
Convex and Bilevel Optimization for
Neural-Symbolic Inference and Learning

Charles Dickens 1 Changyu Gao 2 Connor Pryor 1 Stephen Wright 2 Lise Getoor 1

Abstract
We leverage convex and bilevel optimization tech-
niques to develop a general gradient-based pa-
rameter learning framework for neural-symbolic
(NeSy) systems. We demonstrate our framework
with NeuPSL, a state-of-the-art NeSy architec-
ture. To achieve this, we propose a smooth primal
and dual formulation of NeuPSL inference and
show learning gradients are functions of the op-
timal dual variables. Additionally, we develop
a dual block coordinate descent algorithm for
the new formulation that naturally exploits warm-
starts. This leads to over 100× learning runtime
improvements over the current best NeuPSL in-
ference method. Finally, we provide extensive
empirical evaluations across 8 datasets covering
a range of tasks and demonstrate our learning
framework achieves up to a 16% point prediction
performance improvement over alternative learn-
ing methods.

1. Introduction
The goal of neural-symbolic (NeSy) AI is a seamless inte-
gration of neural models for processing low-level data with
symbolic frameworks to reason over high-level symbolic
structures (d’Avila Garcez et al., 2002; 2009; 2019). In this
paper, we introduce a principled and general NeSy learning
framework that supports end-to-end neural and symbolic
parameter learning. Further, we propose a novel inference
algorithm and establish theoretical properties for a state-of-
the-art NeSy system that are crucial for learning.

Our proposed learning framework builds upon NeSy energy-
based models (NeSy-EBMs) (Pryor et al., 2023), a general
class of NeSy systems that encompasses a variety of ex-

1Department of Computer Science and Engineering, University
of California, Santa Cruz, CA 95060 2Department of Computer
Sciences, University of Wisconsin-Madison, Madison, WI 53706.
Correspondence to: Charles Dickens <cadicken@ucsc.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

isting NeSy methods, including DeepProblog (Manhaeve
et al., 2018; 2021), SATNet (Wang et al., 2019), logic ten-
sor networks (Badreddine et al., 2022), and NeuPSL (Pryor
et al., 2023). NeSy-EBMs use neural network outputs to
parameterize an energy function and formulate an inference
problem that may be non-smooth and constrained. Thus,
predictions are not guaranteed to be a function of the inputs
and parameters with an explicit form or to be differentiable,
and traditional deep learning techniques are not directly ap-
plicable. Therefore, we equivalently formulate NeSy-EBM
learning as a bilevel problem. Moreover, to support first-
order gradient-based optimization, we propose a smooth-
ing strategy that is novel to NeSy learning. Specifically,
we replace the constrained NeSy energy function with its
Moreau envelope. The augmented Lagrangian method for
equality-constrained minimization is then applied with the
new formulation.

We demonstrate the effectiveness of our proposed learn-
ing framework with NeuPSL. To ensure differentiability
and provide principled forms of gradients for learning, we
present a new formulation and regularization of NeuPSL
inference as a quadratic program. Moreover, we introduce a
dual block coordinate descent (dual BCD) inference algo-
rithm for the quadratic program. The dual BCD algorithm
is the first NeuPSL inference method that produces optimal
dual variables for producing both optimal primal variables
and gradients for learning. Additionally, empirical results
demonstrate that dual BCD is able to leverage warm starts
effectively, thus improving learning runtime.

Our key contributions are: (1) A bilevel formulation of the
NeSy-EBM learning problem that establishes a foundation
for applying smooth first-order gradient-based optimization
techniques; (2) A reformulation of NeuPSL inference that
is used to prove continuity properties and obtain explicit
forms of gradients for learning; (3) A dual BCD algorithm
for NeuPSL inference that naturally produces statistics nec-
essary for computing gradients for learning and that fully
leverages warm-starts to improve learning runtime; (4) Two
parallelization strategies for dual BCD inference; and (5)
A thorough empirical evaluation demonstrating prediction
performance improvements on 8 different datasets and a
learning runtime speedup of up to 100×.

1

Convex and Bilevel Optimization for Neural-Symbolic Inference and Learning

2. Related Work
NeSy AI is an active area of research that incorporates sym-
bolic (commonly logical and arithmetic) reasoning with
neural networks (Bader & Hitzler, 2005; d’Avila Garcez
et al., 2009; Besold et al., 2017; De Raedt et al., 2020;
Lamb et al., 2020; Giunchiglia et al., 2022). We will show
that learning for a general class of NeSy systems is natu-
rally formulated as bilevel optimization (Bracken & McGill,
1973; Colson et al., 2007; F. Bard, 2013). In other words,
the NeSy learning objective is a function of predictions ob-
tained by solving a lower-level inference problem that is
symbolic reasoning. In this work, we focus on a general
setting where the lower-level problem is an expressive and
complex program capable of representing cyclic dependen-
cies and ensuring the satisfaction of constraints during both
learning and inference (Wang et al., 2019; Badreddine et al.,
2022; Dasarth et al., 2023; Pryor et al., 2023; Cornelio et al.,
2023). One prominent and tangential subgroup of such
NeSy systems we would like to acknowledge enforces con-
straints on the structure of the symbolic model, and hence
the lower-level problem, to ensure the final prediction has
an explicit gradient with respect to the parameters (Xu et al.,
2018; Manhaeve et al., 2021; Ahmed et al., 2022). In the
deep learning community, bilevel optimization also arises in
hyperparameter optimization and meta-learning (Pedregosa,
2016; Franceschi et al., 2018), generative adversarial net-
works (Goodfellow et al., 2014), and reinforcement learning
(Sutton & Barto, 2018).

Researchers typically take one of three approaches to bilevel
optimization: (1) Implicit differentiation methods compute
or approximate the Hessian matrix at the lower-level prob-
lem solution to derive an analytic expression for the gradi-
ent of the upper-level objective called a hypergradient (Do
et al., 2007; Pedregosa, 2016; Ghadimi & Wang, 2018; Ra-
jeswaran et al., 2019; Giovannelli et al., 2022; Khanduri
et al., 2023). (2) Automatic differentiation methods unroll
inference into a differentiable computational graph (Stoy-
anov et al., 2011; Domke, 2012; Belanger et al., 2017; Ji
et al., 2021). (3) Value-Function approaches reformulate the
bilevel problem as a single-level constrained program using
the optimal value of the lower-level objective (the value-
function) to develop principled first-order gradient-based
algorithms that do not require the calculation of Hessian
matrices for the lower-level problem (V. Outrata, 1990; J.
Ye & L. Zhu, 1995; Liu et al., 2021; Sow et al., 2022; Liu
et al., 2022; 2023; Kwon et al., 2023).

Note that standard algorithms for all three approaches to
bilevel optimization suggest solving the lower-level prob-
lem to derive gradients. Principled techniques for using
approximate lower-level solutions to make progress on the
bilevel program is an open research direction (Pedregosa,
2016; Liu et al., 2021). Further, the lower-level problem for

NeSy learning (inference) is commonly constrained. Cur-
rent approaches to working with lower-level constraints are
based on implicit differentiation (Giovannelli et al., 2022;
Khanduri et al., 2023). In this work, we introduce a value-
function approach for bilevel optimization with lower-level
constraints.

3. NeSy Energy-Based Models
In this work, we use NeSy energy-based models (NeSy-
EBMs) (Pryor et al., 2023) to develop a generally applicable
NeSy learning framework. Here, we provide background
on NeSy-EBMs and introduce a classification of losses that
motivates the need for general learning algorithms.1

NeSy-EBMs are a family of EBMs (LeCun et al., 2006) that
use neural model predictions to define potential functions
with symbolic interpretations. NeSy-EBM energy functions
are parameterized by a set of neural and symbolic weights
from the domainsWnn andWsy , respectively, and quantify
the compatibility of a target variable from a domain Y and
neural and symbolic inputs from the domains Xnn and Xsy:
E : Y × Xsy × Xnn × Wsy × Wnn → R. NeSy-EBM
inference requires first computing the output of the neural
networks, neural inference, and then minimizing the energy
function over the targets, symbolic inference:

argmin
y∈Y

E(y,xsy,xnn,wsy,wnn). (1)

NeSy-EBM learning is finding weights to create an en-
ergy function that associates lower energies to target val-
ues near their truth in a set of training data. The train-
ing data consists of P samples that are tuples of sym-
bolic variables and neural network inputs: S := {S1 :=
(y1,x1,sy,x1,nn), · · · , SP := (yP ,xP,sy,xP,nn)}. More-
over, targets yi from a training sample Si are partitioned
into labeled variables, ti from a domain TY , value, and
latent variables, zi from a domain Z . Without loss of gen-
erality, we write yi = (ti, zi). NeSy-EBM learning losses
are defined using the latent minimizer and full minimizers,

z∗i ∈ argmin
z∈Z

E((ti, z),xi,sy,xi,nn,wsy,wnn) (2)

y∗
i ∈ argmin

y∈Y
E(y,xi,sy,xi,nn,wsy,wnn), (3)

and the latent and full optimal value-functions:

Vz∗
i
(wsy,wnn) := E((ti, z

∗
i),xi,sy,xi,nn,wsy,wnn),

(4)

Vy∗
i
(wsy,wnn) := E(y∗

i ,xi,sy,xi,nn,wsy,wnn). (5)

Note the optimal values-functions are functions of the pa-
rameters, inputs, and symbolic variables; however, to sim-
plify notation, we only write the parameters as arguments.

1See Appendix B for a table of notation.

2

Convex and Bilevel Optimization for Neural-Symbolic Inference and Learning

Value-based learning losses depend on the model weights
strictly via the optimal value-functions. Two common value-
based losses for NeSy-EBMs are the latent optimal value-
function (energy loss), and the difference between the latent
and full optimal value-functions (structured perceptron loss)
(LeCun et al., 1998; Collins, 2002):

LEnergy(E(·, ·, ·,wsy,wnn), Si) (6)
:= Vz∗

i
(wsy,wnn),

LSP (E(·, ·, ·,wsy,wnn), Si) (7)
:= Vz∗

i
(wsy,wnn)− Vy∗

i
(wsy,wnn).

A principled first-order gradient-based method for optimiz-
ing a value-based objective only requires differentiability
of the value-functions. However, performance metrics are
not always aligned with value-based losses. Moreover, they
are known to have degenerate solutions, e.g., weights mini-
mizing the loss but producing a collapsed energy function
(LeCun et al., 2006; Pryor et al., 2023).

Alternatively, minimizer-based learning losses assume the
minimizer of the energy function is unique. With this as-
sumption, energy minimization is a vector-valued function
from the weight spaceWsy ×Wnn to the target space Y ,
y∗
i (wsy,wnn) :Wsy×Wnn → Y . Then, minimizer-based

losses are compositions of a differentiable supervised loss
d : Y × Y → R, and the minimizer:

Ld(E(·, ·, ·,wsy,wnn), Si) := d(y∗
i (wsy,wnn), ti). (8)

Minimizer-based losses are general and allow learning with
objectives aligned with evaluation metrics. However, a
direct application of a first-order gradient based method
for minimizer-based learning requires the Jacobian at the
minimizer. NeSy-EBM predictions are not necessarily dif-
ferentiable. Even if they are differentiable, the computation
of the Jacobian is often too expensive to be practical.

4. A Bilevel NeSy Learning Framework
In this section, we introduce a novel and general framework
for gradient-based NeSy learning. Our framework begins
with the following formulation of learning as a bilevel opti-
mization problem with an objective that is a combination of
minimizer and value-based losses, denoted by d and LV al,
respectively:

argmin
(wsy,wnn)
(y1,··· ,yP)

P∑
i=1

(d(yi, ti) + LV al(E(·, ·, ·,wsy,wnn), Si))

s.t. yi ∈ argmin
y∈Y

E(y,xi,sy,xi,nn,wsy,wnn),

∀i ∈ {1, · · · , P}, (9)

A regularizer, denoted byR :Wsy×Wnn → R is typically
added to the objective but is omitted in this discussion to

simplify notation. We make the following (standard) lower-
level singleton assumption.

Assumption 4.1. E is minimized over y ∈ Y at a single
point for every (wsy,wnn) ∈ Wsy ×Wnn.

Under Assumption 4.1, and regardless of the continuity and
curvature properties of the upper and lower level objectives,
(9) is equivalent to the following:

argmin
(wsy,wnn)
(y1,··· ,yP)

P∑
i=1

(d(yi, ti) + LV al(E(·, ·, ·,wsy,wnn), Si))

s.t. E(yi,xi,sy,xi,nn,wsy,wnn) (10)
− Vy∗

i
(wsy,wnn) ≤ 0, ∀i ∈ {1, · · · , P}.

The formulation in (10) is referred to as a value-function ap-
proach in bilevel literature (V. Outrata, 1990; Liu et al., 2021;
2022; Sow et al., 2022; Kwon et al., 2023). Value-function
approaches view the bilevel program as a constrained op-
timization problem by leveraging the value-function as a
tight lower bound on the lower-level objective.

The inequality constraints in (10) do not satisfy any of the
standard constraint qualifications that ensure the feasible
set near the optimal point is similar to its linearized approxi-
mation (Nocedal & Wright, 2006). This raises a challenge
for providing theoretical convergence guarantees for con-
strained optimization techniques. Following a recent line
of value-function approaches to bilevel programming (Liu
et al., 2021; Sow et al., 2022; Liu et al., 2023), we overcome
this challenge by allowing at most an ι > 0 violation in
each constraint in (10). With this relaxation, strictly feasi-
ble points exist and, for instance, the linear independence
constraint qualification (LICQ) can hold.

Another challenge that arises from (10) is that the energy
function of NeSy-EBMs is typically non-differentiable with
respect to the targets and even infinite-valued to implicitly
represent constraints. As a result, penalty or augmented La-
grangian functions derived from (10) are intractable. There-
fore, we substitute each instance of the energy function in
the constraints of (10) with the following function:

Mi(y;wsy,wnn, ρ) (11)

:= inf
ŷ∈Y

(
E(ŷ,xi,sy,xi,nn,wsy,wnn) +

1

2ρ
∥ŷ − y∥22

)
,

where ρ is a positive scalar. For convex E, (11)
is the Moreau envelope of the energy function (Rock-
afellar, 1970; Parikh & Boyd, 2013). In general,
even for non-convex energy functions, the smoothing in
(11) preserves global minimizers and minimum values,
i.e., y∗

i (wsy,wnn) = argminy Mi(y;wsy,wnn, ρ) and
Vy∗

i
(wsy,wnn) = miny Mi(y;wsy,wnn, ρ). Moreover,

under Assumption 4.1 each Mi is finite for all y ∈ Y even

3

Convex and Bilevel Optimization for Neural-Symbolic Inference and Learning

if the energy function is not. When the energy function is
a lower semi-continuous convex function, its Moreau enve-
lope is convex, finite, and continuously differentiable, and
its gradient with respect to y is:

∇yMi(y;wsy,wnn, ρ) =
1

ρ

(
y− (12)

argmin
ŷ∈Y

(
ρE(ŷ,xi,sy,xi,nn,wsy,wnn) +

1

2
∥ŷ − y∥22

))
.

Convexity is a sufficient but not necessary condition to en-
sure each Mi is differentiable with respect to the targets.
See (Bonnans & Shapiro, 2000) for results regarding the
sensitivity of optimal value-functions to perturbations. The
use of the Moreau envelope of the energy function is a novel
method for ensuring smoothness in NeSy learning.

Altogether, we propose the following relaxed and smoothed
value-function formulation of bilevel NeSy learning in (9):

argmin
(wsy,wnn)
(y1,··· ,yP)

P∑
i=1

(d(yi, ti) + LV al(E(·, ·, ·,wsy,wnn), Si))

s.t. Mi(yi;wsy,wnn, ρ)− Vy∗
i
(wsy,wnn) ≤ ι,

∀i ∈ {1, · · · , P}, (13)

The formulation (13) is the core of our proposed NeSy-
EBM learning framework outlined in Algorithm 1 below.
The algorithm proceeds by approximately solving instances
of (13) in a sequence defined by a decreasing ι. This is a
graduated approach to solving (13) with instances of (13)
that are increasingly tighter approximations.

Algorithm 1 NeSy-EBM Learning Framework
Require: Moreau Param.: ρ,

Starting weights: (w(0)
sy ,w

(0)
nn) ∈ Wsy ×Wnn

1: y
(0)
i ← (ti, z

∗
i), ∀i = 1, · · · , P ;

2: ι(0) ← maxi Mi(y
(0)
i ;w

(0)
sy ,w

(0)
nn , ρ)− Vy∗

i
(w

(0)
sy ,w

(0)
nn);

3: for t = 0, 1, 2, · · · do
4: Find w

(t+1)
sy ,w

(t+1)
nn ,y

(t+1)
1 , · · · ,y(t+1)

P

minimizing (13) with ι(t).
5: if Stopping criterion satisified then
6: Stop with: w(t+1)

sy ,w
(t+1)
nn ,y

(t+1)
1 , · · · ,y(t+1)

P ;
7: end if
8: ι(t+1) ← 1

2
· ι(t);

9: end for

We suggest starting points for each yi to be the latent in-
ference minimizer and ι to be the maximum difference in
the value-function and the smooth energy function at yi,
Mi(y

(0)
i ;w

(0)
sy ,w

(0)
nn , ρ). At this suggested starting point,

the supervised loss is initially 0, and the subproblem reduces
to minimizing the learning objective without increasing the

most violated constraint. Then, the value for ι is halved
every time an approximate solution to the subproblem, (13),
is reached. The outer loop of the NeSy-EBM learning frame-
work may be stopped by either watching the progress of a
training or validation evaluation metric or by specifying a
final value for ι.

Each instance of (13) in Algorithm 1 can be optimized us-
ing only first-order gradient-based methods. Specifically,
we employ the bound-constrained augmented Lagrangian
algorithm, Algorithm 17.4 from Nocedal & Wright (2006),
which finds approximate minimizers of the problem’s aug-
mented Lagrangian for a fixed setting of the penalty param-
eters using gradient descent. To simplify notation, let the
equality constraints in (13) be denoted by:

ci(yi,wsy,wnn; ι)

:= Mi(yi;wsy,wnn, ρ)− Vy∗
i
(wsy,wnn)− ι,

for each constraint indexed i ∈ {1, · · · , P}. The aug-
mented Lagrangian function corresponding to (13) intro-
duces a quadratic penalty parameter µ and P linear penalty
parameters λ := [λi]

P
i=1, as follows:

LA(wsy,wnn,y1, · · · ,yp,S;λ, µ, ι) (14)

:=

P∑
i=1

(d(yi, ti) + LV al(E(·, ·, ·,wsy,wnn), Si))

+
µ

2

P∑
i=1

(ci(yi,wsy,wnn; ι) + si)
2

+

P∑
i=1

λi(ci(yi,wsy,wnn; ι) + si).

where we introduced P slack variables, s = [si]
P
i=1, for each

inequality constraint. We make the following assumption to
ensure the augmented Lagrangian function is differentiable:

Assumption 4.2. Every Vy∗
i
, Vz∗

i
, and Mi is differentiable

with respect to the weights.

We employ the bound-constrained augmented Lagrangian
algorithm to solve (13) (see Appendix C for details). This
method provides a principled algorithm for updating the
penalty parameters and ensures fundamental convergence
properties of our learning framework. Notably, we have that
limit points of the iterate sequence are stationary points of
∥c(y1, · · · ,yP ,wsy,wnn) + s∥2 when the problem has no
feasible points. When the problem is feasible and LICQ
holds at the limits, they are KKT points of (13) (Theorem
17.2 in (Nocedal & Wright, 2006)). Convergence rates and
stronger guarantees are likely possible from analyzing the
structure of the energy function for specific NeSy-EBMs
and is a direction for future work.

4

Convex and Bilevel Optimization for Neural-Symbolic Inference and Learning

5. Deep Hinge-loss Markov Random Fields
We demonstrate the applicability of our learning framework
with Neural Probabilistic Soft Logic (NeuPSL), a general
class of NeSy-EBMs designed for scalable joint reasoning
(Pryor et al., 2023). In NeuPSL, relations and attributes are
represented by atoms, and dependencies between atoms are
encoded with first-order logical clauses and linear arithmetic
inequalities referred to as rules. Atom values can be target
variables, observations, or outputs from a neural network.
The rules and atoms are translated into potentials measuring
rule satisfaction. Then, the potentials are aggregated to
define the energy function for a member of a tractable class
of graphical models: deep hinge-loss Markov random fields
(deep HL-MRF).2

Definition 5.1. Let g = [gi]
ng

i=1 be functions with corre-
sponding weights wnn = [wnn,i]

ng

i=1 and inputs xnn such
that gi : (wnn,i,xnn) 7→ [0, 1]. Let y ∈ [0, 1]ny and
xsy ∈ [0, 1]nx . A deep hinge-loss potential is a function
of the form:

ϕ(y,xsy,g(xnn,wnn))

:= (max{aT
ϕ,yy + aT

ϕ,xsy
xsy + aT

ϕ,gg(xnn,wnn) + bϕ, 0})p,

where aϕ,y ∈ Rny , aϕ,x ∈ Rnx , and aϕ,g ∈ Rng

are variable coefficient vectors, bϕ ∈ R is a vector
of constants, and p ∈ {1, 2}. Let T = [τi]

r
i=1 de-

note an ordered partition of a set of m deep hinge-loss
potentials. Further, define Φ(y,xsy,g(xnn,wnn)) :=
[
∑

k∈τi
ϕk(y,xsy,g(xnn,wnn))]

r
i=1. Let wsy be a vec-

tor of r non-negative symbolic weights corresponding to the
partition T . Then, a deep hinge-loss energy function is:

E(y,xsy,xnn,wsy,wnn) (15)

:= wT
syΦ(y,xsy,g(xnn,wnn)).

Let ack,y ∈ Rny , ack,x ∈ Rnx , ack,g ∈ Rng , and bck ∈ R
for each k ∈ 1, . . . , q and q ≥ 0 be vectors defining linear
inequality constraints and a feasible set:

Ω(xsy,g) :=
{
y ∈ [0, 1]ny |

aTck,yy + aTck,xxsy + aTck,gg + bck ≤ 0 ,∀ k = 1, . . . , q
}
.

Then a deep hinge-loss Markov random field defines the
conditional probability density:

P (y|xsy,xnn) := (16){
exp(−E(y,xsy,xnn,wsy,wnn))∫

y exp(−E(y,xsy,xnn,wsy,wnn))dy
y ∈ Ω(xsy,g(xnn,wnn))

0 o.w.

Based on Definition 5.1, NeuPSL is a NeSy-EBM with an
extended-value deep HL-MRF energy function capturing the

2To simply exposition, a single deep HL-MRF energy function
aggregated over training examples is presented.

constraints defining the feasible set. Further, NeuPSL infer-
ence is finding the MAP state of the conditional distribution
defined by a deep HL-MRF, i.e., finding the minimizer of
the energy function over the feasible set.

min
y∈Rny

wT
syΦ(y,xsy,g(xnn,wnn)) (17)

s.t. y ∈ Ω(xsy,g(xnn,wnn)).

As each of the potentials are convex, (17) is a non-smooth
convex linearly constrained program.

5.1. A smooth formulation of inference

We introduce a primal and dual formulation of NeuPSL in-
ference as a linearly constrained convex quadratic program
(LCQP). (See Appendix D.1 for details.) In summary, m
slack variables with lower bounds and 2 ·ny+m linear con-
straints are defined to represent the target variable bounds
and deep hinge-loss potentials. All 2 · ny + m variable
bounds, m potentials, and q ≥ 0 constraints are collected
into a (2 · ny + q + 2 ·m)× (ny +m) dimensional matrix
A and a vector of (2 · ny + q + 2 · m) elements that is
an affine function of the neural predictions and symbolic
inputs b(xsy,g(xnn,wnn)). Moreover, the slack variables
and a (ny +m)× (ny +m) positive semi-definite diago-
nal matrix, D(wsy), and a (ny + m) dimensional vector,
c(wsy), are created using the symbolic weights to define a
quadratic objective. Further, we gather the original target
variables and the slack variables into a vector ν ∈ Rny+m.
Altogether, the regularized convex LCQP reformulation of
NeuPSL inference is:

V (wsy,b(xsy,g(xnn,wnn))) := (18)

min
ν∈Rny+m

νT (D(wsy) + ϵI)ν + c(wsy)
T ν

s.t. Aν + b(xsy,g(xnn,wnn)) ≤ 0,

where ϵ ≥ 0 is a scalar regularization parameter added to
the diagonal of D to ensure strong convexity (needed in
the next subsection). The effect of the added regulariza-
tion is empirically studied in Appendix F.3. The function
V (wsy,b(xsy,g(xnn,wnn))) in (18) is the optimal value-
function of the LCQP formulation of NeuPSL inference
referred to in the previous section.

By Slater’s constraint qualification, we have strong duality
when there is a feasible solution to (18). In this case, an
optimal solution to the dual yields an optimal solution to the
primal problem. The Lagrange dual problem of (18) is:

min
µ∈R2·ny+m+q

≥0

h(µ;wsy,b(xsy,g(xnn,wnn))) (19)

:=
1

4
µTA(D(wsy) + ϵI)−1ATµ

+
1

2
(A(D(wsy) + ϵI)−1c(wsy)

− 2b(xsy,g(xnn,wnn)))
Tµ,

5

Convex and Bilevel Optimization for Neural-Symbolic Inference and Learning

where µ is the vector of dual variables and
h(µ;wsy,b(wnn)) is the LCQP dual objective func-
tion. As (D(wsy) + ϵI) is diagonal, it is easy to invert, and
thus it is practical to work in the dual space and map dual to
primal variables. The dual-to-primal variable mapping is:

ν ← −1

2
(D(wsy) + ϵI)−1(ATµ+ c(wsy)). (20)

On the other hand, the primal-to-dual mapping is more com-
putationally expensive and requires calculating a pseudo-
inverse of the constraint matrix A.

5.2. Continuity of inference

We use the LCQP formulation in (18) to establish continuity
and curvature properties of the NeuPSL energy minimizer
and the optimal value-function provided in the following
theorem. The proof is provided in Appendix D.2.

Theorem 5.2. Suppose for any setting of wnn ∈ Rng there
is a feasible solution to NeuPSL inference (18). Further,
suppose ϵ > 0, wsy ∈ Rr

+, and wnn ∈ Rng . Then:

• The minimizer of (18), y∗(wsy,wnn), is a O(1/ϵ) Lips-
chitz continuous function of wsy .

• V (wsy,b(xsy,g(xnn,wnn))), is concave over wsy and
convex over b(xsy,g(xnn,wnn)).

• V (wsy,b(xsy,g(xnn,wnn))) is differentiable with re-
spect to wsy . Moreover,

∇wsyV (wsy,b(xsy,g(xnn,wnn)))

= Φ(y∗(wsy,wnn),xsy,g(xnn,wnn)).

Furthermore,∇wsy
V (wsy,b(xsy,g(xnn,wnn))) is Lip-

schitz continuous over wsy .
• If there is a feasible point, ν, strictly satisfying the i′th

constriaint of (18), then V (wsy,b(xsy,g(xnn,wnn))),
is subdifferentiable with respect to the i′th constraint
constant, b(xsy,g(xnn,wnn))[i]. Moreover,

∂b[i]V (wsy,b(xsy,g(xnn,wnn))) = {µ∗[i] |
µ∗ ∈ argmin

µ∈R2·ny+m+q

≥0

h(µ;wsy,b(xsy,g(xnn,wnn)))}.

Furthermore, if g is a smooth function of wnn, then
so is b, and the set of regular subgradients of
V (wsy,b(xsy,g(xnn,wnn))) is:

∂̂wnn
V (wsy,b(xsy,g(xnn,wnn))) ⊃ (21)

∇wnnb(xsy,g(xnn,wnn))
T

∂bV (wsy,b(xsy,g(xnn,wnn))).

Theorem 5.2 provides a simple explicit form of the value-
function gradient with respect to the symbolic weights and
regular subgradient with respect to the neural weights. More-
over, this result is directly applicable to the Moreau envelope

of the NeuPSL energy function used in Section 4 as it is a
regularized value-function. Thus, Theorem 5.2 supports the
principled application of Algorithm 1 for learning both the
symbolic and neural weights of a NeuPSL model.

5.3. Dual block coordinate descent

The regular subgradients in Theorem 5.2 are functions of
the optimal dual variables of the LCQP inference problem in
(19). Thus, one could compute value-function gradients for
learning by solving the primal inference problem (17) using
an existing algorithm and then map the optimal primal vari-
ables to dual variables. However, the primal-to-dual map-
ping requires computing a pseudo-inverse of the constraint
matrix. For this reason, we introduce a block coordinate de-
scent (BCD) (Wright, 2015) algorithm for working directly
with the dual LCQP formulation of inference. Details of
the algorithm are provided in Appendix E. Our dual BCD
algorithm is the first method specialized for dual LCQP in-
ference. It is, therefore, also the first to produce optimal dual
variables that directly yield both optimal primal variables
and principled gradients for learning, all without the need
to compute a pseudo-inverse of the constraint matrix.

The dual BCD algorithm proceeds by successively minimiz-
ing the objective along the subgradient of a block of dual
variables. For this reason, dual BCD guarantees descent at
every iteration, partially explaining its effectiveness at lever-
aging warm-starts and improving learning runtimes. The
algorithm is stopped when the primal-dual gap drops below
a threshold δ > 0. We suggest a practical choice of variable
blocks with efficient methods for computing the objective
subgradients and solving the steplength subproblems.

Additionally, we develop an efficient method for identify-
ing connected components of the deep HLM-MRF factor
graph, yielding a variable partition that the dual objective
is additively separable over to parallelize the BCD updates.
We call this parallelization approach connected component
parallel dual BCD (CC D-BCD).

For sparse factor graphs with few connected components
(e.g., a chain), the CC variant of D-BCD is ineffective as the
updates cannot be distributed to maximize CPU utilization.
Thus, inspired by lock-free parallelization strategies (Bert-
sekas & N. Tsitsiklis, 1989; Recht et al., 2011; Liu et al.,
2015), we additionally propose lock-free parallel dual BCD
(LF D-BCD), an alternative parallelization technique for
the dual BCD inference algorithm that sacrifices the theo-
retical guaranteed descent property for significant runtime
improvements. In our empirical evaluation, we show that
the lock-free dual BCD algorithm consistently finds a so-
lution satisfying the stopping criterion and, surprisingly, is
still highly effective at leveraging warm starts.

6

Convex and Bilevel Optimization for Neural-Symbolic Inference and Learning

Table 1. Datasets used for empirical evaluations.

Dataset Deep Task Perf. Metric

Debate (Hasan & Ng, 2013) Stance Class. AUROC
4Forums (Walker et al., 2012) Stance Class. AUROC
Epinions (Richardson et al., 2003) Link Pred. AUROC
DDI (S. Wishart et al., 2006) Link Pred. AUROC
Yelp (Yelp, 2023) Regression MAE
Citeseer (Sen et al., 2008) ✓ Node Class. Accuracy
Cora (Sen et al., 2008) ✓ Node Class. Accuracy
MNIST-Add.(Manhaeve et al., 2018) ✓ Image Class. Accuracy

6. Empirical evaluation
We evaluate the runtime and prediction performance of our
proposed NeSy inference and parameter learning algorithms
on the 8 datasets in Table 13. The table includes the dataset’s
inference task, the associated prediction performance met-
ric, and whether the corresponding NeuPSL model has deep
neural network parameters. Unless noted otherwise, all
experiments are run on 5 splits and the average and stan-
dard deviation of times and performance metric values are
reported. Details on the datasets, hardware specifications,
hyperparameter searches, and model architectures are pro-
vided in Appendix F.

For learning experiments in Section 6.2 and Section 6.3,
NeuPSL models with weights trained using value-based
learning losses, e.g., energy and structured perceptron (SP),
use mirror descent (Kivinen & Warmuth, 1997; Shalev-
Shwartz, 2012) on the symbolic weights constrained to the
unit simplex and Adam (P. Kingma & Lei Ba, 2017) for the
neural weights. NeuPSL models with weights trained using
minimizer-based losses, e.g., mean squared error (MSE)
and binary cross entropy (BCE), use our proposed NeSy
learning framework in Algorithm 1 with a scaled energy
loss term added to the objective as in (9). Moreover, opti-
mization of the augmented Lagrangian, line 4 of Algorithm
1, is performed using the bound-constrained augmented La-
grangian algorithm (Appendix C) with mirror descent on
the symbolic weights and Adam for the neural weights.

6.1. Inference runtime

We begin by examining the runtime of symbolic inference.
We evaluate the alternating direction method of multipliers
(ADMM) (Boyd et al., 2010), the current state-of-the-art in-
ference algorithm for NeuPSL, and our proposed inference
algorithms: connected component parallel dual BCD (CC
D-BCD) and lock-free parallel dual BCD (LF D-BCD). We
also evaluate the performance of Gurobi, a leading off-the-

3All code and data is available at https://github.com/
linqs/dickens-icml24.

shelf optimizer, and subgradient descent (GD) in Appendix
F.4 and show ADMM and dual BCD consistently match or
outperform the proprietary solver. All inference algorithms
have access to the same computing resources. We run a
hyperparameter search, detailed in Appendix F.4, for each
algorithm, and the configuration yielding a prediction per-
formance that is within a standard deviation of the best and
completed with the lowest runtime is reported. All algo-
rithms are stopped when the L∞ norm of the primal variable
change between iterates is less than 0.001.

Table 2. Time in seconds for inference using ADMM and our pro-
posed CC D-BCD and LF D-BCD algorithms on each dataset.

ADMM CC D-BCD LF D-BCD

Debate 9.98± 1.13 0.05± 0.02 0.05± 0.03
4Forums 15.17± 0.74 0.11± 0.02 0.05± 0.01
Epinions 0.36± 0.041 1.84± 0.4 0.26± 0.04
Citeseer 0.63± 0.07 1.36± 0.24 0.49± 0.08
Cora 0.71± 0.07 6.46± 3.5 0.79± 0.19
DDI 7.85± 0.28 31.47± 0.17 1.76± 0.17
Yelp 6.37± 1.19 48.44± 3.82 7.58± 0.48
MNIST-Add1 11.45± 1.32 10.23± 1.04 115± 45
MNIST-Add2 285± 66 29.09± 8.00 1, 189± 16

The total average inference runtime in seconds for each algo-
rithm and model is provided in Table 2. Surprisingly, despite
the potential for an inexact solution to the BCD steplength
subproblem, LF D-BCD is faster than CC D-BCD in the
first 7 datasets and demonstrates up to 6× speedup over
CC D-BCD in Yelp. However, in MNIST-Add datasets,
CC D-BCD is up to 10× faster than LF D-BCD as there
is a high number of tightly connected components, one for
each addition instance. This behavior highlights the com-
plementary strengths of the two parallelization strategies.
LF D-BCD should be applied to problems with larger factor
graph representations that are connected, while CC D-BCD
is effective when there are many similarly sized connected
components.

7

https://github.com/linqs/dickens-icml24
https://github.com/linqs/dickens-icml24

Convex and Bilevel Optimization for Neural-Symbolic Inference and Learning

Table 3. Cumulative time in seconds for ADMM and D-BCD inference during learning with SP and MSE losses.

SP MSE
ADMM D-BCD ADMM D-BCD

Debate 10.68± 8.63 0.34± 0.36 49.00± 31.23 0.62± 0.09
4Forums 11.87± 12.81 0.65± 0.05 67.09± 13.79 1.11± 0.16
Epinions 12.54± 0.37 1.33± 0.06 17.48± 0.62 2.27± 0.98
Citeseer 167± 37 41.57± 6.39 225± 32 70.01± 5.86
Cora 183± 26 48.16± 5.82 241± 37 79.62± 13.77
DDI 4, 554± 13 19.65± 0.30 7, 652± 218 52.78± 4.23
Yelp 1, 835± 47 114± 4 2, 250± 100 170± 12
MNIST-Add1 1, 624± 34 232± 44 2, 942± 109 2,738± 93
MNIST-Add2 TIME-OUT 804± 106 TIME-OUT 4,291± 114

Table 4. Prediction performance of HL-MRF models trained on value and minimizer-based losses.

Value-Based Bilevel
Energy SP MSE BCE

Debate 64.76± 9.54 64.68± 11.05 65.33± 11.98 64.83± 9.70
4Forums 62.96± 6.11 63.15± 6.40 64.22± 6.41 64.85± 6.01
Epinions 78.96± 2.29 79.85± 1.62 81.18± 2.21 80.89± 2.32
Citeseer 70.29± 1.54 70.92± 1.33 71.22± 1.56 71.94± 1.17
Cora 54.30± 1.74 74.16± 2.32 81.05± 1.41 81.07± 1.31
DDI 94.54± 0.00 94.61± 0.00 94.70± 0.00 95.08± 0.00
Yelp 18.11± 0.34 18.57± 0.66 18.14± 0.36 17.93± 0.50

6.2. Learning runtime

Next, we study how the algorithms applied to solve in-
ference affect the learning runtime with the SP and MSE
losses. Specifically, we examine the cumulative time re-
quired for ADMM and D-BCD inference to complete 500
weight updates on the first 7 datasets in Table 1 and 100
weight updates on MNIST-Add datasets. Hyperparameters
used for SP and MSE learning are reported in Appendix F.5.
For inference, we apply the same hyperparameters used in
the previous section and the fastest parallelization method
for D-BCD.

Table 3 shows that the D-BCD algorithm consistently re-
sults in the lowest total inference runtime, validating it’s
ability to leverage warm starts to improve learning runtimes.
Notably, on the DDI dataset, D-BCD achieves roughly a
100× speedup over ADMM. Moreover, on MNIST-Add2,
ADMM timed out with over 6 hours of inference time for
SP and MSE learning, while D-BCD accumulated less than
0.5 and 1.2 hours of inference runtime on average for SP
and MSE, respectively.

6.3. Learning prediction performance

In our final experiment, we analyze the prediction perfor-
mance of NeuPSL models trained with our NeSy-EBM
learning framework. A hyperparameter search (detailed

in Appendix F.6) is performed over learning steplengths,
regularizations, and parameters for Algorithm 1.

HL-MRF learning We first evaluate the prediction perfor-
mance on non-deep variants of NeuPSL models for the first
7 datasets, i.e., only symbolic weights are learned. Table
4 shows that across all 7 datasets, NeuPSL models trained
with Algorithm 1 obtain a better average prediction perfor-
mance than those trained using a valued-based loss. On
the Cora dataset, the NeuPSL model fit with the BCE loss
achieves over a 6% point improvement over SP, the higher-
performing value-based loss.

Deep HL-MRF learning Next, we evaluate the prediction
performance of deep NeuPSL models. Here, we study the
standard low-data setting for Citeseer and Cora. Specifi-
cally, results are averaged over 10 randomly sampled splits
using 5% of the nodes for training, 5% of the nodes for
validation, and 1, 000 nodes for testing. We also report the
prediction performance of the same strong baseline models
used in Pryor et al. (2023) for this task: DeepStochLog
(Winters et al., 2022), and a Graph Convolutional Network
(GCN) (Kipf & Welling, 2017). Additionally, we investi-
gate performance on MNIST-Addition, a widely used NeSy
evaluation task first introduced by Manhaeve et al. (2018).
In MNIST-Addition, models must determine the sum of two
lists of MNIST images, for example, (

[]
+
[]

= 8).
The challenge stems from the lack of labels for the MNIST

8

Convex and Bilevel Optimization for Neural-Symbolic Inference and Learning

Table 5. Accuracy of DeepStochlog, GCN, and NeuPSL on Citeseer and Cora.

NeuPSL
DeepStochlog GCN Energy SP MSE BCE

Citeseer 62.68± 3.84 67.42± 0.66 69.63± 1.33 69.78± 1.42 69.62± 1.27 69.64± 1.33
Cora 71.28± 1.98 80.32± 1.11 80.41± 1.81 78.59± 4.93 81.48± 1.45 81.28± 1.45

Table 6. Accuracy of CNN, LTN, DeepProblog and NeuPSL on MNIST-Addition.

NeuPSL
Additions CNN LTN DeepProblog Energy BCE

MNIST-Add1
300 17.16± 00.62 69.23± 15.68 85.61± 01.28 87.96± 01.58 88.84± 02.07
3, 000 78.99± 01.14 93.90± 00.51 92.59± 01.40 95.60± 0.91 95.70± 0.84

MNIST-Add2
150 01.31± 00.23 02.02± 00.97 71.37± 03.90 59.20± 32.79 76.00± 2.61
1, 500 01.69± 00.27 71.79± 27.76 87.44± 02.15 90.56± 0.61 93.04± 2.26

images; only the final sum of the equation is provided dur-
ing training, 8 in this example. Implementation details for
the neural and symbolic components of the NeuPSL models
for both citation network and MNIST-Add experiments are
provided in Appendix F.6.

Table 5 shows that fitting the neural network weights of a
NeuPSL model with our NeSy-EBM learning framework is
effective. NeuPSL models fit with the MSE and BCE losses
consistently outperform both DeepStochlog and the GCN
baseline. Moreover, Table 6 demonstrates NeuPSL models
trained with Algorithm 1 and a BCE loss can achieve up to
a 16% point performance improvement over those trained
with a value-based loss.

7. Limitations
Our learning framework is limited to NeSy-EBMs satisfying
the two assumptions made in Section 4. We do not explore
methods for supporting NeSy-EBMs with non-differentiable
value-functions. One approach is to substitute the inference
program with a principled approximation. Lastly, although
the idea to leverage inference algorithms such as BCD that
effectively use warm-starts and improve learning runtimes
is general, the inference algorithms were implemented for a
NeSy system with an LCQP structure.

8. Conclusions and future work
We introduced a general learning framework for NeSy-
EBMs and demonstrated its applicability with NeuPSL.
Additionally, we proposed a novel NeuPSL inference for-
mulation and algorithm with practical and theoretical advan-
tages. A promising direction for future work is to extend
the learning framework to support approximate inference
solutions for estimating the objective gradient to further im-

prove learning runtimes. In addition, the empirical results
presented in this work motivate generalizing and applying
our learning framework to more NeSy systems and tasks.

Acknowledgements
This work was partially supported by the National Science
Foundation grants CCF-2023495 and CCF-2224213 and a
Google Faculty Research Award.

Impact Statement
This paper presents work that advances the field of NeSy AI.
Therefore, our contributions further enable the integration of
neural and symbolic systems and will be used to empower
models with domain knowledge and symbolic reasoning.
Potential positive societal consequences of our work include
more accurate and reliable models that obey symbolic con-
straints. More generally, our research advances the broader
field of machine learning. Thus, there are many established
societal consequences of our work. However, we feel they
do not need to be highlighted here.

References
Ahmed, K., Teso, S., Chang, K.-W., Van den Broeck, G.,

and Vergari, A. Semantic probabilistic layers for neuro-
symbolic learning. In NeurIPS, 2022.

Bach, S., Broecheler, M., Huang, B., and Getoor, L. Hinge-
loss Markov random fields and probabilistic soft logic.
Journal of Machine Learning Research (JMLR), 18(1):
1–67, 2017.

Bader, S. and Hitzler, P. Dimensions of neural-symbolic
integration - A structured survey. arXiv, 2005.

9

Convex and Bilevel Optimization for Neural-Symbolic Inference and Learning

Badreddine, S., d’Avila Garcez, A., Serafini, L., and
Spranger, M. Logic tensor networks. AI, 303(4):103649,
2022.

Belanger, D., Yang, B., and McCallum, A. End-to-end
learning for structure prediction energy networks. In
ICML, 2017.

Bertsekas, D. Control of Uncertain Systems with a Set-
Membership Description of Uncertainty. PhD thesis,
MIT, 1971.

Bertsekas, D. Convex Optimization Theory. Athena Scien-
tific, 2009.

Bertsekas, D. and N. Tsitsiklis, J. Parallel and Distributed
Computation: Numerical Methods. Prentice Hall, 1989.

Besold, T. R., d’Avila Garcez, A. S., Bader, S., Bowman, H.,
Domingos, P. M., Hitzler, P., Kühnberger, K., Lamb, L. C.,
Lowd, D., Lima, P. M. V., de Penning, L., Pinkas, G.,
Poon, H., and Zaverucha, G. Neural-symbolic learning
and reasoning: A survey and interpretation. arXiv, 2017.

Bonnans, J. and Shapiro, A. Optimization problems with
perturbations: A guided tour. SIAM Review, 40(2):228–
264, 1998.

Bonnans, J. and Shapiro, A. Perturbation Analysis of Opti-
mization Problems. Springer, 2000.

Boyd, S. and Vandenberghe, L. Convex Optimization. Cam-
bridge University Press, 2004.

Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J.
Distributed optimization and statistical learning via the
alternating direction method of multipliers. Foundations
and Trends in Machine Learning (FTML), 3(1):1–122,
2010.

Bracken, J. and McGill, J. T. Mathematical programs with
optimization problems in the constraints. Operations
Research, 21(1):37–44, 1973.

Collins, M. Discriminative training methods for hidden
Markov models: Theory and experiments with perceptron
algorithms. In EMNLP, 2002.

Colson, B., Marcotte, P., and Savard, G. An overview of
bilevel optimization. Annals of Operations Research, 153
(1):235–256, 2007.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein,
C. Introduction to Algorithms, Third Edition. The MIT
Press, 3rd edition, 2009.

Cornelio, C., Stuehmer, J., Xu Hu, S., and Hospedales, T.
Learning where and when to reason in neuro-symbolic
inference. In ICLR, 2023.

Danskin, J. The theory of max-min, with applications. SIAM
Journal on Applied Mathematics, 14(4):641–664, 1966.

Dasarth, S., Akhil Puranam, S., Aingh Phogat, K., Reddy
Tiyyagura, S., and Duffy, N. Deeppsl: End-to-end per-
ception and reasoning. In IJCAI, 2023.

d’Avila Garcez, A., Gori, M., Lamb, L. C., Serafini, L.,
Spranger, M., and Tran, S. N. Neural-symbolic comput-
ing: An effective methodology for principled integration
of machine learning and reasoning. Journal of Applied
Logics, 6(4):611–632, 2019.

d’Avila Garcez, A. S., Broda, K., and Gabbay, D. M. Neural-
Symbolic Learning Systems: Foundations and Applica-
tions. Springer, 2002.

d’Avila Garcez, A. S., Lamb, L. C., and Gabbay, D. M.
Neural-Symbolic Cognitive Reasoning. Springer, 2009.

De Raedt, L., Dumančić, S., Manhaeve, R., and Marra,
G. From statistical relational to neuro-symbolic artificial
intelligence. In IJCAI, 2020.

Do, C., Foo, C.-S., and Ng, A. Efficient multiple hyper-
parameter learning for log-linear models. In NeurIPS,
2007.

Domke, J. Generic methods for optimization-based model-
ing. In AISTATS, 2012.

F. Bard, J. Practical Bilevel Optimization: Algorithms and
Applications. Springer Science & Business Media, 2013.

Franceschi, L., Frasconi, P., Salzo, S., Grazzi, R., and Pontil,
M. Bilevel programming for hyperparameter optimization
and meta-learning. In ICML, 2018.

Ghadimi, S. and Wang, M. Approximation methods for
bilevel programming. Arxiv, 2018.

Giovannelli, T., Kent, G., and Nune Vicente, L. Inexact
bilevel stochastic gradient methods for constrained and
unconstrained lower-level problems. Arxiv, 2022.

Giunchiglia, E., Stoian, M. C., and Lukasiewicz, T. Deep
learning with logical constraints. In IJCAI, 2022.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y.
Generative adversarial nets. In NeurIPS, 2014.

Hasan, K. S. and Ng, V. Stance classification of ideologi-
cal debates: Data, models, features, and constraints. In
IJCNLP, 2013.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In CVPR, 2016.

10

Convex and Bilevel Optimization for Neural-Symbolic Inference and Learning

J. Ye, J. and L. Zhu, D. Optimality conditions for bilevel
programming problems. Optimization, 33(1):9–27, 1995.

Jang, E., Gu, S., and Poole, B. Categorical reparameteriza-
tion with gumbel-softmax. In ICLR, 2017.

Ji, K., Yang, J., and Liang, Y. Bilevel optimization: Conver-
gence analysis and enhanced design. In ICML, 2021.

Khanduri, P., Tsaknakis, I., Zhang, Y., Liu, J., Liu, S.,
Zhang, J., and Hong, M. Linearly constrained bilevel
optimization: A smoothed implicit gradient approach. In
ICML, 2023.

Kipf, T. and Welling, M. Semi-supervised classification
with graph convolutional networks. In ICLR, 2017.

Kivinen, J. and Warmuth, M. K. Exponentiated gradient
versus gradient descent for linear predictors. Information
and Computation, 132(1):1–63, 1997.

Kouki, P., Fakhraei, S., Foulds, J., Eirinaki, M., and Getoor,
L. Hyper: A flexible and extensible probabilistic frame-
work for hybrid recommender systems. In RecSys, 2015.

Kwon, J., Kwon, D., Wright, S., and Nowak, R. A fully
first-order method for stochastic bilevel optimization. In
ICML, 2023.

Lamb, L. C., d’Avila Garcez, A., Gori, M., Prates, M. O. R.,
Avelar, P. H. C., and Vardi, M. Y. Graph neural net-
works meet neural-symbolic computing: A survey and
perspective. In IJCAI, 2020.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998.

LeCun, Y., Chopra, S., Hadsell, R., Ranzato, M., and Huang,
F. J. A tutorial on energy-based learning. Predicting
Structured Data, 1(0), 2006.

Liu, B., Ye, M., Wright, S., Stone, P., and Liu, Q. Bome!
bilevel optimization made easy: A simple first-order ap-
proach. In NeurIPS, 2022.

Liu, J., J. Wright, S., Rè, C., Bittorf, V., and Sridhar, S. An
asynchronous parallel stochastic coordinate descent aglo-
rithm. Journal of Machine Learning Research (JMLR),
16:285–322, 2015.

Liu, R., Liu, X., Yuan, X., Zeng, S., and Zhang, J. A value-
function-based interior-point method for non-convex bi-
level optimization. In ICML, 2021.

Liu, R., Liu, X., Zeng, S., Zhang, J., and Zhang, Y. Value-
function-based sequential minimization for bi-level opti-
mization. Arxiv, 2023.

Manhaeve, R., Dumancic, S., Kimmig, A., Demeester, T.,
and De Raedt, L. DeepProbLog: Neural probabilistic
logic programming. In NeurIPS, 2018.

Manhaeve, R., Dumančić, S., Kimmig, A., Demeester, T.,
and De Raedt, L. Neural probabilistic logic programming
in DeepProbLog. Artificial Intelligence (AI), 298:103504,
2021.

Nocedal, J. and Wright, S. Numerical Optimization.
Springer, 2006.

P. Kingma, D. and Lei Ba, J. Adam: A method for stochastic
optimization. In ICLR, 2017.

Parikh, N. and Boyd, S. Proximal algorithms. Foundations
and Trends in Machine Learning (FTML), 3(1):123–231,
2013.

Pedregosa, F. Hyperparameter optimization with approxi-
mate gradient. In ICML, 2016.

Pryor, C., Dickens, C., Augustine, E., Albalak, A., Wang,
W. Y., and Getoor, L. Neupsl: Neural probabilistic soft
logic. In IJCAI, 2023.

Rajeswaran, A., Finn, C., M. Kakade, S., and Levine, S.
Meta-learning with implicit gradients. In NeurIPS, 2019.

Recht, B., Re, C., Wright, S., and Niu, F. Hogwild!: A lock-
free approach to prallelizing stochastic gradient descent.
In NeurIPS, 2011.

Richardson, M., Agrawal, R., and Domingos, P. Trust man-
agement for the semantic web. In ISWC, 2003.

Rockafellar, R. Convex Analysis. Princeton University Press,
1970.

Rockafellar, R. Conjugate duality and optimization. In Re-
gional Conference Series in Applied Mathematics, 1974.

Rockafellar, R. and Wets, R. Variational Analysis. Springer,
1997.

S. Wishart, D., Knox, C., Chi Guo, A., Shrivastava, S.,
Hassanali, M., Stothard, P., Chang, Z., and Woolsey, J.
Drugbank: A comprehensive resource for in silico drug
discovery and exploration. Nucleic Acids Research, 34:
D668–D672, 2006.

Sen, P., Namata, G. M., Bilgic, M., Getoor, L., Gallagher, B.,
and Eliassi-Rad, T. Collective classification in network
data. AI Magazine, 29(3):93–106, 2008.

Shalev-Shwartz, S. Online learning and online convex opti-
mization. Foundations and Trends in Machine Learning
(FTML), 4(2):107–194, 2012.

11

Convex and Bilevel Optimization for Neural-Symbolic Inference and Learning

Sow, D., Ji, K., Guan, Z., and Liang, Y. A primal-dual ap-
proach to bilevel optimization with multiple inner minima.
Arxiv, 2022.

Sridhar, D., Foulds, J., Walker, M., Huang, B., and Getoor, L.
Joint models of disagreement and stance in online debate.
In Annual Meeting of the Association for Computational
Linguistics (ACL), 2015.

Sridhar, D., Fakhraei, S., and Getoor, L. A probabilistic
approach for collective similarity-based drug-drug inter-
action prediction. Bioinformatics, 32(20):3175–3182,
2016.

Stoyanov, V., Ropson, A., and Eisner, J. Empirical risk
minimization of graphical model parameters given ap-
proximate inference, decoding, and model structure. In
AISTATS, 2011.

Sutton, R. and Barto, A. Reinforcement Learning: An
Introduction. The MIT Press, 2018.

V. Outrata, J. On the numerical solution of a class of stack-
elberg problems. Methods and Models of Operations
Research, 34(4):255–277, 1990.

Walker, M., Tree, J. F., Anand, P., Abbott, R., and King,
J. A corpus for research on deliberation and debate. In
LREC, 2012.

Wang, P., Donti, P., Wilder, B., and Kolter, Z. Satnet: Bridg-
ing deep learning and logical reasoning using a differen-
tiable satisfiability solver. In ICML, 2019.

Winters, T., Marra, G., Manhaeve, R., and De Raedt, L.
DeepStochLog: Neural stochastic logic programming. In
AAAI, 2022.

Wright, S. Coordinate descent algorithms. Mathematical
Programming, 151:3–34, 2015.

Xu, J., Zhang, Z., Friedman, T., Liang, Y., and Van den
Broeck, G. A semantic loss function for deep learning
with symbolic knowledge. In ICML, 2018.

Yelp. Yelp open dataset, 2023. URL www.yelp.com/
dataset.

12

www.yelp.com/dataset
www.yelp.com/dataset

Convex and Bilevel Optimization for Neural-Symbolic Inference and Learning

A. Appendix
This appendix includes the following sections: extended bilevel NeSy Learning framework, extended NeuPSL and deep
hinge-loss Markov random fields, extended dual block coordinate descent, and extended empirical evaluation.

Code for running the experiments along with all data, models, and hyperparameters are available at: https://github.
com/linqs/dickens-icml24. Code for the NeuPSL implementation of our proposed learning framework and
inference algorithms is available at: https://github.com/linqs/psl.

B. Notation

Table 7. Summary of notation in main paper
Symbol Description
Wnn,Wsy NeSy-EBM neural and symbolic weight domain
Y NeSy-EBM target variable domain

Xnn,Xsy NeSy-EBM neural and symbolic input domains
E : Y × Xsy ×Xnn ×Wsy ×Wnn → R NeSy-EBM energy function

S := {S1 := (y1,x1,sy,x1,nn), · · · , SP := (yP ,xP,sy,xP,nn)} NeSy-EBM training data
TY ,Z Labeled and latent variable target partition domains

z∗i ∈ argminz∈Z E((ti, z),xi,sy,xi,nn,wsy,wnn) Latent variable minimizer
y∗
i ∈ argminy∈Y E(y,xi,sy,xi,nn,wsy,wnn) Full minimizer

Vz∗
i
(wsy,wnn) := E((ti, z

∗
i),xi,sy,xi,nn,wsy,wnn) Latent optimal value function

Vy∗
i
(wsy,wnn) := E(y∗

i ,xi,sy,xi,nn,wsy,wnn) Full optimal value function
LEnergy(E(·, ·, ·,wsy,wnn), Si) := Vz∗

i
(wsy,wnn) Energy loss function

LSP (E(·, ·, ·,wsy,wnn), Si) := Vz∗
i
(wsy,wnn)− Vy∗

i
(wsy,wnn) Structured perceptron loss function

Ld(E(·, ·, ·,wsy,wnn), Si) := d(y∗
i (wsy,wnn), ti) Minimizer-based loss function

LV al A value-based loss function
R :Wsy ×Wnn → R Learning regularization function

ρ A positive, scalar-valued, Moreau envelope parameter
Mi(y;wsy,wnn, ρ) Moreau envelope of the energy function with xi,sy,xi,nn

ι Value-function formulation relaxation constant.
ci(yi,wsy,wnn; ι) Equality constraint i in (13)
µ, λ := [λi]

P
i=1 Quadratic and linear penalty parameters

LA(wsy,wnn,y1, · · · ,yp,S;λ, µ, ι) The augmented Lagrangian function corresponding to (13)
g = [gi]

ng

i=1 Deep HL-MRF Neural components
ny, nx, ng Dimensions of target, input, and neural outputs

aϕ,y ∈ Rny ,aϕ,x ∈ Rnx ,aϕ,g ∈ Rng Deep HL-MRF potential variable coefficient vectors
bϕ ∈ R Deep HL-MRF potential constant vector

ϕ(y,xsy,g(xnn,wnn)) A deep HL-MRF potential function
p ∈ {1, 2} Deep HL-MRF potential exponent parameter

m The number of deep HL-MRF potentials
T = [τi]

r
i=1 Ordered partition of a set of m deep HL-MRF potentials

Φ(y,xsy,g(xnn,wnn)) := [
∑

k∈τi
ϕk(y,xsy,g(xnn,wnn))]

r
i=1 Vector of m deep HL-MRF potentials

E(y,xsy,xnn,wsy,wnn) := wT
syΦ(y,xsy,g(xnn,wnn)) A deep HL-MRF energy function

ack,y ∈ Rny ,ack,x ∈ Rnx ,ack,g ∈ Rng Deep HL-MRF constraint variable coefficient vectors
bck ∈ R Deep HL-MRF constraint constant vector

ϕ(y,xsy,g(xnn,wnn)) A deep HL-MRF potential function
Ω(xsy,g) Deep HL-MRF feasible set

V (wsy,b(xsy,g(xnn,wnn))) Optimal value function of deep HL-MRF energy
ν Primal variables of LCQP deep HL-MRF inference
A Constraint matrix of LCQP deep HL-MRF inference

b(xsy,g(xnn,wnn)) Constraint constant vector of LCQP deep HL-MRF inference
D(wsy) Objective matrix of LCQP deep HL-MRF inference
c(wsy) Objective constant vector of LCQP deep HL-MRF inference

ϵ Scalar regularization parameter
µ Dual variables of LCQP deep HL-MRF inference

h(µ;wsy,b(wnn)) Dual objective of LCQP deep HL-MRF inference

C. Extended Bilevel NeSy Learning Framework
In this section we provide the further details on our proposed NeSy learning framework. A complete version of Algorithm 1
is provided in Algorithm 2.

As stated in the main paper, each instance of (13) is optimized using the bound constrained augmented Lagrangian algorithm,

13

https://github.com/linqs/dickens-icml24
https://github.com/linqs/dickens-icml24
https://github.com/linqs/psl

Convex and Bilevel Optimization for Neural-Symbolic Inference and Learning

Algorithm 2 Full NeSy-EBM Learning Framework
Require: Constraint Tolerance: σ∗, Movement Tolerance: ω∗, Moreau Param.: ρ

Starting points: µ(0) > 1, λ(0)
1 , · · · , λ(0)

P , (w(0)
sy ,w

(0)
nn) ∈ Wsy ×Wnn

1: y
(0)
i ← (ti, z

∗
i), ∀i = 1, · · · , P ;

2: ι(0) ← maxi∈{1,··· ,P} Mi(y
(0)
i ;w

(0)
sy ,w

(0)
nn , ρ)− Vy∗

i
(w

(0)
sy ,w

(0)
nn);

3: for t = 0, 1, 2, · · · do
4: Set ω(0) = 1

µ(0) , and σ(0) = 1
(µ(0))0.1

5: for k = 0, 1, 2, · · · do
6: Find (w

(k)
sy ,w

(k)
nn) ∈ Wsy ×Wnn, (y(k)

1 , · · · ,y(k)
P) ∈ Y × · · · × Y , and s(k) ∈ RP

≥0 s.t.

δ(k) ← δ(w(k)
sy ,w(k)

nn ,y
(k)
1 , · · · ,y(k)

p , s(k);λ(k), µ(k), ι(k)) ≤ ω(k);

7: if
(∑P

i=1 ci(y
(k)
i ,w

(k)
sy ,w

(k)
nn , ι(k)) + si

)
< σ(k) then

8: if
(∑P

i=1 ci(y
(k)
i ,w

(k)
sy ,w

(k)
nn , ι(k)) + si

)
< σ∗ and δ(k) ≤ ω∗ then

9: Break with the approximate solution: w(k)
sy ,w

(k)
nn ,y

(k)
1 , · · · ,y(k)

P , s(k);
10: end if
11: λ

(k+1)
i ← λ

(k)
i + µ(k)

(
ci(y

(k)
i ,w

(k)
sy ,w

(k)
nn , ι(k)) + si

)
, ∀i = 1, · · · , P ;

µ(k+1) ← µ(k); σ(k+1) ← σ(k)

(µ(k+1))0.9
; ω(k+1) ← ω(k)

µ(k+1) ;
12: else
13: µ(k+1) ← 2 · µ(k); λ

(k+1)
i ← λ

(k)
i , ∀i = 1, · · · , P ;

14: σ(k+1) ← 1
(µ(k+1))0.1

; ω(k+1) ← 1
µ(k+1) ;

15: end if
16: end for
17: if Stopping criterion satisified then
18: Stop with the approximate solution: w(k)

sy ,w
(k)
nn ,y

(k)
1 , · · · ,y(k)

P , s(k);
19: end if
20: µ(0) ← µ(k); λ

(0)
i ← λ

(k)
i , ∀i = 1, · · · , P ;

21: ι(t+1) ← 1
2 · ι

(t);
22: end for

Algorithm 17.4 from Nocedal & Wright (2006). This algorithm is applied in lines 4 through 16 in Algorithm 2. The
algorithm iteratively finds approximate minimizers of the problem’s augmented Lagrangian, (14), for a fixed setting of the
penalty parameters using randomized incremental gradient descent, line 6 in Algorithm 2. Specifically, gradient descent is
applied to find an approximate minimizer of (14) satisfying the following stopping criterion:

δ(wsy,wnn,y1, · · · ,yp, s;λ, µ, ι) :=∥∥wsy −Π
(
wsy −∇wsy

LA

)∥∥+ ∥wnn −Π(wnn −∇wnn
LA)∥

+

P∑
i=1

∥yi −Π(yi −∇yi
LA)∥+ ∥s−Π(s−∇sLA)∥ ≤ ω, (22)

where ω > 0 is a positive tolerance that is updated with the Lagrange variables. Further, note the Lagrangian gradients are
evaluated at the iterate specified as arguments of δ. Practically, the parameter movement between an epoch of incremental
gradient descent is used to approximate δ.

As stated in the main paper, employing the bound constrained augmented Lagrangian algorithm to solve the instances of
(13) ensures fundamental convergence properties of our learning framework. Specifically, theorem 17.2 in (Nocedal &
Wright, 2006) is applicable to Algorithm 2. This theorem states that limit points of the iterate sequence are stationary points
of ∥c(y1, · · · ,yP ,wsy,wnn)) + s∥2 when they are infeasible or, when the LICQ holds and the iterates are feasible, are
KKT points of (13).

14

Convex and Bilevel Optimization for Neural-Symbolic Inference and Learning

D. Extended NeuPSL and deep hinge-loss Markov random fields
In this section, we expand on the smooth formulation of NeuPSL inference and provide proofs for the continuity results
presented in Section 5.2.

D.1. Extended smooth formulation of inference

Recall the primal formulation of NeuPSL inference restated below:

argmin
y∈Rny

wT
syΦ(y,xsy,g(xnn,wnn)) s.t. y ∈ Ω(xsy,g(xnn,wnn)). (23)

Importantly, note the structure of the deep hinge-loss potentials defining Φ:

ϕk(y,xsy,g(xnn,wnn)) := (max{aTϕk,y
y + aTϕk,xsy

xsy + aTϕk,g
g(xnn,wnn) + bϕk

, 0})pk . (24)

The LCQP NeuPSL inference formulation is defined using ordered index sets: IS for the partitions of squared hinge
potentials (indices k which for all j ∈ tk the exponent term pj = 2) and IL for the partitions of linear hinge potentials
(indices k which for all j ∈ tk the exponent term pj = 1). With the index sets, we define

WS :=

wIS [1]I 0 · · · 0
0 wIS [2]I
...

. . .

 and wL :=

wIL[1]1
wIL[2]1

...

 (25)

Let mS := | ∪IS tk| and mL := | ∪IL tk|, be the total number of squared and linear hinge potentials, respectively, and
define slack variables sS := [sj]

mS
j=1 and sL := [sj]

mL
j=1 for each of the squared and linear hinge potentials, respectively.

NeuPSL inference is equivalent to the following LCQP:

min
y∈[0,1]ny , sS∈RmS , sH∈RmL

+

sTSWSsS +wT
LsL (26a)

s.t. aTci,yy + aTci,xsy
xsy + aTci,gg(xnn,wnn) + bci ≤ 0 ∀ i = 1, . . . , q, (26b)

aTϕj ,yy + aTϕj ,xsy
xsy + aTϕj ,gg(xnn,wnn) + bϕj

− sj ≤ 0 ∀j ∈ IS ∪ IL. (26c)

We ensure strong convexity by adding a square regularization with parameter ϵ to the objective. Let the bound constraints on
y and sL and linear inequalities in the LCQP be captured by the (2 · ny + q +mS + 2 ·mL)× (ny +mS +mL) matrix
A and (2 · ny + q + mS + mL) dimensional vector b(xsy,g(xnn,wnn)). More formally, A := [aij] where aij is the
coefficient of a decision variable in the implicit and explicit constraints in the formulation above:

ai,j :=

0 (i ≤ q) ∧ (j ≤ mS +mL)

aci,y[j − (mS +mL)] (i ≤ q) ∧ (j > mS +mL)

0 (q < i ≤ q +mS +mL) ∧ (j ≤ mS +mL) ∧ (j ̸= i− q)

−1 (q < i ≤ q +mS +mL) ∧ (j ≤ mS +mL) ∧ (j = i− q)

aϕi−q,y[j − (mS +mL)] (q < i ≤ q +mS +mL) ∧ (j > mS +mL)

0 (q +mS +mL < i ≤ q +mS + 2 ·mL + ny)

∧ (j ̸= i− (q +mL))

−1 (q +mS +mL < i ≤ q +mS + 2 ·mL + ny)

∧ (j = i− (q +mL))

0 (q +mS + 2 ·mL + ny < i ≤ q +mS + 2 ·mL + 2 · ny)

∧ (j ̸= i− (q +mS +mL))

1 (q +mS + 2 ·mL + ny < i ≤ q +mS + 2 ·mL + 2 · ny)

∧ (j = i− (q +mS +mL))

. (27)

15

Convex and Bilevel Optimization for Neural-Symbolic Inference and Learning

Furthermore, b(xsy,g(xnn,wnn)) = [bi(xsy,g(xnn,wnn))] is the vector of constants corresponding to each constraint in
the formulation above:

bi(xsy,g(xnn,wnn)) (28)

:=

aTci,xsy
xsy + aTci,gg(xnn,wnn) + bci i ≤ q

aTϕi−q,xsy
xsy + aTϕi−q,g

g(xnn,wnn) + bϕi−q q < i ≤ q +mS +mL

0 q +mS +mL < i

≤ q +mS + 2 ·mL + ny

−1 q +mS + 2 ·mL + ny < i

≤ q +mS + 2 ·mL + 2 · ny

. (29)

Note that b(xsy,g(xnn,wnn)) is a linear function of the neural network outputs, hence, if g(xnn,wnn) is a smooth
function of the neural parameters, then b(xsy,g(xnn,wnn)) is also smooth.

With this notation, the regularized inference problem is:

V (wsy,b(xsy,g(xnn,wnn))) := min
y,sS,sH

sSsL
y

T WS + ϵI 0 0
0 ϵI 0
0 0 ϵI

sSsL
y

+

 0
wL

0

T sSsL
y

s.t. A

sSsL
y

+ b(xsy,g(xnn,wnn)) ≤ 0. (30)

For ease of notation, let

D(wsy) :=

WS 0 0
0 0 0
0 0 0

 , c(wsy) :=

 0
wL

0

 , ν :=

sSsL
y

 . (31)

Then the regularized primal LCQP MAP inference problem is concisely expressed as

min
ν∈Rny+mS+mL

νT (D(wsy) + ϵI)ν + c(wsy)
T ν (32)

s.t. Aν + b(xsy,g(xnn,wnn)) ≤ 0.

By Slater’s constraint qualification, we have strong-duality when there is a feasible solution. In this case, an optimal solution
to the dual problem yields an optimal solution to the primal problem. The Lagrange dual problem of (32) is

argmax
µ≥0

min
ν∈Rny+mS+mL

νT (D(wsy) + ϵI)ν + c(wsy)
T ν + µT (Aν + b(xsy,g(xnn,wnn)))

= argmax
µ≥0

−1

4
µTA(D(wsy) + ϵI)−1ATµ (33)

− 1

2
(A(D(wsy) + ϵI)−1c(wsy)− 2b(xsy,g(xnn,wnn)))

Tµ

where µ = [µi]
nµ

i=1 are the Lagrange dual variables. For later reference, denote the negative of the Lagrange dual function of
MAP inference as:

h(µ;wsy,b(xsy,g(xnn,wnn))) (34)

:=
1

4
µTA(D(wsy) + ϵI)−1ATµ+

1

2
(A(D(wsy) + ϵI)−1c(wsy)− 2b(xsy,g(xnn,wnn)))

Tµ.

The dual LCQP has more decision variables but is only over non-negativity constraints rather than the complex polyhedron
feasible set. The dual-to-primal variable translation is:

ν = −1

2
(D(wsy) + ϵI)−1(ATµ+ c(wsy)) (35)

As (D(wsy) + ϵI) is diagonal, it is easy to invert and hence it is practical to work in the dual space to obtain a solution to
the primal problem.

16

Convex and Bilevel Optimization for Neural-Symbolic Inference and Learning

D.2. Extended continuity of inference

We now provide background on sensitivity analysis that we then apply in our proofs on the continuity properties of NeuPSL
inference.

D.2.1. BACKGROUND

Theorem D.1 ((Boyd & Vandenberghe, 2004) p. 81). If for each y ∈ A, f(x,y) is convex in x then the function

g(x) := sup
y∈A

f(x,y) (36)

is convex in x.

Theorem D.2 ((Boyd & Vandenberghe, 2004) p. 81). If for each y ∈ A, f(x,y) is concave in x then the function

g(x) := inf
y∈A

f(x,y) (37)

is concave in x.

Definition D.3 (Convex Subgradient: (Boyd & Vandenberghe, 2004) and (Shalev-Shwartz, 2012)). Consider a convex
function f : Rn → [−∞,∞] and a point x with f(x) finite. For a vector v ∈ Rn, one says that v is a (convex) subgradient
of f at x, written v ∈ ∂f(x), iff

f(x) ≥ f(x)+ < v,x− x >, ∀x ∈ Rn. (38)

Definition D.4 (Closedness: Bertsekas (2009)). If the epigraph of a function f : Rn → [−∞,∞] is a closed set, we say
that f is a closed function.

Definition D.5 (Lower Semicontinuity: (Bertsekas, 2009)). The function f : Rn → [−∞,∞] is lower semicontinuous (lsc)
at a point x ∈ Rn if

f(x) ≤ lim inf
k→∞

f(xk), (39)

for every sequence {xk} ⊂ Rn with xk → x. We say f is lsc if it is lsc at each x in its domain.

Theorem D.6 (Closedness and Semicontinuity: (Bertsekas, 2009) Proposition 1.1.2.). For a function f : Rn → [−∞,∞],
the following are equivalent:

1. The level set Vγ = {x | f(x) ≤ γ} is closed for every scalar γ.

2. f is lsc.

3. f is closed.

The following definition and theorem are from (Rockafellar & Wets, 1997) and they generalize the notion of subgradients to
non-convex functions and the chain rule of differentiation, respectively. For complete statements see (Rockafellar & Wets,
1997) (Rockafellar & Wets, 1997).

Definition D.7 (Regular Subgradient: (Rockafellar & Wets, 1997) Definition 8.3). Consider a function f : Rn → [−∞,∞]

and a point x with f(x) finite. For a vector v ∈ Rn, one says that v is a regular subgradient of f at x, written v ∈ ∂̂f(x),
iff

f(x) ≥ f(x) + ⟨v,x− x⟩+ o(x− x), ∀x ∈ Rn, (40)

where the o(t) notation indicates a term with the property that

lim
t→0

o(t)
t

= 0. (41)

The relation of the regular subgradient defined above and the more familiar convex subgradient is the addition of the o(x−x)
term. Evidently, a convex subgradient is a regular subgradient.

17

Convex and Bilevel Optimization for Neural-Symbolic Inference and Learning

Theorem D.8 (Chain Rule for Regular Subgradients: (Rockafellar & Wets, 1997) Theorem 10.6). Suppose f(x) = g(F (x))
for a proper, lsc function g : Rm → [−∞,∞] and a smooth mapping F : Rn → Rm. Then at any point x ∈ dom f =
F−1(dom g) one has

∂̂f(x) ⊃ ∇F (x)T ∂̂g(F (x)), (42)

where ∇F (x)T is the Jacobian of F at x.

Theorem D.9 (Danskin’s Theorem: (Danskin, 1966) and (Bertsekas, 1971) Proposition A.22). Suppose Z ⊆ Rm is a
compact set and g(x, z) : Rn ×Z → (−∞,∞] is a function. Suppose g(·, z) : Rn → R is closed proper convex function
for every z ∈ Z . Further, define the function f : Rn → R such that

f(x) := max
z∈Z

g(x, z).

Suppose f is finite somewhere. Moreover, let X := int(domf), i.e., the interior of the set of points in Rn such that f is finite.
Suppose g is continuous on X × Z . Further, define the set of maximizing points of g(x, ·) for each x

Z(x) = argmax
z∈Z

g(x, z).

Then the following properties of f hold.

1. The function f(x) is a closed proper convex function.

2. For every x ∈ X ,

∂f(x) = conv {∂xg(x, z) | z ∈ Z(x)} . (43)

Corollary D.10. Assume the conditions for Danskin’s Theorem above hold. For every x ∈ X , if Z(x) consists of a unique
point, call it z∗, and g(·, z∗) is differentiable at x, then f(·) is differentiable at x, and

∇f(x) := ∇xg(x, z
∗). (44)

Theorem D.11 ((Bonnans & Shapiro, 1998) Theorem 4.2, (Rockafellar, 1974) p. 41). Let X and U be Banach spaces.
Let K be a closed convex cone in the Banach space U. Let G : X → U be a convex mapping with respect to the cone
C := −K and f : X→ (−∞,∞] be a (possibly infinite-valued) convex function. Consider the following convex program
and its optimal value function:

vP (u) := min
x∈X

f(x) (P)

s.t. G(x) + u ∈ K.

Moreover, consider the (Lagrangian) dual of the program:

vD(u) := max
λ∈K−

min
x∈X

f(x) + λT (G(x) + u) (D)

Suppose vP (0) is finite. Further, suppose the feasible set of the program is nonempty for all u in a neighborhood of 0, i.e.,

0 ∈ int{G(X)−K}. (45)

Then,

1. There is no primal dual gap at u = 0, i.e., vP (0) = vD(0).

2. The set, Λ0, of optimal solutions to the dual problem with u = 0 is non-empty and bounded.

3. The optimal value function vP (u) is continuous at u = 0 and ∂vP (0) = Λ0.

18

Convex and Bilevel Optimization for Neural-Symbolic Inference and Learning

Theorem D.12 ((Bonnans & Shapiro, 2000) Proposition 4.3.2). Consider two optimization problems over a non-empty
feasible set Ω:

min
x∈Ω

f1(x) and min
x∈Ω

f2(x) (46)

where f1, f2 : X → R. Suppose f1 has a non-empty set S of optimal solutions over Ω. Suppose the second order growth
condition holds for S, i.e., there exists a neighborhood N of S and a constant α > 0 such that

f1(x) ≥ f1(S) + α(dist(x,S))2, ∀x ∈ Ω ∩N , (47)

where f1(S) := infx∈Ωf1(x). Define the difference function:

∆(x) := f2(x)− f1(x). (48)

Suppose ∆(x) is L-Lipschitz continuous on Ω ∩N . Let x∗ ∈ N be an δ-solution to the problem of minimizing f2(x) over
Ω. Then

dist(x∗,S) ≤ L

α
+

√
δ

α
. (49)

D.2.2. PROOFS

We provide proofs of theorems presented in the main paper and restated here for completeness.
Theorem 5.2. Suppose for any setting of wnn ∈ Rng there is a feasible solution to NeuPSL inference (18). Further, suppose
ϵ > 0, wsy ∈ Rr

+, and wnn ∈ Rng . Then:

• The minimizer of (18), y∗(wsy,wnn), is a O(1/ϵ) Lipschitz continuous function of wsy .
• V (wsy,b(xsy,g(xnn,wnn))), is concave over wsy and convex over b(xsy,g(xnn,wnn)).
• V (wsy,b(xsy,g(xnn,wnn))) is differentiable with respect to wsy . Moreover,

∇wsyV (wsy,b(xsy,g(xnn,wnn))) = Φ(y∗(wsy,wnn),xsy,g(xnn,wnn)).

Furthermore, ∇wsy
V (wsy,b(xsy,g(xnn,wnn))) is Lipschitz continuous over wsy .

• If there is a feasible point ν strictly satisfying the i′th inequality constraint of (18), i.e., A[i]ν +
b(xsy,g(xnn,wnn))[i] < 0, then V (wsy,b(xsy,g(xnn,wnn))) is subdifferentiable with respect to the i′th constraint
constant b(xsy,g(xnn,wnn))[i]. Moreover,

∂b[i]V (wsy,b(xsy,g(xnn,wnn))) = {µ∗[i] |µ∗ ∈ argmin
µ∈R2·ny+m+q

≥0

h(µ;wsy,b(xsy,g(xnn,wnn)))}.

Furthermore, if g(xnn,wnn) is a smooth function of wnn, then so is b(xsy,g(xnn,wnn)), and the set of regular
subgradients of V (wsy,b(xsy,g(xnn,wnn))) is:

∂̂wnnV (wsy,b(xsy,g(xnn,wnn))) (50)

⊃ ∇wnnb(xsy,g(xnn,wnn))
T ∂bV (wsy,b(xsy,g(xnn,wnn))).

Proof of Theorem 5.2. We first show the minimizer of the LCQP formulation of NeuPSL inference, ν∗, with ϵ > 0,
wsy ∈ Rr

+, and wnn ∈ Rng is a Lipschitz continuous function of wsy . Suppose ϵ > 0. To show continuity over wsy ∈ Rr
+,

first note the matrix (D+ ϵI) is positive definite and the primal inference problem (19) is an ϵ-strongly convex LCQP with
a unique minimizer denoted by ν∗(wsy,wnn). We leverage the Lipschitz stability result for optimal values of constrained
problems from (Bonnans & Shapiro, 2000) and presented here in Theorem D.12. Define the primal objective as an explicit
function of the weights:

f(ν,wsy,wnn) := νT (D(wsy) + ϵI)ν + cT (wsy)ν (51)

19

Convex and Bilevel Optimization for Neural-Symbolic Inference and Learning

Note that the solution ν∗ =

s∗Ss∗L
y∗

 will always be bounded, since from (26c) in LCQP we always have for all j ∈ IS ∪ IL,

0 ≤ s∗j = max(aTϕk,y
y∗ + aTϕk,xsy

xsy + aTϕk,g
g(xnn,wnn) + bϕk

, 0) (52)

≤ ∥aϕk,y∥+ |aTϕk,xsy
xsy + aTϕk,g

g(xnn,wnn) + bϕk
|. (53)

Thus, setting these trivial upper bounds for sj will not change the solution of the problem. We can henceforth consider the
problem in a bounded domain ∥ν∥ ≤ C where C does not depend on w’s.

Let w1,sy,w2,sy ∈ Rr
+ and wnn ∈ Wnn be arbitrary. As ϵ > 0, f(ν,w1,sy,wnn) is strongly convex in ν and it therefore

satisfies the second-order growth condition in ν. Define the difference function:

∆wsy
(ν) := f(ν,w2,sy,wnn)− f(ν,w1,sy,wnn) (54)

= νT (D(w2,sy) + ϵI)ν + cT (w2,sy)ν −
(
νT (D(w1,sy) + ϵI)ν + cT (w1,sy)ν

)
(55)

= νT (D(w2,sy)−D(w1,sy))ν + (c(w2,sy)− c(w1,sy))
T ν. (56)

The difference function ∆wsy
(ν) over N has a finitely bounded gradient:

∥∇∆wsy
(ν)∥2 =

∥∥∥2(D(w2,sy)−D(w1,sy))ν + c(w2,sy)− c(w1,sy)
∥∥∥
2

(57)

≤ ∥c(w2,sy)− c(w1,sy)∥2 + 2∥(D(w2,sy)−D(w1,sy))ν∥2 (58)
≤ ∥w2,sy −w1,sy∥2 + 2∥w2,sy −w1,sy∥2 ∥ν∥2 (59)
≤ ∥w2,sy −w1,sy∥2(1 + 2C) =: LN (w1,sy,w2,sy). (60)

Thus, the distance function, ∆wsy
(ν) is LN (w1,sy,w2,sy)-Lipschitz continuous overN . Therefore, by (Bonnans & Shapiro,

2000) (Theorem D.12), the distance between ν∗(w1,sy,wnn) and ν∗(w2,sy,wnn) is bounded above:

∥ν∗(w2,sy,wnn)− ν∗(w1,sy,wnn)∥2 ≤
LN (w1,sy,w2,sy)

ϵ
=

(1 + 2C)

ϵ
∥w2,sy −w1,sy∥2. (61)

Therefore, the function ν∗(wsy,wnn) is O(1/ϵ)-Lipschitz continuous in wsy for any wnn.

Next, we prove curvature properties of the value-function with respect to the weights. Observe NeuPSL inference
is an infimum over a set of functions that are concave (affine) in wsy. Therefore, by Theorem D.2, we have that
V (wsy,b(xsy,g(xnn,wnn))) is concave in wsy .

We use a similar argument to show V (wsy,b(xsy,g(xnn,wnn))) is convex in the constraint constants,
b(xsy,g(xnn,wnn)). Assuming for any setting of the neural weights, wnn ∈ Rng , there is a feasible solution to
the NeuPSL inference problem, then (18) satisfies the conditions for Slater’s constraint qualification. Therefore, strong
duality holds, i.e., V (wsy,b(xsy,g(xnn,wnn))) is equal to the optimal value of the dual inference problem (33). Observe
that the dual NeuPSL inference problem is a supremum over a set of functions convex (affine) in b(xsy,g(xnn,wnn)).
Therefore, by Theorem D.1, we have that V (wsy,b(xsy,g(xnn,wnn))) is convex in b(xsy,g(xnn,wnn)).

We can additionally prove convexity in b from first principles. For simplicity we fix other parameters, and write the objective
and the value function as Q(ν) and V (b). Given two values b1 and b2, let corresponding optimal values of (33) be ν1 and
ν2. Take any α ∈ [0, 1], note that when b = αb1 +(1−α)b2, then αν1 +(1−α)ν2 is feasible for this b. Because we take
the inf over all νs, the optimal ν for this b might be even smaller. Thus, we have (for convex quadratic objective Q) that

V (αb1 + (1− α)b2) ≤ Q(αν1 + (1− α)ν2)

≤ αQ(ν1) + (1− α)Q(ν2)

= αV (b1) + (1− α)V (b2),

(62)

which shows that V is convex in b.

Next, we prove (sub)differentiability properties of the value-function. Suppose ϵ > 0. First, we show the optimal
value function, V (wsy,b(xsy,g(xnn,wnn))), is differentiable with respect to the symbolic weights. Then we show

20

Convex and Bilevel Optimization for Neural-Symbolic Inference and Learning

subdifferentiability properties of the optimal value function with respect to the constraint constants. Finally, we apply the
Lipschitz continuity of the minimzer result to show the gradient of the optimal value function is Lipschitz continuous with
respect to wsy .

Starting with differentiability with respect to the symbolic weights, wsy , note, the optimal value function of the regularized
LCQP formulation of NeuPSL inference, (18), is equivalently expressed as the following maximization over a continuous
function in the primal target variables, y, the slack variables, sS and sL, and the symbolic weights, wsy:

V (wsy,b(xsy,g(xnn,wnn))) (63)

= −

(
max

y,sH,sL
−
(sSsL

y

T WS + ϵI 0 0
0 ϵI 0
0 0 ϵI

sSsL
y

+

 0
wL

0

T sSsL
y

))

s.t. A

sSsL
y

+ b(xsy,g(xnn,wnn) ≤ 0,

where the matrix Ws and vector wL are functions of the symbolic parameters wsy as defined in (25). Moreover, the
objective above is and convex (affine) in wsy . Additionally, note that the decision variables can be constrained to a compact
domain without breaking the equivalence of the formulation. Specifically, the target variables are constrained to the box
[0, 1]ny , while the slack variables are nonnegative and have a trivial upper bound derived from (26c):,

0 ≤ s∗j = max(aTϕk,y
y∗ + aTϕk,xsy

xsy + aTϕk,g
g(xnn,wnn) + bϕk

, 0)

≤ ∥aϕk,y∥+ |aTϕk,xsy
xsy + aTϕk,g

g(xnn,wnn) + bϕk
|, (64)

for all j ∈ IS ∪ IL. Therefore, the negative optimal value function satisfies the conditions for Danskin’s theorem (Danskin,
1966) (stated in Appendix D.2.1). Moreover, as there is a single unique solution to the inference problem when ϵ > 0, and
the quadratic objective in (18) is differentiable for all wsy ∈ Rr

+, we can apply Corollary D.10. The optimal value function
is therefore concave and differentiable with respect to the symbolic weights with

∇wsy
V (wsy,b(xsy,g(xnn,wnn)) = Φ(y∗,xsy,g(xnn,wnn)). (65)

Next, we show subdifferentiability of the optimal value-function with respect to the constraint constants,
b(xsy,g(xnn,wnn)). Suppose at a setting of the neural weights wnn ∈ Rng there is a feasible point ν for
the NeuPSL inference problem. Moreover, suppose ν strictly satisfies the i′th inequality constraint of (18), i.e.,
A[i]ν + b(xsy,g(xnn,wnn))[i] < 0. Observe that the following strongly convex conic program is equivalent to the
LCQP formulation of NeuPSL inference, (18):

min
ν∈Rny+mS+mL

νT (D(wsy) + ϵI)ν + c(wsy)
T ν + PΩ\i(ν) (66)

s.t. A[i]ν + b(xsy,g(xnn,wnn))[i] ∈ R≤0,

where PΩ\i(ν) : Rny+mS+mL → {0,∞} is the indicator function identifying feasibility w.r.t. all the constraints of the
LCQP formulation of NeuPSL inference in (18) except the i′th constraint: A[i]ν + b(xsy,g(xnn,wnn))[i] ≤ 0. In other
words, in the conic formulation above only the i′th constraint is explicit. Note that R≤0 is a closed convex cone in R.
Moreover, both the objective in the program and the mapping G(ν) := A[i]ν + b(xsy,g(xnn,wnn))[i] are convex. Lastly,
note the constraint qualification (45) is similar to Slater’s condition in the case of (66) which is satisfied by the supposition
there exists a feasible ν that strictly satisfies the i′th inequality constraint of (18). Therefore, (66) satisfies the conditions of
Theorem D.11. Thus, the value function is continuous in the constraint constant b(xsy,g(xnn,wnn))[i] at wnn and

∂b[i]V (wsy,b(xsy,g(xnn,wnn))) = {µ∗[i] |µ∗ ∈ argmin
µ∈R2·ny+m+q

≥0

h(µ;wsy,b(xsy,g(xnn,wnn)))}. (67)

Moreover, when b(xsy,g(xnn,wnn)) is a smooth function of the neural weights wnn, then we can apply the chain rule for
regular subgradients, Theorem D.8, to get

∂̂wnn
V (wsy,b(xsy,g(xnn,wnn)) ⊃ ∇b(xsy,g(xnn,wnn)

T∂bV (wsy,b(xsy,g(xnn,wnn)). (68)

21

Convex and Bilevel Optimization for Neural-Symbolic Inference and Learning

To prove the optimal value function is Lipschitz smooth over wsy , it is equivalent to show it is continuously differentiable
and that all gradients have bounded magnitude. To show the value function is continuously differentiable, we first apply the
result asserting the minimizer is unique and a continuous function of the symbolic parameters wsy . Therefore, the optimal
value function gradient is a composition of continuous functions, hence continuous in wsy . The fact that the value function
has a bounded gradient magnitude follows from the fact that the decision variables y have a compact domain over which the
gradient is finite; hence a trivial and finite upper bound exists on the gradient magnitude.

E. Extended dual block coordinate descent
We introduce a novel block coordinate descent (BCD) algorithm for the dual LCQP formulation of NeuPSL inference in
(33), a bound-constrained, strongly convex quadratic program. In this section, we omit the symbolic and neural weights from
the function arguments to simplify notation. We define Ui, i = 1, 2, . . . , p to be a cover of the dual variable components
{1, 2, . . . , ny +m + q}. In practice, blocks are defined as a single dual variable corresponding to a constraint from the
feasible set or a deep hinge-loss function, along with the dual variables corresponding to the bounds of the primal variables
in the constraint or hinge-loss.

We will deal with a slightly more general objective,

h(µ) :=
1

2
µTAD̃ATµ+ c̃Tµ, (69)

from which we can recover (34) by replacing D̃← (D+ ϵI)−1 and c̃← A(D+ ϵI)−1c− 2b.

We will use the superscript ·(l) to denote values in the l-th iteration and subscript ·[i] for the values corresponding to the
block Ui. The row submatrix of A that corresponds to block i is denote by A[i].

At each iteration l, we choose one block i ∈ {1, 2, . . . , p} at random and compute the subvector of∇h(µ[l]) that corresponds
to this block,

d
(l)
[i] := ∇[i]h(µ

(l)) = (AD̃ATµ(l) + c̃)[i]. (70)

Defining d(l) to be the vector in RN whose ith block is d
(l)
[i] with zeros elsewhere, we perform a line search along the

negative of this direction. Note that

h(µ(l) − αd(l)) =
1

2
α2d(l)TAD̃ATd(l) − αd(l)T (AD̃ATµ(l) + c̃) + constant (71)

=
1

2
α2d

(l)T
[i] A[i]D̃AT

[i]d
(l)
[i] − αd

(l)T
[i] d

(l)
[i] + constant. (72)

The unconstrained minimizer of this expression is

α∗
l =

d
(l)T
[i] d

(l)
[i]

d
(l)T
[i] A[i]D̃AT

[i]d
(l)
[i]

. (73)

Given the nonnegativity constraints, we also need to ensure that µ(l)
[i] − αd

(l)
[i] ≥ 0. Therefore, our choice of steplength is

αl = min

{
α∗
l , min

j∈Ui :d
(l)
j >0

µ
(l)
j

d
(l)
j

}
. (74)

To save some computation, we introduce intermediate variables f (l) := ATd(l) = AT
[i]d

(l)
[i] , and m(l) := ATµ(l). With the

intermediate variables, the updates of the BCD algorithm are:

d
(l)
[i] ← A[i]D̃m(l) + c̃[i], f

(l) ← AT
[i]d

(l)
[i] (75)

m(l+1) ← AT (µ(l) − αld
(l)) = m(l) − αlf

(l). (76)

22

Convex and Bilevel Optimization for Neural-Symbolic Inference and Learning

Algorithm 3 Dual LCQP Block Coordinate Descent

1: Set l = 0 and compute an initial feasible point µ(0);
2: Compute m(0) = ATµ(0);
3: while Stopping Criterion Not Satisfied do
4: Sk ← Permutation([1, 2, . . . , p]);
5: for all i ∈ Sk (in order) do
6: Compute d

(l)
[i] ← A[i]D̃m(l) + c̃[i]; f (l) ← AT

[i]d
(l)
[i] ;

7: Compute αl ← min

{
d

(l)T

[i]
d

(l)

[i]

f (l)T D̃f (l)
,min

j∈Ui:d
(l)
j >0

µ
(l)
j

d
(l)
j

}
8: µ

(l+1)
[i] ← µ

(l)
[i] − αld

(l)
[i] ; µ

(l+1)
[j] ← µ

(l)
[j] for all j ̸= i;

9: m(l+1) ←m(l) − αlf
(l);

10: l← l + 1;
11: end for
12: k ← k + 1;
13: end while

With the steplength suggested by (74), descent is guaranteed at each iteration. This property is partially why the dual BCD
algorithm is effective at leveraging warmstarts which is valuable for improving the runtime of learning algorithms, as is
demonstrated in Section 6.2.

As strong duality holds for the LCQP formulation of deep HL-MRF inference, stopping when the primal-dual gap is below a
given threshold δ > 0, is a principled stopping criterion. Formally, at any iteration Algorithm 3 applied to (33), we recover
an estimate of the primal variable v from (35) and terminate when the gap between the primal and the dual objective falls
below δ. The stopping criterion is checked after every permutation block has been completely iterated over.

Connected Component Parallel D-BCD Oftentimes, the NeuPSL dual inference objective is additively separable over
partitions of the variables. In this case, the dual BCD algorithm is parallelizable over the partitions. We propose identifying
the separable components via the primal objective and constraints. More formally, prior to the primal problem instantiation,
a disjoint-set data structure (Cormen et al., 2009) is initialized such that every primal variable belongs to a single unique
disjoint set. Then, during instantiaion, the disjoint-set data structure is maintained to preserve the property that two primal
variables exist in the same set if and only if they occur together with a non-zero coefficient in a constraint or a potential.
This is achieved by merging the sets of variables in every generated constraint or potential. This process is made extremely
efficient with a path compression strategy implemented to optimize finding set representatives. This parallelization strategy
is empirically studied in Section 6 where we refer to it as CC D-BCD.

Lock Free Parallel D-BCD In general, there may only be a few connected components in the factor graph of the inference
problem. In this case, D-BCD cannot fully leverage computational resources using the CC D-BCD parallelization strategy.
One solution to overcome this issue and preserve the guaranteed descent property is to lock access and updates to dual
variables. In other words, processes checkout locks on the dual variables to access and update its value and corresponding
statistics. Unfortunately, in practice there is too much overlap in the blocks for this form of synchronization to see runtime
improvements. For this reason, we additionally propose a method that sacrifices the theoretical guaranteed descent property
of the dual BCD algorithm for significant runtime improvements. Our approach is inspired by lock free parallelization
strategies in optimization literature (Bertsekas & N. Tsitsiklis, 1989; Recht et al., 2011; Liu et al., 2015). Specifically,
rather than having processes checkout locks on dual variables for the entire iteration, we only assume dual and intermediate
variable updates are atomic. This assumption ensures the dual variables and intermediate variables are synchronized across
processes. However, the steplength subproblem solution and the gradient may be incorrect. Despite this, in Section 6.1 we
show this distributed variant of the dual BCD algorithm consistently finds a solution satisfying the stopping criterion and
realizes significant runtime improvements over the CC D-BCD algorithm in some datasets.

23

Convex and Bilevel Optimization for Neural-Symbolic Inference and Learning

F. Extended Empirical Evaluation
In this section, we provide additional details on the datasets and NeuPSL models used in experiments, hardware used to run
experiments, an additional evaluation on the effect of the LCQP regularization on the prediction performance of NeuPSL,
more inference runtime experiments, and the hyperparameter details for all the experiments in the main paper.

F.1. Datasets and NeuPSL Models

In this section, we provide additional information on all five evaluation datasets and corresponding NeuPSL models.

F.1.1. 4FORUMS AND CREATEDEBATE

Stance-4Forums and Stance-CreateDebate are two datasets containing dialogues from online debate websites: 4forums.
com and createdebate.com, respectively. In this paper, we study stance classification, i.e., the task of identifying the
stance of a speaker in a debate as being for or against.

The 5 data splits and the NeuPSL model we evaluate in this paper originated from Sridhar et al. (2015). The data and NeuPSL
models are available at: https://github.com/linqs/psl-examples/tree/main/stance-4forums and
https://github.com/linqs/psl-examples/tree/main/stance-createdebate.

F.1.2. EPINIONS

Epinions is a trust network with 2, 000 individuals connected by 8, 675 directed edges representing whether they know each
other and whether they trust each other (Richardson et al., 2003). We study link prediction, i.e., we predict if two individuals
trust each other.

In each of the 5 data splits, the entire network is available, and the prediction performance is measured on 1
8 of the trust

labels. The remaining set of labels are available for training. We use The NeuPSL model from Bach et al. (2017). The data
and NeuPSL model are available at https://github.com/linqs/psl-examples/tree/main/epinions.

F.1.3. CITESEER AND CORA

Citeseer and Cora are citation networks introduced by Sen et al. (2008). For Citeseer, 3, 312 documents are connected by
4, 732 edges representing citation links. For Cora, 2, 708 documents are connected by 5, 429 edges representing citation
links. We study node classification, i.e., we classify the documents into one of 6 topics for Citeseer and 7 topics for Cora.

We study two different data settings for evaluations. For the inference and learning runtime experiments and the HL-MRF
learning prediction performance experiments, Section 6.1, Section 6.2, and Section 6.3, respectively, the data is split
following Bach et al. (2017). Specifically, for each of the 5 folds, 1/2 of the nodes are sampled and specify a graph for
training, and the remaining 1/2 of the nodes define the graph for testing. 1/2 of the node labels are observed for both the
training and test graphs. For the deep HL-MRF learning prediction performance setting, Section 6.3, for each of the 10
folds, we randomly sample 5% of the node labels for training 5% of the node labels for validation and 1, 000 for testing.

Moreover, we use three different NeuPSL models for this dataset. The inference and learning runtime experi-
ment models are from Bach et al. (2017) (Bach et al., 2017). The data and NeuPSL models for these experi-
ments are available at: https://github.com/linqs/psl-examples/tree/main/citeseer and https:
//github.com/linqs/psl-examples/tree/main/cora for Citeseer and Cora, respectively. The models for
HL-MRF learning prediction performance experiments are extended versions of those in the inference and learning
runtime experiments. Specifically, a copy of each rule is made that is specialized for the topic. Moreover, topic
propagation across citation links is considered for papers with differing topics. For instance, the possibility of a ci-
tation from a paper with topic ′A′ could imply a paper is more or less likely to be topic ′B′. The extended mod-
els are available at https://github.com/convexbilevelnesylearning/experimentscripts/hlmrf_
learning/psl-extended-examples. The models for deep HL-MRF learning prediction performance exper-
iments are from Pryor et al. (2023). The data and models are available at: https://github.com/linqs/
neupsl-ijcai23.

24

4forums.com
4forums.com
createdebate.com
https://github.com/linqs/psl-examples/tree/main/stance-4forums
https://github.com/linqs/psl-examples/tree/main/stance-createdebate
https://github.com/linqs/psl-examples/tree/main/epinions
https://github.com/linqs/psl-examples/tree/main/citeseer
https://github.com/linqs/psl-examples/tree/main/cora
https://github.com/linqs/psl-examples/tree/main/cora
https://github.com/convexbilevelnesylearning/experimentscripts/hlmrf_learning/psl-extended-examples
https://github.com/convexbilevelnesylearning/experimentscripts/hlmrf_learning/psl-extended-examples
https://github.com/linqs/neupsl-ijcai23
https://github.com/linqs/neupsl-ijcai23

Convex and Bilevel Optimization for Neural-Symbolic Inference and Learning

Order Layer Parameter Value

1 ResNet18 (He et al., 2016)

2 Fully Connected
Input Shape 128

Output Shape 64
Activation ReLU

3 Fully Connected
Input Shape 64

Output Shape 10
Activation Gumbel Softmax (Jang et al., 2017)

Table 8. Neural architecture used in NeuPSL MNIST-Add models.

F.1.4. DDI

Drug-drug interaction (DDI) is a network of 315 drugs and 4, 293 interactions derived from the DrugBank database (S.
Wishart et al., 2006). The edges in the drug network represent interactions and seven different similarity metrics. In this
paper, we perform link prediction, i.e., we infer unknown drug-drug interactions.

The 5 data splits and the NeuPSL model we evaluate in this paper originated from Sridhar et al. (2016). The
data and NeuPSL models are available at: https://github.com/linqs/psl-examples/tree/main/
drug-drug-interaction.

F.1.5. YELP

Yelp is a network of 34, 454 users and 3, 605 items connected by 99, 049 edges representing ratings. The task is to predict
missing ratings, i.e., regression, which could be used in a recommendation system.

In each of the 5 folds, 80% of the ratings are randomly sampled and available for training, and the remaining 20% is
held out for testing. We use The NeuPSL model from Kouki et al. (2015). The data and NeuPSL model are available at:
https://github.com/linqs/psl-examples/tree/main/yelp.

F.1.6. MNIST-ADDITION

(a) Example of MNIST-Add1. (b) Example of MNIST-Add2.

Figure 1. Example of MNIST-Add1 and MNIST-Add2.

MNIST Addition is a canonical NeSy image classification dataset first introduced by (Manhaeve et al., 2018). In MNIST-
Addition, models must determine the sum of two lists of MNIST images, for example,

[]
+
[]

= 8. The challenge stems
from the lack of labels for the MNIST images; only the final sum of the equation is provided during training, 8 in this example.
5 MNIST-Addition train splits are generated by randomly sampling, without replacement, n ∈ {600, 6, 000, 50, 000} unique
MNIST images from the original MNIST dataset and converted to MNIST additions. Specifically, additions are created
by creating n/2 non-overlapping pairs of digits from the sample for MNIST-Add1 and n/4 non-overlapping sets of digits
from the sample for MNIST-Add2. Then the MNIST image labels are then added together, as shown in Fig. 1, to define the
addition label used in the task. This process is repeated to create five corresponding validation and test splits, with 1, 0000
MNIST examples being sampled per test split from the original MNIST dataset.

MNIST-Add1 The MNIST-Add1 NeuPSL model integrates the neural component summarized in Table 8 with the symbolic
model summarized in Fig. 2. The symbolic model contains the following predicates:

25

https://github.com/linqs/psl-examples/tree/main/drug-drug-interaction
https://github.com/linqs/psl-examples/tree/main/drug-drug-interaction
https://github.com/linqs/psl-examples/tree/main/yelp

Convex and Bilevel Optimization for Neural-Symbolic Inference and Learning

w1 : DIGITSUMONESPLACE(
′
0
′
, X, Y, Z) ∧ NEURAL(Img1, X) ∧ NEURAL(Img2, Y) → SUMPLACE(Img1, Img2,′ 1′, Z)

w2 : DIGITSUMTENSPLACE(
′
0
′
, X, Y, Z) ∧ NEURAL(Img1, X) ∧ NEURAL(Img2, Y) → SUMPLACE(Img1, Img2,′ 10′, Z)

w3 : DIGITSUMONESPLACE(W,′ 0′,′ 0′, Z) ∧ CARRY(Img1, Img2, W) → SUMPLACE(Img1, Img2,′ 10′, Z)

w4 : SUMPLACE(ImageId1, ImageId2,′ 1′, Z1) ∧ SUMPLACE(ImageId1, ImageId2,′ 10′, Z10)

∧ PLACEDREPRESENTATION(Z10, Z1, Z) → IMAGESUM(ImageId1, ImageId2, Z)

Figure 2. Summarized NeuPSL MNIST-Add1 Symbolic Model. The full model is available at: https://github.com/
convexbilevelnesylearning/experimentscripts/mnist_addition/neupsl_models.

• NEURAL(Img,X) The NEURAL predicate is the class probability for each image as inferred by the neural network.
Img is MNIST image identifier and X is a digit class that the image may represent.

• DIGITSUMONESPLACE(W,X,Y,Z) The DIGITSUMONESPLACE predicate represents whether the ones place of the
sum of the digits W , X , and Y is Z. For example, substituting 0, 1, 2, and 3 for W , X , Y and Z, the predicate value
would be 1, but substituting 1, 1, 2, and 3 for W , X , Y and Z would be 0 since 1 + 1 + 2 + 3 ̸= 3.

• DIGITSUMTENSPLACE(W,X,Y,Z) The DIGITSUMTENSPLACE predicate represents whether the tens place of the
sum of the digits W , X , and Y is Z. For example, substituting 0, 1, 2, and 0 for W , X , Y and Z, the predicate value
would be 1, but substituting 0, 1, 9, and 0 for W , X , Y and Z would be 0 since 1 + 1+ 2+ 3 = 10, i.e., the tens place
digit of the sum is 1 not 0.

• SUMPLACE(Img1,Img2,place,Z) The SUMPLACE predicate is the probability that the digits represented in the
images identified by arguments Img1 and Img2 add up to a number with a place’s place of Z.

• CARRY(Img1,Img2,W) The CARRY predicate represents is the probability that the digits represented in the images
identified by arguments Img1 and Img2 add up to a number with a carry value of W. For example, images representing
digits 1 and 2 do not have a carry. These variables are considered latent in the NeuPSL model as there are no truth
labels for carries.

• POSSIBLEDIGIT(X,Z) The POSSIBLEDIGITS predicate represents whether a digit (X) can be included in a sum that
equals a number (Z). For example, POSSIBLEDIGITS(9, 0) would return 0 as no positive digit when added to 9 will
equal 0. Conversely, POSSIBLEDIGITS(9, 17) would return 1 as 8 added to 9 equals 17.

• IMAGESUM(Img1,Img2,Z) The IMAGESUM predicate is the probability that the digits represented by the images
specified by Img1 and Img2 sum up to the number indicated by the argument Z. This predicate instantiates decision
variables, i.e., variables from this predicate are not fixed during inference and learning as described in the NeSy EBM,
NeuPSL, and Inference and Learning sections.

• PLACEDREPRESENTATION(Z10,Z1,Z) The PLACEDREPRESENTATION predicate represents whether the number Z
has tens place digit Z10 and ones place digit Z1.

MNIST-Add2 The MNIST-Add2 NeuPSL model integrates the neural component summarized in Table 8 with the symbolic
model summarized in Fig. 3. The symbolic model contains the following predicates:

• SUMPLACE(Img1,Img2,Img3,Img4,place,Z) The SUMPLACE predicate is the probability that the digits rep-
resented in the images identified by arguments Img1, Img2, Img3, and Img4 add up to a number with a place’s
place of Z.

• POSSIBLEONESDIGIT(X,Z) The POSSIBLEONESDIGIT predicate represents whether a digit (X) can be included
in a sum as a ones place digit that equals a number (Z). For example, POSSIBLEDIGITS(9, 0) would return 0 as no
positive digit when added to 9 will equal 0. Conversely, POSSIBLEDIGITS(9, 17) would return 1 as 8 added to 9 equals
17.

26

https://github.com/convexbilevelnesylearning/experimentscripts/mnist_addition/neupsl_models
https://github.com/convexbilevelnesylearning/experimentscripts/mnist_addition/neupsl_models

Convex and Bilevel Optimization for Neural-Symbolic Inference and Learning

w1 : DIGITSUMONESPLACE(
′
0
′
, X, Y, Z) ∧ NEURAL(Img2, X) ∧ NEURAL(Img4, Y) → SUMPLACE(Img1, Img2, Img3, Img4′

1
′
, Z)

w2 : DIGITSUMTENSPLACE(
′
0
′
, X, Y, Z) ∧ NEURAL(Img2, X) ∧ NEURAL(Img4, Y) → CARRY(Img2, Img4, Z)

w3 : DIGITSUMONESPLACE(W, X, Y, Z) ∧ NEURAL(Img1, X) ∧ NEURAL(Img3, Y) ∧ CARRY(Img2, Img4, W)

→ SUMPLACE(Img1, Img2, Img3, Img4′
10

′
, Z)

w4 : DIGITSUMTENSPLACE(W, X, Y, Z) ∧ NEURAL(Img1, X) ∧ NEURAL(Img3, Y) ∧ CARRY(Img2, Img4, W)

→ SUMPLACE(Img1, Img2, Img3, Img4′
100

′
, Z)

w5 : DIGITSUMONESPLACE(W,′ 0′,′ 0′, Z) ∧ CARRY(Img1, Img3, W) → SUMPLACE(Img1, Img2, Img3, Img4′
100

′
, Z)

w6 : SUMPLACE(ImageId1, ImageId2, ImageId3, ImageId4,′ 1′, Z1)

∧ SUMPLACE(ImageId1, ImageId2, ImageId3, ImageId4,′ 10′, Z10)

∧ SUMPLACE(ImageId1, ImageId2, ImageId3, ImageId4,′ 100′, Z100) ∧ PLACEDREPRESENTATION(Z100, Z10, Z1, Z)

→ IMAGESUM(ImageId1, ImageId2, ImageId3, ImageId4, Z)

Figure 3. Summarized NeuPSL MNIST-Add2 Symbolic Model. The full model is available at: https://github.com/
convexbilevelnesylearning/experimentscripts/mnist_addition/neupsl_models.

• POSSIBLETENSDIGIT(X,Z) The POSSIBLETENSDIGITS predicate represents whether a digit (X) can be included
in a sum as a tens place digit that equals a number (Z). For example, POSSIBLEDIGITS(9, 0) would return 0 as no
positive digit when added to 90, 91, · · · , 99 will equal 0. Conversely, POSSIBLEDIGITS(9, 97) would return 1 as 7
added to 90 equals 97, for instance.

• IMAGESUM(Img1,Img2,Img3,Img4,Z) The IMAGESUM predicate is the probability that the digits represented
by the images specified by Img1, Img2, Img3, and Img4 sum up to the number indicated by the argument Z. This
predicate instantiates decision variables, i.e., variables from this predicate are not fixed during inference and learning as
described in the NeSy EBM, NeuPSL, and Inference and Learning sections.

• PLACEDREPRESENTATION(Z100,Z10,Z1,Z) The PLACEDREPRESENTATION predicate represents whether the num-
ber Z has hundereds place digit Z100 , tens place digit Z10 and ones place digit Z1.

F.2. Hardware

All timing experiments were performed on an Ubuntu 22.04.1 Linux machine with Intel Xeon Processor E5-2630 v4 at
3.10GHz and 128 GB of RAM.

F.3. Dual BCD and Regularization

The regularization parameter added to the LCQP formulation of NeuPSL inference in (18) ensures strong convexity of
the optimal value of the energy function. However, adding regularization makes the new formulation an approximation.
In this section, the runtime and prediction performance of the D-BCD inference algorithm is evaluated at varying levels
of regularization to understand its effect on NeuPSL inference. The regularization parameter varies in the range ϵ ∈
{100, 10, 1, 0.1, 0.01}. The D-BCD algorithm is stopped when the primal-dual gap drops below δ = 0.1 Inference time is
provided in seconds, and the performance metric is consistent with Table 1. Results are provided in Table 9.

Table 9 shows there is a consistent correlation between the LCQP regularization parameter and the runtime and performance
of inference. As ϵ increases, there is a significant decrease in the runtime performance as the D-BCD algorithm can find
a solution with a gradient meeting the stopping criterion in fewer iterations. Notably, for the Citeseer inference problem,
the D-BCD algorithm realizes a roughly 45× speedup. On the other hand, while the runtime performance improves
with increasing ϵ, the prediction performance can sometimes decay. There is a tradeoff between runtime and prediction
performance when setting the ϵ regularization parameter.

F.4. Extended Inference Runtime

This section details the hyperparameter settings and search process for the inference runtime experiments in Section 6.1.
The GD, ADMM, and D-BCD algorithms are stopped when the L∞ norm of the primal variable change between iterates

27

https://github.com/convexbilevelnesylearning/experimentscripts/mnist_addition/neupsl_models
https://github.com/convexbilevelnesylearning/experimentscripts/mnist_addition/neupsl_models

Convex and Bilevel Optimization for Neural-Symbolic Inference and Learning

Table 9. D-BCD Inference time in seconds and prediction performance with varying values for the LCQP regularization parameter ϵ.
Dataset ϵ Time (sec) Perf.

CreateDebate (AUROC)

100 0.02± 0.01 64.77± 10.61
10 0.02± 0.01 64.83± 10.53
1 0.02± 0.01 64.74± 10.67
0.1 0.05± 0.02 65.39± 9.07
0.01 0.42± 0.51 66.01± 9.35

4Forums (AUROC)

100 0.11± 0.02 61.31± 6.17
10 0.10± 0.03 61.26± 6.16
1 0.09± 0.01 61.12± 6.18
0.1 0.43± 0.11 62.73± 5.46
0.01 7.11± 3.05 62.31± 5.47

Epinions (AUROC)

100 0.33± 0.05 72.59± 2.27
10 0.28± 0.04 72.69± 2.21
1 0.33± 0.05 74.24± 1.95
0.1 1.08± 0.16 77.05± 1.06
0.01 5.21± 0.37 77.45± 0.70

Citeseer (Accuracy)

100 0.95± 0.14 71.28± 1.31
10 1.00± 0.12 71.28± 1.30
1 1.48± 0.29 71.59± 1.01
0.1 7.01± 1.57 71.75± 1.10
0.01 62.41± 14.67 71.92± 1.09

Cora (Accuracy)

100 4.53± 2.20 81.31± 1.73
10 4.56± 2.39 81.57± 1.83
1 7.36± 4.19 81.48± 1.70
0.1 42.24± 25.06 81.88± 1.82
0.01 269.45± 49.50 81.79± 1.72

DDI (AUROC)

100 24.56± 0.25 94.85± 0.00
10 29.23± 0.59 94.85± 0.00
1 47.15± 0.95 94.82± 0.00
0.1 280.62± 5.19 94.80± 0.00
0.01 266.07± 42.68 94.81± 0.00

Yelp (MAE)

100 105.60± 5.03 0.23± 0.01
10 3, 239± 81 0.22± 0.01
1 3, 227± 54 0.19± 0.01
0.1 421± 202 0.18± 0.00
0.01 2, 472± 297 0.18± 0.00

Table 10. Inference time in seconds for each inference optimization technique.
Gurobi GD ADMM CC D-BCD LF D-BCD

Epinions 0.46± 0.01 34.63± 0.33 0.36± 0.041 1.84± 0.4 0.26± 0.04
Citeseer 0.66± 0.08 47.17± 0.61 0.63± 0.07 1.36± 0.24 0.49± 0.08
Cora 0.71± 0.08 48.66± 1.24 0.71± 0.07 6.46± 3.5 0.79± 0.19
Yelp 7.38± 0.20 6, 961± 46 6.37± 1.19 48.44± 3.82 7.58± 0.48

is less than 0.001. For the D-BCD algorithms, the regularization parameter from Appendix F.3 resulting in the fastest
runtime and yielding a prediction performance within a standard error of the best is used. The default Gurobi optimizer
hyperparameters are used. Table 11 reports the range of hyperparameters searched over and the final values. Furthermore,
for the MNIST-Add1 and MNIST-Add2 models, the highest performing trained neural models for each split from the
performance experiments in Section 6.3 are used.

Table 10 reports the average and standard deviation of the inference runtime for Gurobi, GD, ADMM, and D-BCD algorithms
on 4 of the datasets from Table 1. As in the main paper, we see the D-BCD algorithms are competitive with ADMM, the
current state of the art optimizer for NeuPSL inference. Moreover, here we see the LF D-BCD algorithm is also competitive
with Gurobi for a single round of inference.

F.5. Extended Learning Runtime

This section provides details of the hyperparameter settings for the learning runtime experiments in Section 6.2. For both
learning losses, a negative log regularization with coefficient 1.0e− 3 on the symbolic weights is added to the learning loss
as suggested by Pryor et al. (2023). For ADMM inference on both learning losses, the same steplength from the inference
runtime experiment is used for the first 7 datasets in Table 1. Similarly, for D-BCD inference on both learning losses, the
same regularization parameter from the inference runtime experiment is used for the first 7 datasets in Table 1. For the

28

Convex and Bilevel Optimization for Neural-Symbolic Inference and Learning

Table 11. Hyperparameter ranges and final values for the inference runtime experiments.
Dataset Parameter Range Final Value

CreateDebate ADMM Step Length {10.0, 1.0, 0.1, 0.01} 1.0
LCQP Regularization {100, 10, 1, 0.1, 0.01} 0.1

4Forums ADMM Step Length {10.0, 1.0, 0.1, 0.01} 1.0
LCQP Regularization {100, 10, 1, 0.1, 0.01} 0.1

Epinions
GD Step Length {10.0, 1.0, 0.1, 0.01, 0.001} 0.01

ADMM Step Length {10.0, 1.0, 0.1, 0.01} 0.1
LCQP Regularization {100, 10, 1, 0.1, 0.01} 0.1

Citeseer
GD Step Length {10.0, 1.0, 0.1, 0.01, 0.001} 0.1

ADMM Step Length {10.0, 1.0, 0.1, 0.01} 10.0
LCQP Regularization {100, 10, 1, 0.1, 0.01} 10.0

Cora
GD Step Length {10.0, 1.0, 0.1, 0.01, 0.001} 0.1

ADMM Step Length {10.0, 1.0, 0.1, 0.01} 10.0
LCQP Regularization {100, 10, 1, 0.1, 0.01} 10.0

DDI ADMM Step Length {10.0, 1.0, 0.1, 0.01} 1.0
LCQP Regularization {100, 10, 1, 0.1, 0.01} 10.0

Yelp
GD Step Length {10.0, 1.0, 0.1, 0.01, 0.001} 0.001

ADMM Step Length {10.0, 1.0, 0.1, 0.01} 1.0
LCQP Regularization {100, 10, 1, 0.1, 0.01} 0.1

MNIST-Add1 ADMM Step Length {10.0, 1.0, 0.1, 0.01} 1.0
LCQP Regularization {100, 10, 1, 0.1, 0.01, 0.001} 0.001

MNIST-Add2 ADMM Step Length {10.0, 1.0, 0.1, 0.01} 1.0
LCQP Regularization {100, 10, 1, 0.1, 0.01, 0.001} 0.001

MNIST-Add experiments, we use the regularization parameter ϵ = 1.0e− 3 and ADMM steplength 1.0 as the values were
found to achieve the highest final validation prediction performance.

Mirror descent is applied to learn the symbolic weights for both SP and MSE losses. The mirror descent steplength is set to
a default value of 1.0e− 3 for the first 7 datasets in Table 1. For the MNIST-Add datasets the mirror descent steplength is
set to 1.0e− 14 as in this problem we only need to learn the neural weights. The Adam steplength for the neural component
of the MNIST-Add models is set to a default value of 1.0e− 3.

Our learning framework, Algorithm 1, is used to fit the MSE learning loss. We set the initial squared penalty parameter to a
default value of 2.0 for all datasets. Moreover, for the first 7 datasets in Table 1 we set the Moreau parameter to 0.01, the
energy loss coefficient to 0.1, and the steplength on the target variables y to 0.01. For the MNIST-Add datasets we set the
Moreau parameter to 1.0e− 3, the energy loss coefficient to 10.0, and the steplength on the target variables y to 1.0e− 3.

F.6. Extended Learning Prediction Performance

This section details the hyperparameter settings and search process for the prediction performance experiments in Section
6.3. For all learning losses, a negative log regularization with coefficient 1.0e− 3 on the symbolic weights is added to the
learning loss as suggested by Pryor et al. (2023). The remaining hyperparameter search and setting details are described
separately for the HL-MRF learning and deep HL-MRF learning experiments.

HL-MRF Learning The LF D-BCD algorithm is used for inference in all experiments. Moreover, the D-BCD algorithm is
stopped when the primal-dual gap drops below δ = 1.0e− 2 CreateDebate, 4Forums, Epinions, Citeseer, Cora, and DDI
while the primal-dual threshold is set to δ = 1.0e− 1 to adjust to the larger scale of the dataset. For all learning losses, the
learning algorithm is stopped when the training evaluation metric stops improving after 50 epochs. For the MSE and BCE
losses trained with Algorithm 1, the final objective difference tolerance was set to 0.1 for the smaller CreateDebate, 4Forums,
and Epinions datasets and 1 for Citeseer, Cora, DDI, and Yelp. Moreover, the initial squared penalty coefficient is set to 2
for all datasets. The remaining hyperparameters are searched over the ranges specified in Table 12. The hyperparameter
value with the best performance metric on the first fold is selected.

Deep HL-MRF Learning

For deep HL-MRF learning in the citation network and MNIST-Add evaluations reported in Table 5 and Table 6, respectively
the validation set is used to determine when to stop the learning algorithms and what weights to use for final evaluations.
Specifically, after every learning step the model performance is measured on the validation data, and when 50 consecutive
steps finish without improvement, the learning algorithm is stopped. For citation network datasets, the model obtaining
the best validation metric averaged across all splits are used for final test evaluation. For MNIST-Add datasets, the model

29

Convex and Bilevel Optimization for Neural-Symbolic Inference and Learning

obtaining the best validation metric on the first split is used for final test evaluation across all splits. Table 13 and Table
14 report the range of hyperparameters searched over and the final values resulting in the highest validation prediction
performance for citation network datasets and MNIST-Add datasets, respectively.

30

Convex and Bilevel Optimization for Neural-Symbolic Inference and Learning

Table 12. Hyperparameter ranges and final values for the HL-MRF learning prediction performance experiments in Table 4.
Dataset Learning Loss Parameter Range Final Value

CreateDebate

Energy Mirror Descent Step Length {1.0e− 3, 1.0e− 2} 1.0e− 3
LCQP Regularization {1.0e− 3, 1.0e− 2} 1.0e− 2

SP Mirror Descent Step Length {1.0e− 3, 1.0e− 2} 1.0e− 2
LCQP Regularization {1.0e− 3, 1.0e− 2} 1.0e− 3

MSE

Mirror Descent Step Length {1.0e− 3, 1.0e− 2} 1.0e− 2
y Step Length {1.0e− 2, 1.0e− 1} 1.0e− 1

Moreau Parameter {1.0e− 3, 1.0e− 2, 1.0e− 1} 1.0e− 2
Energy Loss Coefficient {0, 1.0e− 1, 1, 10} 0.1
LCQP Regularization {1.0e− 3, 1.0e− 2} 1.0e− 3

BCE

Mirror Descent Step Length {1.0e− 3, 1.0e− 2} 1.0e− 3
y Step Length {1.0e− 2, 1.0e− 1} 1.0e− 1

Moreau Parameter {1.0e− 3, 1.0e− 2, 1.0e− 1} 1.0e− 2
Energy Loss Coefficient {0, 1.0e− 1, 1, 10} 10
LCQP Regularization {1.0e− 3, 1.0e− 2} 1.0e− 2

4Forums

Energy Mirror Descent Step Length {1.0e− 3, 1.0e− 2} 1.0e− 3
LCQP Regularization {1.0e− 3, 1.0e− 2} 1.0e− 3

SP Mirror Descent Step Length {1.0e− 3, 1.0e− 2} 1.0e− 3
LCQP Regularization {1.0e− 3, 1.0e− 2} 1.0e− 3

MSE

Mirror Descent Step Length {1.0e− 3, 1.0e− 2} 1.0e− 3
y Step Length {1.0e− 2, 1.0e− 1} 1.0e− 2

Moreau Parameter {1.0e− 3, 1.0e− 2, 1.0e− 1} 1.0e− 3
Energy Loss Coefficient {0, 1.0e− 1, 1, 10} 0
LCQP Regularization {1.0e− 3, 1.0e− 2} 1.0e− 3

BCE

Mirror Descent Step Length {1.0e− 3, 1.0e− 2} 1.0e− 3
y Step Length {1.0e− 2, 1.0e− 1} 1.0e− 2

Moreau Parameter {1.0e− 3, 1.0e− 2, 1.0e− 1} 1.0e− 3
Energy Loss Coefficient {0, 1.0e− 1, 1, 10} 0
LCQP Regularization {1.0e− 3, 1.0e− 2} 1.0e− 3

Epinions

Energy Mirror Descent Step Length {1.0e− 3, 1.0e− 2} 1.0e− 3
LCQP Regularization {1.0e− 3, 1.0e− 2} 1.0e− 3

SP Mirror Descent Step Length {1.0e− 3, 1.0e− 2} 1.0e− 3
LCQP Regularization {1.0e− 3, 1.0e− 2} 1.0e− 3

MSE

Mirror Descent Step Length {1.0e− 3, 1.0e− 2} 1.0e− 2
y Step Length {1.0e− 2, 1.0e− 1} 1.0e− 1

Moreau Parameter {1.0e− 3, 1.0e− 2, 1.0e− 1} 1.0e− 2
Energy Loss Coefficient {0, 1.0e− 1, 1, 10} 0.1
LCQP Regularization {1.0e− 3, 1.0e− 2} 1.0e− 2

BCE

Mirror Descent Step Length {1.0e− 3, 1.0e− 2} 1.0e− 2
y Step Length {1.0e− 2, 1.0e− 1} 1.0e− 1

Moreau Parameter {1.0e− 3, 1.0e− 2, 1.0e− 1} 1.0e− 2
Energy Loss Coefficient {0, 1.0e− 1, 1, 10} 1
LCQP Regularization {1.0e− 3, 1.0e− 2} 1.0e− 2

Citeseer

Energy Mirror Descent Step Length {1.0e− 3, 1.0e− 2} 1.0e− 3
LCQP Regularization {1.0e− 3, 1.0e− 2} 1.0e− 2

SP Mirror Descent Step Length {1.0e− 3, 1.0e− 2} 1.0e− 3
LCQP Regularization {1.0e− 3, 1.0e− 2} 1.0e− 3

MSE

Mirror Descent Step Length {1.0e− 3, 1.0e− 2} 1.0e− 3
y Step Length {1.0e− 2, 1.0e− 1} 1.0e− 2

Moreau Parameter {1.0e− 3, 1.0e− 2, 1.0e− 1} 1.0e− 2
Energy Loss Coefficient {0, 1.0e− 1, 1, 10} 1
LCQP Regularization {1.0e− 3, 1.0e− 2} 1.0e− 2

BCE

Mirror Descent Step Length {1.0e− 3, 1.0e− 2} 1.0e− 2
y Step Length {1.0e− 2, 1.0e− 1} 1.0e− 1

Moreau Parameter {1.0e− 3, 1.0e− 2, 1.0e− 1} 1.0e− 3
Energy Loss Coefficient {0, 1.0e− 1, 1, 10} 0
LCQP Regularization {1.0e− 3, 1.0e− 2} 1.0e− 3

Cora

Energy Mirror Descent Step Length {1.0e− 3, 1.0e− 2} 1.0e− 3
LCQP Regularization {1.0e− 3, 1.0e− 2} 1.0e− 2

SP Mirror Descent Step Length {1.0e− 3, 1.0e− 2} 1.0e− 3
LCQP Regularization {1.0e− 3, 1.0e− 2} 1.0e− 3

MSE

Mirror Descent Step Length {1.0e− 3, 1.0e− 2} 1.0e− 2
y Step Length {1.0e− 2, 1.0e− 1} 1.0e− 1

Moreau Parameter {1.0e− 3, 1.0e− 2, 1.0e− 1} 1.0e− 2
Energy Loss Coefficient {0, 1.0e− 1, 1, 10} 0.1
LCQP Regularization {1.0e− 3, 1.0e− 2} 1.0e− 3

BCE

Mirror Descent Step Length {1.0e− 3, 1.0e− 2} 1.0e− 2
y Step Length {1.0e− 2, 1.0e− 1} 1.0e− 1

Moreau Parameter {1.0e− 3, 1.0e− 2, 1.0e− 1} 1.0e− 2
Energy Loss Coefficient {0, 1.0e− 1, 1, 10} 0.1
LCQP Regularization {1.0e− 3, 1.0e− 2} 1.0e− 3

DDI

Energy Mirror Descent Step Length {1.0e− 3, 1.0e− 2} 1.0e− 3
LCQP Regularization {1.0e− 3, 1.0e− 2} 1.0e− 2

SP Mirror Descent Step Length {1.0e− 3, 1.0e− 2} 1.0e− 3
LCQP Regularization {1.0e− 3, 1.0e− 2} 1.0e− 2

MSE

Mirror Descent Step Length {1.0e− 3, 1.0e− 2} 1.0e− 3
y Step Length {1.0e− 2, 1.0e− 1} 1.0e− 1

Moreau Parameter {1.0e− 3, 1.0e− 2, 1.0e− 1} 1.0e− 3
Energy Loss Coefficient {0, 1.0e− 1, 1, 10} 0.1
LCQP Regularization {1.0e− 3, 1.0e− 2} 1.0e− 2

BCE

Mirror Descent Step Length {1.0e− 3, 1.0e− 2} 1.0e− 2
y Step Length {1.0e− 2, 1.0e− 1} 1.0e− 2

Moreau Parameter {1.0e− 3, 1.0e− 2, 1.0e− 1} 1.0e− 2
Energy Loss Coefficient {0, 1.0e− 1, 1, 10} 0.1
LCQP Regularization {1.0e− 3, 1.0e− 2} 1.0e− 2

Yelp

Energy Mirror Descent Step Length {1.0e− 3, 1.0e− 2} 1.0e− 3
LCQP Regularization {1.0e− 3, 1.0e− 2} 1.0e− 2

SP Mirror Descent Step Length {1.0e− 3, 1.0e− 2} 1.0e− 3
LCQP Regularization {1.0e− 3, 1.0e− 2} 1.0e− 2

MSE

Mirror Descent Step Length {1.0e− 3, 1.0e− 2} 1.0e− 3
y Step Length {1.0e− 2, 1.0e− 1} 1.0e− 2

Moreau Parameter {1.0e− 3, 1.0e− 2, 1.0e− 1} 1.0e− 1
Energy Loss Coefficient {0, 1.0e− 1, 1, 10} 10
LCQP Regularization {1.0e− 3, 1.0e− 2} 1.0e− 2

BCE

Mirror Descent Step Length {1.0e− 3, 1.0e− 2} 1.0e− 3
y Step Length {1.0e− 2, 1.0e− 1} 1.0e− 2

Moreau Parameter {1.0e− 3, 1.0e− 2, 1.0e− 1} 1.0e− 2
Energy Loss Coefficient {0, 1.0e− 1, 1, 10} 0.1
LCQP Regularization {1.0e− 3, 1.0e− 2} 1.0e− 2

31

Convex and Bilevel Optimization for Neural-Symbolic Inference and Learning

Table 13. Hyperparameter ranges and final values for the deep HL-MRF learning prediction performance experiments on Citeseer and
Cora.

Dataset Loss Parameter Range Final Value

Citeseer

Energy Mirror Descent Step Length {1.0e− 3, 1.0e− 2} 1.0e− 3
LCQP Regularization {1.0e− 3} 1.0e− 3

SP Mirror Descent Step Length {1.0e− 3, 1.0e− 2} 1.0e− 2
LCQP Regularization {1.0e− 3} 1.0e− 3

MSE

Mirror Descent Step Length {1.0e− 3, 1.0e− 2} 1.0e− 2
y Step Length {1.0e− 3, 1.0e− 2} 1.0e− 2

Moreau Parameter {1.0e− 3, 1.0e− 2, 1.0e− 1} 1.0e− 1
Energy Loss Coefficient {1.0e− 1, 1, 10} 1.0e− 1
LCQP Regularization {1.0e− 3} 1.0e− 3

BCE

Mirror Descent Step Length {1.0e− 3, 1.0e− 2} 1.0e− 2
y Step Length {1.0e− 3, 1.0e− 2} 1.0e− 3

Moreau Parameter {1.0e− 3, 1.0e− 2, 1.0e− 1} 1.0e− 1
Energy Loss Coefficient {1.0e− 1, 1, 10} 1.0e− 1
LCQP Regularization {1.0e− 3} 1.0e− 3

Cora

Energy Mirror Descent Step Length {1.0e− 3, 1.0e− 2} 1.0e− 2
LCQP Regularization {1.0e− 3} 1.0e− 3

SP Mirror Descent Step Length {1.0e− 3, 1.0e− 2} 1.0e− 2
LCQP Regularization {1.0e− 3} 1.0e− 3

MSE

Mirror Descent Step Length {1.0e− 3, 1.0e− 2} 1.0e− 2
y Step Length {1.0e− 3, 1.0e− 2} 1.0e− 3

Moreau Parameter {1.0e− 3, 1.0e− 2, 1.0e− 1} 1.0e− 1
Energy Loss Coefficient {1.0e− 1, 1, 10} 1
LCQP Regularization {1.0e− 3} 1.0e− 3

BCE

Mirror Descent Step Length {1.0e− 3, 1.0e− 2} 1.0e− 2
y Step Length {1.0e− 3, 1.0e− 2} 1.0e− 2

Moreau Parameter {1.0e− 3, 1.0e− 2, 1.0e− 1} 1.0e− 1
Energy Loss Coefficient {1.0e− 1, 1, 10} 1.0e− 1
LCQP Regularization {1.0e− 3} 1.0e− 3

Table 14. Hyperparameter ranges and final values for the deep HL-MRF learning prediction performance experiments on MNIST-Add
datasets.

Dataset Loss Parameter Range Final Value

MNIST-Add1

Energy Mirror Descent Step Length {1.0e− 14} 1.0e− 14
Adam Step Length {1.0e− 4, 1.0e− 3} 1.0e− 3

LCQP Regularization {1.0e− 3} 1.0e− 3

BCE

Mirror Descent Step Length {1.0e− 14} 1.0e− 14
Adam Step Length {1.0e− 4, 1.0e− 3} 1.0e− 3
y Step Length {1.0e− 3, 1.0e− 2} 1.0e− 3

Moreau Parameter {1.0e− 3, 1.0e− 2, 1.0e− 1} 1.0e− 2
Energy Loss Coefficient {1.0e− 1, 1, 10} 10
LCQP Regularization {1.0e− 3} 1.0e− 3

MNIST-Add2

Energy Mirror Descent Step Length {1.0e− 14} 1.0e− 14
Adam Step Length {1.0e− 4, 1.0e− 3} 1.0e− 3

LCQP Regularization {1.0e− 3} 1.0e− 3

BCE

Mirror Descent Step Length {1.0e− 14} 1.0e− 14
Adam Step Length {1.0e− 4, 1.0e− 3} 1.0e− 4
y Step Length {1.0e− 3, 1.0e− 2} 1.0e− 3

Moreau Parameter {1.0e− 3, 1.0e− 2, 1.0e− 1} 1.0e− 3
Energy Loss Coefficient {1.0e− 1, 1, 10} 10
LCQP Regularization {1.0e− 3} 1.0e− 3

32

