
Fast Co-Training under Weak Dependence via Stream-Based Active Learning

Ilias Diakonikolas * 1 Mingchen Ma * 1 Lisheng Ren * 1 Christos Tzamos * 1 2

Abstract

Co-training is a classical semi-supervised learning
method which only requires a small number of
labeled examples for learning, under reasonable
assumptions. Despite extensive literature on the
topic, very few hypothesis classes are known to
be provably efficiently learnable via co-training,
even under very strong distributional assumptions.
In this work, we study the co-training problem
in the stream-based active learning model. We
show that a range of natural concept classes are
efficiently learnable via co-training, in terms of
both label efficiency and computational efficiency.

We provide an efficient reduction of co-training
under the standard assumption of weak depen-
dence, in the stream-based active model, to online
classification. As a corollary, we obtain efficient
co-training algorithms with error independent la-
bel complexity for every concept class class ef-
ficiently learnable in the mistake bound online
model. Our framework also gives co-training al-
gorithms with label complexity Õ(d log(1/ϵ)) for
any concept class with VC dimension d, though
in general this reduction is not computationally ef-
ficient. Finally, using additional ideas from online
learning, we design the first efficient co-training
algorithms with label complexity Õ(d2 log(1/ϵ))
for several concept classes, including unions of
intervals and homogeneous halfspaces.

1. Introduction
Supervised learning — the task of learning using a large
pool of random labeled examples — is a standard machine
learning paradigm that has reached substantial maturity.

*Equal contribution 1Department of Computer Sciences, Uni-
versity of Wisconsin-Madison, Madison, USA 2University of
Athens and Archimedes AI, Athens, Greece. Correspondence
to: Mingchen Ma <mingchen@cs.wisc.edu>, Lisheng Ren
<lren29@wisc.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

Even in the most basic binary classification setting, learn-
ing a hypothesis with 0-1 error ϵ requires at least Ω(1/ϵ)
labeled examples. In a number of modern machine learning
applications, the scale of the problem is usually very large,
which makes it very costly to obtain enough labeled data
to fulfill the training requirements. The bottleneck caused
by the scarcity of labeled data is especially pronounced in
applications such as webpage classification, spam detec-
tion, or training large language models, where examples
need to be labeled by human experts. As a result, several
models and techniques have been developed to learn with
fewer labeled examples. These include label propagation
(Yarowsky, 1995), transductive learning (Joachims et al.,
1999), and active learning (Dasgupta, 2005). Here we focus
on co-training (Blum & Mitchell, 1998), one of the classical
methods in the area of semi-supervised learning.

Co-training is a method used when every single example x
can be partitioned into two views x1, x2, such that each view
can solely determine the label of x. The high-level idea of
co-training is that instead of trying to learn a single hypoth-
esis h using labeled examples, one tries to find two hypothe-
ses h1 and h2 in each view that maximize their agreement
with each other over a large pool of unlabeled examples,
and are also consistent with a small pool of labeled exam-
ples. The framework of co-training has attracted substantial
interest in both theory and application; see, e.g., (Dasgupta
et al., 2001; Abney, 2002; Kumar & Daumé, 2011; Balcan &
Blum, 2010; Liu et al., 2014; Park & Zhang, 2003; Collins
& Singer, 1999; Song et al., 2020; Li et al., 2021).

The power of co-training in classification problems, ac-
cording to (Abney, 2002; Balcan & Blum, 2010; Blum &
Mansour, 2017), is that under suitable assumptions any pair
of hypotheses (h1, h2) that has large agreement and a bal-
anced prediction over a pool of unlabeled examples must
be close to either the target concept or its negation. Given
this observation, O(log(1/δ)) random labeled examples suf-
fice to break the symmetry with probability 1− δ. That is,
information-theoretically the label complexity of co-training
does not depend on the accuracy parameter ϵ.

Despite its low label-complexity, known co-training ap-
proaches typically suffer from the perspective of compu-
tational efficiency. Specifically, even under very strong dis-
tributional assumptions, very few concept classes are known

1

Fast Co-Training under Weak Dependence via Stream-Based Active Learning

to be efficiently learnable via co-training. Intuitively, this
holds because the agreement maximization method (men-
tioned above) is in general computationally intractable. In
fact, many concept classes that are efficiently learnable in
the vanilla supervised setting are not known to be efficiently
learnable via co-training (with low label complexity).

The prototypical example illustrating this phenomenon is the
class of halfspaces — one of the most fundamental concept
classes in machine learning. As pointed out in (Blum &
Mansour, 2017), although finding a consistent halfspace is
computationally easy, solving the agreement maximization
problem for halfspaces is NP-hard in general. Given this
obstacle, co-training algorithms are usually designed using
heuristics (so that they are implementable in practice).

For the class of halfspaces, the first efficient co-training
algorithm was given by (Blum & Mitchell, 1998) under
the conditional independence assumption, postulating that
(x1, x2) are drawn independently given the label. That work
reduces the co-training problem to the problem of learning
under random classification noise (Blum et al., 1998). As
we will explain in Section 1.2, such an algorithm breaks
down immediately if we relax the conditional independence
assumption to the more realistic λ-weak dependence as-
sumption (Abney, 2002). The latter assumption posits that,
given the label, with probability λ, x1, x2 are drawn inde-
pendently; and with probability 1− λ they are drawn in an
arbitrarily correlated way.

(Blum & Mansour, 2017) gave the first efficient co-training
algorithm in the weak dependence model for large margin
halfspaces under additional distributional assumptions. No-
tably, although they relaxed the conditional independence
assumption, (Blum & Mansour, 2017) required several ad-
ditional distributional assumptions (on top of large margin).
Their algorithm is based on convex programming and ap-
pears difficult to extend to other hypothesis classes. In fact,
whether the class of halfspaces is efficiently learnable (in
the distribution-free model) under the weak dependence as-
sumption was posed as an open problem in their work and
remains open. This motivates the following question:

Is there a natural algorithmic template to design co-training
algorithms that achieve both label and computational effi-
ciency for a broad class of concept classes?

Our key observation is that if we work in a slightly stronger
learning model, where the labeled examples are obtained via
adaptive label queries, we can design efficient co-training
algorithms for a range of hypothesis classes (under the weak
dependence assumption) with low label complexity. For-
mally, we work in the standard stream-based active learning
model (Freund et al., 1997), defined below.

Definition 1.1. (Stream-Based Active Learning) A learning
problem (X,H) contains X , the space of examples, and

H , the hypothesis class over X . Each h ∈ H is a Boolean
function over X that labels each x ∈ X by h(x) ∈ {±1}.
Let h∗ be an unknown target hypothesis over X and let D
be an unknown distribution over X . A learner A receives a
stream of unlabeled examples {x(t)}mt=1 drawn i.i.d. from
D. When x(t) arrives, A must make an irrevocable decision
whether to query (and observe) the true label h∗(x(t)) or not.
After a single pass over {x(t)}mt=1, A outputs a hypothesis
ĥ. We say that A learns H if for all ϵ, δ > 0 and h∗ ∈ H
with probability 1− δ, err(ĥ) := Prx∼D(ĥ ̸= h∗(x)) < ϵ.

The model of Definition 1.1 is considered simple and practi-
cal, as it captures a variety of important real-world applica-
tions (e.g., recommendation systems and digital marketing).

Interestingly, a number of experimental works have studied
co-training in the active learning setting; see, e.g. (Muslea
et al., 2000; 2006; Farouk Abdel Hady & Schwenker, 2010)).
In more detail, these papers focused on the pool-based active
model — a data access model that typically requires more
memory and is stronger than the streaming-based active
model we study here (note that the streaming-based setting
corresponds to the pool-based setting with pool of size one).
Despite this extensive interest, no provable results were
previously established in either of these models.

1.1. Our Contributions

Black-Box Reduction to Online Learning Classic co-
training algorithms can be viewed as making queries in
the following way. They set up some budget L, query the
first L examples in the data stream, and do not make addi-
tional queries. With such a query strategy, every queried
example plays the same role in the learning process — be-
cause after seeing L labeled examples, classic co-training
algorithms will not make queries anymore. However, there
are some examples that can provide more information. Sup-
pose that we have two hypotheses (h1, h2) and over some
example x = (x1, x2), h1(x1) ̸= h2(x2); then at least one
of the hi makes a wrong prediction on x. If we make a
query on x and update the hi that makes a mistake, then
hopefully hi will get closer to the target hypothesis. On the
other hand, mistake-bound online learning (Blum, 2005) is
a well-studied field that designs prediction algorithms that
minimize the total number of incorrect predictions over a
stream of examples (mistake-bound model). A natural idea
is to use an online learning algorithm as a subroutine to
design co-training algorithms. This potentially provides us
with a way to control the number of queries while maintain-
ing computational efficiency.

Building on this observation, in Theorem 3.2, we give
a black-box reduction from the problem of co-training
with label queries (Definition 1.1) to the problem of on-
line learning. Consider a co-training problem (X,H) that

2

Fast Co-Training under Weak Dependence via Stream-Based Active Learning

satisfies λ-weak dependence. If the hypothesis class H
can be learned in the mistake-bound model by an online
learner A with mistake bound M , then we can use A to
design a co-training algorithm that makes Õ(M/α) label
queries — importantly, the label complexity does not de-
pend on the accuracy parameter ϵ — over a stream of
Õ(poly(M, 1/α, 1/(λϵ))) unlabeled examples, and with
high probability learns a hypothesis with error at most ϵ.
Here α := min{Prx∼D(y(x) = 1),Prx∼D(y(x) = −1)}.
In particular, the running time of the co-training algorithm
in each iteration is the same as that of the online learner A.

As a corollary, any hypothesis class that is known to be
efficiently learnable in the mistake-bound online learning
model, can be efficiently learned via co-training with error
independent label complexity. In particular, for the class of
γ-margin halfspaces, the perceptron algorithm implies a fast
halfspace co-training algorithm with only Õ(1/(γ2α)) label
queries. In comparison, the prior work (Blum & Mansour,
2017) gives a co-training algorithm (without queries) for
γ-margin halfspaces with additional restrictions; namely, it
requires homogeneity and zero-mean marginal distribution.
Our algorithm does not impose further assumptions on the
marginal distribution and runs in linear time per iteration.

Co-Training beyond Finite Mistake Bound The learn-
ability of a hypothesis class in the mistake-bound model
is characterized by its Littlestone dimension (Littlestone,
1988). On the other hand, many simple hypothesis classes,
such as unions of intervals, have finite VC-dimension but
infinite Littlestone dimension. This suggests that in general
we cannot hope to achieve error-independent label complex-
ity for arbitrary VC classes via our reduction. Intriguingly,
as an implicit corollary of our approach, we show the fol-
lowing (Theorem 4.1): for any hypothesis class with VC
dimension d, we can obtain a co-training algorithm (un-
der λ-weak dependence) that makes Õ(d log(1/(λϵ))/α)
label queries over a stream of poly(d, 1/(λϵ), 1/α) unla-
beled examples. Our argument combines the technique of
constructing ϵ-covers with unlabeled examples and the well-
known Halving algorithm. This label query upper bound
still achieves an exponential improvement on the label com-
plexity, compared to the standard Õ(d/ϵ) label complexity
of passive supervised learning. We note however that the
running time of such a generic algorithm is not polynomial
in general. Finally, we remark that the label complexities of
Theorem 3.2 and Theorem 4.1 have a very mild dependence
on the parameter λ. This is especially beneficial, since
in practical settings, λ is usually taken to be a very small
quantity (since λ-weak dependence is a strong assumption).

Since it is in general impossible to design a single compu-
tationally efficient learning algorithm that works for every
hypothesis class, in the third part of the work we focus on
designing efficient co-training algorithms for two concrete

classes — k-unions of intervals and homogeneous halfs-
paces (both have infinite Littlestone dimension and have la-
bel complexity Ω(1/ϵ) in the standard active learning model
(Dasgupta, 2005)). For the class of k-unions of intervals, we
give an efficient co-training learner with label complexity
Õ(k2 log(1/(λϵ))/(λα)). For the class of homogeneous
halfspaces (without a margin assumption), we show the
following: assuming that the marginal distribution on one
view is approximately symmetric, we given an efficient co-
training learner with label complexity Õ(d2 log(1/ϵ)). The
analysis of our algorithms might be of independent interest.

1.2. Related Work

Theoretic Analysis for Co-Training The theory of co-
training has been developed since the late 90s, (Blum &
Mitchell, 1998; Abney, 2002; Dasgupta et al., 2001; Bal-
can & Blum, 2010; Darnstädt et al., 2014; Balcan et al.,
2004; Blum & Mansour, 2017). Unlike our algorithmic
framework, previous algorithmic templates are designed in
a “boosting” style. That is, they use labeled examples to
train a weak hypothesis h1 over X1 and use h1 to label ex-
amples in X2; finally, they use learning algorithms with very
strong guarantees to learn a good hypothesis over X2 using
the “unreliable” labels. For example, in (Blum & Mitchell,
1998), given a weak hypothesis h1 in X1, they label a ran-
dom (x1, x2) by h1(x1); under 1-weak dependence, the
label of a random x2 can be seen as corrupted by random
classification noise so that they can use a robust learner to
find a good hypothesis over X2. However, once we relax
the assumption to λ-weak dependence, such a method fails
immediately, because without having a good enough ini-
tial hypothesis h1, the above labeling method could make
some x2 have adversarially corrupted labels, thus making it
impossible to recover the target hypothesis in X2.

Label Complexity of Active Learning Our work could be
viewed as learning in the active learning model with addi-
tional co-training assumptions. Active learning is another
learning model which targets reducing the label complexity
of supervised learning. Unlike co-training, which has error-
independent label complexity (information-theoretically), it
has been pointed out by (Dasgupta, 2005; Hanneke, 2012;
Hanneke & Yang, 2015) that active learning in the worst
case has the same label complexity as passive learning. Even
for simple classes such as unions of intervals and halfspaces
in more than 2 dimensions (even with large margin), there
exist distributions for which any learning algorithm that out-
puts a hypothesis with error O(ϵ) must make Ω(1/ϵ) label
queries. Thus, designing efficient learning algorithms with
o(1/ϵ) label complexity is both important and challenging.

Application of Online Learning to Other Models On-
line learning is a well-studied model that focuses on how
to learn in a sequential adversarial setting. Although fully

3

Fast Co-Training under Weak Dependence via Stream-Based Active Learning

adversarial learning is unrealistic in practice, the idea of
online learning usually has important applications in other
learning problems, such as boosting algorithms (Freund &
Schapire, 1997), learning in games (Fudenberg & Levine,
1998), and reinforcement learning (Agarwal et al., 2019).
Our work also applies the idea of online learning to a seem-
ingly unrelated task, that of co-training. A seemingly similar
application of online learning is the well-known “online to
PAC” conversion (Littlestone, 1989). Specifically, if a class
H can be learned in the mistake-bound model with M mis-
takes, we can convert the online learner to a PAC learner
with sample complexity N = O(Mϵ log(Mδ)). That is, one
needs to use N labeled examples during the learning pro-
cess (because in each round the online learner must receive
feedback and know the true label of the example used in
every single iteration). On the other hand, the focus of
Theorem 3.2 is the number of labeled examples used in the
training process. The importance of the guarantee in The-
orem 3.2 is that, with the help of adaptivity, the resulting
label complexity Õ(M/α) is independent of the accuracy
parameter ϵ.

Active Learning for Co-Training Finally, we point out
that the idea of combining co-training and pool-based active
learning was previously empirically studied in a number of
works (Muslea et al., 2000; 2006; Farouk Abdel Hady &
Schwenker, 2010). Several learning and query strategies
have been empirically shown to be useful in obtaining hy-
potheses with low error — to the best of our knowledge,
our work is the first one that introduces a reduction from co-
training to online learning and provides provable guarantees
for both label complexity and computational complexity.
Last, we mention that (Wang & Zhou, 2008) claim that a
different pool-based active learning strategy can be applied
to obtain co-training algorithms with Õ(d log(1/ϵ)) label
complexity for any hypothesis class with VC dimension d.
However, as explained in Appendix D, the distributional
assumption made in their work contradicts the co-training
assumption, i.e., no distribution satisfies their requirements.

2. Notations and Preliminaries
Definition 2.1. (Co-Traing Assumption) We say a learning
problem (X,H) satisfies the co-training assumption if it
satisfies the following requirement. There are spaces of
examples X1, X2 such that each x ∈ X can represented as
the form (x1, x2), where x1 ∈ X1, x2 ∈ X2. Furthermore,
there are hypothesis classes H1 over X1 and H2 over X2

such that for every h ∈ H there exist h1 ∈ H1 and h2 ∈ H2

such that h1(x1) = h(x) = h2(x2) for every example x.

For simplicity, if we do not specify it when we say (X,H)
satisfies the co-training assumption, we mean X = X1 =
X2 and H = H1 = H2.

Let (X,H) be a learning problem that satisfies the co-
training assumption and let D be the marginal distribution
over X . For i ∈ [2], we denote by Di the marginal dis-
tribution of D over Xi. For y ∈ {±1}, denote by Dy the
distribution of x conditioned on h∗(x) = y and denote by
αy the probability that a random example x has label y and
α := min{α1, α−1}. For y ∈ {±1} and i ∈ [2], denote by
Dy

i the marginal distribution of xi of distribution Dy .

Definition 2.2. (Weak Dependence Assumption) Let
(X,H) be a learning problem that satisfies the co-training
assumption. Let D be the marginal distribution over X . For
λ ∈ [0, 1], we say that distribution D satisfies λ-weak depen-
dence if for every y ∈ {±1} and for every (x1, x2) ∈ Dy,
Dy(x1, x2) ≥ λDy

1(x1)D
y
2(x2).

Let f = (f1, f2) be a pair of hypotheses, where f1 : X1 →
{±1} and f2 : X2 → {±1}. We define the unlabeled error
of f as unl(f) := Prx∼D(f1(x1) ̸= f2(x2)). Sometimes
we will also treat a hypothesis pair f = (f1, f2) itself as
a hypothesis. That is, for some x = (x1, x2), if for some
y ∈ {±1}, f1(x1) = f2(x2) = y, then f(x) = y. Other-
wise, f assigns an arbitrary label to x. Based on this, we
define the distance and error of hypotheses. Let h ∈ H be
some hypothesis. We define the distance between f and h as
d(f, h) := 1 − Prx∼D(f1(x1) = f2(x2) = h(x)). In par-
ticular err(f) := d(f, h∗). Throughout the paper, we will
also use the notation ûnl, d̂, ˆerr to denote the corresponding
empirical quantity when evaluated at some sample set S.

In this paper, we are also interested in learning geometric
concepts when X = Rd. We will use ⟨·, ·⟩ to denote the
inner product and use ∥·∥ to denote the ℓ2 norm. Let H =
{sign(⟨w∗, x⟩) | w∗ ∈ Rd} be the class of half spaces in Rd.
A marginal distribution D satisfies the γ-margin assumption
if |⟨w∗,x⟩|

∥w∗∥∥x∥ ≥ γ holds with probability 1, where w∗ is the
target. When (X,H) satisfies the co-training assumption,
we say the distribution D satisfies γ-margin assumption if
for i ∈ [2], the margin assumption over Xi satisfies the γ-
margin assumption. Finally, we state the following lemma,
which will be heavily used in this paper.

Lemma 2.3. [Restatement of Lemma 13 in (Blum & Man-
sour, 2017)] Let (X,H) be a learning problem that sat-
isfies the co-training assumption and D be the marginal
distribution over X that satisfies λ-weak dependence. Let
f = (f1, f2) be a pair of hypotheses over X . For every
ϵ ∈ (0, 1), if unl(f) < ϵ, then at least one of the follow-
ing holds. d(f, 1) < 4ϵ/λ, d(f,−1) < 4ϵ/λ, err(f) <
4ϵ/λ, err(−f) < 4ϵ/λ.

3. Co-Training via Online Classification
Here we present our first main result which shows that with
the power of label queries, we can efficiently transform an
online classification algorithm into a co-training algorithm,

4

Fast Co-Training under Weak Dependence via Stream-Based Active Learning

Algorithm 1 REDUCTION(A1,A2) (Efficient Black-Box
Reduction from Co-Training to Online Learning)

Input: Online learning algorithm Ai for Hi, i ∈ {1, 2},
sample access to distribution D, a label oracle, accuracy
parameter ϵ ∈ (0, 1), confidence parameter δ ∈ (0, 1)

Output: A hypothesis ĥ with error err(ĥ) < ϵ with
probability at least 1− δ
for t = 1, 2, . . . do

Compute ht
i, the hypothesis used by Ai in round t.

Draw example x(t) = (x
(t)
1 , x

(t)
2) ∼ D

if ht
1(x

(t)
1) ̸= ht

2(x
(t)
2) then

Query the label of x(t) and enter the next round.
if A1,A2 have continuously agreed on n =
poly(1/(λϵ), log(M/δ)) rounds then

if ∀y ∈ {±1}, more than Ω(ϵ) fraction of the agreed
examples are labeled by y then

Return ĥ = (ht
1, h

t
2)

else
Query the label of x(t) and enter the next round if
h∗(x(t)) ̸= ht

1(x
(t))

Delete x(t) from the memory and enter the next round

using very few label queries. To start with, we remind the
reader of the mistake-bound model for online learning.

Definition 3.1. (Mistake Bound Online Learning Model)
Let X be a space of example and H be a class of hypothesis
over X . Let h∗ ∈ H be the unknown target hypothesis.
An online classification algorithm A works in the following
way. In round t, A maintains some hypothesis ht, some x(t)

selected by an adversary is presented to A and A makes a
prediction ht(x(t)) for the label h∗(x(t)) and sees h∗(x(t)).
When ht(x(t)) ̸= h∗(x(t)), we say A makes a mistake. We
sayA runs in time T with a mistake bound M for hypothesis
class H if for every h∗ ∈ H and every possible sequence
of examples, A makes at most M mistakes and makes each
update in time T .

Theorem 3.2. Let (X,H) be a learning problem that satis-
fies the co-training assumption, and let D be a distribution
over X that is λ-weak dependence. If there exists an online
learning algorithm A1 for H1 and A2 for H2 such that
A1,A2 run in time T with a mistake bound M , then there
is a learning algorithm A such that for ϵ, δ ∈ (0, 1), it
draws m = Õ(poly(M, 1/α, 1/(λϵ))) unlabeled examples,
makes Õ(M/α) label queries runs in time O(Tm) and out-
puts a hypothesis ĥ such that with probability at least 1− δ,
err(ĥ) < ϵ.

Before proving Theorem 3.2, we give an overview of the
intuition behind Algorithm 1. Algorithm 1 runs A1,A2 si-
multaneously over the two views. When a random example
x(t) arrives, we useA1,A2 to predict its label. If the predic-
tions are different, we query its label and make an update

because one of the two algorithms is guaranteed to make a
mistake. If the predictions are the same, we check if the two
hypotheses used by A1,A2 have agreed on many examples.
By Lemma 2.3, we know that if this is the case, then the
current hypothesis pair (ht

1, h
t
2) is close to either ±h∗ or

±1. In particular, if (ht
1, h

t
2) does not label too many exam-

ples by +1 or by −1, then this pair of hypotheses must be
close to the target and we can safely output it. If (ht

1, h
t
2)

is very close to a constant hypothesis, then we can simply
continuously request labels of examples because in expec-
tation after O(1/α) rounds we will see an example where
both algorithms make a mistake. When we do not make a
query label for x(t) or the queried label agrees with both
predictions of A1,A2, we simply delete this example from
the memory and run A1,A2 as if x(t) has not appeared,
so that they do not change the hypothesis. We notice that
after making 2M updates, Algorithm 1 is guaranteed to stop
because both A1,A2 will not make any more mistakes, and
to make one update we only need to make O(1/α) queries.
Thus, Algorithm 1 only makes O(M/α) label queries over
a stream of unlabeled examples. Furthermore, the running
time of Algorithm 1 is the same as that of A1,A2, since in
every round it only requests labels or makes updates using
A1,A2.

Proof of Theorem 3.2. We start by showing the correctness
of Algorithm 1. Notice that during the execution of Al-
gorithm 1, the hypothesis pair (ht

1, h
t
2) will not change

until some example x is queried and at least one of ht
i,

i ∈ [2], makes a mistake on x. Now we consider
a fixed pair of hypotheses ht = (ht

1, h
t
2). Let S be

a set of n = poly(1/ϵ, log(M/δ)) unlabeled examples
drawn i.i.d. from D. By Hoeffding’s inequality, we have
PrS∼Dn

(∣∣∣ûnl(ht)− unl(ht)
∣∣∣ ≥ λϵ

4

)
≤ O(δ

M). Thus,

with probability at least 1−O(δ/M), unless unl(ht) < λϵ,
ht will not continuously agree on n randomly drawn ex-
amples. By Lemma 2.3, we know that ht is ϵ-close to
either ±h∗ or ±1. For y ∈ {±1}, denote by bty :=
Prx∼D(ht(x) = y). By Hoeffding’s inequality again,
for a set of n randomly unlabeled samples S, we have

PrS∼Dn

(∣∣∣∑x∈S 1(ht(x)=y)

n − bty

∣∣∣ ≥ ϵ
)
≤ O(δ

M). In par-

ticular, if ht is close to ±h∗, then for every y ∈ {±1}, we
have Prx∼D(ht(x) = y) ≥ α− ϵ ≥ α/2. Thus, with prob-
ability at least 1−O(δ/M), for every y ∈ {±1}, more than
Ω(ϵ) fraction of the agreed examples are labeled by y and
ht will be output. On the other hand, if ht is close to ±1,
then with probability at least 1−O(δ/M), ∃y ∈ {±1} such
that ht only labels O(ϵ) fraction of them to be y, and thus ht

will not be output. We remark that here, for simplicity, we
assume when ht is close to ±h∗, it is close to h∗, because
we can check this by testing the empirical error of h∗ over
O(log(1/δ)) random labeled examples, and this will not
affect the performance of our algorithm.

5

Fast Co-Training under Weak Dependence via Stream-Based Active Learning

So far, our analysis works for a fixed hypothesis pair. To fin-
ish the proof of the correctness, we will show that through-
out the execution of Algorithm 1, there are at most 2M
hypothesis pairs and at least one of them is close to h∗. De-
note by x(t1), . . . , x(tk) the sequence of examples, where
either A1 or A2 makes an update throughout the execution
of Algorithm 1. We notice that these examples are the only
examples that are in memory when we use Ai to compute
hypothesis ht

i for i ∈ [2]. In other words, for i ∈ [2], the
performance of Ai during the execution of Algorithm 1 is
the same as that of Ai when it runs over the sequence of the
examples x(t1), . . . , x(tk). According to Algorithm 1, for
each example in this sequence, either A1 or A2 will make
a mistake. Since both A1 and A2 have a mistake bound
of M , if Ai makes M mistakes in the sequence then after
that the hypothesis computed by Ai will not make any mis-
takes. According to Algorithm 1, for each example in this
sequence, either A1 or A2 will make a mistake. Thus, the
length of the sequence is at most 2M , and only at most 2M
pairs of hypotheses are used by Algorithm 1. Furthermore,
if A1 and A2 both make M mistakes, then after querying
x(tk), both A1 and A2 will not make any mistakes; thus,
there must be at least one pair of hypotheses that is close
to h∗. Now, if a hypothesis pair ht is close to h∗, then with
probability 1−O(δ/M), it will be output. If a hypothesis
pair ht is not close to ht, then with probability 1−O(δ/M)
it will not be output. By the union bound, we know that
with probability at least 1−O(δ), Algorithm 1 will output
a hypothesis ĥ with error at most ϵ. This finishes the proof
of correctness.

We next upper bound the label complexity and the num-
ber of unlabeled examples used by Algorithm 1. We start
with the label complexity. We make a label query when
either ht disagrees on some unlabeled example or ht is
close to ±1. In the first case, we make a single query.
In the second case, without loss of generality, we assume
d(ht, 1) < ϵ. Since a random example has a probability
at least α to be negative, we know that with probability at
least α− ϵ ≥ α/2, it will be misclassified by ht. In expec-
tation, after making O(1/α) label queries, we will see an
example misclassified by ht and update ht. By Markov’s
inequality, no matter which case we are in, with probabil-
ity at least 1 − O(δ/M), we will make at most Õ(1/α)
label queries to make an update. As we discussed above,
throughout the execution of Algorithm 1, we will in total
make 2M updates, which implies the with probability at
least 1−O(δ) the total number of label queries made by Al-
gorithm 1 is at most Õ(M/α). On the other hand, the total
number of unlabeled examples is the label complexity plus
the number of examples used to estimate unl(ht), which is
n = O(poly(1/(λϵ)), log(M/δ)) between a single update.
Thus, the total number of unlabeled examples used by Algo-
rithm 1 is m = O(poly(M, 1/α, 1/(λϵ), log 1/δ)). Finally,

the running time of Algorithm 1 directly follows the fact
that it runs in time O(T) for every single iteration.

As corollaries of Theorem 3.2, we obtain the first efficient
co-training algorithms for a broad class of hypotheses under
the weak dependence assumption. One of the most inter-
esting results is on learning margin halfspaces under weak
dependence. Before this work, the only known efficient
co-training halfspaces algorithm (Blum & Mansour, 2017)
under the weak dependence assumption, not only assumes
D satisfies the margin assumption but also makes non-trivial
structural assumptions over D. Furthermore, the algorithm
is fairly complicated and needs to solve polynomially many
large convex programs. On the contrary, based on Algo-
rithm 1, we give the first linear time co-training algorithm
for learning margin halfspaces under weak dependence with-
out making any assumption on the marginal distribution.

Corollary 3.3. Let X = Sd−1 and H be the class of half-
spaces over X . Assume (X,H) satisfies the co-training
assumption. Let D be any distribution over X that satisfies
λ-weak dependence and γ-margin assumption. There is an
algorithm such that for δ, ϵ ∈ (0, 1), with probability at least
1− δ it draws m = Õ(poly(1/γ, 1/α, 1/(λϵ))) unlabeled
examples from D makes Õ(1/(γ2α)) label queries, runs in
O(dm) time, and outputs a hypothesis ĥ with err(ĥ) < ϵ.

Proof. It is well-known that if a sequence of exam-
ple (x(t))∞t=1 ⊆ Rd satisfies the margin assumption
⟨w∗,x(t)⟩

∥w∗∥∥x(t)∥ ≥ γ, then the perception update w(t+1) =

w(t) + y(x(t))x(t), when x(t) is predicted incorrectly gives
an online classification algorithm with mistake bound
O(1/γ2). Each update takes time O(d) to implement.
Corollary 3.3 follows directly by Theorem 3.2.

We also summarize additional implications of Theorem 3.2
in Table 1. We point out that before this work no efficient
co-training algorithms were known for these classes under
weak dependence.

Hypothesis Class Label Complexity Time
Disjunctions Õ(n/α) O(n)

Conjunctions Õ(n/α) O(n)

LDeep-Decision List Õ(nL/α) O(nL)

k-Term-DNF Õ(nO(k)/α) nO(k)

k-CNF Õ(nO(k)/α) nO(k)

Table 1. Label Complexity and Running Time per Iteration for
Several Hypothesis Classes over Boolean Domain {0, 1}n.

We notice that there is a dependence on α, the bias of
the target hypothesis, in our label complexity. However,

6

Fast Co-Training under Weak Dependence via Stream-Based Active Learning

information-theoretically, such a dependence is not neces-
sary. The dependence on α is not unique to our algorithmic
framework. We point out that though not formally stated,
such a dependence also implicitly exists in previous algorith-
mic frameworks such as (Blum & Mitchell, 1998). These
frameworks assume a weakly useful hypothesis is trained
over a small pool of randomly drawn labeled examples L.
A weakly useful hypothesis is a hypothesis h such that for
every y ∈ {±1} an example with label y has probability at
most 1/2− β that is labeled incorrectly for some constant
β > 0. In particular, unless the hypothesis class has a good
structure if |L| < o(1/α), then every labeled example in L
will have the same label and such a weakly useful hypoth-
esis cannot be obtained. It is unclear if such a dependence
is necessary to obtain a computationally efficient algorithm,
and we leave it as an important open question.

4. Co-Training beyond Finite Mistake Bound
Although Algorithm 1 shows that many hypotheses classes
can be efficiently learned via co-training with only an error-
independent number of label queries, it requires the exis-
tence of an online learning algorithm with finite mistake
bound. However, not every hypothesis class has such a
property. In this section, we show that the idea of online
learning still leads to co-training algorithms for hypothesis
classes with finite VC dimension (even if they are not online
learnable under the mistake-bound model) with low label
complexity.

4.1. Learning General VC-Classes in Exponential Time

We first show that the idea of using online learning infor-
mation theoretically still exponentially improves the label
complexity of learning a general VC class over the label
complexity in the passive learning setting (the detailed proof
for Theorem 4.1 is deferred to Appendix A).

Theorem 4.1. Let (X,H) be a learning problem that sat-
isfies the co-training assumption, where V C(H) = d. Let
D be a distribution over X that satisfies λ-weak depen-
dence. There is an (exponential time) algorithm such that
for ϵ, δ ∈ (0, 1), it draws m = poly(d, 1/(λϵ), log(1/δ))
unlabeled examples, makes Õ(d log(1/(λϵ))/α) many label
queries, and outputs a hypothesis ĥ with error err(ĥ) < ϵ.

Theorem 4.1 could be seen as an implicit corollary of
Theorem 3.2. It is well known that if H is finite then
under the mistake bound model, the Halving algorithm
can learn H with O(log(|H|) mistakes. Although H in
general is infinite, according to (Hanneke & Yang, 2015),
we can draw poly(d/η) unlabeled examples to construct
an η-cover C for H with size Õ((d/η)d). This guaran-
tees that for all h ∈ H there exists c ∈ C such that
d(h, c) < η. Importantly, if we set η = poly(ϵ, λ, d),

then with probability at least 1/2, there exists c∗ ∈ C
that agrees with h∗ on every unlabeled example we use.
Thus, we can simply implement Algorithm 1 with the Halv-
ing algorithm by assuming the target hypothesis is in C.
In expectation after repeating Algorithm 1 several times,
we finally learn a good hypothesis with label complexity
Õ(log |C|/α) = Õ(d log(1/(λϵ))/α).

Since the Halving algorithm in general is not computation-
ally efficient, in the rest of the paper, we will focus on
developing efficient co-training algorithms for two concrete
hypothesis classes: k-unions of intervals halfspaces (both
have Ω(1/ϵ) label complexity in the standard active model).

4.2. Co-Training k-Unions of Intervals

Theorem 4.2. Let (X,H) be a learning problem that satis-
fies the co-training assumption, where X = R and H is the
class of k-union of intervals over R. i.e. for each h ∈ H ,
there exists k intervals Ii, i ∈ [k] such that h(x) = 1 if
and only if x ∈

⋃
i∈[k] Ii. Let D be a distribution over

X that satisfies λ-weak dependence. There is an algo-
rithm such that for ϵ, δ ∈ (0, 1), with probability 1 − δ
it draws m = poly(k, 1/(λϵ), log(1/δ)) unlabeled exam-
ples, makes Õ(k2 log(1/(λϵ)) + k/α) many label queries,
runs in poly(m) time and outputs a hypothesis ĥ with error
err(ĥ) < ϵ.

We present Algorithm 2, a sketch version of our learning
algorithm (due to space limitations). Algorithm 4, the de-
tailed version and the proof of Theorem 4.2, can be found in
Appendix B. Here we give the intuition behind Algorithm 2.
For simplicity, we assume λ = 1. Initially, Algorithm 2 will
sample Õ(k/α) examples and query their labels. We use
these examples to construct an initial hypothesis (h0

1, h
0
2)

over the two views. We show in Claim B.1, by the VC
inequality, any hypothesis class that is consistent with these
labeled examples will be far from the constant hypothesis.
Throughout the execution of Algorithm 2, we will make a
small modification for ht

i when it makes an incorrect pre-
diction on x

(t)
i . Since ht

i is a union of at most k intervals,
the region where positive examples are misclassified by ht

i

is also a union of O(k) intervals. For simplicity, we de-
note this region by ∪jRt

ij . According to the 1-dependent

assumption we made, when some x
(t)
i with a positive label

is misclassified by ht
i, we can treat it as a random example

sampled from D+
i conditioned on ∪jRt

ij . Together with the
modification method used by Algorithm 2, we can show that
if such x

(t)
i ∈ Rt

ij , then with constant probability Pr(Rt
ij)

will drop by a constant factor. This implies that after seeing
such an example x

(t)
i with constant probability, err+(ht

i)
will drop by a factor of (1 − 1/O(k)). A similar analysis
holds if a negative example x

(t)
i is misclassified. This intu-

itively gives that after making O(k log(1/(λϵ))) mistakes

7

Fast Co-Training under Weak Dependence via Stream-Based Active Learning

Algorithm 2 LEARNK-INTERVAL (Efficient co-training k
intervals)

Input: A sample access to D, a label query oracle,
accuracy parameter ϵ ∈ (0, 1), confidence parameter
δ ∈ (0, 1)

Output: A hypothesis ĥ with error err(ĥ) < ϵ with
probability at least 1− δ
n = poly(1/(λϵ), log(1/δ))
Draw Õ(k/α) examples from D and query their labels
Over X1, X2, construct initial hypothesis pair (h1

1, h
1
2),

write it as h1
i =

⋃
j=1 I

1
ij . (I1ij ordered by position)

COUNTT ← 0, COUNTU ← 0
for t = 1, 2, . . . do

Draw example x(t) = (x
(t)
1 , x

(t)
2) ∼ D

if COUNTT < n then
Increase COUNTU by 1 , if ht

1(x
(t)
1) ̸= ht

2(x
(t)
2).

Increase COUNTT by 1 and enter next round
if COUNTT ≥ n and COUNTU

COUNTT
< λϵ

8 then
Return ĥ = (ht

1, h
t
2).

{Check if the current hypothesis is good enough}
if ht

1(x
(t)
1) ̸= ht

2(x
(t)
2) then

Query the label of x(t)

if y(x(t)) = 1 and is misclassified by ht
i then

Find j such that x(t)
i lies between Itij and Iti(j+1)

and modify ht
ij as follows;

Enlarge one of Itij , I
t
i(j+1) by setting the boundary

as x(t)
i if the modification does not cause incon-

sistency, otherwise, create a new interval {x(t)
i }.

if y(x(t)) = 0 and is misclassified by ht
i then

Find the interval Itij that contains x(t) and modify
ht
i by dividing Itij into two intervals.

COUNTT ← 0, COUNTU ← 0.

err(ht
i) will be roughly O(λϵ) and, according to Lemma 2.3,

it will be output. However, such a direct analysis is not fully
correct, because when we make a modification that tends to
decrease the err+(h

t
i), err−(h

t
i) might increase due to the

modification, and similarly err+(h
t
i) might increase when

we try to decrease err−(h
t
i). We show in Appendix B that

by employing the structure of the hypothesis class, our up-
date method can ensure that these bad events happen at most
O(k) times before we output a good hypothesis, and thus we
can still achieve an exponential improvement on the label
complexity.

4.3. Co-Training Homogeneous Halfspaces

Finally, we design an efficient algorithm for learning homo-
geneous halfspaces (without a margin assumption) under
weak independence and approximate symmetric assump-
tion. In Corollary 3.3, the algorithm works only when the
target halfspace has a margin γ, while in this section, we

do not make such an assumption. As an alternative, we
require that one of the marginal distributions (without loss
of generality D1 of x1) satisfies an approximate reflective
symmetry assumption. Namely, we need D1(x1)/D1(−x1)
to be always bounded between [α, 1/α] for some α ≤ 1.
Under this assumption, we have the following theorem (the
detailed proof is deferred to Appendix C).

Theorem 4.3. Let (X,H) be a learning problem where
X = Rd × Rd and H be the class of homogeneous
halfspaces that satisfies the co-training assumption. Let
D be a distribution over X that satisfies λ-weak depen-
dence and let D1 be the marginal distribution of x1 satis-
fies the α-reflective symmetry, namely, for any x1 ∈ X1,
D(x1)/D(−x1) ∈ [α, 1/α] for some α ≤ 1. There is an
algorithm such that for ϵ, δ ∈ (0, 1), with probability at
least 1− δ it draws m = poly(d, 1/ϵ, 1/α, 1/λ) unlabeled
examples, makes Õ(d2 log(1/ϵ)) label queries and returns
a hypothesis ĥ such that err(ĥ) < ϵ.

We give the intuition behind Theorem 4.3 here. For sim-
plicity, we assume α = 1. Let us assume that for i ∈ [2],
marginal distribution Di in the statement also satisfies the
following property, for every vector wi ∈ Xi, with proba-
bility at least β, a random example drawn from Di has a
margin at least γ with respect to wi. This implies that if we
can learn some wi that can correctly classify every example
xi that has a margin γ with respect to it, then we can cor-
rectly label β fraction of the distribution Di. Fortunately,
under the mistake bound, a modified version of the percep-
tron algorithm developed by (Blum et al., 1998) can learn
such a wi with poly(1/γ) mistakes. Thus, by implementing
the modified perceptron algorithm via Algorithm 1, we are
able to use poly(1/γ) label queries to learn such wi up to
a small error. This suggests if after removing the region
{xi ∈ Xi | |⟨wi, xi⟩| ≥ γ} from Di, the rest of the distribu-
tion still satisfies the assumed property, then after running
the method recursively Õ(1/β) log(1/ϵ) times there is at ϵ
fraction of Di we cannot correctly classify.

Although the above margin property is not satisfied by ev-
ery distribution, Forster’s transform (Forster, 2002; Hardt
& Moitra, 2013; Diakonikolas et al., 2021; 2023b) (see
Fact C.1) provides us with a way to overcome the difficul-
ties. Roughly speaking, for every distribution Di, we learn
with a pool of unlabeled examples in polynomial time, a sub-
space V of dimension k, and a non-linear transform fA(·)
such that (1) Prxi∼Di(xi ∈ V) ≥ Ω(k/d), (2) for every
wi ∈ V and a random example xi drawn from Di | V , with
probability at least Ω(1/k), fA(xi) has a margin Ω(1/

√
k)

(see Fact C.2). With the help of Forster’s transform, with
poly(d) label queries, we are able to classify at least Ω(1/d)
fraction of Di correctly using the margin perception algo-
rithm in Fact C.3. In particular, we will show in Appendix C
that after deleting the region we have classified so far, the

8

Fast Co-Training under Weak Dependence via Stream-Based Active Learning

remaining distribution still satisfies the reflective symmetry
assumption. Thus, after O(d log(1/ϵ)) rounds, only O(ϵ)
fraction of the Di has not been classified, which implies
that we have learned a good enough hypothesis.

Acknowledgement
Ilias Diakonikolas was supported by NSF Medium Award
CCF-2107079, NSF Award CCF-1652862 (CAREER), a
Sloan Research Fellowship, and a DARPA Learning with
Less Labels (LwLL) grant. Lisheng Ren was supported
by NSF Award CCF-1652862 (CAREER). Mingchen Ma
and Christos Tzamos were supported by NSF Award CCF-
2144298 (CAREER).

Impact Statement
This work presents theoretical results on certain topics of
co-training and active learning. The goal is to advance the
field of Machine Learning. We do not feel there is any
potential societal consequence that needs to be specifically
highlighted.

References
Abney, S. Bootstrapping. In Proceedings of the 40th annual

meeting of the Association for Computational Linguistics,
pp. 360–367, 2002.

Agarwal, A., Jiang, N., and Kakade, S. M. Reinforcement
learning: Theory and algorithms. 2019.

Balcan, M.-F. and Blum, A. A discriminative model for
semi-supervised learning. Journal of the ACM (JACM),
57(3):1–46, 2010.

Balcan, M.-F., Blum, A., and Yang, K. Co-training and ex-
pansion: Towards bridging theory and practice. Advances
in neural information processing systems, 17, 2004.

Blum, A. On-line algorithms in machine learning. Online
algorithms: the state of the art, pp. 306–325, 2005.

Blum, A. and Mansour, Y. Efficient co-training of linear
separators under weak dependence. In Conference on
Learning Theory, pp. 302–318. PMLR, 2017.

Blum, A. and Mitchell, T. Combining labeled and unlabeled
data with co-training. In Proceedings of the eleventh
annual conference on Computational learning theory, pp.
92–100, 1998.

Blum, A., Frieze, A., Kannan, R., and Vempala, S. A
polynomial-time algorithm for learning noisy linear
threshold functions. Algorithmica, 22:35–52, 1998.

Collins, M. and Singer, Y. Unsupervised models for named
entity classification. In 1999 Joint SIGDAT conference
on empirical methods in natural language processing and
very large corpora, 1999.

Darnstädt, M., Simon, H. U., and Szörényi, B. Supervised
learning and co-training. Theoretical Computer Science,
519:68–87, 2014.

Dasgupta, S. Coarse sample complexity bounds for active
learning. Advances in neural information processing
systems, 18, 2005.

Dasgupta, S., Littman, M., and McAllester, D. Pac gen-
eralization bounds for co-training. Advances in neural
information processing systems, 14, 2001.

Diakonikolas, I., Kane, D., and Tzamos, C. Forster decom-
position and learning halfspaces with noise. Advances in
Neural Information Processing Systems, 34:7732–7744,
2021.

Diakonikolas, I., Kontonis, V., Tzamos, C., and Zarifis, N.
Self-directed linear classification. In The Thirty Sixth
Annual Conference on Learning Theory, pp. 2919–2947.
PMLR, 2023a.

Diakonikolas, I., Tzamos, C., and Kane, D. M. A strongly
polynomial algorithm for approximate forster transforms
and its application to halfspace learning. In Proceed-
ings of the 55th Annual ACM Symposium on Theory of
Computing, pp. 1741–1754, 2023b.

Dunagan, J. and Vempala, S. A simple polynomial-time
rescaling algorithm for solving linear programs. In Pro-
ceedings of the 36th Annual ACM Symposium on Theory
of Computing, pp. 315–320, 2004.

Farouk Abdel Hady, M. and Schwenker, F. Combining
committee-based semi-supervised learning and active
learning. Journal of Computer Science and Technology,
25(4):681–698, 2010.

Forster, J. A linear lower bound on the unbounded error
probabilistic communication complexity. Journal of Com-
puter and System Sciences, 65(4):612–625, 2002.

Freund, Y. and Schapire, R. E. A decision-theoretic general-
ization of on-line learning and an application to boosting.
Journal of computer and system sciences, 55(1):119–139,
1997.

Freund, Y., Seung, H. S., Shamir, E., and Tishby, N. Selec-
tive sampling using the query by committee algorithm.
Machine learning, 28:133–168, 1997.

Fudenberg, D. and Levine, D. K. The theory of learning in
games, volume 2. MIT press, 1998.

9

Fast Co-Training under Weak Dependence via Stream-Based Active Learning

Hanneke, S. Activized learning: Transforming passive to
active with improved label complexity. The Journal of
Machine Learning Research, 13(1):1469–1587, 2012.

Hanneke, S. and Yang, L. Minimax analysis of active learn-
ing. J. Mach. Learn. Res., 16(1):3487–3602, 2015.

Hardt, M. and Moitra, A. Algorithms and hardness for
robust subspace recovery. In COLT 2013, pp. 354–375,
2013.

Joachims, T. et al. Transductive inference for text classifica-
tion using support vector machines. In Icml, volume 99,
pp. 200–209, 1999.

Kumar, A. and Daumé, H. A co-training approach for
multi-view spectral clustering. In Proceedings of the 28th
international conference on machine learning (ICML-11),
pp. 393–400, 2011.

Li, S., Wang, W., Li, W.-T., and Chen, P. Multi-view repre-
sentation learning with manifold smoothness. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 35, pp. 8447–8454, 2021.

Littlestone, N. Learning quickly when irrelevant attributes
abound: A new linear-threshold algorithm. Machine
learning, 2:285–318, 1988.

Littlestone, N. From on-line to batch learning. In Proceed-
ings of the second annual workshop on Computational
learning theory, pp. 269–284, 1989.

Liu, W., Li, Y., Lin, X., Tao, D., and Wang, Y. Hessian-
regularized co-training for social activity recognition.
PLoS One, 9(9):e108474, 2014.

Muslea, I., Minton, S., and Knoblock, C. A. Selective
sampling with redundant views. In AAAI/IAAI, pp. 621–
626, 2000.

Muslea, I., Minton, S., and Knoblock, C. A. Active learning
with multiple views. Journal of Artificial Intelligence
Research, 27:203–233, 2006.

Park, S.-B. and Zhang, B.-T. Large scale unstructured doc-
ument classification using unlabeled data and syntactic
information. In Pacific-Asia Conference on Knowledge
Discovery and Data Mining, pp. 88–99. Springer, 2003.

Song, J., Lanka, R., Yue, Y., and Ono, M. Co-training for
policy learning. In Uncertainty in Artificial Intelligence,
pp. 1191–1201. PMLR, 2020.

Wang, W. and Zhou, Z.-H. On multi-view active learn-
ing and the combination with semi-supervised learning.
In Proceedings of the 25th international conference on
Machine learning, pp. 1152–1159, 2008.

Yarowsky, D. Unsupervised word sense disambiguation
rivaling supervised methods. In 33rd annual meeting of
the association for computational linguistics, pp. 189–
196, 1995.

10

Fast Co-Training under Weak Dependence via Stream-Based Active Learning

Supplemental Material

A. Label Efficient Co-Training of General VC-Classes via Online Learning
In this section, we prove Theorem 4.1, which shows the idea of online learning can even lead to co-training algorithms for
any VC class with a low label complexity.

To start with, we want to remind readers of the notion of ϵ-cover and Halving Algorithms, which will play crucial roles in
the proof of Theorem 4.1.

Definition A.1 (ϵ-cover). Let H be a class of hypotheses over an example space X . Let D be a distribution over X . An
ϵ-cover of H under distribution D is a finite set of hypotheses C over X such that for every h ∈ H , there exists some c ∈ C
such that d(h, c) < ϵ.

Given a hypothesis class H with VC dimension d, and a sample oracle to D, according to Lemma 21 in (Hanneke & Yang,
2015), we can construct an ϵ cover for H with high probability via the following procedure. Draw m = Õ(d/ϵ) unlabeled
examples from D, for each possible labeling method l over these m examples, select one h ∈ H that agrees with l over
these m examples and add it to C. In particular, by Sauer’s lemma, |C| ≤ O(md) and log(|C|) ≤ Õ(d log(1/ϵ)).

Definition A.2 (Halving Algorithm). Let H be a finite set of hypotheses over example space X . In the mistake-bound
online learning model, a halving algorithm works in the following way. Let Ht ⊆ H be the set of hypotheses that are
consistent with the sequence of labeled examples (x1, y1), . . . , (xt−1, yt−1) seen so far. When xt arrives, the Halving
algorithm predicts xt by argmaxy∈{±1}{|{h ∈ Ht | h(xt) = y}| | y ∈ {±1}}.

It is well known that the Halving algorithm has a mistake bound O(log(|H|)). In particular, if the sequence of labeled
examples is not consistent with any h ∈ H , after making O(log(|H|)) mistakes, we can verify this.

Given the background of ϵ-cover and Halving algorithm, we are ready to present the proof of Theorem 4.1.

Proof of Theorem 4.1. We will show Algorithm 3 is an algorithm that satisfies the statement of Theorem 4.1. We first show
the correctness of Algorithm 3. Consider a single round of Algorithm 3. There are two cases to consider.

In the first case, the learner manually stops Algorithm 1 and checks the quality of h = (h1, h2) that is used by A1,A2 by
sampling a set of unlabeled examples S from D.

Let S be a set of n = poly(1/(λϵ), log(1/δ)) unlabeled examples drawn i.i.d. from D. By Hoeffding’s inequality, we have

Pr
S∼Dn

(∣∣∣ûnl(h)− unl(h)
∣∣∣ ≥ λϵ

8

)
≤ 2e

(
−λ2ϵ2n

64

)
≤ exp(−Ω(log 1/δ

ϵ
)). (1)

For y ∈ {±1}, denote by by := Prx∼D(h(x) = y). By Hoeffding’s inequality again, for a set of n randomly unlabeled
samples S, we have

Pr
S∼Dn

(∣∣∣∣∑x∈S 1(h(x) = y)

n
− by

∣∣∣∣ ≥ ϵ

)
≤ poly(δ). (2)

This implies that if h has an error Ω(ϵ) or is close to a constant hypothesis then with a high probability it will not be returned.

In the second case, before we manually stop Algorithm 1, it returns a pair of hypotheses h = (h1, h2). Recall the stopping
condition in Algorithm 1, h1, h2 need to agree on poly(1/(λϵ)) unlabeled examples and not to label too many of these
examples by y ∈ {±1}, which is an even stronger condition of return. Thus if h is not ϵ−close to the target hypothesis, then
it will not be returned.

Combining the two cases together, we know that if a pair of hypotheses h = (h1, h2) is returned in a single round, then with
probability 1− poly(δ), h has an error at most ϵ.

To finish the proof of the correctness, it suffices to show that each round, Algorithm 3 will terminate with constant probability.
If this is true, then high probability, that after running O(log(1/δ)) rounds, Algorithm 3 will terminate and the output
hypothesis is guaranteed to have error ϵ. Since the online learning algorithm, we use in Algorithm 1 is the Halving algorithm
over the η-cover Ci. The mistake bound of the Halving algorithm is log(|Ci|) = Õ(d log(1/η)). We know from Algorithm 1

11

Fast Co-Training under Weak Dependence via Stream-Based Active Learning

Algorithm 3 CO-HALVING(H) (Co-training VC classes via Halving)
Input: A sample access to D, a label query oracle, accuracy parameter ϵ ∈ (0, 1), confidence parameter δ ∈ (0, 1)
Output: A hypothesis h with error err(h) < ϵ with probability at least 1− δ
Repeat the following process until a pair of hypotheses h = (h1, h2) is output
For i ∈ [2], draw a set of ni unlabeled examples Si ∼ D(i), where ni = poly(d/(λϵ)).
For i ∈ [2], construct η-cover Ci of H over Xi using Si. (η is chosen as poly(λϵ/d) for some large degree polynomial)
Let Ai be the halving algorithm over Ci, for i ∈ [2].
Run REDUCTION(A1,A2) by assuming h∗

i ∈ Ci

if For i ∈ [2], at most one hypothesis in Ci is consistent with all previous label queries during running REDUC-
TION(A1,A2). then

Stop REDUCTION(A1,A2) and output the hypothesis pair h = (h1, h2) that is currently used by A1,A2

Draw S, a set of n = poly(1/λϵ, log(1/δ)) unlabeled examples from D and compute ûnl(h) using S.
if ûnl(h) < O(λϵ) and ∀y ∈ {±1}, more than Ω(ϵ) fraction of the agreed examples are labeled by y then

Return h = (h1, h2).
else

Return the hypothesis output by (A1,A2).

that every time we use Algorithm 1, the number of unlabeled examples we use is m = poly(log(|Ci|), 1/α, 1/(λϵ)). This
implies that if we choose η = poly(λϵ/d) for some large degree polynomial, then we can ensure mη < 1/4. In particular,
let h∗

i be the target hypothesis in Xi, the guarantee of η-cover says there exists some c∗i ∈ Ci such that d(c∗i , h
∗
i) < η.

By Markov’s inequality, we know that with probability at least 1/2, for i ∈ [2], each x of these m unlabeled examples
satisfies h∗

i (x) = c∗i (x). According to the Halving algorithm, when we manually stop Algorithm 1, we exactly find
(h1, h2) = (c∗1, c

∗
2), which has an error at most O(η) = o(λϵ). In this case, (1) and (2) imply that with high probability

(h1, h2) will be output. Thus, each round, Algorithm 3 will terminate with a constant probability. This finishes the proof of
the correctness.

Finally, we bound the label complexity of Algorithm 3, this follows directly from the proof of the correctness. As
discussed above the halving algorithm has a mistake bound log(|Ci|) = Õ(d log(1/(λϵ))). In each round, after making
Õ(d log(1/(λϵ))) updates, we are guaranteed to mannually stop Algorithm 1. Since in the worst case to make an update
we need to make Õ(1/α) queries, we know the number of queries we make in a single round is Õ(d log(1/(λϵ))/α). This
finishes the proof of the label complexity since each round will terminate will a constant probability.

B. Efficient Co-Training of k-Interval
In this section, we will prove Theorem 4.2. We give Algorithm 4, a detailed version of Algorithm 2. To avoid confusion, we
will first list some notations that we will use in the proof.

For i ∈ [2], we denote by h∗
i = ∪jI∗ij the target hypothesis over Xi, where for each j ∈ [k], I∗ij is one of the interval that

defines h∗
i . For simplicity, the index j is ordered according to the relative positions of these intervals.i.e If 1 ≤ j < g ≤ k,

then I∗ij lies on the left-hand side of I∗ig . For each interval I∗ij , we will denote by l∗ij and r∗ij the left boundary and the right
boundary of I∗ij . Since Algorithm 4 runs in rounds, in round t, we will denote by ˆl∗tij and r̂∗tij the left boundary and the
right boundary of the convex hull of the examples in I∗ij that has been queried by Algorithm 4 before round t+ 1.

Since the concept h∗
i is a union of k intervals, we know that the region in R, where examples are labeled negative by h∗

i is a
union of at most k + 1 intervals. Similarly, we will use N∗

ij to denote these “negative” intervals ordered from left to right.

We will also define similar notations for the hypothesis ht
i maintained in each round. Since for each time step t and for each

i ∈ [2], ht
i is defined by a union of several intervals. We will denote by ∪jItij these intervals, also ordered from left to right.

Finally, for every t and for each i ∈ [2], we decompose the error of erf ht
i in the following way

err(ht
i) = α+err+(h

t
i) + α−err−(h

t
i),

where for y ∈ {±1}, erry(ht
i) = Prxi∼Dy

i
(ht

i(xi) ̸= y).

12

Fast Co-Training under Weak Dependence via Stream-Based Active Learning

Algorithm 4 LEARNK-INTERVAL (Efficient co-training k intervals)
Input: A sample access to D, a label query oracle, accuracy parameter ϵ ∈ (0, 1), confidence parameter δ ∈ (0, 1)

Output: A hypothesis ĥ with error err(ĥ) < ϵ with probability at least 1− δ
Draw Õ(k/α) examples from D and query their labels. Over X1, X2, construct initial hypothesis pair (h1

1, h
1
2) as follows.

For i ∈ [2], let Qi ⊆ Xi be the queried examples. Repeat the following procedure until no positive examples are in Qi

1. Find xa
i , the first positive example in Qi and xb

i the smallest negative example in Qi such that x−
i > x+

i

2. Denote by I , the set of positive examples in Qi between xa
i and xb

i (including xa
i).

3. Create a new interval conv(I) for h1
i and delete I from Qi

Write h1
i =

⋃
j=1 I

1
ij . (I1ij ordered by position from left to right)

COUNTT ← 0, COUNTU ← 0
n = poly(1/(λϵ), log(1/δ))
for t = 1, 2, . . . do

Draw example x(t) = (x
(t)
1 , x

(t)
2) ∼ D

if COUNTT < n then
COUNTU ← COUNTU + 1, if ht

1(x
(t)
1) ̸= ht

2(x
(t)
2).

COUNTT ← COUNTT + 1 and enter next round
if COUNTT ≥ n and COUNTU

COUNTT
< λϵ

8 then
Return ĥ = (ht

1, h
t
2).

{Check if the current hypothesis is good enough}
if ht

1(x
(t)
1) ̸= ht

2(x
(t)
2) then

Query the label of x(t)

if y(x(t)) = 1 and is misclassified by ht
i then

Find j such that x(t)
i lies between Itij and Iti(j+1) and modify ht

ij as follows:

1. If conv(Itij ∪ {x
(t)
i }) contains no negative examples queried before, Itij ← conv(Itij ∪ {x

(t)
i }), otherwise;

2. If conv(Iti(j+1) ∪ {x
(t)
i }) contains no negative examples queried before, Iti(j+1) ← conv(Iti(j+1) ∪ {x

(t)
i });

3. Otherwise, create {x(t)
i } as a new interval for ht

i.
if y(x(t)) = 0 and is misclassified by ht

i then
Find the interval Itij that contains x(t) and modify ht

i by dividing Itij into two intervals
COUNTT ← 0, COUNTU ← 0

Based on these notations, we present several structural results of learning k-intervals.

We start showing that our initialized hypothesis is not close to any constant hypothesis.

Claim B.1. [Property of the initial hypothesis] For i ∈ [2], let S be a set of Õ(k/α) examples drawn randomly from Di.
With probability at least 1− δ, any hi ∈ H that correctly labels S satisfies d(hi,+1) ≥ α/2 and d(hi,−1) ≥ α/2.

Proof of Claim B.1. Without loss of generality, we assume that Prx∼Di
(h∗

i (x) = +1) = α. We first show that with
probability at least 1 − δ, for y ∈ {±1}, there are Õ(k) examples with label y. The sampling process for S can be
understood in the following way. We first draw a Bernoulli random variable with parameter α, if we get 1 then we sample
some x ∼ D+

i , otherwise, we sample some x ∼ D−
i . In expectation, each round we will sample α example from D+

i .
Since |S| = Õ(k/α), Hoeffding’s inequality implies that with probability at least 1− δ, at least α/2 fraction of S are drawn
from D+

i and no more than 3α/2 fraction of S are drawn from D+
i , which also implies that at least α/2 fraction of S are

drawn from D−
i since 1− α ≥ α. Thus for y ∈ {±1}, there are Õ(k) examples in S with label y. Given this happens, we

apply VC-inequality over distribution D+
i and D−

i . That is to say, for y ∈ {±1}, with probability at least every hypothesis
hi ∈ H that correctly labels S has an error at most 1/3 with respect to h∗ over Dy

i . This suffices to show d(hi, y) ≥ α/2
for y ∈ {±1}. Because assuming d(hi, y) < α/2, then a random example drawn from Di with have a probability at least
1− α/2 to be labeled by y. However,

Pr
x∼Di

(hi(x) = 1) = α Pr
x∼D+

i

(hi(x) = 1) + (1− α) Pr
x∼D−

i

(hi(x) = 1) ≤ α+ (1− α)/3 < 1− α/2.

Pr
x∼Di

(hi(x) = −1) = α Pr
x∼D+

i

(hi(x) = −1) + (1− α) Pr
x∼D−

i

(hi(x) = 1) ≤ α/3 + 1− α < 1− α/2,

13

Fast Co-Training under Weak Dependence via Stream-Based Active Learning

which gives a contradiction.

Claim B.2. [Structure of the hypothesis] For every t ≥ 1, i ∈ [2], hypothesis ht
i = ∪jItij maintained by Algorithm 4

satisfies the following properties

• For each j, the endpoints of Itij are defined by two positive examples x(t1)
i , x

(t2)
i that were queried by Algorithm 4.

• For each j, if some example x
(t1)
i ∈ Itij was queried by Algorithm 4, then x

(t1)
i is a positive example.

• For each j, there is at least one negative example and no positive example that was queried by Algorithm 4 in the area
between intervals Itij and Iti(j+1).

In particular, if h∗
i is defined by ℓ intervals, then the above properties ensure each ht

i is also defined by at most ℓ intervals.

Proof of Claim B.2. We prove Claim B.2 by induction. Let I∗i1, . . . , I
∗
iℓ be the intervals that define h∗

i . Let S0
i ⊆ Xi be the

initial set of examples that we use to construct the initial hypothesis h0
i = ∪jI0ij . The three properties in the statement of

Claim B.2 are clearly satisfied by h0
i due to Algorithm 4. Now suppose the three properties are satisfied by ht

i, we show
they are also satisfied by ht+1

i . We only need to consider the case when ht+1
i is obtained based on an example x

(t)
i that is

misclassified by ht
i, because otherwise ht

i will not be changed.

If some negative example x
(t)
i is predicted positive by ht

i, then it must be the case that for some j, x(t)
i ∈ Itij . By induction

x
(t)
i is the first negative example in Itij that is queried by Algorithm 4. Let x(t1)

i < x
(t)
i < x

(t2)
i ∈ Itij be two positive

examples that are closest to x
(t)
i and were queried by Algorithm 4. To obtain ht+1

ij , Algorithm 4 will cut Itij into two

intervals and set up x
(t1)
i , x

(t2)
i to be endpoints of the new intervals. So the first two properties still hold. Furthermore, x(t)

i

is the only queried point between the two intervals, so the third property also holds.

If some positive example x(t)
i is predicted negative by ht

i, then such an x
(t)
i must lie between some Itij and Iti(j+1). According

to Algorithm 4, ht
i could be modified in different ways. In the first case, one of the two intervals, assuming this is Itij without

loss of generality, will enlarge its boundary to x
(t)
i . When this happens, there must be no negative examples queried between

x
(t)
i and the original boundary of Itij . By induction, we know the three properties still hold. In the second case, we insert

{x(t)
i } itself as a new interval, because enlarging either Itij or Iti(j+1) will cause inconsistency. By induction, the three

properties still hold.

Finally, we show that once the three properties hold, the hypothesis ht
i cannot be defined by too many intervals. We notice

that each interval Itij is created if it touches some target interval I∗ig (some x
(t)
i ∈ I∗ig ∩ Itij is queried) . But on the other

hand, each target interval I∗ig cannot have intersections with more than one Itij because otherwise, I∗ig will contain some
negative example. Since there are at most ℓ target intervals to be learned, we know that as long as the three properties hold,
ht
i is defined by at most ℓ intervals.

Given the structure of the hypothesis maintained by Algorithm 4, we will next give some structural results for err−(ht
i) and

err+(h
t
i). We will start with the negative error err−(ht

i).

Claim B.3. For t ≥ 1, i ∈ [2] and for every j, if x(t)
i ∈ N∗

ij , a negative example is queried by Algorithm 4 then for every
t′ > t, ht′

i will not misclassify any example in N∗
ij .

Proof of Claim B.3. Without loss of generality, we assume x
(t)
i ∈ N∗

ij is the first example queried in N∗
ij by Algorithm 4.

We first notice that for every g ≥ 0, the boundaries of Itig cannot lie in N∗
ij by the first property in the statement of Claim B.2.

In other words, N∗
ij must either be contained in some interval Itig or be contained in the area between some intervals Itig

and Iti(g+1). By the second property in the statement of Claim B.2, for each g, Itig will not contain a queried example with

a negative label, which implies that after querying x
(t)
i , N∗

ij cannot be contained in any Itig and must lie in between two
intervals Itig and Iti(g+1). This implies that after round t, every example in N∗

ij will be predicted as negative.

14

Fast Co-Training under Weak Dependence via Stream-Based Active Learning

Given Claim B.3, we will analyze how err−(h
t
i) will change if a negative example misclassified by ht

i is queried.

By the first property of Claim B.2, we know that each for every t and for every j ∈ [k], there must be some g ∈ [k] such that
N∗

ij must either lie entirely in some interval Itig or line between two intervals Itig and Iti(g+1).

In the first case, ht
i will predict every example in N∗

ij incorrectly and thus N∗
ij will contribute Prx∼D−

i
(x ∈ N∗

ij) to err−(h
t
i).

For simplicity, we denote by N t
i the set of N∗

ij of this kind. In the second case, ht
ij will not predict any example in N∗

ij

incorrectly and N∗
ij contributes 0 to err−(h

t
i). Thus,

err−(h
t
i) =

∑
N∗

ij∈Nt
i

Pr
x∼D−

i

(x ∈ N∗
ij) .

By Claim B.3, we know that in a single round if ht
i makes a mistake at N∗

ij , then after that round, N∗
ij will be perfectly

classified then err−(h
t
i) drops additively by Prx∼D−

i
(x ∈ N∗

ij). Given this, in each round, we define a random variable Bt
i

as the indicator of the event that err−(h
(t+1)
i) ≤ (1− 1/(2k))err−(h

(t+1)
i).

On the other hand, however, we point out that although when some x
(t)
i ∼ D−i is found to be misclassified err−(h

t
i) will

not increase, it would be the case that err+(ht
i) increases instead. This is because example x

(t)
i would cut some interval Itij

into two pieces, in which cases some area contained in Itij would not be predicted positive by h
(t+1)
i . Let B̃i

t
be the event

that err+(ht
i) increases after round t. We notice that B̃i

t
will happen at most k + 1 times because it will happen only when

a negative example x(t)
i is queried and by Claim B.3, such events would happen only at most k+ 1 times. For simplicity, we

denote by (B′
i)

t := Bt
i + B̃i

t
. The above discussion gives the following claim for the change of err−(h∗

i).

Claim B.4. For t ≥ 1 and i ∈ [2],

Pr
x(t)∼D

(
(B′

i)
t = 1 | x(t)is queried, ht

i(x
(t)) = 1, h∗(x(t)) = −1

)
≥ λ

8
.

Proof of Claim B.4. We will first show the following fact. Let xi ∼ D−
i |x∈Nt

i
, with probability at least 1/4, xi ∈ N∗

ij with
Prx∼D−

i |x∈Nt
i

(x ∈ N∗
ij) ≥ 1/(2k). We prove this by contradiction. Assuming instead the event happens with a probability

less than 1/4, since there are at most k + 1 different N∗
ij , we have

1 =
∑

N∗
ij∈Nt

i

Pr
x∼D−

i |x∈Nt
i

(x ∈ N∗
ij) <

1

4
+

k + 1

2k
≤ 1, (3)

which gives a contradiction. In particular, if x(t)
i falls into some N∗

ij that satisfies the above condition, and we query it, then
it must have (B′

t) = 1. Thus, we have

Pr
x(t)∼D

(
(B′

i)
t = 1 | x(t)is queried, ht

i(x
(t)) = 1, h∗(x(t)) = −1

)
=

Prx(t)∼D

(
(B′

i)
t = 1, x(t)is queried, ht

i(x
(t)) = 1, h∗(x(t)) = −1

)
Prx(t)∼D

(
x(t)is queried, ht

i(x
(t)) = −1, h∗(x(t)) = 1

)
≥

Prx(t)∼D−
(
(B′

i)
t = 1, x(t)is queried, ht

i(x
(t)) = 1, h∗(x(t)) = −1

)
Prx(t)∼D−

i

(
ht
i(x

(t)) = 1
)

=
Prx(t)∼D−

(
(B′

i)
t = 1, ht

i(x
(t)) = 1, ht

3−i(x
(t)) = −1

)
Prx(t)∼D−

i

(
ht
i(x

(t)) = 1
)

≥
λPrx(t)∼D−

(
(B′

i)
t = 1, ht

i(x
(t)) = 1

)
2Prx(t)∼D−

i

(
ht
i(x

(t)) = 1
) =

λ

2
Pr

xi∼D−
i |x∈Nt

i

((B′
i)

t) ≥ λ

8
.

15

Fast Co-Training under Weak Dependence via Stream-Based Active Learning

Here the second inequality is followed by the λ-weak dependence and Claim B.1 and the last inequality is followed by the
property we proved at the beginning.

We next analyze err+(h
t
i) in a similar way.

Claim B.5. For t ≥ 1, i ∈ [2] and j ∈ [k], let x ∼ Di conditioned on x ∈ [l∗ij ,
ˆl∗tij]. With probability at least 1/2, we have

Pr
x′∼Di|x′∈I∗

ij

(x′ ∈ [l∗ij , x])) ≤
1

2
Pr

x′∼Di|x′∈I∗
ij

(x′ ∈ [l∗ij ,
ˆl∗tij]),

where the randomness only comes from x. The same statement holds if we replace l∗ij ,
ˆl∗tij by r∗ij , r̂

∗t
ij accordingly.

Proof of Claim B.5. Denote by xm the median of the interval [l∗ij , ˆl∗tij] under the distribution Di |[l∗ij , ˆl∗tij]. That is

Prx∼Di|[l∗
ij

, ˆl∗tij]
(x < xm) = 1/2. For any x < xm, we have

Pr
x′∼Di|x′∈I∗

ij

(x′ ∈ [l∗ij , x])) = Pr
x′∼Di|[l∗

ij
, ˆl∗tij]

(x′ < x) Pr
x′∼Di|x′∈I∗

ij

(x′ ∈ [l∗ij ,
ˆl∗tij]) ≤

1

2
Pr

x′∼Di|x′∈I∗
ij

(x′ ∈ [l∗ij ,
ˆl∗tij]).

Thus, with probability at least 1/2 we will shrink the probability mass of [l∗ij , ˆl∗tij] by a factor of 2.

The analysis of the change of err+(ht
i) will be based on Claim B.5. We first introduce the notation of type 1 error and type 2

error. Consider a fixed I∗ij . By the third property of Claim B.2, we know that for each t ≥ 0, each I∗ij can only touch at
most one Itig. In other words, each I∗ij either entirely lies in some Itig or cross boundaries of one Itig or lie in between two
intervals Itig and Iti(g+1).

In the first case, I∗ij contributes no error. In the second case, I∗ij can cross either one boundary of some interval Itig or two
boundaries of some interval I∗ig . We say such I∗ij has a type 1 error and the error it contributes to err+(h

t
i) is

E1(I∗ij) = Pr
x∼D+

i

([l∗ij ,
ˆl∗tij]) + Pr

x∼D+
i

([r̂∗tij , r
∗
ij])

(and only one of the two terms if only the left or right boundary crosses the boundary of some Itig).

In the third case, we say I∗ij has type 2 error and it contributes err+(ht
i), E

2(I∗ij) = Prx∼D+
i
(I∗ij) because no examples in

this region has been queried.

As we discussed above, type 1 error and type 2 error are defined by at most 2k region, each of which is an interval. For
simplicity, for each t and i ∈ [2], we will use Rt

ij , j ∈ [2k] to denote these intervals, ordered from left to right and we use
Rt

i to denote their union. Based on these notations, we will discuss how the err+ changes when a positive example x(t)

is queried. If x(t)
i ∈ Rt

ij for some j such that Rt
ij causes type 1 error, then according to Claim B.5, we know that with a

constant probability, the error contribution of Rt
ij will drop by a factor of 2. To capture such progress made by Algorithm 4,

we define At
i to be indicator of the event err+(h

(t+1)
i) ≤ (1− 1/(8k))err+(h

(t+1)
i). If x(t)

i ∈ Rt
ij for some j such that Rt

ij

causes type 2 error, the error contribution of Rt
ij will not change but the type of error will instead become type 1. Similarly,

define Āi
t to be the indicator of the event that a queried example falls into some region Rt

ij that causes a type 2 error. In
particular, Āi

t can happen at most k times, because as long as an example in some I∗ij is queried, I∗ij will never cause any
type 2 error. We also observe that after we query some positive example err−(h

t
i) might also increase because by enlarging

some Itij , Itij might cover some N∗
ij where no negative example has been queried. We define such an event to be Ãi

t
and

similarly, Ãi
t

can also happen at most k + 1 times. Now, let (A′
i)

t := At
i + Ãi

t
+ Āi

t. The main structural result for
err+(h

t
i) can be summarized via the following claim.

16

Fast Co-Training under Weak Dependence via Stream-Based Active Learning

Claim B.6. For t ≥ 1 and i ∈ [2],

Pr
x(t)∼D

(
(A′

i)
t ≥ 1 | x(t)is queried, ht

i(x
(t)) = −1, h∗(x(t)) = 1

)
≥ λ

16
.

The proof of Claim B.6 is similar to that of Claim B.4.

Proof of Claim B.6. Notice that let xi ∼ D+
i |x∈Rt

i
, with probability at least 1/4, xi ∈ Rt

ij such that Prx∼D+
i |x∈Rt

i

(x ∈
Rt

ij) ≥ 1/(4k). This observation can be proved in the same way as (3). When this happens, if Rt
ij causes type 1 error, we

know from Claim B.5, with another probability of 1/2, the contribution of Rt
ij will shrink by a factor of 2. If Rt

ij causes

type 2 error, we know that Ãi
t
= 1. Based on this, we have

Pr
x(t)∼D

(
(A′

i)
t ≥ 1 | x(t)is queried, ht

i(x
(t)) = −1, h∗(x(t)) = 1

)
=

Prx(t)∼D

(
(A′

i)
t ≥ 1, x(t)is queried, ht

i(x
(t)) = −1, h∗(x(t)) = 1

)
Prx(t)∼D

(
x(t)is queried, ht

i(x
(t)) = −1, h∗(x(t)) = 1

)
≥

Prx(t)∼D+

(
(A′

i)
t ≥ 1, x(t)is queried, ht

i(x
(t)) = −1, h∗(x(t)) = 1

)
Prx(t)∼D+

i

(
ht
i(x

(t)) = −1
)

=
Prx(t)∼D−

(
(A′

i)
t ≥ 1, ht

i(x
(t)) = −1, ht

3−i(x
(t)) = 1

)
Prx(t)∼D−

i

(
ht
i(x

(t)) = −1
)

≥
λPrx(t)∼D−

(
(A′

i)
t ≥ 1, ht

i(x
(t)) = −1

)
2Prx(t)∼D+

i

(
ht
i(x

(t)) = −1
) =

λ

2
Pr

xi∼D+
i |x∈Rt

i

((A′
i)

t) ≥ λ

16
.

Here the second inequality holds because of the λ-weak dependence and Claim B.1.

Proof of Theorem 4.2. We first show the correctness of the algorithm. Notice that every time we obtain a new hypothesis
pair ht, it will not be changed before we query the next example when at least one of ht

i will make a mistake on that example.

Now we consider a fixed pair of hypotheses ht = (ht
1, h

t
2). Upon we obtain ht, we maintain two counters, COUNTT ,

which counts the total number of examples we have seen since the last update, and COUNTU , the number of examples that
are predicted differently by ht. We say ht fails to pass the test, if ht is not output when COUNTT > n.

Notice that by Algorithm 4, each time we makes a modification, ht
i will not misclassify any example x

(t′)
i that we have

queried previously. By Claim B.1, we know that with high probability ∀t and ∀i ∈ [2], we have d(ht
i, 1) ≥ α/2 and

d(ht
i,−1) ≥ α/2. We know from Lemma 2.3 that if d(ht, h∗) > ϵ then we must have unl(ht) > λϵ/4 because ht is

guaranteed to be far from any constant hypothesis.

Let S be a set of n = poly(1/(λϵ), log(1/δ)) unlabeled examples drawn i.i.d. from D. By Hoeffding’s inequality, we have

Pr
S∼Dn

(∣∣∣ûnl(ht)− unl(ht)
∣∣∣ ≥ λϵ

8

)
≤ 2e

(
−λ2ϵ2n

64

)
≤ exp(−Ω(log 1/δ

ϵ
)).

This implies that if err(ht) > ϵ, with high probability ûnl(ht) > λϵ/8 and will fail to pass the test. On the other hand, if
unl(ht) < λϵ/16, then with high probability ûnl(ht) < λϵ/8 and will pass the test and returned. To finish showing the
correctness of Algorithm 4 it remains to show that the method of updating hypotheses used by Algorithm 4 can quickly drop
unl(ht

i) to O(λϵ) so that a good hypothesis will be output finally. If we can prove this then we can also directly obtain the
label complexity and the number of unlabeled examples used by Algorithm 4.

For i ∈ [2] and y ∈ {±1}, we define (eyi)
t be the indicator of the event ht

i(x
(t)
i) ̸= y, ht

3−i(x
(t)
i) = y and define (em)t be

the indicator of the event argmaxi,y{Prx(t)∼D((eyi)t|i∈[2],y∈{±1})}. In time round t, if x(t) is queried, we say such a query

17

Fast Co-Training under Weak Dependence via Stream-Based Active Learning

is good if (em)t = 1 and the following condition is satisfied. Suppose (em)t is achieved by (eyi)
t. If y = +, then a good

query requires (A′
i)

t ≥ 1. If y = −, then a good query requires (B′
i)

t ≥ 1. Notice that

Pr
x(t)∼D

((em)t | x(t) is queried) =
Prx(t)∼D ((em)t)∑
i,y Prx(t)∼D ((eyi)

t)
≥ 1

4
. (4)

(5) together with Claim B.4 and Claim B.6 implies that every time we make a query, with probability at least λ/64, such a
query is good. We claim that if at some point T we have made Ω(k2 log(1/(λϵ))) good queries, then before time T there
must be some time t such that err(ht) < O(λϵ). Notice that during the learning process, when events Ãi

t
, Āi

t
, B̃i

t
happen,

err(ht) might increase. In fact, they are the only events that can make err(ht) increase. However, according to Claim B.2
and Claim B.3, these events happen deterministically at most O(k) times. This implies if we have made Ω(k2 log(1/(λϵ)))

good queries, then there must be Ω(k log(1/(λϵ))) successive good query such that Ãi
t
, Āi

t
, B̃i

t
do not happen at the time

we make the good queries. In this case, after each good query has been made, Prx(t)∼D((em)t) deterministically drop by a
factor of (1− 1/O(k)). Thus, after these good queries have been made we must have

unl(ht) ≤ 4 Pr
x(t)∼D

((em)t) ≤ O(λϵ),

in which case ht will be output. Notice that

Pr
x(t)∼D

((em)t | x(t) is queried) =
Prx(t)∼D ((em)t)∑
i,y Prx(t)∼D ((eyi)

t)
≥ 1

4
. (5)

Notice that (5) together with Claim B.4 and Claim B.6 implies that every time we make a query, with probability at
least λ/64, such a query is good. Hoeffding’s inequality implies that if we make Õ(k2 log(1/(λϵ))/λ) queries after the
initialization step, then with probability 1− poly(δ), a constant fraction of them are good queries. This finishes the proof of
Theorem 4.2.

C. Learning Homogeneous Halfspaces
In this section, we provide the algorithm and proof establishing Theorem 4.3. We will use hw : Rd → {±1} for a unit
vector w to denote the homogeneous LTF defined as hw(x) = sign(⟨w, x⟩) and use x ∼u S to denote that x is sampled
uniformly at random from a set S. The high-level idea of the algorithm is the following. Instead of directly learning on
the original domain X = X1 ×X2 where the halfspaces do not have “margins”, we will apply the technique of Forster
decomposition on each domain X1 and X2. Such a technique gives a transformation mapping from X to X ′ = X ′

1 ×X ′
2.

After this transformation, at least 1/(4d) fraction of the examples will be correctly classified by halfspaces with 1/
(
2
√
d
)

margins on either X ′
1 or X ′

2. Then our algorithm uses a modified version of the perceptron algorithm, so that after at most
roughly O(d log(d)) many queries to the oracle, we learn a halfspace on X1 that will correctly classify those 1/(4d) fraction
of examples that has margins (this corresponds to a partial classifier in the original space X). We removed those regions
that have been classified by this partial classifier from our input distribution D by doing rejection sampling. We repeat this
process d log(1/ϵ) times until there is only ϵ/2 mass of the input distribution remaining. Then we output a decision list of
all the partial classifiers we get from each iteration.

We start by introducing the following fact for Forster transformation from (Diakonikolas et al., 2023b).

Fact C.1 (Proposition 7.1 from (Diakonikolas et al., 2023b)). There is an algorithm that given a multiset S of n points in
Rd

∗ and ϵ > 0, runs in time polynomial of dn/ϵ, and with high probability returns a subspace V ⊆ Rd with V ̸= 0 and a
rank dim(V) linear transformation A : V → Rdim(V), such that for the function fA(x)

def
= Ax/ ∥Ax∥2,

1. |S ∩ V | ≥ (n/d) dim(V).

2. The eigenvalues of 1
X∩V

∑
x∈X∩V fA(x)(fA(x))

⊺ are in [(1− ϵ)/ dim(V), (1 + ϵ)/ dim(V)].

We note that for any unit vector w ∈ Rd and its corresponding LTF hw, there must be a unit vector w′ ∈ Rdim(V) where
w′ = (A−1)

⊺
w/∥(A−1)

⊺
w∥2 such that for any x ∈ V , hw′(fA(x)) = hw(x). Namely, Forster decomposition preserves

18

Fast Co-Training under Weak Dependence via Stream-Based Active Learning

the function class of homogeneous LTFs. Furthermore, if we choose ϵ to be at most a sufficiently small constant, since
Ex∼U(X∩V)

[
⟨w, fA(x)⟩2

]
is close to 1. It is easy to see that at least |X ∩ V |/(4 dim(V)) ≥ |X|/(4d) many points in X

satisfies ⟨w, fA(x)⟩ ≥ 1/
(
2
√
d
)

for any unit vector w. The above observations are summarized by the following facts.

Fact C.2. Given a multiset S of n samples of x ∈ Rd and let fA be the Forster decomposition from Fact C.1 performed on
the samples in S for ϵ at most a sufficiently small constant. Conditioned on the algorithm in Fact C.1 succeeds, the following
holds:

1. Let w be any unit vector in Rd, there is a unit vector w′ ∈ Rdim(V) such that hw(x) = hw′(fA(x)) for any x ∈ V .

2. For any unit vector w ∈ Rdim(V), there is at least 1/(4d) fraction of the sample in S satisfies x ∈ V and |⟨w, fA(x)⟩| ≥
1/
(
2
√
d
)

;

Proof. To prove the first property, let w′ = (AA⊺)−1Aw/∥(AA⊺)−1Aw∥2. It is easy to see that for any x ∈ V ,

hw′(fA(x)) = sign(⟨w′, fA(x)⟩) = sign(w⊺A⊺(AA⊺)−1Ax) = sign(w⊺x) = hw(x) ,

where the second from last equality follows from x ∈ V .

For the second property, notice that

E
x∼uS∩V

[⟨w, fA(x)⟩2] = w⊺ E
x∼uS∩V

[fA(x)(fA(x))
⊺]w ∈

[
3

4 dim(V)
,

5

4 dim(V)

]
.

We suppose there is less than 1/(4d) fraction of the sample in S satisfies x ∈ V and |⟨w, fA(x)⟩| ≥ 1/
(
2
√
d
)

and prove
by contradiction. From Fact C.1, we have |S ∩ V | ≥ (dim(V)/d)|S|, therefore,

Pr
x∼uS∩V

(
|⟨w, fA(x)⟩| ≥ 1/

(
2
√
d
))
≤ 1/(4 dim(V)) .

Since ⟨w, fA(x)⟩2 is bounded between [0, 1], we have

E
x∼uS∩V

[⟨w, fA(x)⟩2] ≤ 1/(4 dim(V)) +
1− 1/(4 dim(V))

4d
<

3

4 dim(V)
,

contradiction. This proves the second property.

Given a multiset S of examples (x1, x2) ∈ X1×X2 from the co-training problem. The algorithm will apply the above Forster
decomposition on both the set of x1 and x2. This gives two mappings fA1

: V1 → Rdim(V1) and fA2
: V2 → Rdim(V2)

where V1, V2 ̸= 0 are subspaces of Rd. Then we will use the margin perceptron algorithm (a variant of which is shown in
(Dunagan & Vempala, 2004)) described in the following fact. The version we use here is from (Diakonikolas et al., 2023a).

Fact C.3. [Lemma 16 of (Diakonikolas et al., 2023a)] Let w∗, w(0) ∈ Rd be unit vectors such that ⟨w∗, w(0)⟩ ≥ α for some
α > 0 and let x1, x2, · · · be any sequence of unit vectors in Rd. Assume the following: w(t+1) ← w(t) − x(t)⟨x(t), w(t)⟩
and let t0 ∈ Z+ so that for all t ∈ Z+ with t ≤ t0, |⟨x(t), w(t)⟩| ≥ β∥w(t)∥2 and (⟨w(t), x(t)⟩)(⟨w∗, x(t)⟩) < 0. Then,
t0 ≤ (2/β2) log(1/α).

Now we are ready to describe the pseudocode (see Algorithm 5) for the algorithm in Theorem 4.3.

We now prove the main result of this section, Theorem 4.3.

Proof for Theorem 4.3. We first prove the correctness of the subroutine Algorithm 6. Notice that due to Fact C.2, we
know there must be a pair of unit vectors w∗

1 and w∗
2 such that for all (x1, x2) ∈ E, hw∗

1
(x1) = hw∗

2
(x2) = h∗(x1, x2),

where h∗ is the true classifier. Then notice that for random unit vector initialization w1, w2, there is Ω(1) probability
that ⟨w1, w

∗
1⟩ = Ω(1/d) and ⟨w2, w

∗
2⟩ = Ω(1/d). Since we will try c log(T/δ) many pairs of random initialization, with

probability at least 1− δ/(10T), one pair of them will satisfy the correlation. Therefore, given both correlations are Ω(1/d),
according to Fact C.3, we can only make at most O(d log(d)) many updates until all samples in E satisfy the margin

19

Fast Co-Training under Weak Dependence via Stream-Based Active Learning

Algorithm 5 Co-training Halfspaces without Margin with Label Queries
Input: Let (X,H) be a learning problem where X = Rd × Rd and H be the class of homogeneous LTFs satisfies the

co-training assumption with h∗ being the true concept. Let D be a distribution over X that satisfies λ-weak
dependence and let D1 be the marginal distribution of x1 satisfies the α-reflective symmetry, namely, for any
x1 ∈ X1, D(x1)/D(−x1) ∈ [α, 1/α] for some α ≤ 1. The algorithm is given sample access to distribution D
and access to a label oracle. Let ϵ be the target accuracy and δ be the target failure probability.

Output: The algorithm uses at most Õ(d2 log(ϵ) log(δ)) many queries to the label oracle, and With probability 1− δ, it
returns a hypothesis ĥ : X → ±1 such that Pr(x1,x2)∼D

(
ĥ(x1, x2) ̸= h∗(x1, x2)

)
≤ ϵ.

1. Let T = cd log(1/ϵ) where c is a sufficient large positive constant. This will be the number of iterations we run the
following steps of the algorithm.

2. Let S be a multiset of m = c log(T/δ)d4 many examples of (x1, x2) ∼ D where c is a sufficiently large constant.
Apply the Forster decomposition in Fact C.1 to the sets of x1 and x2 in S respectively. This gives two mappings
fA1 : V1 → Rdim(V1) and fA2 : V2 → Rdim(V2) where V1, V2 ̸= 0 are subspaces of Rd.

3. Let DfA1
,fA2

be the distribution of (fA1
(x1), fA2

(x2)) for (x1, x2) ∼ D conditioned on x1 ∈ V1 and x2 ∈ V2. Let
E be a multiset cd2log(T/δ)/(αλϵ2/d)2 (c is a sufficiently large constant) many samples of (x′

1, x
′
2) ∼ DfA1

,fA2
.

We then apply the subroutine Algorithm 6 on E and distribution DfA1
,fA2

, which with probability 1 − δ/(2T)

will return a unit vector ŵ1 ∈ Rdim(V1) as a partial classifier on X1, such that for its classifying region R
def
={

x1 ∈ X1 : x1 ∈ V1 ∧ |⟨ŵ1, fA1(x1)⟩| ≥ 1/
(
2
√
d
)}

, it satisfies the following properties:

(a) Pr(x1,x2)∼D (x1 ∈ R) ≥ 1/(5d); and

(b) Pr(x1,x2)∼D (x1 ∈ R ∧ hŵ(x1) ̸= h∗(x1)) ≤ ϵ/(2T).

Namely, this implies that this partial classifier classifies the region R which has at least 1/(5d) mass and makes at
most ϵ/(2T) error in this region.

4. Let ŵ(1)
1 , · · · , ŵ(t)

1 be the partial classifiers we get from all previous t iterations and let R1, · · ·Rt be their cor-

responding classifying regions. If the unclassified mass Pr(x1,x2)∼D

(
x1 ̸∈

⋃t
i=1 Ri

)
> ϵ/2, then let D′ be the

distribution of (x1, x2) ∼ D conditioned on x1 ̸∈
⋃t

i=1 Ri and repeat step 2 on the remaining mass D′ (notice that
we can always rejection sampling D′ efficiently). Otherwise, we output the following decision list on x1:
If x1 ∈ R1, output h

ŵ
(1)
1

(x1),
elseif x1 ∈ R2, output h

ŵ
(2)
1

(x1),
elseif . . .

20

Fast Co-Training under Weak Dependence via Stream-Based Active Learning

Algorithm 6 Subroutine for Co-training Partial Classifier using Label Queries
Input: Let E be a multiset of cd2 log(T/δ)/(αλϵ2/d)2 many unlabeled examples (x1, x2) ∈ Rd1 ×Rd2 and D be the

distribution DfA1
,fA2

from Algorithm 5.

Output: The algorithm uses at most O(d log(d) log(T/δ)) many queries to the oracle and output two unit vectors
ŵ1 ∈ Rd1 and ŵ2 ∈ Rd2 such that at most c′αλϵ2/d fraction (for sufficiently small constant c′ depending only
on c) of the samples (x1, x2) ∈ E does not satisfy the margin consistency condition w.r.t. ŵ1 and ŵ1 defined
as:
If |⟨ŵ1, x1⟩| ≥ 1/

(
2
√
d
)

and |⟨ŵ2, x2⟩| ≥ 1/
(
2
√
d
)

, then hŵ1
(x1) = hŵ2

(x2).

1. We will initialize w1 ∈ Rd1 and w2 ∈ Rd2 as two random vectors drawn uniformly from the unit sphere.

2. If there is at most c′αλϵ2/d fraction of samples in E that does not satisfy the margin consistency condition w.r.t. w1

and w2, then, we output w1 and w2. Otherwise, we sample at most O
(

log(d) log(T/δ)d
αλϵ2

)
many samples of (x1, x2)

from D, and query the label when we see a sample (x1, x2) that does not satisfy the margin consistency condition.
If there is no such sample, then output failure. Let (x1, x2) be this sample that we queried the label, then either
hw1(x1) or hw2(x2) is not the correct label. We then use the margin perceptron in Fact C.3 to update either w1 or
w2. We repeat this step cd log(d) many times where c is a sufficiently large constant.

3. If there is still any sample in E that does not satisfy the margin consistency, we go back to step 1 and try a different
pair of random unit vectors. We repeat this at most c log(T/δ) many times where c is a sufficiently large constant
then output failure.

consistency condition. Furthermore, in each iteration, since there is at least c′αλϵ2/d (where c′ is a sufficiently small
constant depending on c) fraction of samples in E that does not satisfy the margin consistency. Using VC inequality, we
know that each sample from DfA1

,fA2
does not satisfy the consistency condition with probability Ω(αλϵ2/d). Therefore,

accumulated over all iterations, the probability that we do not find an example that does not satisfy the consistency condition
and output failure is at most O(δ/T) for each call of Algorithm 6. This proves the correctness of Algorithm 6.

Now we prove the correctness of Algorithm 5. We first prove the following observations for Step 3 in Algorithm 5.

Fact C.4. In Step 3 of Algorithm 5, let D be the original input distribution and D′ be the distribution for the unclassified
mass in this tth iteration. Let Ri

def
=
{
x1 ∈ X1 : x1 ∈ V1 ∧ |⟨ŵ(i)

1 , fA1(x1)⟩| ≥ 1/
(
2
√
d
)}

where ŵ
(i)
1 is the ŵ1 in ith

iteration. Then with probability at least δ/(2T), the unit vector ŵ(t)
1 will satisfy:

(a) Pr(x1,x2)∼D′ (x1 ∈ Rt) ≥ 1/(5d); and

(b) Let the error region for partial classifier h
ŵ

(t)
1

be

Rerror
def
=

{
x1 ∈ X1 : x1 ̸∈

t−1⋃
i=1

Ri ∧ x1 ∈ V1 ∧ h
ŵ

(t)
1
̸= h∗(x1)

}
,

then Pr(x1,x2)∼D (x1 ∈ Rerror) ≤ ϵ/(2T).

Proof. For Property (a), it is easy to see that any such region Rt can be expressed as a degree-2 polynomial threshold
function and, therefore has VC-dimension at most O(d2). Given Pr(x1,x2)∼uS (x1 ∈ Rt) ≥ 1/(4d) (this follows from Fact
C.2) and |S| = c log(T/δ)d4, we have that with probability at least δ/(10T),

Pr
(x1,x2)∼D′

(x1 ∈ Rt) ≥ 1/(4d)− 1/(30d) ≥ 1/(5d) .

This proves Property (a).

For Property (b), we assume Pr(x1,x2)∼D (x1 ∈ Rerror) ≥ ϵ/(2T) and prove by contradiction. We defined the

classifying region from D on X1 as C1
def
= {x1 : x1 ̸∈

⋃t−1
i=1 Ri ∧ x1 ∈ Rt}, and on X2 as C2

def
=

21

Fast Co-Training under Weak Dependence via Stream-Based Active Learning{
x2 ∈ X2 :

∣∣∣〈ŵ2
(t), fA2(x2)

〉∣∣∣ ≥ 1/
(
2
√
d
)}

where ŵ2
(t) is the ŵ2 in tth iteration. Furthermore, let C+

1 ={
x ∈ C1 : h

ŵ
(t)
1

(fA1
(x1)) = 1

}
(similarly for C−

1 , C+
2 and C−

2). Same as what we have shown above, we have

PrD′(C2) ≥ 1/(5d), therefore PrD(C2) ≥ Ω(ϵ/d). WLOG, this implies PrD
(
C+

2

)
≥ Ω(ϵ/d). Then since C+

1 ∩ Rerror

and C−
1 ∩Rerror are symmetric, we have PrD

(
C−

1 ∩Rerror

)
≥ αϵ. Then from the λ-weak dependence condition,

Pr
(x1,x2∼D)

(
x1 ∈ C−

1 ∩Rerror ∧ x2 ∈ C+
2

)
≥ λαϵ2/d .

This implies

Pr
(x1,x2)∼DfA1

,fA2

(
h
ŵ

(t)
1
(fA1

(x1)) = −1 ∧ h
ŵ

(t)
2
(fA2

(x2)) = +1 ∧ x1 ∈ C1 ∧ x2 ∈ C2

)
≥ λαϵ2/d .

However, from the correctness of subroutine Algorithm 6, we know that there must be a corresponding unit vector
ŵ2 ∈ Rdim(V2) such that at most cαλϵ2/d fraction of samples in E does not satisfy the margin consistency w.r.t. ŵ1 and ŵ2.
Combining this with the fact that this region has VC-dimension at most O(d2). We have such a region can have mass at
most cαλϵ2/d for a sufficiently small constant c with probability 1− δ/(100T). This proves that there is a contradiction
with probability 1− δ/(100T), therefore, property (b) holds with such probability.

Then we show that the rejection sampling for DfA1
,fA2

in Step 3 is efficient. Still, let D be the original input distribution
and D′ be the distribution for the unclassified mass in tth iteration. Notice that for any sample from D to pass the rejections
sampling, we need x1 ̸∈

⋃t−1
i=1 Ri and x1 ∈ V1 and x2 ∈ V2. According to Fact C.2, we have w.h.p

Pr
(x1,x2)∼D′

(x1 ∈ V1) = Pr
(x1,x2)∼D′

(
x1 ̸∈

t−1⋃
i=1

Ri ∧ x1 ∈ V1

)
≥ 1/(5d) .

Since D′ comes from at least Ω(ϵ) mass of D, we have

Pr
(x1,x2)∼D

(
x1 ̸∈

t−1⋃
i=1

Ri ∧ x1 ∈ V1

)
= Ω(ϵ/d) .

Then similarly for x2, we also have

Pr
(x1,x2)∼D

(x2 ∈ V2) ≥ Pr
(x1,x2)∼D

(
x1 ̸∈

t−1⋃
i=1

Ri ∧ x2 ∈ V2

)
= Ω(ϵ/d) .

According to λ-weak dependence property of D, we have the sampling efficiency from D is at least

Pr
(x1,x2)∼D

(
x1 ̸∈

t−1⋃
i=1

Ri ∧ x1 ∈ V1 ∧ x2 ∈ V1

)
= Ω(ϵ2/d2) .

This proves that the rejection sampling is efficient.

Given the above facts, since each iteration classifies Ω(1/d) fraction of the remaining mass, it only takes T = O(d log(1/ϵ))
many iterations to reduce the unclassified mass to at most ϵ/2. Furthermore, it is easy to see the output decision list will
incur error at most Tϵ/(2T) ≤ ϵ/2 with failure probability accumulated from each iteration to be at most δ. Therefore, the
output hypothesis has an error at most ϵ with failure probability at most δ. This completes the proof.

D. The Label Complexity Obtained by (Wang & Zhou, 2008) Is Not Sufficient for Learning
The work in (Wang & Zhou, 2008) studied a different algorithm that combines co-training with pool-based active learning.
They claim that if distribution D satisfies the λ-expansion assumption they defined, then every hypothesis class with VC
dimension d can be learned by Algorithm 7 with Õ(d log(1/ϵ)/λ) labeled examples. However, we explain here that the
result obtained by Algorithm 7 does not make sense because the distributional assumption defined in their paper contradicts

22

Fast Co-Training under Weak Dependence via Stream-Based Active Learning

Algorithm 7 Algorithm in (Wang & Zhou, 2008)
Input:

Unlabeled dataset U = {x(1), x(2), · · · } where each example x(t) is given as a pair
(
x
(t)
1 , x

(t)
2

)
.

Process:
Ask the user to label m0 unlabeled examples drawn randomly from D to compose the labeled dataset L.
for i = 0, 1, · · · s do

1. Train two classifier h(i)
1 and h

(i)
2 consistent with L in each view, respectively;

2. Apply h
(i)
1 and h

(i)
2 to the unlabeled dataset U to find the contention points Qi;

3. Ask the user to label mi+1 unlabeled examples drawn randomly from Qi, then add them into L and delete from
U .

Output:
hfinal = combine(h

(s)
1 , h

(s)
2)

the assumption of co-training and can not be satisfied by any distribution in co-training. Furthermore, we will give very
simple counter-examples, showing that the label complexity Õ(d log(1/ϵ)/λ) is not enough for Algorithm 7 to learn a good
hypothesis.

In their paper, they make the following assumption on the underlying distribution.

Definition D.1. A distribution D satisfies λ-expansion if for every S1 ⊆ X1 and for every S2 ⊆ X2

Pr
x∼D

(S1 ⊕ S2) ≥ λmin{ Pr
x∼D

(S1 ∧ S2), Pr
x∼D

(S̄1 ∧ S̄2)},

where (S1 ⊕ S2) means for an example pair x = (x1, x2) exactly one of i ∈ [2] satisfies xi ∈ Si. A distribution D is
λ-expanding with respect to hypothesis class H1 ×H2 if the above holds for all S1 ∈ H1 ∩X1, S2 ∈ H2 ∩X2, where for
j ∈ [2], Hj ∩Xj = {h ∩Xj | h ∈ Hj}.

They claim the following theorem based on their assumption.

Theorem D.2 (Theorem 1 in (Wang & Zhou, 2008)). For data distribution D λ-expanding with respect to hypothesis
class H1 × H2, let ϵ, δ denote the final desired accuracy and confidence parameters. If s = ⌈ log(λ/8ϵ)log 1/C ⌉ and mi =
16
λ (4V log(16/λ) + 2 log(8(s + 1)/δ)), (i = 0, 1, . . . , s), Algorithm 7 will generate a classifier with error rate no more

than ϵ with probability 1− δ. Here V = max{V C(H1), V C(H2)} and C = λ/4+1/λ
1+1/λ .

We first point out that the above result is not meaningful, because the λ-expansion assumption they defined cannot be
satisfied by any distribution in the co-training setting. Let h∗

1, h
∗
2 be the target hypothesis in the two views that are not

constant. Let S1 := {x1 ∈ X1 | h∗
1(x1) = 1} and S2 := {x2 ∈ X2 | h∗

2(x2) = 1}. Notice that for any distribution D
and any hypothesis class H1, H2, if D is λ-expanding with respect to H1 ×H2, then S1, S2 according to definition should
satisfy

Pr
x∼D

(S1 ⊕ S2) ≥ λmin{ Pr
x∼D

(S1 ∧ S2), Pr
x∼D

(S̄1 ∧ S̄2)}.

However, according to the co-training assumption, every pair of examples (x1, x2) must have the same label, while S1 ⊕ S2

implies that one of the xi is labeled positive by h∗
i and the other one is labeled negative by the target hypothesis. Thus,

according to the co-training assumption, Prx∼D(S1 ⊕ S2) = 0. On the other hand, min{Prx∼D(S1 ∧ S2),Prx∼D(S̄1 ∧
S̄2)} > 0 because the target hypothesis is not constant. In conclusion, the only choice for λ is 0, which implies that the
algorithm for each round needs to query an infinite number of examples.

We remark that the notion of λ-expansion was originally defined in (Balcan et al., 2004). In the original definition, λ-
expansion was only defined for D+, which is the distribution of D conditioned on the label to be positive. A distribution
D+ has λ-expansion if for every S1 ⊆ X+

1 , S2 ⊆ X+
2 ,

Pr
x∼D+

(S1 ⊕ S2) ≥ λmin{ Pr
x∼D+

(S1 ∧ S2), Pr
x∼D+

((X+
1 \ S1) ∧ (X+

2 \ S2))}.

The original definition of λ-expansion is significantly different from the definition used in (Wang & Zhou, 2008).

23

Fast Co-Training under Weak Dependence via Stream-Based Active Learning

We now give counterexamples showing that such a label complexity is not sufficient to learn a good hypothesis. The simplest
counterexample can be obtained when the true label is unbalanced. We can even assume the parameter λ = 1 in their
bound. Then in the first round, mi = Θ(d + log(log(1/ϵ)/δ)). Assume the target hypothesis only has a probability of
1/(2mi) to label an example to be negative. (We remark that in this case α := 1/(2mi)≫ ϵ when ϵ = o(1/d).) Then by
Markov’s inequality, with probability at least 1/2, the first m0 labeled examples are all positive. This implies that even
the constant hypothesis is consistent with all labeled examples and has a very low error. However, after obtaining such a
pair of hypotheses, the algorithm cannot continue, because no new examples will be queried. Even if we do not consider
such an extreme case, where the initial hypotheses are constant, there are still other counterexamples. Assume the initial
hypothesis hi has error 1% over a random positive example but has error 100% over a random negative example. (Such
cases can happen, because there are no negative examples in the initial round, so there is no guarantee of the prediction over
a random negative example.) Under this assumption, every example queried by the algorithm will be a positive example,
and the algorithm makes no progress on learning the negative examples.

24

