv

2
si(x, u)∥u∥2u, (4)

and its expectation w.r.t. u is

Eu[∇̂fi(x, u)] = ∇fi(x) +
Lv

2
τi(x, u), (5)

where si(x, u) is a function of x and u within the range of
[0, 1], and τi(x, u) is the error term with ∥τi∥ ≤ (d+ 3)

3
2 .

Furthermore, the expected norm of the estimation error
between ∇̂fi(x, u) and ∇f(x) is bounded as

Eu[∥∇̂fi(x, u)−∇f(x)∥2]

≤ 3(d+ 1)∥∇f(x)∥2 + 3L2v2

4
(d+ 6)3+

3(d+ 2)∥∇fi(x)−∇f(x)∥2.

(6)

In Eq.(4), si(x, u) measures the curvature scaled by L along
the specified direction u at the given point x. By taking the
maximum value of si(x, u) (i.e., si(x, u) := 1), we derive
the upper bound of the distance between estimator ∇̂fi(x, u)
and the full gradient ∇f(x) in Eq.(6). This bound comprises
three components: the norm of the true gradient ∇f(x); the
trivial perturbation; and the last error ∥∇fi(x)−∇f(x)∥2
induced by the random sampling of i. Similarly, the follow-
ing corollary establishes the nearly unbiased and bounded
variance properties of ∇̂f(x, u).
Corollary 3.2. Let the random vector u drawn from the
multivariate Gaussian distribution N (0, Id). For the L-
smooth function f and any x ∈ Rd, i ∈ [n], the full gradient
estimator ∇̂f(x, u) in Eq.(3) satisfies:

∇̂f(x, u) = uu⊤∇f(x) + Lv

2
s(x, u)∥u∥2u, (7)

with the expectation

Eu[∇̂f(x, u)] = ∇f(x) + Lv

2
τ(x, u), (8)

where s(x, u) = 1
n

∑n
i=1 si(x, u) and ∥τ∥ ≤ (d+ 3)

3
2 .

Moreover, the expected norm of the estimation error between
∇̂f(x, u) and ∇f(x) is bounded as

Eu[∥∇̂f(x, u)−∇f(x)∥2]

≤ L2v2

2
(d+ 6)3 + 2(d+ 1)∥∇f(x)∥2.

(9)

From Eq.(5) and Eq.(8), when the smoothing constant v
is sufficiently small, the following approximations hold:
E[∇̂fi(x, u)] ≈ ∇fi(x) and E[∇̂f(x, u)] ≈ ∇f(x). Be-
sides, Eq.(6) and Eq.(9) indicate that both the expected
norm of the estimation errors E[∥∇̂fi(x, u) − ∇f(x)∥2]
and E[∥∇̂f(x, u) −∇f(x)∥2] depend on ∥∇f(x)∥2. The
presence of the norm of full gradient ∥∇f(x)∥2 introduces
the additional noise, which requires ∥∇f(x)∥2 to gradually
approach 0 to obtain the precise estimation of ∇f(x) and
guarantee convergence.

However, according to the FO optimality condition, for the
objective function in Eq.(1), the following relation holds at
the optimal point x∗:

0 ∈ ∇f(x∗) + ∂ψ(x∗),

which implies that ∥∇f(x∗)∥2 ̸= 0 in the general case.
Therefore, as characterized by Eq.(9) (Eq.(6)), after exclud-
ing the trivial perturbation introduced by v, the variance of
the estimator ∇̂f(x, u) (∇̂fi(x, u)) persists as a non-zero
value and does not diminish. Analogous to the impact of the
sampling noise in SGD, with a constant learning rate η, this
significantly compromises the convergence performance.
Remark 3.3. In contrast to the random direction in Eq.(7),
researchers (Lian et al., 2016; Ji et al., 2019) utilize the
finite-difference technique (Kiefer & Wolfowitz, 1952) to
approximate the gradient as follows,

d∑
l=1

f(x+ vel)− f(x)

v
el,

where el ∈ Rd is the l-th standard basis vector. Compared to
the random gradient estimate in Eq.(7), the above gradient
estimate leverages all partial gradient information to approx-
imate the gradient, and its variance is only influenced by the
trivial perturbation arising from the smooth constant v. In
fact, it can be regarded as a first-order method and can find
the correct solution when ∇f(x∗) ̸= 0. However, it requires
to take Ω(d) function evaluations, which is impractical in
high-dimensional problems.

3.2. Coordinate-Wise Variance Reduction in
Zeroth-Order Optimization

Since ∥∇f(x∗)∥2 ̸= 0, simply extending the SVRG meth-
ods (Johnson & Zhang, 2013; Xiao & Zhang, 2014) to
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composite as well as constrained optimization problems
can not eliminate the overall variance - such methods only
reduce the variance induced by the stochastic sampling
∥∇fi(x) − ∇f(x)∥2 in Eq.(6) and omit the coordinate-
wise variance. Although driving all partial derivative infor-
mation can mitigate the coordinate-wise variance (Huang
et al., 2019; Kazemi & Wang, 2023), the computation is
prohibitive for high-dimensional problems. To reduce the
overall variance while preserving computational efficiency,
we propose a novel gradient estimator, utilizing only the
random gradient estimate throughout the iterative process.

According to Eq.(7), when v is sufficient small, we have
that

∇̂f(x, u) ≈ u⊤∇f(x)u, (10)

which is an approximation of the directional derivative in
the direction u. Here, we leverage the directional derivative
estimation and build a gradient estimator h̃ by the averaging
trick, i.e.,

h̃k+1 = h̃k +
1

d+ 2
(∇̂f(xk, u)− uu⊤h̃k). (11)

The estimator h̃ employs the difference between the esti-
mated directional derivative ∇̂f(xk, u) and the value of h
in the same direction u to refine the gradient estimation
error. Moreover, the coefficient 1

d+2 further smoothens this
correction across all dimensions. In Section 4, we will
demonstrate that by incrementally refining the gradient esti-
mated error at disparate directions, as x→ x∗, the estimator
h̃ can gradually converge to ∇f(x∗).
Remark 3.4. We can also connect the estimator h̃ with the
sketch-and-project method (Hanzely et al., 2018). Since
u⊤∇f(x) in Eq.(10) is the gradient sketch, according to
Hanzely et al. (2018), h̃k+1 can be obtained by solving the
following optimization problem,

min
h̃

∥h̃− h̃k∥2,

s.t. u⊤h = u⊤∇f(xk).

By solving the Lagrangian function ∥h− hk∥2 + λu⊤(h̃−
∇f(xk)), we have the closed-form solution:

hk+1 = hk +
uu⊤(∇f(xk)− h̃k)

∥u∥2
.

Compared to the above update formula, Eq.(11) simpli-
fies the computation of the norm ∥u∥2 by approximating it
with its expectation (E[∥u∥2] = d, see Lemma A.4 in Ap-
pendix A) plus a constant. Therefore, from the view of the
sketch-and-projection method, Eq.(11) essentially requires
that the sketches of the estimator h̃ and gradient ∇f(x)
are identical. Hence, when the projections of the gradient
∇f(x) and the estimator h̃ align along numerous directions,
h̃ gradually becomes identical to the gradient.

In Algorithm 1, we present the proposed algorithm ZPDVR,
utilizing the proposed estimator h̃ and SVRG techniques
to reduce both the sampling variance and coordinate-wise
variance in the composite optimization problem Eq.(1). In
ZPDVR, like SVRG, we maintain a reference point wk and
pass over the full data to compute the gradient estimate
∇̃f(wk) at the reference point,

∇̃f(wk) = h̃k + ∇̂f(wk, u)− uu⊤h̃k, (12)

where we leverage the directional gradient ∇̂f(wk, u) to
refine the gradient estimator h̃k in the direction u.

Furthermore, with the conserved ∇̃f(wk), we can derive
the stochastic gradient estimate gk,

gk = ∇̂fi(xk, uk)− ∇̂fi(wk, uk) + ∇̃f(wk), (13)

which reduces the sampling variance. Then, the update of
xk+1 is

xk+1 = proxηψ(x− ηgk). (14)

Notably, with Eq.(12) and Eq.(13), we demonstrate that
gk is also a nearly unbiased estimation of ∇f(xk) in the
following Lemma. The proof is deferred to Appendix B.

Lemma 3.5. For the L-smooth function fi, i ∈ [n], the
expected value of gk defined in Eq.(13) is

Eu,uk,i[gk] = ∇f(xk) +
Lv

2
τi,k, (15)

where τi,k = Eu,uk,i[(si(xk, uk)− si(wk, uk))∥uk∥2uk +
s(wk, u)∥u∥2u] with the norm ∥τi,k∥ ≤ 2(d+ 3)

3
2 .

In Algorithm 1, instead of the classic double loop structure,
we adopt a loopless scheme (Kovalev et al., 2020; Qian et al.,
2021): with a small probability p, we update the reference
point wk+1 with the value of xk and take a full pass over
the n data points to refine the estimate h̃k+1 in the direction
u; with the probability 1 − p, we remain the previous wk
and h̃k and utilize them in the next iteration.

Furthermore, with the probability p to perform a full pass
over the dataset, ZPDVR has to query the function value
O(pn) times in the expectation at each iteration. When p =
1
n , the proposed method ZPDVR recovers the complexity of
the FO-SVRG methods. Compared to the complexity O(d)
in other ZO variance reduction methods (Huang et al., 2019;
Kazemi & Wang, 2023), ZPDVR is independence of the
dimension size d, which makes it efficient and practical for
high-dimensional problems. Besides, in ZPDVR, directions
u and uk drawn in Eq.(12) and Eq.(13) are independent.
Hence, in Algorithm 1, except for ∇̃f(wk), we also have to
save u to update h̃k+1 when zk ≤ p.
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Algorithm 1 Zeroth-order Proximal Doubly Variance Re-
duction
Input: x0, w0 = x0, h̃0, the probability p, and the learning

rate η.
1: for k = 0, . . . ,K − 1 do
2: if k = 0 or wk ̸= wk−1 then
3: Sample a new vector u ∼ N (0, I) and save it
4: ∇̃f(wk) = h̃k + ∇̂f(wk, u)− uu⊤h̃k
5: else
6: ∇̃f(wk) = ∇̃f(wk−1)
7: end if
8: Sample uk ∼ N (0, I) and pick i ∈ {1, . . . , n} uni-

formly at random
9: gk = ∇̂fi(xk, uk)− ∇̂fi(wk, uk) + ∇̃f(wk)

10: xk+1 = proxηψ(xk − ηgk)
11: Draw zk from the uniform distribution U [0, 1]
12: if zk ≤ p then
13: wk+1 = xk
14: h̃k+1 = h̃k +

1
d+2 (∇̂f(xk, u)− uu⊤h̃k)

15: else
16: wk+1 = wk
17: h̃k+1 = h̃k
18: end if
19: end for
Output: xK

Remark 3.6. Note that, in Algorithm 1, the update of the
reference point w and the gradient estimate h̃ are bound
together. Since w is updated with the probability p, the
estimator h̃ is not required to be updated at every iteration,
which differs significantly from (Hanzely et al., 2018). We
demonstrate that sporadically updating the estimator h̃ can
reduce the coordinate-wise variance, and ZPDVR is not a
trivial extension. Moreover, according to the update of
w in Algorithm 1 and Eq.(11), h̃k is actually estimating
the gradient at the reference point, ∇f(wk). Then, when
w → x∗, we can obtain that h̃→ ∇f(x∗).

4. Convergence Analysis
This section will establish the convergence property of the
proposed method ZPVR. Initially, we define the following
Lyapunov function Ψ:

Ψ(xk) = ∥xk − x∗∥2 + α∥h̃k −∇f(x∗)∥2+

β

n

n∑
i=1

∥∇fi(wk)−∇fi(x∗)∥2,
(16)

where both α and β are positive real values.

The Lyapunov function in Eq.(16) comprises three distinct
terms: the first term quantifies the distance between the
current point xk and the optimal point x∗; the second term,

∥h̃k −∇f(x∗)∥2, delineates the disparity between the gra-
dient estimator h̃k and the gradient at x∗; and the final
term serves as an approximation for the difference between
the reference point wk and x∗ in the strongly convex set-
ting. During the training process, if the value of the Lya-
punov function (16) converges to 0, we have that both xk
and wk attain the optimal point x∗ and the gradient esti-
mator h̃k approaches ∇f(x∗). According to the defini-
tion of the Laypunov function, it involves successive iter-
ations with respect to ∥xk − x∗∥2, ∥h̃k − ∇f(x∗)∥2, and
1
n

∑n
i=1 ∥∇fi(wk)−∇fi(x∗)∥2. Next, we shall establish

recursive formulations for these components in the subse-
quent three lemmas, respectively. The proofs are provided
in Appendix B.
Lemma 4.1. For the µ-strongly and L smooth function
fi, i ∈ [n], and the convex function ψ(x), according to
Algorithm 1, we have

E[∥xk+1 − x∗∥2]

≤ (1− µ

2
η)∥xk − x∗∥2 − 2η

(
f(xk)− f(x∗)−

⟨∇f(x∗), xk − x∗⟩
)
+

2(d+ 3)3L2v2η

µ
+

η2E[∥gk −∇f(x∗)∥2].

(17)

In Lemma 4.1, the convexity of f indicates the positive value
of f(xk)− f(x∗)−⟨∇f(x∗), xk − x∗⟩. Except for the ZO
perturbation, the iteration of x involves the estimation gap
between the stochastic gradient estimation gk and ∇f(x∗),
i.e., E[∥gk −∇f(x∗)∥2], which will be bounded in the later
analysis.
Lemma 4.2. For the L smooth function fi, i ∈ [n], follow-
ing Algorithm 1, we have

E[∥h̃k+1 −∇f(x∗)∥2]

≤ (1− p

2(d+ 2)
)∥h̃k −∇f(x∗)∥2 + 5(d+ 6)3L2v2p

2(d+ 2)
+

8Lp

3(d+ 2)
(f(xk)− f(x∗)− ⟨∇f(x∗), xk − x∗⟩).

(18)
Lemma 4.3. For the L smooth function fi, i ∈ [n], the
recursive formulation of 1

n

∑n
i=1 ∥∇fi(wk) − ∇fi(x∗)∥2

is as follows:

E[
1

n

n∑
i=1

∥∇fi(wk+1)−∇fi(x∗)∥2]

≤ (1− p)

n

n∑
i=1

∥∇fi(wk)−∇fi(x∗)∥2+

2Lp(f(xk)− f(x∗)− ⟨∇f(x∗), xk − x∗⟩).

(19)

According to Lemma 4.2 and Lemma 4.3, E[∥h̃k −
∇f(x∗)∥2] and E[ 1n

∑n
i=1 ∥∇fi(wk) − ∇fi(x∗)∥2] is re-

6
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duced by O(1 − p
d ) and O(1 − p), respectively. Further-

more, all recursive formulations of these three components
involve the term f(xk) − f(x∗) − ⟨∇f(x∗), xk − x∗⟩. In
the subsequent lemma, we will establish a connection be-
tween the term ∥gk −∇f(x∗)∥2 introduced in Lemma 4.1
and ∥h̃k−∇f(x∗)∥2, driving the bound for the former item.
Lemma 4.4. For the L smooth function fi, i ∈ [m], the
following inequality holds

E[∥gk −∇f(x∗)∥2]
≤ 2(2d+ 3)∥h̃k −∇f(x∗)∥2 + 4L2v2(d+ 6)3+

4(2d+ 3)

n

n∑
i=1

∥∇fi(wk)−∇fi(x∗)∥2+

4(d+ 3)L(f(xk)− f(x∗)− ⟨∇f(x∗), xk − x∗⟩).
(20)

From Lemma 4.4, the bound of E[∥gk−∇f(x∗)∥2] involves
h̃k − ∇f(x∗), f(xk) − f(x∗) − ⟨∇f(x∗), xk − x∗⟩, and
1
n

∑n
i=1 ∥∇fi(wk) − ∇fi(x∗)∥2. Hence, setting p = 1

n
and combing with Lemma 4.1, Lemma 4.2, and Lemma 4.3,
we can obtain the whole recursive formula of the Lyapunov
function in the following corollary:
Corollary 4.5. For the L smooth and µ-strongly convex
function fi, i ∈ [n], and the convex function ψ(x), when
p = 1

n , the recursive formula of the Lyapunov function Ψ is
following:

E[Ψ(xk+1)]

≤ (1− µ

2
η)∥xk − x∗∥2 + α′∥h̃k −∇f(x∗)∥2+

β′ 1

n

n∑
i=1

∥∇fi(wk)−∇fi(x∗)∥2 − γC +∆,

(21)

where α′ = α(1 − 1
2n(d+2) + 2(2d+3)η2

α ), β′ = β(1 −
1
n + 4(2d+3)η2

β ), γ = 2η − 4(d + 3)Lη2 − 8L
3n(d+2)α −

2L
n β, C = f(xk)− f(x∗)− ⟨∇f(x∗), xk − x∗⟩, and ∆ =
2(d+3)3L2v2η

µ + 4L2v2(d+ 6)3η2 + 5(d+6)3L2v2

2n(d+2) α.

According to Corollary 4.5, by carefully selection η, α, and
β, we can guarantee that γ ≤ 0 and 0 < (1−µη

2 ), α′, β′ < 1.
Hence, we can drive the convergence rate of the Lyapunov
function, which is presented in the following theorem.
Theorem 4.6. Let p = 1

n , α = 8n(d + 2)(2d + 3)η2,
β = 8n(2d + 3)η2, and η = 1

(40d+63)L . Given the L
smooth and u-strongly convex function fi, i ∈ [n], and the
convex function ψ(x), for k ∈ 0, . . . ,K − 1, the Lyapunov
function satisfies

E[Ψ(xk+1)]

≤ max{1− 1

κ(80d+ 126)
, 1− 1

4n(d+ 2)
}Ψ(xk) + δ,

(22)

Table 2. Summary of data sets and regularization coefficients (λ1

and λ2) used in our experiments.

Data Set n d λ1 λ2 v

a9a 32561 123 10−4 10−4 10−3

w8a 49749 300 10−5 10−4 10−3

covtype 581012 54 10−4 10−5 10−3

gisette 6000 5000 10−4 10−4 10−3

where δ = 2(d+3)3v2κ
40d+63 + 8(5d+8)(d+6)3v2

(40d+63)2 .

According to Theorem 4.6, we can telescope the inequality
(22) from k = 0 for K − 1, and then find the SZO query
complexity and the value of the smooth constant v to get the
ϵ accuracy solution.
Corollary 4.7. Let p = 1

n , α = 8n(d + 2)(2d + 3)η2,
β = 8n(2d + 3)η2, and η = 1

(40d+63)L . Given the L
smooth and u-strongly convex function fi, i ∈ [n], and the
convex function ψ(x), we have

E[Ψ(xK)] ≤ (1− θ)KΨ(x0) + σ, (23)

where θ = 1
κ(80d+126)+4n(d+2) , and σ = [(80d + 126) +

4n(d+ 2)]κ(κ+ 1)(d+ 6)2v2.

From Corollary 4.7, in order to get ϵ accuracy for the Lya-
punov function as well as F , the smooth constant v need to
sufficiently small such that v = O(

√
ϵ

κ2d3n ). We can also
derive the O(d(n + κ) log(1ϵ )) SZO query complexity of
ZPDVR, which aligns with the best-known results of SVRG
methods. The optimal SZO query complexity demonstrates
the efficiency of ZPDVR.

5. Experiment
In this section, we conduct several numerical experiments
to demonstrate the convergence propriety of the proposed
ZPDVR and compare its performance against other related
FO and ZO methods. Here, we focus on a binary lo-
gistic classification problem. Given the data set D =
{(zi, yi)}ni=1, where zi ∈ Rd is the feature vector and
yi ∈ {−1, 1} is the label, the strongly convex objective
function F (x) is the regularized cross entropy loss, i.e.,

min
x∈Rd

1

n

n∑
i=1

log(1 + exp(−yix⊤zi) +
λ2
2
∥x∥2 + λ1∥x∥1,

with fi(x) = log(1 + exp(−yix⊤zi)) + λ2

2 ∥x∥2 and
ψ(x) = λ∥x∥1, for i ∈ [n].

Specifically, we choose three related FO and ZO methods as
baselines: Proximal Gradient Descent (PGD), ZPSVRG, and
SEGA. In our experiment, ZPSVRG carries out the ZO ver-
sion of proximal variance reduction method (Xiao & Zhang,

7
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Figure 1. Comparison of different zeroth-order methods for the loss residual F (x)− F (x∗) versus the number of SZO. The y axis is on a
logarithmic scale and the x label is the number of SZO divided by n ∗ d.

2014) with the random gradient estimate defined in Eq.(3),
which has the non-vanishing coordinate-wise variance.

In Table 2, we present the regularization coefficients and
the smooth constant used in four binary classification data
sets from LIBSVM website1. To enhance implementation
efficiency, ZPSVRG, ZPDVR, and SEGA are executed in the
batch version. The grid search is performed to identify
optimal hyperparameters for each method. The detailed
information of the hyperparameter tuning procedure is pro-
vided in Appendix C.

As shown in Figure 1, we compare the objective gap
F (x) − F (x∗) of ZPDVR with other methods in terms
of SZO query complexity. Across all data sets, ZPDVR
achieves the best performance and presents the linear conver-
gence rate as demonstrated in Theorem 4.6. Besides, PGD
and SEGA also obtain the linear convergence rate, albeit at
a slower pace than ZPDVR. While due to the non-vanishing
coordinate-wise variance in ZPSVRG, we observe that the
function value of ZPSVRG can not decrease to the specified
precision. For instance, in Figure 1(d), ZPSVRG stagnates

1https://www.csie.ntu.edu.tw/˜cjlin/
libsvmtools/datasets/binary.html

in the neighborhood of F (x∗) with the radius 10−4. These
results emphasize the linear convergence rate and double
variance reduction properties of ZPDVR analyzed in Sec-
tion 4 for the composite problem (1).

6. Conclusion
This paper introduces a novel ZO variance reduction method,
ZPDVR, designed to diminish both the inherent sampling
variance and the coordinate-wise variance in composite op-
timization problems. Unlike prior method, ZPDVR obviates
the need for Ω(d) function evaluations to approximate FO
information. It instead only requires O(1) SZO query in ex-
pectation per iteration, which enhances the computational ef-
ficiency, particularly for high-dimensional problems. Addi-
tionally, we establish the linear convergence of ZPDVR and
show that its SZO query complexity is O(d(n+ κ) log(1ϵ )),
paralleling the optimal results achieved by SVRG methods.
Moreover, ZPDVR is adaptable to constrained optimization
scenarios, including black-box optimization problems. Em-
pirical results validate both the convergence properties and
the superior performance of ZPDVR.
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A. Some useful Lemmas
Lemma A.1 (Cauchy–Schwarz inequality). For all vectors x1, . . . , xn ∈ Rd, we have

∥
n∑
i=1

xi∥2 ≤ n

n∑
i=1

∥xi∥2. (24)

Lemma A.2 (Young’s inequality). For any two vectors x, y ∈ Rd, we have

⟨x, y⟩ ≤ a∥x∥2

2
+

∥y∥2

2a
, (25)

where a is a positive real number.

Lemma A.3 (Theorem 2.1.5 of Nesterov et al. (2018)). For a L-smooth function f defined in the domain X , ∀x, y ∈ X , we
have

f(x) ≥ f(y) + ⟨∇f(y), x− y⟩+ 1

2L
∥∇f(x)−∇f(y)∥2. (26)

Lemma A.4. Let A and B be two symmetric matrices. Random vector u has the Gaussian distribution, i.e., u ∼ N (0, Id).
Then, we have

Eu[u⊤Au · u⊤Bu] = (trA)(trB) + 2(trAB). (27)

Corollary A.5. Let v be a any vector in Rd. For the random vector u with the Gaussian distribution, i.e., u ∼ N (0, Id), we
have

Eu[∥uu⊤v∥2] = (d+ 2)∥v∥2. (28)

Proof.
Eu[∥uu⊤v∥2] = Eu[tr(v⊤uu⊤uu⊤v)]

= Eu[tr(u⊤uu⊤vv⊤u)]
= Eu[u⊤Iu · u⊤vv⊤u]

(27)
= tr(I) tr(vv⊤) + 2 tr(vv⊤)

= (d+ 2) tr(vv⊤)

= (d+ 2)∥v∥2.

Lemma A.6 (Lemma 1 of Nesterov & Spokoiny (2017)). Let the random vector u ∼ N (0, Id). we have

E[∥u∥q] ≤ d
q
2 q ∈ [0, 2],

d
q
2 ≤ E[∥u∥q] ≤ (q + d)

q
2 q ≥ 2.

(29)

B. Missing Proofs
Proof of Lemma 3.1. For the L-smooth function fi, we have the following Taylor expansion,

fi(x+ vu) = fi(x) + v ⟨∇fi(x), u⟩+
v2

2
u⊤∇2fi(x

′)u, (30)

where x′ ∈ (x, x+ vu). Plugging it into Eq.(2), we have

∇̂fi(x, u) = u ⟨u,∇fi(x)⟩+
v

2
u⊤∇2fi(x

′)uu

= uu⊤∇fi(x) +
Lv

2
si(x, u)∥u∥2u,

(31)
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where the last equality employs the fact that 0 ⪯ ∇2fi(x
′) ⪯ L for any accessible x′, and the function si(x, u) is confined

to the range [0, 1].

Taking the expectation w.r.t. u for ∇̂fi(x), we have

E[∇̂fi(x, u)] = E[uu⊤]∇fi(x) +
Lv

2
E[si(x, u)∥u∥2u]

= ∇fi(x) +
Lv

2
E[si(x, u)∥u∥2u].

Since
∥∥∥E[si(x, u)∥u∥2u]∥∥∥ ≤ E

[∥∥∥si(x, u)∥u∥2u∥∥∥] ≤ E
[∥∥∥∥u∥2u∥∥∥] = E[∥u∥3], with Eq.(29) E[∥u∥3] ≤ (d+3)

3
2 , we then

have
∥∥∥E[si(x, u)∥u∥2u]∥∥∥ ≤ (d+ 3)

3
2 .

For the expected norm, we have

E[∥∇̂fi(x, u)−∇f(x)∥2]
(4)
= E[∥uu⊤∇fi(x) +

Lv

2
si(x, u)∥u∥2u−∇f(x)∥2]

= E
[∥∥∥uu⊤∇fi(x)− uu⊤∇f(x) + uu⊤∇f(x)−∇f(x) + Lv

2
si(x, u)∥u∥2u

∥∥∥2]
(24)
≤ 3E[∥uu⊤(∇fi(x)−∇f(x)∥2] + 3E[∥(uu⊤ − I)∇f(x)∥2] + 3L2v2

4
E[∥u∥6]

(28)
≤ 3(d+ 2)∥∇fi(x)−∇f(x)∥2 + 3(d+ 1)∥∇f(x)∥2 + 3L2v2

4
E[∥u∥6].

Combining with Lemma A.6, we conclude the result in Lemma 3.1.

Proof of Corollary 3.2. According to Lemma 3.1 and the definition of ∇̂f(x, u), we have that

∇̂f(x, u) = uu⊤∇f(x) + Lv

2
s(x, u)∥u∥2u,

where s(x, u) = 1
n

∑n
i=1 si(x, u).

Hence, taking the expectation w.r.t. u, we also derive

E[∇̂f(x, u)] = E[uu⊤]∇f(x) + Lv

2
s(x, u)E[∥u∥2u]

= ∇fi(x) +
Lv

2
E[s(x, u)∥u∥2u],

where
∥∥∥E[s(x, u)∥u∥2u]∥∥∥ ≤ (d+ 3)

3
2

For the expected norm, we have

E[∥∇̂f(x, u)−∇f(x)∥2]
(7)
= E[∥uu⊤∇f(x) + Lv

2
s(x, u)∥u∥2u−∇f(x)∥2]

(24)
≤ 2E[∥(uu⊤ − I)∇f(x)∥2] + L2v2

2
E[∥u∥6]

(28)
≤ 2(d+ 1)∥∇f(x)∥2 + L2v2

2
E[∥u∥6],

which implies the result.
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Proof of Lemma 3.5. From Eq.(13) and Eq.(12), we have

Eu,uk,i[gk]

= Eu,uk,i[∇̂fi(xk, uk)− ∇̂fi(wk, uk) + h̃k + ∇̂f(wk, u)− uu⊤h̃k]

(4),(7)
= Eu,uk,i

[
uku

⊤
k∇fi(xk) +

Lv

2
si(xk, uk)∥uk∥2uk − uku

⊤
k∇fi(wk)−

Lv

2
si(wk, uk)∥uk∥2uk+

h̃k + uu⊤∇f(wk) +
Lv

2
s(wk, u)∥u∥2u− uu⊤h̃k

]
= ∇f(xk) +

Lv

2
Eu,uk,i

[
(si(xk, uk)− si(wk, uk))∥uk∥2uk + s(wk, u)∥u∥2u

]
.

Let τi,k = Eu,uk,i[(si(xk, uk)− si(wk, uk))∥uk∥2uk + s(wk, u)∥u∥2u]. Then, the upper bound for the norm of τi,k is

∥τi,k∥ =
∥∥∥Eu,uk,i[(si(xk, uk)− si(wk, uk))∥uk∥2uk + s(wk, u)∥u∥2u]

∥∥∥
≤

∥∥∥E[(si(xk, uk)− si(wk, uk))∥uk∥2uk]
∥∥∥+

∥∥∥E[s(wk, u)∥u∥2u]∥∥∥
≤ E

[∥∥∥(si(xk, uk)− si(wk, uk))∥uk∥2uk
∥∥∥]+ E

[∥∥∥s(wk, u)∥u∥2u∥∥∥]
≤ E[∥uk∥3] + E[∥u∥3].

Finally, combining with Lemma A.6, we can conclude the result.

Proof of Lemma 4.1. According to the convexity of ψ(x), the optimal point x∗ satisfies

x∗ = proxηψ(x
∗ − η∇f(x∗)).

Hence, based on Eq.(14), we have

E[∥xk+1 − x∗∥2]
= E[proxηψ(xk − ηgk)− proxηψ(x

∗ − η∇f(x∗))]
≤ E[∥xk − x∗ − η(gk −∇f(x∗))∥2]
= ∥xk − x∗∥2 − 2ηE[⟨xk − x∗, gk −∇f(x∗)⟩] + η2E[∥gk −∇f(x∗)∥2]
(15)
= ∥xk − x∗∥2 − 2η ⟨xk − x∗,∇f(xk)−∇f(x∗)⟩ − Lvη ⟨xk − x∗, τi,k⟩+ η2E[∥gk −∇f(x∗)∥2]
≤ (1− ηµ)∥xk − x∗∥2 − 2η(f(xk)− f(x∗)− ⟨∇f(x∗), xk − x∗⟩)− Lvη ⟨xk − x∗, τi,k⟩+

η2E[∥gk −∇f(x∗)∥2]
(25)
≤ (1− µ

2
η)∥xk − x∗∥2 − 2η(f(xk)− f(x∗)− ⟨∇f(x∗), xk − x∗⟩) + L2v2η

2µ
∥τi,k∥2 + η2E[∥gk −∇f(x∗)∥2].

Coupling with Lemma 3.5, it yields the final iterative formula.

Proof of Lemma 4.2. According to the update of h̃, we obtain

E[∥h̃k+1 −∇f(x∗)∥2]

= pE[∥h̃k +
1

d+ 2
(∇̂f(xk, u)− uu⊤h̃k)−∇f(x∗)∥2] + (1− p)∥h̃k −∇f(x∗)∥2

(3)
= pE

[∥∥∥h̃k + 1

d+ 2
(uu⊤∇f(xk) +

Lv

2
s(xk, u)∥u∥2u− uu⊤h̃k)−∇f(x∗)

∥∥∥2]︸ ︷︷ ︸
A1

+(1− p)∥h̃k −∇f(x∗)∥2.
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For A1, we have

A1 = ∥h̃k −∇f(x∗)∥2 + 2

d+ 2
E
[〈

h̃k −∇f(x∗), uu⊤(∇f(xk)− h̃k) +
Lv

2
s(xk, u)∥u∥2u

〉]
+

1

(d+ 2)2
E
[∥∥∥uu⊤(∇f(xk)− h̃k) +

Lv

2
s(xk, u)∥u∥2u

∥∥∥2]︸ ︷︷ ︸
A2

= ∥h̃k −∇f(x∗)∥2 + 2

d+ 2

〈
h̃k −∇f(x∗),∇f(xk)−∇f(x∗) +∇f(x∗)− h̃k

〉
+

Lv

d+ 2
E
[ 〈
h̃k −∇f(x∗), s(xk, u)∥u∥2u

〉 ]
+A2

= (1− 2

d+ 2
)∥h̃k −∇f(x∗)∥2 + 2

d+ 2

〈
h̃k −∇f(x∗),∇f(xk)−∇f(x∗)

〉
+

Lv

d+ 2
E
[ 〈
h̃k −∇f(x∗), s(xk, u)∥u∥2u

〉 ]
+A2

(25)
≤ (1− 2

d+ 2
)∥h̃k −∇f(x∗)∥2 + 2

d+ 2

〈
h̃k −∇f(x∗),∇f(xk)−∇f(x∗)

〉
+

1

6(d+ 2)
∥h̃k −∇f(x∗)∥2 + 3L2v2

2(d+ 2)
E[∥u∥6] +A2

= (1− 11

6(d+ 2)
)∥h̃k −∇f(x∗)∥2 + 2

d+ 2

〈
h̃k −∇f(x∗),∇f(xk)−∇f(x∗)

〉
+

3L2v2

2(d+ 2)
E[∥u∥6] +A2.

For A2, we have

A2 =
1

(d+ 2)2
E
[∥∥∥uu⊤(∇f(xk)− h̃k) +

Lv

2
s(xk, u)∥u∥2u

∥∥∥2]
(25)
≤ 1

(d+ 2)2
E[

7

6
∥uu⊤(∇f(xk)− h̃k)∥2 +

7L2v2

4
s2(xk, u)∥u∥6]

(28)
≤ 7

6(d+ 2)
∥∇f(xk)− h̃k∥2 +

7L2v2

4(d+ 2)2
E[∥u∥6]

=
7

6(d+ 2)

[
∥∇f(xk)−∇f(x∗)∥2 + 2

〈
∇f(x∗)− h̃k,∇f(xk)−∇f(x∗)

〉
+ ∥h̃k −∇f(x∗)∥2

]
+

7L2v2

4(d+ 2)2
E[∥u∥6].

Plugging A2 into A1, we obtain

A1 ≤ (1− 2

3(d+ 2)
)∥h̃k −∇f(x∗)∥2 + 1

3(d+ 2)

〈
∇f(x∗)− h̃k,∇f(xk)−∇f(x∗)

〉
+

7

6(d+ 2)
∥∇f(xk)−∇f(x∗)∥2 + L2v2

2(d+ 2)
E[∥u∥6](3 + 7

2(d+ 2)
)

(25)
≤ 1− 1

2(d+ 2)
∥h̃k −∇f(x∗)∥2 + 4

3(d+ 2)
∥∇f(xk)−∇f(x∗)∥2 + L2v2

2(d+ 2)
E[∥u∥6](3 + 7

2(d+ 2)
)

(26),(29)
≤ (1− 1

2(d+ 2)
)∥h̃k −∇f(x∗)∥2 + 8L

3(d+ 2)
(f(xk)− f(x∗)− ⟨∇f(x∗), xk − x∗⟩) + 5(d+ 6)3L2v2

2(d+ 2)
,

where we also use the fact that 7
2(d+2) < 2 for d ≥ 1 in the last inequality.
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Hence, plugging A1 into E[∥h̃k+1 −∇f(x∗)∥2], we obtain that

E[∥h̃k+1 −∇f(x∗)∥2]

≤ p
[
(1− 1

2(d+ 2)
)∥h̃k −∇f(x∗)∥2 + 8L

3(d+ 2)
(f(xk)− f(x∗)− ⟨∇f(x∗), xk − x∗⟩) + 5(d+ 6)3L2v2

2(d+ 2)

]
+

(1− p)∥h̃k −∇f(x∗)∥2

= (1− p

2(d+ 2)
)∥h̃k −∇f(x∗)∥2 + 8Lp

3(d+ 2)
(f(xk)− f(x∗)− ⟨∇f(x∗), xk − x∗⟩) + 5(d+ 6)3L2v2p

2(d+ 2)
,

which concludes the result.

Proof of Lemma 4.3. According to the update of w, we have the following

E[
1

n

n∑
i=1

∥∇fi(wk+1)−∇fi(x∗)∥2]

=
1− p

n

n∑
i=1

∥∇fi(wk)−∇fi(x∗)∥2 +
p

n

n∑
i=1

∥∇fi(xk)−∇f(x∗)∥2

(26)
≤ 1− p

n

n∑
i=1

∥∇fi(wk)−∇fi(x∗)∥2 +
2Lp

n

n∑
i=1

(fi(xk)− fi(x
∗)− ⟨∇fi(x∗), xk − x∗⟩)

=
1− p

n

n∑
i=1

∥∇fi(wk)−∇fi(x∗)∥2 + 2Lp(f(xk)− f(x∗)− ⟨∇f(x∗), xk − x∗⟩).

Proof of Lema 4.4. Taking the expectation w.r.t. u, uk, and i, we have

E[∥gk −∇f(x∗)∥2]
(12),(13)
= E

[
∥∇̂fi(xk, uk)− ∇̂fi(wk, uk) + h̃k + ∇̂f(wk, u)− uu⊤h̃k −∇f(x∗)∥2

]
= ∥h̃k −∇f(x∗)∥2 + 2E

[ 〈
h̃k −∇f(x∗), ∇̂fi(xk, uk)− ∇̂fi(wk, uk) + ∇̂f(wk, u)− uu⊤h̃k

〉 ]
+

E
[
∥∇̂fi(xk, uk)− ∇̂fi(wk, uk) + ∇̂f(wk, u)− uu⊤h̃k∥2

]
︸ ︷︷ ︸

B1

(15)
= ∥h̃k −∇f(x∗)∥2 + 2

〈
h̃k −∇f(x∗),∇f(xk)−∇f(x∗) +∇f(x∗)− h̃k

〉
+ Lv

〈
h̃k −∇f(x∗), τi,k

〉
+B1

= −∥h̃k −∇f(x∗)∥2 + 2
〈
h̃k −∇f(x∗),∇f(xk)−∇f(x∗)

〉
+ Lv

〈
h̃k −∇f(x∗), τi,k

〉
+B1.

For B1, with Eq.(2) and Eq.(3), we have

B1 = E[∥∇̂fi(xk, uk)− ∇̂fi(wk, uk) + ∇̂f(wk, u)− uu⊤h̃k∥2]
(2),(3)
= E

[∥∥∥uku⊤k∇fi(xk) + Lv

2
si(xk, uk)∥uk∥2uk − uku

⊤
k∇fi(wk)−

Lv

2
si(wk, uk)∥uk∥2uk + uu⊤∇f(wk)+

Lv

2
s(wk, u)∥u∥2u− uu⊤h̃k

∥∥∥2]
(25)
≤ 2E

[∥∥∥uku⊤k∇fi(xk)− uku
⊤
k∇fi(wk) + uu⊤∇f(wk)− uu⊤h̃k

∥∥∥2]︸ ︷︷ ︸
B2

+

2E
[∥∥∥Lv

2
(si(xk, uk)− si(wk, uk))∥uk∥2uk +

Lv

2
s(wk, u)∥u∥2u

∥∥∥2]︸ ︷︷ ︸
B3

.

15



Double Variance Reduction: A Smoothing Trick for Composite Optimization Problems without First-Order Gradient

For B2, we have that

B2
(28)
= (d+ 2)E[∥∇fi(xk)−∇fi(x∗) +∇fi(x∗)−∇fi(wk)∥2] + (d+ 2)∥∇f(wk)− h̃k∥2+

2
〈
∇f(xk)−∇f(wk),∇f(wk)− h̃k

〉
(25)
≤ 2(d+ 2)

n

n∑
i=1

∥∇fi(xk)−∇fi(x∗)∥2 +
2(d+ 2)

n

n∑
i=1

∥∇fi(wk)−∇fi(x∗)∥2 + (d+ 2)∥∇f(wk)− h̃k∥2+

2
〈
∇f(xk)−∇f(wk),∇f(wk)− h̃k

〉
=

2(d+ 2)

n

n∑
i=1

∥∇fi(xk)−∇fi(x∗)∥2 +
2(d+ 2)

n

n∑
i=1

∥∇fi(wk)−∇fi(x∗)∥2 + (d+ 2)∥∇f(wk)−∇f(x∗)∥2+

(d+ 2)∥∇f(x∗)− h̃k∥2 + 2(d+ 2)
〈
∇f(wk)−∇f(x∗),∇f(x∗)− h̃k

〉
+

2
〈
∇f(xk)−∇f(wk),∇f(wk)− h̃k

〉
.

Since

2
〈
∇f(xk)−∇f(wk),∇f(wk)− h̃k

〉
= 2 ⟨∇f(xk)−∇f(x∗),∇f(wk)−∇f(x∗)⟩+ 2

〈
∇f(xk)−∇f(x∗),∇f(x∗)− h̃k

〉
− 2∥f(wk)− f(x∗)∥2+

2
〈
∇f(x∗)−∇f(wk),∇f(x∗)− h̃k

〉
,

plugging it into B2, we obtain that

B2 ≤ 2(d+ 2)

n

n∑
i=1

∥∇fi(xk)−∇fi(x∗)∥2 +
2(d+ 2)

n

n∑
i=1

∥∇fi(wk)−∇fi(x∗)∥2 + d∥∇f(wk)−∇f(x∗)∥2+

(d+ 2)∥∇f(x∗)− h̃k∥2 + 2(d+ 1)
〈
∇f(wk)−∇f(x∗),∇f(x∗)− h̃k

〉
+

2 ⟨∇f(xk)−∇f(x∗),∇f(wk)−∇f(x∗)⟩+ 2
〈
∇f(xk)−∇f(x∗),∇f(x∗)− h̃k

〉
.

With Lemma A.1 and A.2, we have

2(d+ 1)
〈
∇f(wk)−∇f(x∗),∇f(x∗)− h̃k

〉 (25)
≤ (d+ 1)∥∇f(wk)−∇f(x∗)∥2 + (d+ 1)∥∇f(x∗)− h̃k∥2,

2 ⟨∇f(xk)−∇f(x∗),∇f(wk)−∇f(x∗)⟩
(25)
≤ ∥∇f(xk)−∇f(x∗)∥2 + ∥∇f(wk)−∇f(x∗)∥2,

∥∇f(wk)−∇f(x∗)∥2
(24)
≤ 1

n

n∑
i=1

∥∇fi(wk)−∇f(x∗)∥2.

Hence, we have

B2 ≤ 2(d+ 2)

n

n∑
i=1

∥∇fi(xk)−∇fi(x∗)∥2 +
2(2d+ 3)

n

n∑
i=1

∥∇fi(wk)−∇fi(x∗)∥2+

(2d+ 3)∥h̃k −∇f(x∗)∥2 + ∥∇f(xk)−∇f(x∗)∥2 + 2
〈
∇f(xk)−∇f(x∗),∇f(x∗)− h̃k

〉
(24)
≤ 2d+ 5

n

n∑
i=1

∥∇fi(xk)−∇fi(x∗)∥2 +
2(2d+ 3)

n

n∑
i=1

∥∇fi(wk)−∇fi(x∗)∥2+

(2d+ 3)∥h̃k −∇f(x∗)∥2 + 2
〈
∇f(xk)−∇f(x∗),∇f(x∗)− h̃k

〉
.
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For B3, we have

B3 =
L2v2

4
E
[∥∥∥(si(xk, uk)− si(wk, uk))∥uk∥2uk + s(wk, u)∥u∥2u

∥∥∥2]
(25)
≤ L2v2

2
(E[∥uk∥6] + E[∥u∥6])

(29)
≤ L2v2(d+ 6)3.

Plugging B2 and B3 into B1, we obtain

B1 ≤ 2(2d+ 5)

n

n∑
i=1

∥∇fi(xk)−∇fi(x∗)∥2 +
4(2d+ 3)

n

n∑
i=1

∥∇fi(wk)−∇fi(x∗)∥2+

2(2d+ 3)∥h̃k −∇f(x∗)∥2 + 4
〈
∇f(xk)−∇f(x∗),∇f(x∗)− h̃k

〉
+ 2L2v2(d+ 6)3.

Plugging B1 into the original inequality, we have

E[∥gk −∇f(x∗)∥2]

≤ (4d+ 5)∥h̃k −∇f(x∗)∥2 + 2
〈
∇f(xk)−∇f(x∗),∇f(x∗)− h̃k

〉
+ Lv

〈
h̃k −∇f(x∗), τi,k

〉
+

2(2d+ 5)

n

n∑
i=1

∥∇fi(xk)−∇fi(x∗)∥2 +
4(2d+ 3)

n

n∑
i=1

∥∇fi(wk)−∇fi(x∗)∥2 + 2L2v2(d+ 6)3

(25),(24)
≤ 2(2d+ 3)∥h̃k −∇f(x∗)∥2 + L2v2

2
∥τi,k∥2 +

4(d+ 3)

n

n∑
i=1

∥∇fi(xk)−∇fi(x∗)∥2+

4(2d+ 3)

n

n∑
i=1

∥∇fi(wk)−∇fi(x∗)∥2 + 2L2v2(d+ 6)3

(26)
≤ 2(2d+ 3)∥h̃k −∇f(x∗)∥2 + L2v2

2
∥τi,k∥2 + 4(d+ 3)L(f(xk)− f(x∗)− ⟨∇f(x∗), xk − x∗⟩)+

4(2d+ 3)

n

n∑
i=1

∥∇fi(wk)−∇fi(x∗)∥2 + 2L2v2(d+ 6)3,

where we can derive the result with the bound of E[∥τi,k∥2] in Lemma 3.5.

Proof of Corollary 4.5. Let C = f(xk)− f(x∗)− ⟨∇f(x∗), xk − x∗⟩. With Lemma 4.1, 4.2, 4.3, and p = 1
n , we have

E[Ψ(xk+1)]

(17),(18),(19)
≤ (1− µ

2
η)∥xk − x∗∥2 − 2ηC +

2(d+ 3)3L2v2η

µ
+ η2E[∥gk −∇f(x∗)∥2] + α

[5(d+ 6)3L2v2

2n(d+ 2)
+

(1− 1

2n(d+ 2)
)∥h̃k −∇f(x∗)∥2 + 8L

3n(d+ 2)
C
]
+ β

[
(1− 1

n
)
1

n

n∑
i=1

∥∇fi(wk)−∇fi(x∗)∥2 +
2L

n
C
]
.

Plugging Lemma 4.4 into the above inequality, we achieve

E[ψ(xk+1)]

(20)
≤ (1− µ

2
η)∥xk − x∗∥2 − 2ηC +

2(d+ 3)3L2v2η

µ
+ η2

[
2(2d+ 3)∥h̃k −∇f(x∗)∥2 + 4L2v2(d+ 6)3+

4(d+ 3)LC +
4(2d+ 3)

n

n∑
i=1

∥∇fi(wk)−∇fi(x∗)∥2
]
+ α

[
(1− 1

2n(d+ 2)
)∥h̃k −∇f(x∗)∥2 + 8L

3n(d+ 2)
C+

5(d+ 6)3L2v2

2n(d+ 2)

]
+ β

[
(1− 1

n
)
1

n

n∑
i=1

∥∇fi(wk)−∇fi(x∗)∥2 +
2L

n
C
]
.
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Rearranging the preceding inequality, we obtain

E[ψ(xk+1)]

≤ (1− µ

2
η)∥xk − x∗∥2 + α(1− 1

2n(d+ 2)
+

2(2d+ 3)η2

α
)∥h̃k −∇f(x∗)∥2+

β(1− 1

n
+

4(2d+ 3)η2

β
)
1

n

n∑
i=1

∥∇fi(wk)−∇fi(x∗)∥2 − (2η − 4(d+ 3)Lη2 − 8L

3n(d+ 2)
α− 2L

n
β)C+

2(d+ 3)3L2v2η

µ
+ 4L2v2(d+ 6)3η2 +

5(d+ 6)3L2v2

2n(d+ 2)
α,

which concludes the result.

Proof of Theorem 4.6. Plugging the values of η, α, β in to Corollary 4.5, we obtain that

E[Ψ(xk+1)]

≤ (1− 1

(80d+ 126)κ
)∥xk − x∗∥2 + (1− 1

4n(d+ 2)
)α∥h̃k −∇f(x∗)∥2+

β(1− 1

2n
)
1

n

n∑
i=1

∥∇fi(wk)−∇fi(x∗)∥2 − λC +
2(d+ 3)3v2κ

40d+ 63
+

8(5d+ 8)(d+ 6)3v2

(40d+ 63)2
,

where λ = 2
(40d+63)L −

188
3 d+100

(40d+63)2L , i.e., λ > 0. Then, we can eliminate the term C in the above inequality and obtain,

E[Ψ(xk+1)]

≤ (1− 1

(80d+ 126)κ
)∥xk − x∗∥2 + (1− 1

4n(d+ 2)
)α∥h̃k −∇f(x∗)∥2+

β(1− 1

2n
)
1

n

n∑
i=1

∥∇fi(wk)−∇fi(x∗)∥2 + δ,

≤ max{1− 1

κ(80d+ 126)
, 1− 1

4n(d+ 2)
}Ψ(xk) + δ,

where δ = 2(d+3)3v2κ
40d+63 + 8(5d+8)(d+6)3v2

(40d+63)2 .

Proof of Corollary 4.7. Since θ = 1
κ(80d+126)+4n(d+2) ≤ min{ 1

κ(80d+126) ,
1

4n(d+2)}, based on Theorem 4.6, we have that

E[Ψ(xk+1)] ≤ (1− θ)Ψ(xk) + δ.

Telescoping it from k = 0 for K − 1, we obtain that

E[Ψ(xK)] ≤ (1− θ)KΨ(x0) +

k−1∑
k=0

(1− θ)kδ

= (1− θ)KΨ(x0) +
1− (1− θ)K

θ
δ

≤ (1− θ)KΨ(x0) +
δ

θ
.

Furthermore, since δ ≤ (κ+ 1)d2v2, we conclude the result.
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C. Hyperparameter Tuning
We employ the grid search method to determine the optimal hyperparameters for ZPDVR and other baseline methods. The
total number of SZO function evaluations, and the batch size of samples and directions are fixed and equal for all methods.
Apart from the learning rate η, the probability ρ in ZPDVR and the number of the inner loop m in ZPSVRG are also tuned
parameters. The hyperparameter search fields for each method in the four data sets are as follows:

• a9a. The learning rate η is ranged from {1× 10−2, 5× 10−2, 1× 10−1, 5× 10−1, 1, 2, 5, 10} for PGD, {1× 10−1, 5×
10−1, 1, 5, 10} for ZPDVR, {1×10−3, 5×10−3, 1×10−2, 5×10−2, 1×10−1, 5×10−1, 1} for ZPSVRG, {1×10−3, 5×
10−3, 1× 10−2, 5× 10−2, 1× 10−1, 5× 10−1, 1, 5, 10} for SEGA. The probability ρ is ranged from {1× 10−2, 2×
10−2, 3× 10−2, 4× 10−2, 5× 10−2} and the number of inner loop m is selected from {10, 50, 100, 500, 1000, 5000};

• w8a. The learning rate η is ranged from {1×10−1, 5×10−1, 1, 2, 5, 10} for PGD, {1×10−3, 7×10−3, 1×10−2, 7×
10−2, 1× 10−1} for ZPDVR, {1× 10−3, 5× 10−3, 7× 10−3, 1× 10−2, 5× 10−2, 7× 10−2, 1× 10−1} for ZPSVRG,
{1× 10−3, 5× 10−3, 1× 10−2, 5× 10−2, 1× 10−1, 5× 10−1, 1, 5, 10} for SEGA. The probability ρ is ranged from
{5× 10−4, 1× 10−3, 7× 10−3} and the number of inner loop m is selected from {10, 50, 100, 500, 1000};

• covtype. The Learning rate η is ranged from {1 × 10−2, 5 × 10−2, 1 × 10−1, 5 × 10−1, 1, 2, 3, 4, 5, 10} for PGD,
{1× 10−3, 5× 10−3, 1× 10−2, 5× 10−2, 1× 10−1, 5× 10−1, 1} for ZPDVR, {1× 10−3, 5× 10−3, 1× 10−2, 2×
10−2, 5× 10−2, 1× 10−1} for ZPSVRG, {1× 10−3, 5× 10−3, 1× 10−2, 5× 10−2, 1× 10−1, 5× 10−1, 1, 5, 10} for
SEGA. The number of inner loop m is selected from {10, 50, 100, 500, 1000}. In this dataset, we periodically update
w and h̃ for ZPDVR (update these parameters after completing a full pass over the data set). This procedure omits the
randomness caused by ρ and is equivalent to set ρ = B

n , where B is the batch size of samples;

• gisette. The learning rate η is range from {1× 10−4, 5× 10−4, 1× 10−3, 5× 10−3, 1× 10−2, 5× 10−2, 1× 10−1} for
PGD, {1× 10−3, 5× 10−3, 1× 10−2, 5× 10−2, 1× 10−1} for ZPDVR, {1× 10−4, 5× 10−4, 1× 10−3, 5× 10−3, 1×
10−2, 5× 10−2, 1× 10−1} for ZSVRG, {1× 10−3, 5× 10−3, 1× 10−2, 5× 10−2, 1× 10−1, 5× 10−1, 1, 5, 10} for
SEGA. The number of inner loop m is selected from {10, 20, 50, 100}. Similarly, we also periodically update w and h̃
for ZPDVR.
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