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Abstract
Counterfactual explanations (CEs) based on con-
cepts are explanations that consider alternative
scenarios to understand which high-level seman-
tic features contributed to particular model pre-
dictions. In this work, we propose CEs based on
the semantic graphs accompanying input data to
achieve more descriptive, accurate, and human-
aligned explanations. Building upon state-of-the-
art (SotA) conceptual attempts, we adopt a model-
agnostic edit-based approach and introduce lever-
aging GNNs for efficient Graph Edit Distance
(GED) computation. With a focus on the visual
domain, we represent images as scene graphs and
obtain their GNN embeddings to bypass solving
the NP-hard graph similarity problem for all in-
put pairs, an integral part of CE computation pro-
cess. We apply our method to benchmark and real-
world datasets with varying difficulty and avail-
ability of semantic annotations. Testing on diverse
classifiers, we find that our CEs outperform pre-
vious SotA explanation models based on seman-
tics, including both white and black-box as well
as conceptual and pixel-level approaches. Their
superiority is proven quantitatively and qualita-
tively, as validated by human subjects, highlight-
ing the significance of leveraging semantic edges
in the presence of intricate relationships. Our
model-agnostic graph-based approach is widely
applicable and easily extensible, producing action-
able explanations across different contexts. The
code is available at https://github.com/
aggeliki-dimitriou/SGCE.

1. Introduction
The AI landscape, now dominated by advanced Large Mul-
timodal Models such as GPT4, GPT4V, and Gemini, high-
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Figure 1. Examples where semantic graphs trump concept sets. Ex-
ample 1 (top) shows the importance of the multiplicity of concepts
for edit distance and example 2 (bottom) emphasizes the intricacy
of relations. Edits (substitutions, insertions, deletions) are enclosed
in striped rectangles. Images sourced from Visual Genome (Kr-
ishna et al., 2017), except unsafe driver (Deccan Chronicle, 2016).

lights the widespread use of proprietary models due to their
state-of-the-art (SotA) performance across various modal-
ities and datasets1 (Team et al., 2023). This underscores
the need for increased attention to black-box explainability
methods, especially with the growing related applications
in critical areas like medical image classification (Wu et al.,
2023; Hou & Ji, 2024). Users should have the ability to
understand decision-making processes without accessing
the classifier architecture, emphasizing the importance of
autonomy in scrutinizing proprietary models. To address
this, there is a rising demand for post-hoc/model-agnostic
explainability, an established field with publications in pres-
tigious conferences (Ribeiro et al., 2016; Ying et al., 2019;
Dervakos et al., 2023). In this spirit, this paper proposes
a black-box method to compute Counterfactual Explana-
tions (CEs) (Wachter et al., 2017) based on semantics. The
challenges posed to extract and interpret decision processes
of black-box models, although acknowledged as inherent
trade-offs (Rudin, 2019), lie beyond the scope of this work.

The effectiveness of Conceptual XAI methods is closely tied
to the semantic context of the data they interpret. In fact,

1https://openai.com/research/image-gpt
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Browne & Swift (2020) report that ’there is no explanation
without semantics’, and formally prove that semantics are
the distinguishing factor between CEs and adversarial ex-
amples. The role of annotations as an integral component in
formulating conceptual CEs was first highlighted in Filan-
drianos et al. (2022), where the term ”Explanation Dataset”
was introduced. Its curation is also the initial step of the
counterfactual computation pipeline proposed by the SotA
CE work of Dervakos et al. (2023) (SC), which emphasizes
its significance by urging users to ’choose their data wisely’.
Given that the ultimate recipients of the explanations are
humans, it is crucial to select annotations with precision
and to actively engage domain experts in the process. This
ensures that the explanations are not only accurate but also
meaningful and relevant to the intended audience.

In the context of visual CEs, leveraging semantic annota-
tions instead of superficial pixel-based features is signifi-
cant, but not sufficient if their relations are not represented
accurately. Our work addresses such limitations by struc-
turing the semantics as a graph. In Fig. 1, we see a coarse
representation of depicted concepts and their relations for
source images and CE candidates, using our proposed se-
mantic graphs versus the set of sets representation of SC.
The explanations we provide include counterfactual images
accompanied by the edit graphs from source to counterfac-
tual. Fig. 1 (top) illustrates an example where employing
sets under-represents the edit number by treating the two CE
candidates as equals, despite the varying number of pedes-
trians (man riding bike) between them, potentially leading
to a CE that is not optimal neither in terms of Graph Edit
Distance (GED), nor visually. In other words, SC would
consider a picture of a single rider the same as a photo of
tens of cyclists. Fig 1 (bottom) depicts another problematic
case for SC, where for the same CE the edit path is mis-
leading. Using set representation, it is unclear that the rider
lacks a helmet in the source image, creating the false sense
of no required semantic edits. In contrast, our graph method
recommends adding the ’wearing’ role between ’man on
bike’ and ’helmet’. For ’safe’ vs ’unsafe’ driving classifica-
tion, this edit path is crucial for explanations, both locally
and globally. These two instances motivate the expressivity
of graph-based explanations. By further linking semantics
with external knowledge, we constrain edits to establish that
concepts such as ’man’ and ’woman’ are more closely re-
lated than concepts like ’man’ and ’helmet’; thus, boosting
the interpretability and actionability of our method.

This work serves as an advancement of the previously pre-
sented method by Dervakos et al. (2023), which emphasizes
leveraging semantically rich concepts to obtain CEs within
model-agnostic settings, as long as the participating data
instances are chosen wisely. However, their data representa-
tion lacks the proper incorporation of relationships between
concepts, calling for a more intricate approach. We not

only employ graphs to structure semantic information as
a direct refinement of prior work, but also leverage Graph
Neural Networks (GNNs) for the efficient approximation
of GED between graph instances to compute CEs. Our
findings confirm the significance of correctly representing
the number and interactions of concepts and our method
significantly narrows the gap to the golden standard GED,
achieving closer proximity with fewer edits. To underscore
the efficacy of our approach against methods with access to
the underlying model, we expanded the human survey from
SC and compared our CEs with the white-box CE method
by Vandenhende et al. (2022) (CVE), which, despite be-
ing pixel-level, emphasizes preserving semantic consistency.
Our evaluation aimed to assess both human preferences and
their capacity to comprehend and anticipate the classifier’s
output.

Our survey revealed that participants preferred our CEs in
the majority of instances, and they were also successful in
learning to accurately classify images themselves. This indi-
cates that our approach surpasses the explanatory power of
the white-box method of CVE in clarifying classifier logic
to humans. This finding was further reinforced by replicat-
ing this experiment exclusively providing semantic graphs
and edits to the users, without any images. Participants com-
prehended the classifier’s reasoning and predicted outcomes
effectively, even without the corresponding visual data.

We prove that our work surpasses prior SotA approaches.
Our improvements have been quantitatively assessed and
further substantiated by human surveys - a significant XAI
evaluation tool. The compared methodologies are diverse
in terms of reliance on the features classifiers exploit and
the granularity of information. To combat the challenges of
evaluating the explanations, we establish unified quantitative
and qualitative metrics, applicable in all cases. Further
elaboration is available in the Evaluation section of §4. Our
key contributions are:

• Demonstrating quantitative and qualitative superior-
ity over previous black- and white-box methods, paired
with enhanced adaptability due to our model-agnostic
design,

• Offering more interpretable, expressive, and action-
able CEs using semantic graphs,

• Achieving efficient GED approximation via GNNs
without compromising the representation of concept
interactions.

Our method is novel in employing graphs and GNNs for
counterfactual retrieval. We validate our approach across
four diverse datasets (images & audio), using three neural
and one non-neural classifier, including two human surveys
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and four quantitative and qualitative experiments, yielding
superior outcomes and time efficiency relative to SotA.

2. Related Work
Counterfactual explanations of visual classifiers encom-
pass pixel-level edit methods which focus on marking and
altering significant image areas that influence the model’s
predictions (Goyal et al., 2019; Vandenhende et al., 2022;
Augustin et al., 2022). Contrary to other feature extraction
counterfactual methods, the Counterfactual Visual Expla-
nations (CVE) of Vandenhende et al. (2022) attempt to
enforce semantically consistent area exchanges through an
auxiliary semantic similarity component between local re-
gions. Their semantically driven approach is the prime
choice for pixel-level comparison, also providing a bench-
mark in contrast to techniques with direct classifier access, a
feature distinguishing it from ours. Another vein of research
focuses on human-interpretable concept edits to retrieve
CEs. Abid et al. (2022) propose conceptual CEs in the event
of a misclassification, using a white-box technique based
on Concept Activation Vectors. The work by Dervakos
et al. (2023) (SC) serves as an extension of Filandrianos
et al. (2022), additionally emphasizing the importance of
the Explanation Dataset, and expanding upon the original
graph bipartite matching CE framework by leveraging the
roles between concepts. Our work directly enhances these
approaches, retaining advantageous qualities such as their
model-agnostic nature and definition of object/relation dis-
tance through ontologies. Instead of leveraging Set Edit
Distance and ignoring edges altogether (Filandrianos et al.,
2022) or rolling up the edges into concepts, thus sacrificing
crucial object relation information (Dervakos et al., 2023),
we use the more accurate GED. To this end, we introduce
semantic graphs for increased expressivity and use GNNs
to accelerate GED calculation. A preliminary GNN-based
counterfactual analysis was thoroughly discussed in the con-
current work of (Dimitriou et al., 2024), which compares
various Graph Machine Learning algorithms. Much like
its predecessors, our current paper is centered on the vi-
sual domain and applied to other modalities as a use case.
Consequently, we do not delve into the literature of audio
CEs, for instance. Despite the vast literature on graph CEs
(Prado-Romero et al., 2024), comparison to GNN explainers
(Bajaj et al., 2021; Lucic et al., 2022) is not applicable here,
since we propose utilizing semantic graphs corresponding to
non-graph input data for CE computation. It is noteworthy
that no existing method leverages GNNs for post-hoc CEs,
a novel feature of our approach.

Graph similarity methods such as Graph Edit Distance
(GED) (Sanfeliu & Fu, 1983) are computationally expen-
sive, prompting the use of approximation algorithms. Con-
sidering neural approaches, the ones relevant to our work

leverage GNNs (Bai et al., 2019; Li et al., 2019; Ranjan
et al., 2022). As our paper focuses on embedding extraction
to facilitate CEs instead of the similarity itself, we simply
draw inspiration from previous approaches in implement-
ing our GNN model for semantic graphs, by adopting the
ideas of Siamese GNNs, graph-to-graph proximity training
and Multi-Dimensional Scaling as loss (Bai et al., 2019) to
preserve inter-graph distances in the embedding space.

3. Method
Since the majority of our experiments are conducted with
visual classifiers, we will illustrate our framework within
this domain (Fig. 2). Given a query image I(A) belonging
to a class A, a conceptual CE entails finding another image
I ′(B) ̸= I(A) in a class B ̸= A, so that the shortest edit path
between I(A) and I ′(B) is minimized. Even though there are
different notions of distance between images, we select a
conceptual representation, employing scene graphs to repre-
sent objects and interactions within images. To this end, the
problem of image similarity ultimately reduces to a graph
similarity challenge. However, graph edits (insertions, dele-
tions, substitutions) as a deterministic measure of similarity
between two graphs G(A) and G′

(B) is an NP-hard prob-
lem. Optimal edit paths can be found through tree search
algorithms with the requirement of exponential time. When
searching for a counterfactual graph to G(A) among a set of
N graphs, GED needs to be calculated N−1 times. To min-
imize the computational burden, we use lightweight GNNs
that accelerate the graph proximity process by mapping all
N graphs to the same embedding space. By retrieving the
closest embedding to G(A) that belongs to class B ̸= A,
GED is computed only once per query during retrieval. Con-
cretely, we approximate the following optimization problem
for semantic graphs extracted from any input modality:

GED(min|G(A), G
′
(B)|), such that A ̸= B (1)

Ground Truth Construction As our overall approach
does not rely on pre-annotated graph distances, we propose
a technique to construct well-defined ground truth instances.
The graph structure of data imposes the requirement of defin-
ing an absolute similarity metric between graph pairs for
the training stage. GED is regarded as the optimal choice
despite its computational complexity; computing GED for
only N/2 pairs to construct the training set is adequate for
achieving high quality representations, as validated experi-
mentally. To further facilitate GED calculation, we exploit
a suboptimal algorithm utilizing a bipartite heuristic that
accelerates an already effective in practice LSAP-based al-
gorithm for GED (Jonker & Volgenant, 1987; Fankhauser
et al., 2011). Consequently, semantic information of nodes
and edges should guide graph edits based on their concep-
tual similarity. Thus, we choose to deploy the technique
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Figure 2. Method outline (for image classifiers). Depicted stages directly correspond to Sec. 3 paragraphs. Predicted class labels are: A -
query, B - target, Cx, Cy - any class, others - random class instances. Graph G′

(B) corresponds to counterfactual image I ′(B).

proposed in SC (Dervakos et al., 2023) to assign operation
costs based on conceptual edit distance, as instructed by
the shortest path between two concepts within the WordNet
hierarchy (Miller, 1995).

GNN Training To accelerate the retrieval of the most simi-
lar graph G′

(B) to graph G(A), we build a siamese GNN com-
ponent for graph embedding extraction based on inter-graph
proximity. The GNN comprises two identical node embed-
ding units that receive a random graph pair (G(Cx), G

′
(Cy)

)

as input (Cx, Cy can be any class). The extracted node rep-
resentations are pooled to produce global graph embeddings
(hG(Cx)

, hG′
(Cy)

). Embedding units consist of stacked GNN
layers, described by either GCN (Kipf & Welling, 2016),
GAT (Veličković et al., 2017) or GIN (Xu et al., 2018). We
formalize GCN graph embedding computation in Eq. 2
(omitting class notation for simplicity):

hG =
1

n

n∑
i=1

(uK−1
i +

∑
j∈N (i)

uK−1
j ) (2)

where ui is the representation of node i, N (i) is the neigh-
borhood of i, n is the number of nodes for G and K is
the number of GCN layers. To preserve the similarity of
vectors (hG(Cx)

, hG′
(Cy)

), we adopt the dimensionality re-
duction technique of Multi-Dimensional Scaling (Williams,
2000), as proposed in (Bai et al., 2019). The model is trained
transductively to minimize the loss function L:

L = E(
∥∥∥(hG(Cx)

− hG′
(Cy)

∥∥∥2
2
−GED(G(Cx), G

′
(Cy)

))

(3)
Graphs are embedded in a lower dimensional space by
choosing a random subset of N !

2(N−2)! pairs with varying car-
dinality p. As node features initialization is significant with
regard to semantic similarity preservation, we use GloVe
representations (Pennington et al., 2014) of node labels.

Ranking and Counterfactual Retrieval Once graph em-
beddings have been extracted, they are compared using
cosine similarity to produce rankings. For each query image
I(A) and subsequently its scene graph G(A), we obtain the
instance G′

(B) with the highest rank given the constraint that
I ′(B) is classified in B ̸= A. I ′(B) is proposed as a CE of I(A)

since it constitutes the instance with the minimum graph
edit path from it, classified in a different target category B.
Specifically, we retrieve a scene graph G′

(B) as:

G′
(B) = Gi

(B), argmax
i

(
hGi

(B)
· hG(A)∥∥∥hGi

(B)

∥∥∥∥∥hG(A)

∥∥ ) if B ̸= A

(4)
where i = 1, ..., N . Selecting target class B is correlated
with the characteristics of the dataset in use and the goal of
the explanation itself. Precisely, if the data instances have
ground truth labels, the target class can be defined as the
most commonly confused compared to the source image
class (Vandenhende et al., 2022). Another valid choice is
to arbitrarily pick B to facilitate a particular application,
i.e. explanation of classifier mistakes, in which case B is
the true class of the query image (Abid et al., 2022). We
choose the first approach when ground truth class labels are
available; otherwise, we define the target class as the one
with the most highly ranked instance not classified as A.

4. Experiments
Evaluation comprises quantitative metrics, as well as
human-in-the-loop experiments. Quantitative results are
extracted by comparing the ranks retrieved based on our
obtained graph embeddings to the ground truth ranks re-
trieved by GED. This type of analysis is not present for
SC, despite its significance for objectively assessing CEs
beyond intuitive metrics. The reported metrics are: 1) aver-
age Precision@k (P@k): all top-k GED retrieved results are
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considered relevant, 2) binary P@k and binary NDCG@k:
only top-1 GED result is relevant and its position in retrieved
ranks is emphasized through NDCG, 3) average number of
edits: average number of node/edge insertions, deletions,
and substitutions with different concepts, calculated post-
hoc through GED to ensure fairness.

The use of GED rankings as the golden standard for eval-
uation is clearly motivated by previous work (SC) and re-
inforced by features like: a) its purely semantic nature, b)
completeness in distance representation due to its reliance
on graphs which accurately encompass both objects and re-
lations, c) deterministic nature and applicability regardless
of modality and granularity of the technique under evalu-
ation. Wide applicability is especially important because
baselines include pixel-based methods which define units
of information differently (significant rectangular areas vs
concepts). Thus, investigating the effectiveness of GED
in depth or comparing it with other similar metrics would
divert from the paper’s main focus, as it is already accepted
in the research community.

Human evaluation highlights several aspects of our contri-
butions. First, to validate the quality of our retrieved CEs
against SotA, we ask our evaluators (student volunteers
of engineering backgrounds) to select among two CE al-
ternatives of a query image; an image retrieved from our
method versus an image retrieved either by SC or CVE. We
also test the understandability of our CEs by replicating
the machine-teaching human experiment of CVE, adjusted
to accommodate our graph-based explanations. We design
the same stages (pre-learning, learning, and testing) and
equally divide our annotators into two independent learning
stage variants, namely ’visually-informed’ and ’blind’. The
’blind’ variant is the only different setting from CVE: the
annotators of the ’blind’ learning stage are only provided
with scene graph pairs and graph edits but no images. This
evaluation method is being used for the first time to measure
the reliance of humans on graph concepts rather than visual
cues to understand the reasoning for classification. More
information about human evaluation is provided in App. A.

Experimental settings and objectives Our presented re-
sults involve p ∼ N/2 training graph pairs and the GCN
variant unless mentioned otherwise. We produce graph rep-
resentations using a single Tesla K80 GPU, while all other
computations are done on a 12-core Intel Core i7-5930K
CPU. We utilize PyG (Fey & Lenssen, 2019) for the im-
plementation of GNNs and DGL (Wang et al., 2019) for
approximate GED label calculation. Comparison with CVE
showcases the abilities of our model-agnostic method com-
pared to theirs, which requires white-box model access and
relies on pixel-level edits. On the other hand, comparison
with SC demonstrates the power of graph representations
compared to set-level edits in the black-box conceptual set-

ting. An important clarification is that SC proposes the
use of roles only in the corresponding experiments of §4.3,
meaning that for §4.1, 4.2 they solely rely on concepts.
More details in Appendices C, D, E.

4.1. Counterfactuals on CUB

We experiment with Caltech-UCSD Birds (CUB) (Wah
et al., 2011), despite its lack of ground truth scene graphs.
Nevertheless, they can easily be constructed by leveraging
given structured annotations: we create a central node to
represent the bird and establish ’has’ edges connecting it to
its parts. Each part is linked to its respective attributes using
edges labeled with the corresponding feature type (color,
shape, etc.). To be consistent with CVE, we use ResNet50
(He et al., 2015) as the classifier under explanation.

Quantitative results We examine the agreement between
the counterfactuals I ′(B) retrieved by each method (CVE, SC,
ours) and the ground truth GED. Our approach outperforms
CVE on every ranking metric (Tab. 1). As for SC, metrics
are only valid for k = 1 since it produces a single CE instead
of a rank. Therefore, P@1 for SC is 0.02, much lower than
ours. In addition, we observe that our approach leads to the
lowest number of overall edits: In Tab. 2, we can see that
our method produces about 1 and 2 fewer edits on average
for SC and CVE respectively, strengthening the claim that
our CEs correspond to the minimum number of edits.

Table 1. Comparison of counterfactual retrieval results with ground
truth GED rankings on CUB. Bold denotes best results.

P@k↑ P@k (binary)↑ NCDG@k (bin.)↑
k=1 k=4 k=1 k=4 k=1 k=4

CVE 0.02 0.10 0.02 0.11 0.11 0.26
Ours 0.19 0.34 0.19 0.49 0.23 0.36

Table 2. Average number of node, edge & total edits on CUB. Bold
for best results (lowest number of edits).

Node ↓ Edge ↓ Total ↓
CVE 8.43 4.70 13.13
SC 8.07 3.66 11.73

Ours 6.16 4.34 10.5

Additionally, our CEs are tied to minimum-cost edits; more
specifically, the resulting GED between the query and the re-
trieved counterfactual scene graph obtain lower GED scores
in comparison to both CVE and SC. The related analysis is
presented in App. D.2.

Qualitative results for CUB are presented in Fig. 3 for
three images of class A (Rusty Blackbird), accompanied by
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Figure 3. Results for Rusty → Brewer Blackbird. Bold denotes
best results (lowest number of edits and GED scores).

the number of edits and GED needed to transition to class
B (Brewer Blackbird). Overall, our approach produces the
fewest concept edits. SC leads to clear fallacies like sug-
gesting CEs with additional birds (SC, left), or with a portion
of the bird in view (SC, middle); thus leading to unnecessary
costly deletions and additions. In contrast, our approach mit-
igates such errors via graphs, where concept instances are
uniquely tied to nodes, and their interconnections strongly
guide graph similarity through GED, ultimately producing
a more accurate and expressive notion of distance than flat
unstructured sets. CVE generally fails in finding CEs con-
ceptually similar to the query I(A), as highlighted by the
elevated GED and number of edits. Their approach avoids
SC’s mistakes to an extent by implicitly taking visual fea-
tures like zoom into account. However, it offers no semantic
guarantees, unlike our GED-based approach.

Human evaluation Analyzing the results from the com-
parative human survey (Tab. 3), we deduce that our CEs are
more human-interpretable than both SC and CVE by a
landslide: annotators prefer ours at nearly twice the rate of
the CVE alternative. Compared to SC, despite the increased
amount of undecided annotators, our CEs were preferred 2.6
times more frequently. This proves that despite the close-
ness of the two conceptual methods, ours is more intuitive
to humans, confirming the meaningful addition of linking
concepts within a graph. A chi-square test revealed signif-
icant differences in user preferences between our method
and SC (p = 0.003) as well as our method and CVE (p =
9.21e-08), indicating a notable deviation from the expected
distribution and further validating the reported results.

As for the machine teaching experiment, we obtain the
test set accuracy scores (Tab. 4), as the ratio of correctly
human-classified test images over the total number of test
images. Our visually-informed accuracy clearly outper-
forms reported CVE scores, highlighting that concept-based
CEs are more powerful in guiding humans towards under-
standing discriminative concepts between classes compared
to non-conceptual pixel-level CEs. The ”blind” results show
an expected decrease compared to the visually-informed
ones, but still outperform CVE. The higher accuracy of
concept-based over visual CEs affirms the significance hu-
mans place on higher-level features for classification. De-
tails regarding human evaluation are presented in App. A.

Table 3. Human preference; Win%=% times our method was pre-
ferred, Lose% for vice-versa, Tie% when equally preferred. Bold
denotes higher human preference per method.

Ours Win% Lose% Tie%
SC 48.86 19.32 31.82

CVE 48.42 26.27 25.31

Table 4. Human test accuracy scores for correct classification of
samples in classes A and B. Bold for top accuracy score.

Human experiment Test accuracy %↑
Ours (visually-informed) 93.88

Ours (blind) 89.28
CVE 82.1

Actionability concerns CVE may lead to non-actionable
CEs, despite training on visual semantic preservation. To
elaborate, we observe the following: CVE suggests that only
adding a striped pattern in a Gray Catbird’s wing is adequate
to classify it as a Mockingbird. However, by exhaustively
generating all annotated attribute combinations of this new
bird instance, we easily find several occurring attribute pairs
that are not representative of the Mockingbird class; namely,
no other Mockingbird has an eyering head pattern and grey
breast color. Actionability dictates the prescription of attain-
able goals achieved through CEs that accurately represent
the underlying data distribution (Poyiadzi et al., 2020). To
this end, our approach not only selects CEs drawn from the
existing target class distribution but also considers all edits
needed to convert query to counterfactual image. There-
fore, through GED we formalize a more holistic approach
to distance and path between counterfactual pairs and si-
multaneously leverage relations between depicted objects,
both visual (relations on the image) and semantic (relations
mapped to WordNet synsets). Further analysis in App. E.3.

6



Structure Your Data: Towards Semantic Graph Counterfactuals

Global counterfactuals in terms of graph edits require
a standardized unit to be changed, in our case referring ei-
ther to graph triples in a (concept-edge-concept) format or
merely to concept edits as parts of graph triples. Both ap-
proaches regard the aggregation of local edits to explain the
given classifier from a higher-level perspective. In the case
of CUB, global CEs highly correlate with human perception:
by considering the Parakeet Auklet → Least Auklet class
transition, some key characteristics of the source class (such
as the (’beak’, ’shape’, ’specialized’) triplet) need to be
deleted, while others (such as the (’beak’, ’shape’, ’cone’)
triplet) should be added. Further details in App. D.4.

4.2. Towards conceptual counterfactuals

We focus our analysis on conceptual counterfactuals since
the previous sections exhibited the indisputable merits of
such approaches against the SotA pixel-level method of
CVE. In the interest of experimenting on a less controlled
dataset, we employ Visual Genome (VG) (Krishna et al.,
2017), a dataset containing over 108k human-annotated
scene graphs, describing scenes of multiple objects and
their in-between interactions. We construct two manageable
subsets of 500 scene graphs each, corresponding to ∼125k
possible training graph pairs for our GNNs. The first subset
denoted as VG-RANDOM is randomly selected, while the
second one, named VG-DENSE, is chosen to favor higher
graph densities and less isolated nodes to highlight the im-
portance of object interconnections. Details are provided
in App. B. VG instances lack ground truth classification la-
bels, allowing us to test our counterfactual retrieval method
without the definition of a certain target class. We classify in-
stances using a pre-trained Places365 classifier (Zhou et al.,
2017), and regard as counterfactual classes the closest ones
in rank. Specifically, we employ a pre-trained ResNet50 (He
et al., 2015), as proposed in the original Places365 paper.

Quantitative Results We first compare the average num-
ber of edits for our method and SC (Tab. 5). Initially,
numerical results between the two methods seem similar,
but upon closer inspection in conjunction with average GED
results of Tab. 6, our method’s superiority is evident. VG
contains concepts which are much more diverse than CUB,
and despite the knowledge-based contraints we enforced
during GED computation, edit distance is expected to be
higher between concepts. Note that this is not true for mean
GED since CUB has a higher number of average edits. To
this end, our method leads to lower GED in all cases, even
when number of edits is higher (VG-RANDOM). Some
extra analysis is provided in App. D.2.

Regarding CE approximation to ground truth GED, results
for our approach are presented in Tab. 7 denoted as GCN-
70K. As for SC, P@1 is 0.25 on VG-DENSE and 0.20 on
VG-RANDOM, compared to 0.25 and 0.21 retrieved by

Table 5. Average number of node, edge & total edits on VG. Bold
denotes best results (lowest number of edits).

VG-DENSE VG-RANDOM
Node↓ Edge↓ Total↓ Node↓ Edge↓ Total↓

SC 4.91 7.29 12.2 12.15 7.52 19.67
Ours 4.95 7.15 12.11 12.18 7.54 19.72

Table 6. Average top-1 GED (VG) for CEs when methods disagree.
Bold for best (lowest) GED scores for each dataset split.

VG-DENSE ↓ VG-RANDOM ↓
SC 128.67 186.77

Ours 122.41 180.67

our method. GED approximation is satisfactory but close
between methods due to a general agreement in CE retrieval.
Despite this fact, our approach still leads in all reported met-
rics, especially for VG-DENSE, displaying superiority in
cases of disagreement. Ranking results consistent with our
analysis are also obtained using GQA (Hudson & Manning,
2019), a VG variant which focuses on question-answering,
as reported in App. D.3. Reported findings place great
significance in examining qualitative results.

Table 7. Ranking results on the two VG variants for various GNNs.
Bold numbers indicate best ranking metrics.

P@k ↑ P@k (binary)↑ NDCG@k
(binary)↑

Models k=1 k=4 k=1 k=4 k=1 k=4
VG-DENSE

Kernel 0.13 0.17 0.13 0.26 0.19 0.33
GIN-70K 0.16 0.27 0.16 0.38 0.20 0.34
GAT-70K 0.18 0.32 0.18 0.44 0.22 0.35
GCN-70K 0.25 0.37 0.25 0.49 0.28 0.41

VG-RANDOM
Kernel 0 0.01 0 0.01 0.10 0.25

GIN-70K 0.03 0.07 0.03 0.07 0.22 0.38
GAT-70K 0.18 0.29 0.18 0.38 0.11 0.27
GCN-70K 0.21 0.30 0.21 0.42 0.25 0.38

Qualitative results By examining counterfactual images
retrieved for VG-DENSE in Fig. 4 (left), there is a clear
indication that by considering the complex relations between
concepts, our method achieves more detail-oriented results:
in the 1st column, our approach not only retrieves an image
with ’man’, ’board’, ’water’ concepts, but also the relation
’man on board’. In the 3rd column, we consider the relation
of toppings and retrieve the pizza, while SC simply retrieves
an image with similar concepts, (’bun’ and ’bread’ or ’meat’
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Figure 4. Qualitative results (best metrics in bold): VG-DENSE (left 3 columns) and VG-RANDOM (right 3 columns).

and ’sausage’). Results on VG-RANDOM (Fig. 4 (right))
follow the same logic. In columns 4-5, our method retrieves
the focal points of the images since it regards relations
between trees and other objects. Taking into account the
sparsity of the underlying graphs, however, in some cases
the importance of concepts trumps the underlying structure,
as in the 6th column. This fact is reflected in the elevated
number of edits of our method for VG-RANDOM, yet it is
not true for GED, showcasing once again the importance of
semantic context. More details in App. E.2.

Why GCN? Ranking metrics of GNN models are pro-
vided in Tab. 7. Three GNN variants (GAT, GIN, GCN) are
trained using p = N/2 =70k scene graph pairs. The GCN-
based variant consistently approaches GED the closest, with
a binary P@4 of 49% and P@1 of 24.80% for VG-DENSE
and slightly worse results on VG-RANDOM. GCN system-
atically scores higher in comparison to theoretically more
competent GNN alternatives, such as GIN. We attribute this
finding to the importance of local neighborhood information
for our small yet semantically dense graphs. Specifically,
the VG graphs considered in our experiments rarely exceed
3-4 hops, as briefly demonstrated in App. E.2. GIN does not
incorporate node features during aggregation resulting in a
limited notion of semantic similarity. This ablation study af-
firms using GCN for the GNN-based similarity component
of our approach. GNNs can also outperform other promi-
nent deterministic methods, like graph kernels (Grauman &
Darrell, 2007). The reported findings grant us the security
that our counterfactual explanations are trustworthy, even
when applied to complex scene graphs.

4.3. Extendability of graph-based counterfactuals

The flexibility of our approach is proven under two scenar-
ios: a) its application on unannotated images, b) its expan-

sion into other modalities. For direct comparison to SC we
provide global CEs by averaging overall graph triple edits.

Unannotated datasets We replicate Dervakos et al.
(2023)’s experiment on explaining the classification of web-
crawled creative-commons images into ’driver’ and ’pedes-
trian’ classes. Here, images were manually classified by
the authors; thus, we explain a non-neural classifier. By
employing the SotA scene graph generator (SGG) of Cong
et al. (2023) we extract global edits from generated graphs
for the transition from ’pedestrian’ to ’driver’ (Fig. 5(left)).
Their relevance is verified by our common sense: people
wear helmets when driving -addition of (helmet, on, head)
and (man, on, bike)- and cover the bike seat with their body
-deletion of (seat, on, bike)-. To validate our method’s con-
sistency across other annotation techniques, we replace the
SGG with a pipeline of captioning (BLIP (Li et al., 2022))
and graph parsing (Unified VSE (Wu et al., 2019)). We
confirm that resulting edits (Fig. 5 (right)) semantically
resemble the ones in Fig. 5 (left). Overall, similarly to
Fig. 1, more accurate local edits are achieved through the
consideration of the multiplicity of objects and relations.
Generic triple edits result from errors in the automatic anno-
tation pipeline, emphasizing the importance of meticulous
explanation dataset curation. We provide further details re-
garding the ’pedestrian’ vs ’driver’ classification experiment
in App. F. Additionally, we experiment with more unanno-
tated datasets of scene images, such as Action Genome (Ji
et al., 2020), which is presented in App. F.

Audio classification Despite focusing on images, we
briefly demonstrate our method’s model-agnostic nature by
applying it for audio classification, following SC. We pro-
vide CEs using the Smarty4covid dataset (Zarkogianni et al.,
2023) for the IEEE COVID-19 sensor informatics competi-
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Figure 5. Graph edits (triples inserted/ deleted) to implement the
’pedestrian’ → ’driver’ transition. The yellow color distinguishes
edge from node labels within a triple.

tion winner2, which predicts COVID-19 from cough audio.
Our findings align with SC, revealing the high frequency of
concept edits among respiratory symptoms and uncovering
the same gender bias. No new findings are produced for
this primarily concept-based dataset with trivial intercon-
nections, once again placing the focus on the nature and
density of the annotations. However, we confirm that our
method is at least as good as SC in these cases nonetheless.
More results regarding the audio classification experiment
are discussed in App. G.

4.4. Efficiency of graph-based counterfactuals

Time Performance for Counterfactual Retrieval From
a theoretical standpoint, our method’s efficiency is expected.
The heaviest part of GNN computations occurs during
model training, where each backward call is correlated with
the square of the number of nodes in addition to the number
of edges. Inference, on the other hand, is nearly instanta-
neous and is linearly correlated with the sum of the number
of nodes and edges in a graph (Blakely et al., 2019).

Additionally, we experimentally confirm that our method
allows for efficient CE retrieval: In Tab. 8, we report ex-
ecution times for CE computation on the complete sets
of graphs using GED (Fankhauser et al., 2011) versus our
GNN-powered approach. We further report retrieval and
inference time of our method. Even by adding times for all
GCN-N/2 operations, we significantly relieve the computa-
tional burden of calculating the ground truth GED for all
graph pairs, especially for larger graphs.

Performance-complexity trade-off In Fig. 6, we exam-
ine how retrieval precision varies using different numbers of
training pairs p on CUB (Fig. 6b) and the two VG variants
(Fig. 6a). P@k does not exhibit significant increase in any
case after the ∼ N/2 pairs mark (70k for VG and 50k for
CUB). On the contrary, it could remain identical (Fig. 6a
left) or even decrease (Fig. 6b). The same precision pattern

2IEEE COVID-19 sensor informatics competition

Table 8. Time (sec) for counterfactual calculation. Training time is
reported due to the transductivity of the GNN method.

GED
↓

GCN-N/2
(train)↓

GCN-N/2
(retr.)↓

GCN-N/2
(infer.)↓

CUB 46220 32691 0.03 0.06
VG-DENSE 13982 12059 0.03 0.06

VG-RANDOM 18787 16271 0.03 0.10

per p is experimentally validated on the GQA dataset (Ap-
pendix D.3). The consistency of behavior exhibited over
∼ N/2 pairs concludes our claim that N/2 training pairs
are adequate for appropriate graph embedding using GCN.

(a) VG variants

(b) CUB

Figure 6. P@k of GCN variant for different training pairs p on the
two main datasets explored.

5. Conclusion
In this paper, we proposed a new model-agnostic approach
for counterfactual computation based on the expressive
power of semantic graphs. To this end, we suggested coun-
terfactual retrieval by GED calculation, employing a GNN-
based similarity model to accelerate the otherwise NP-hard
retrieval process between all input graph pairs. Comparison
with previous CE models proved that our explanations cor-
respond to minimal edits and are more human interpretable,
especially when interactions between concepts are dense,
while still ensuring actionability. We further confirmed the
applicability of our framework on datasets without anno-
tations. There is ample room for future work, including
exploring potential limitations, like robustness and the im-
pact of low quality annotations, as well as further improving
the efficiency by employing unsupervised GNN methods.
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A. Human evaluation details
A.1. Participants and Consent

We distributed an information sheet describing the goals and stages of our human surveys to software engineering students
online. We clarified that their participation would be voluntary and without any form of compensation. We additionally
distributed the following form to obtain annotators’ consent in the form of a checklist. We used the same form both for the
machine teaching as well as the counterfactual preference experiment. The 33 people who ultimately participated were
young adults of ages 19-25 both male and female, without any knowledge of bird species.

Figure 7. Screenshot of the consent form for human evaluation. Our annotators fill out this form before they proceed with annotations.

Our human survey was completely anonymous and we did not record any type of personal data from our annotators.

A.2. 1st experiment: comparative human survey

In Fig. 8, we present a screenshot of the platform we provided to our evaluators for the comparative user survey. Users are
asked to select a sample to annotate, as shown in the panel of Fig. 9. We ensured that our evaluators can clearly view the
images and their details by providing ’zoom-in’/’zoom-out’ tools, as well as the ability to navigate within the image with the
’pan’ and ’move’ options.

An annotator can click on any sample to be annotated, thus moving to a screen such as the one of Figure 9. The source
image is presented on the left, and the two alternative options (ours versus a counterfactual image of CVE (Vandenhende
et al., 2022) or SC (Dervakos et al., 2023)) are placed in the middle and the rightmost column. These options are shuffled in
each sample, so that no bias towards each choice is created. Only one of the options (”Image 1”, ”Image 2” or ”Can’t tell”)
can be selected for each sample.

In this first human experiment, our annotators can evaluate as many samples as they wish; however, they cannot update an
existing annotation. All 33 annotators participated in this experiment.

A.3. 2nd experiment: machine-teaching human survey

We once again employ the same platform as for the previous human experiment. However, this time each annotator can only
evaluate one single sample; we enforce this restriction to clearly evaluate the contribution of the learning phase, excluding
situations that an annotator could have become more ’competent’ after passing many times through the learning phase.

The experimental workflow is adopted from (Vandenhende et al., 2022), therefore we include all the three stages (pre-learning,
learning and testing).

Pre-learning stage In the pre-learning stage, users are presented with unlabeled images from the test set to get familiarized
with the nature of the images they will be tasked to classify later on. Fig. 10 is provided as an example of the pre-learning
screen. The annotators become aware that the classification to the anonymized classes A and B cannot be performed without
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Figure 8. Screenshot of the platform provided for human evaluation.

Figure 9. Annotation panel with instructions and image navigation tools provided to the evaluators for CUB.

passing through the learning stage, therefore selecting ”I don’t know” is the expected option. In Fig. 10, we can explicitly
see the three options for image classification, namely ”Class A”, ”Class B” or ”I don’t know”. Only one can be selected at a
time, as in (Vandenhende et al., 2022).

Learning stage The learning stage comprises the heart of this human experiment. As mentioned in the main paper, we
perform two variants of it to measure the degree of reliance on concepts, according to human perception. A user can either
participate in the ”visually-informed” or the ”blind” experiment, but not both. This is necessary so that we exclude the
possibility of evaluating the same data sample in each of the experiments and thus eliminate the possibility of having some
knowledge transfer across the two variants of this experiment. Annotators are divided into equal subgroups (17 in the
”visually-informed” variant and 16 in the ”blind” one).

In the visually-informed variant, annotators are presented with training images from anonymized classes A and B, together
with their scene graphs, as shown in Figures 11, 12, 13. Of course, training and test images do not overlap. Annotators are
again provided with ’zoom-in’/’zoom-out’, ’pan’, ’move’ tools, etc. to navigate within the images and the accompanying
scene graphs.
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Figure 10. Pre-Learning stage instructions for CUB machine teaching experiment. Choices are ”Class A”, ”Class B” or ”I don’t know”.

Training images on the left always belong to class A, while images on the right always belong to class B. Scene graphs on
the right also contain the edits needed to perform the A → B transition, with green nodes representing concept additions,
blue nodes indicating concept substitutions (both source and target concepts of the substitution are shown), and red nodes
denoting concept deletions. The rest of the nodes imply that the corresponding concepts remain the same between the two
classes.

A user implicitly focuses on the most frequent insertions, substitutions, and deletions performed throughout the training
stage to understand the discriminative features between class A and class B. Associating such concepts with the images
helps mapping graph edits to visual differences so that the user learns to separate classes visually and conceptually.

In the blind variant of the learning stage, only scene graphs are provided, but no training images. Also, the graph edits
are presented to the users via colored nodes. This learning variant is a direct analogy to the machine-teaching learning
stage implemented by Vandenhende et al. (2022): in their case, pixels corresponding to discriminative regions that act as
explanations are provided, while the rest of the bird image is blurred out. Therefore, annotators need to learn solely from the
explanation and mentally connect the corresponding concepts to existing visual regions of the testing images. In our case,
the derived explanations correspond to graph edits, therefore annotators have to learn the discriminative concepts that are
added, substituted, or deleted to perform the A → B transition. However, since our learning setting is performed without
any visual clue, we regard our blind learning stage as being more difficult than the learning stage that (Vandenhende et al.,
2022) implement; our annotators have to connect concepts with image regions, thus performing cross-modal grounding in
order to learn discriminative features.

Throughout the blind learning stage, we are able to measure the reliance on concepts rather than pixels to learn to classify
images of unknown classes. This experiment is important in order to highlight how meaningful and informative conceptual
explanations are to humans, so that they can approximate a zero-shot classification setting.

Testing stage In the testing stage, users are provided with the same images as in the pre-learning stage. No scene graphs
are provided. Based on the previous stage, annotators should have learned visual and conceptual differences between classes;
therefore, they are tasked to assign an appropriate class to each test image, by selecting either ”class A” or ”class B” for
each of them. Contrary to the pre-learning stage, the option ”I don’t know” is not provided.

After this stage, an accuracy score is extracted per user, based on their correct selections in the testing stage. We then extract
an average accuracy per user, which we report in the main paper. Our average accuracy for the visually-informed experiment
is 93.88%, indicating that in most cases users are highly capable of recognizing the key concepts that separate the two
given bird classes, grounding them with visual information. As for the blind experiment, the average testing accuracy is
89.28%. Being rather close to the visually-informed accuracy percentage, we can safely assume that concepts are more
than adequate towards teaching discriminative characteristics to humans, even if they lack association with purely visual
information. Both visually-informed and blind accuracy scores clearly outperform the accuracy scores reported in CVE,
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Figure 11. Example of the visually-informed learning stage.

Figure 12. Example of the visually-informed learning stage.
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Figure 13. Example of the visually-informed learning stage.

demonstrating that conceptual explanations are more meaningful and informative to humans compared to pixel-level
explanations.

Figure 14. Distribution of test accuracy for machine
teaching human evaluation experiments.

Accuracy score distribution In Fig. 14, we present a more detailed
analysis of the accuracy scores achieved by human subjects during the
testing phase of the machine teaching experiment. It is apparent that
scores peak at 0.9 and 1.0; thus, explanations produced by our method
are highly human-interpretable and beneficial to perform classification.
Comparison between ’visually-informed’ and ’blind’ results reveals
that the decrease in test accuracy for the experiment without a visual
aid is gradual.

Applicability of machine-teaching experiment The machine-
teaching experiment is purposely run exclusively on the CUB dataset.
To highlight the merits of the learning phase: annotators have no
knowledge of bird species, therefore they can highly benefit from
learning discriminative bird attributes, and then apply this new knowl-
edge in the testing phase. For example, none of the annotators knows
the difference between a Parakeet Auklet and a Least Auklet. Never-
theless, after the learning stage, they are able to recognize the basic
discriminative attributes, which will help them classify instances of
the test phase. On the other hand, Visual Genome contains images of common everyday scenes, rendering a similar
experiment rather redundant in such instances. For example, a human already knows key concepts that discriminate a
kitchen from a bedroom, therefore the learning stage would be of no value, even if the scene labels are anonymized. We can
view this scenario as an analog to data leakage.
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Moreover, there is always a possibility that some concepts can be misleading. In such cases, we expect visual classifiers
to present a bias towards such concepts, while this is not the case for humans. For example, a TV can be present in both
kitchens and bedrooms. However, in a hypothetical scenario that selected bedroom images have TVs, but kitchen images do
not, the graphs that serve as explanations would contain many ”add TV” nodes. Therefore, a human expects to classify
images containing TVs in one class, and images that do not contain TVs in the other (as a visual classifier would do if
trained on such data). But when finally humans are presented with real test images, they will not be misled by the presence
or the absence of TVs, but rather rely on their commonsense to perform classification. Thus, not only is the learning stage
redundant, but the obvious existing bias ”add TV” is not reflected in the final classification; in this case, the counterfactual
explanation itself would be of no value to humans.

B. Graph statistics

Table 9. Statistics regarding graphs of different datasets used in the main paper.

VG-DENSE VG-RANDOM CUB D/P-SGG D/P-CAPTION SMARTY

Mean

density 0.20 0.06 0.04 0.13 0.25 0.23
edges 9.04 8.77 27.52 9.37 1.76 4.40
nodes 7.25 14.57 28.52 9.73 3.20 5.40

isolated nodes 0.47 3.37 0 0.32 0.90 0

Max

density 0.47 0.67 0.11 1.0 0.5 0.33
edges 36 27 53 18 4 15
nodes 15 20 54 18 5 16

isolated nodes 3 12 0 3 4 0

Min

density 0.14 0.01 0.02 0.05 0.05 0.06
edges 5 5 8 1 1 2
nodes 6 4 9 2 2 3

isolated nodes 0 0 0 0 0 0

Table 10. Statistics regarding graphs of different datasets in the appendix.

AG GQA

Mean

density 0.19 0.24
edges 13.23 8.14
nodes 8.84 6.66

isolated nodes 1.17 1.37

Max

density 0.45 1.0
edges 51 20
nodes 17 12

isolated nodes 2 15

Min

density 0.1 0.13
edges 4 5
nodes 5 4

isolated nodes 0 0

In Tab. 9 we present some additional statis-
tics regarding the graphs of the datasets used
in our work (max and min details). VG-DENSE
and VG-RANDOM contain 500 graphs each,
CUB contains 422 graphs, D/P-SGG and D/P-
CAPTION denote the web-crawled datasets
with 259 graphs each and SMARTY denotes
the COVID-19 classification dataset with 548
graphs. Table 10 contains additional statistics
about datasets utilized only in the appendix.
These are GQA (Hudson & Manning, 2019) with
500 graphs mentioned in App. refsec:quant-
additional and Action Genome (AG) (Ji et al.,
2020) with 300 graphs mention in App. ref-
sec:unannotated. The size and density of input
data should be considered when viewing results
in the experimental section.

C. Experimental Settings
In addition to details regarding resources used for the experimental setup mentioned in the main paper, we further report
specific training configurations for GNN models. All presented results were achieved using single-layer GNNs of a
dimension of 2048, built as explained in Sec. 3 of the main paper. For reproducibility purposes, we report that these models
were optimized for a batch size of 32 and trained for 50 epochs, without the use of dropout. The employed optimizer was
Adam without weight decay. The respective learning rate varied among GNN variants. To be precise, we used a learning
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rate of 0.04 for GCN and 0.02 for GAT and GIN. GAT and GIN also have model-specific hyperparameters - attention heads
and the learnable parameter epsilon respectively. Best results were achieved by leveraging 8 attention heads and setting
epsilon to non-learnable.

Last but not least, an important hyperparameter of the GNN models is the number of training pairs, denoted as p. As
explained, optimal models used p ≈ N/2, which varies among datasets. Specifically, the parameter p is set to 70K for
datasets with 500 graphs, 50K for datasets with 422 graphs, and 25K for datasets with 300 graphs. However, we also
conducted ablations on the number of training pairs, setting p to values reported in Fig. 5 of the main paper. In those cases,
we explored using 16%, 40%, and 80% of the existent graph pairs, in addition to the ”golden” 50%.

Regarding graph kernels that were employed for comparison, we report that the Pyramid Match kernel was used with its
default settings. The settings include leveraging labels, a histogram level L of 4, and hypercube dimensions d of 6.

The classifier in our CUB experiments (ResNet-50) was chosen in alignment to experiments performed in the works
compared and recreated here. As for the choice of the Places365 instead of a pretrained ImageNet classifier, it was conscious.
Despite the latte being potentially more widely recognized and researched, it is trained on the ImageNet dataset, which
primarily consists of foreground objects. In Visual Genome, the majority of instances depict scenes, providing substantial
background. Although some instances focus more on specific objects, they are still situated within a particular environment.
In contrast, ImageNet classifiers face challenges with such inputs, as only about 3% of the target classes in the corresponding
dataset pertain to broader scenes. Classifiers for the rest of the datasets are explained in detail in the following sections.

The code for all experiments is provided within the zip file of the supplementary material, accompanied by comprehensive
instructions.

D. Quantitative Experiments
D.1. Graph Kernels

Graph kernels are kernel functions used on graphs that measure similarity in polynomial time, providing an efficient and
widely applicable alternative to GED. In the context of this paper, we experimented with several kernels from the GraKeL
library (Siglidis et al., 2020), as a baseline measure for counterfactual retrieval. Our goal is to guarantee that our GNN
framework outperforms such methods. We present results from the best-performing kernel Pyramid Match.

Pyramid Match (PM) kernel The PM (Grauman & Darrell, 2007; Nikolentzos et al., 2017) graph kernel operates by
initially embedding each graph’s nodes in a d-dimensional vector space using the absolute eigenvectors of the largest
eigenvalues of the adjacency matrix. The sets of graph vertices are compared by mapping the corresponding points in the
d-dimensional hypercube to multi-resolution histograms, using a weighted histogram intersection function. The comparison
process occurs in several levels, corresponding to different regions of the feature space with increasing size. The algorithm
counts new matches at each level - i. e. points in the same region - and weights them according to the size of the level. The
cells/regions double in size in each iteration of the algorithm.

This procedure is applicable to graphs with node/edge labels; thus, we cannot leverage GloVe embeddings for initialization.
Matches exist only between points with the exact same label. The overall complexity of the algorithm is O(ndL), which
compared to other kernel methods is quite computationally expensive.

D.2. Average GED

Table 11. Average top-1 GED
on CUB. Bold numbers denote
best results.

CUB ↓
CVE 257.20
SC 263.80

Ours 211.69

In addition to the average number of edits metric and the ranking metrics using the ground
truth GED as the golden standard, we present the average GED of the top-1 counterfactual
results. This supplementary measure serves to explicitly enhance comprehension of the
significance of semantic context. Notably, within the main paper, our qualitative results
illustrate scenarios where, despite an equal (or lower) number of edits, the GED can at
times be higher. This divergence arises because edits are not uniformly weighted but rather
based on their semantic similarity.

For the VG dataset, we present results comparing ”Normal” and ”Refined” outcomes. In
this context, ”Refined” denotes presenting averages exclusively when the two methods
yield distinct counterfactuals. We adopted this approach due to the observation that 75%
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Table 12. Refined average number of node, edge & total edits on VG.

VG-DENSE VG-RANDOM
Node↓ Edge↓ Total↓ Node↓ Edge↓ Total↓

SC 4.73 7.65 12.38 11.96 7.48 19.44
Ours 5.07 6.96 12.03 12.37 7.52 19.89

of CEs for VG-DENSE and 73% for VG-RANDOM were identical between methods, creating an impression of increased
result proximity. To provide a comprehensive view, we furnish more refined average number of edits results in Table 12.
Notably, for the CUB dataset, such an analysis is unnecessary; nonetheless, we include the average top-1 GED in Table 11.

D.3. Additional Datasets

Table 13. Ranking results on GQA for different graph models.

P@k ↑ NDCG@k ↑ P@k (binary) ↑ NDCG@k (binary) ↑
k=1 k=2 k=4 k=1 k=2 k=4 k=1 k=2 k=4 k=1 k=2 k=4

PM 0.06 0.10 0.05 0.65 0.65 0.68 0.10 0.15 0.20 0.17 0.22 0.31
GIN-70K 0.16 0.24 0.29 0.70 0.70 0.72 0.16 0.27 0.39 0.20 0.25 0.34
GAT-70K 0.13 0.17 0.22 0.66 0.68 0.69 0.13 0.21 0.30 0.18 0.24 0.32
GCN-70K 0.19 0.29 0.34 0.73 0.73 0.74 0.19 0.33 0.48 0.22 0.28 0.36

Figure 15. Comparison of the GCN performance mea-
sured in P@k for different number of training pairs p
for GQA.

Ranking results for GQA The analysis performed on Visual
Genome (VG) is extended on the GQA dataset (Hudson & Man-
ning, 2019). In fact, GQA comprises a variant of VG focusing on
compositional question-answering involving real-world scenes. Since
GQA images and accompanying scene graphs are very similar to the
ones involved in our VG analysis, the obtained results verify the find-
ings reported for VG without offering other novel insights. In Tab. 13
we present per-model results for 70K training pairs. GCN remains the
most powerful architecture compared to the other ones, an observation
validating the findings reported for the rest of the datasets.

Performance-complexity trade-off for GQA In Fig. 15 we present
the performance analysis for different numbers of training pairs p
on the GQA dataset, focusing on our best-performing model (GCN).
Once again, N/2 ∼ 70K pairs are adequate for learning proper repre-
sentations of scene graphs, validating our initial claim that GED does
not have to be computed for more than N/2 graph pairs to obtain a
satisfactory approximation.

Ranking results for Action Genome are presented in Tab. 14, while number of edits for Action Genome is presented in
Tab. 15, both for N/2 = 25K.

D.4. Global edits on CUB

By aggregating edits from each image participating in the dataset, we can extract global edits: they describe what needs to
be changed in total to explain the transition from one class to the other. These edits are more meaningful in the form of
graph triples, but we can also provide concept or relationship edits. In Figure 16a, we provide the triple edits to explain the
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Table 14. Ranking results on AG.

P@k ↑ NDCG@k ↑ P@k (binary) ↑ NDCG@k (binary) ↑
k=1 k=2 k=4 k=1 k=2 k=4 k=1 k=2 k=4 k=1 k=2 k=4

GCN-25K 0.17 0.21 0.27 0.70 0.70 0.72 0.17 0.26 0.41 0.21 0.27 0.35

Table 15. Average number of node, edge & total edits on AG.

Node↓ Edge↓ Total↓

GCN-25K 4.87 7.99 12.86

Parakeet Auklet → Least Auklet counterfactual transition. Similarly, in Figure 16b we present global edits for concepts
appearing on CUB images. The results align with human perception.

(a) (b)

Figure 16. Triple and concept edits (insertions, deletions, substitutions) to perform Parakeet Auklet → Least Auklet transition.

E. Qualitative analysis
E.1. Counterfactual graph geometry on CUB

Our framework is capable of retrieving counterfactual graphs that not only respect node and edge semantics, but also graph
geometry. This observation corresponds to more accurate retrieval capabilities that focus on semantic information regarding
bird species without being significantly distracted from irrelevant characteristics such as the background. This can be an
encouraging characteristic of our counterfactuals towards more robust explanations, even though this aspect is not analyzed
in the current paper. First, we present a qualitative example of this claim. In Figure 17, we search for the most similar image
to 17a using the method of CVE and ours.

Apparently, both counterfactual images are visually similar, as appearing in Fig. 17b and 17c. However, the representation
power of scene graphs becomes evident in this case. In Fig. 18 we present the scene graphs corresponding one-to-one to the
images of Fig. 17. The most similar graphs of 18a correspond to the graph of 18b according to CVE and 18c according to
our approach. It is evident that our approach can successfully retrieve graphs that better respect the geometry of the source
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(a) Query image (b) Top-1 retrieved by CVE (c) Top-1 retrieved (ours)

Figure 17. A counterfactual explanation example.

(a) Graph of class Parakeet Auklet corre-
sponding to query image of Fig. 17a.

(b) Counterfactual graph of target class
Least Auklet corresponding to Fig. 17b
(as retrieved by CVE).

(c) Counterfactual graph of target class
Least Auklet for Fig. 17c (as retrieved by
our GCN-70K).

Figure 18. Example of scene graph structures of counterfactual graphs for Parakeet Auklet → Least Auklet class transition.
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image scene graph. Another observation is that our approach manages to retrieve an image without the concepts ’leg’ or
’tail’ which is more accurate compared to the source. Therefore, structural similarity leads to better semantic consistency.

E.2. Graphs of Visual Genome

In Fig. 19 (VG-DENSE) and 20 (VG-RANDOM) we present the corresponding graphs to counterfactual images of Visual
Genome produced by our method and the method of SC (Dervakos et al., 2023).

(a) Source Graphs

(b) Counterfactual graphs using the method of SC

(d) Counterfactual graphs (ours)

Figure 19. Qualitative Results on graphs for counterfactuals presented in Fig. 4 of the main paper for VG-DENSE.

Inspection of VG-DENSE graphs clearly indicates that our method retrieves counterfactual instances that not only have
similar concepts on nodes and edges but are also structurally closer. Suggesting counterfactual images with emphasis on
object interactions leads to more accurate and meaningful explanations. For instance, in the first column, the relation ’surfer
riding board’ translates to ’man on board’ for our method, whereas for SC (Dervakos et al., 2023) the man is essentially
holding the board (’cord on board’, ’cord on man’).

In the case of VG-RANDOM where graphs have many isolated nodes and fewer edges, the comparison is not as
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straightforward. In columns 1 and 2 of Fig. 20, our method retrieves visually more similar instances by combining semantics
and structure; thus, managing to preserve the main interacting concept of the image. However, when relations are sparse in
the source graph, a greater amount of similar concepts will lead to better counterfactuals.

(a) Source Graph

(b) Counterfactual (SC)

(d) Counterfactual (ours)

Figure 20. Qualitative Results on graphs for counterfactuals presented in Fig. 4 of the main paper for VG-RANDOM.

E.3. Actionability of edits

We present two non-actionable counterfactual explanations produced by CVE and leverage their method of converting visual
CEs into natural language. This approach enables us to precisely define changes between the query and counterfactual
instances, which would be challenging with purely visual information. Having emphasized the importance of high-level
semantics for human-interpretable CEs, we evaluate the inferred explanations based on linguistic cues rather than pixel-level
edits. Both provided examples are deemed successful explanations.
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(a) (b)

Figure 21. Counterfactual images from CVE and the proposed explanations using natural language.

(Vandenhende et al., 2022) often propose single edits on the query image (left images of Figs. 21a, 21b) and deem
them sufficient for the transition from query to target class. However, as explained in Sec. 4.1 of the main paper,
this approach disregards the rest of the edits needed to be made between I(A) and I(B) and leads to instances that are
in fact out-of-distribution. In the main paper, we gave an example that corresponds to Fig. 21a. In addition to the
combination (’has head pattern::eyering’, ’has breast color::grey’) that was reported in text, we provide several other
attribute combinations that do not exist in any other bird of the target class in Tab. 16.

Table 16. Out of distribution attribute pairs for target classes.

Gray Catbird → Mockingbird

(’has head pattern::eyering’, ’has breast color::grey’)
(’has head pattern::eyering’, ’has belly color::grey’)
(’has breast color::grey’, ’has nape color::brown’)

(’has breast color::grey’, ’has shape::swallow-like’)
(’has upper tail color::white’, ’has wing shape::pointed-wings’)

(’has breast color::grey’, ’has primary color::brown’)
(’has throat color::grey’, ’has shape::swallow-like’)
(’has belly color::grey’, ’has shape::swallow-like’)
(’has shape::swallow-like’, ’has leg color::black’)

Black billed → Yellow billed Cuckoo

(’has upperparts color::buff’, ’has upper tail color::white’)
(’has back color::white’, ’has head pattern::plain’)

(’has upper tail color::white’, ’has head pattern::plain’)
(’has upper tail color::white’, ’has size::very small (3 - 5 in)’)

(’has upper tail color::white’, ’has back pattern::solid’)
(’has upper tail color::white’, ’has leg color::buff’)
(’has head pattern::plain’, ’has nape color::white’)
(’has nape color::white’, ’has back pattern::solid’)
(’has nape color::white’, ’has tail pattern::solid’)

(’has size::very small (3 - 5 in)’, ’has bill color::grey’)
(’has leg color::buff’, ’has bill color::grey’)

Furthermore, we present one more example in Fig. 21b.
(Vandenhende et al., 2022) claim that removal of the
brown color from the crown of the Black billed cuckoo
in Fig. 21b (left) is sufficient for it to be classified as
a Yellow billed cuckoo. After performing such an edit
we obtain a new bird instance that retains the same
features as the bird depicted in Fig. 21b (left), except
it no longer has a brown crown. By generating all pairs
of attributes of this new bird, we discover that none of
the attribute pairs listed in Tab. 16 are representative
of any bird in the target class (Yellow billed cuckoo).

It is straightforward to understand that more examples
can easily be found throughout the dataset. Given the
definition of target classes used in this example (most
frequently confused by the classifier), counterfactual
pairs are generally visually and semantically close. If
we chose a different definition of the target class and
picked one that is dissimilar to the query class, we
can deduce that the list of out-of-distribution attribute
combinations would be much longer.

Regarding our method, actionability, in the sense of
counterfactuals being representative of the data distri-
bution, is inherent. This guarantee arises from the fact
that counterfactuals are actual samples from the target
class, specifically the most similar ones to the query,
and that we offer complete explanations.To be precise,
the proposed counterfactual explanations consist of
lists of all graph edits needed to transit from query
I(A) to target I(B).

E.4. Additional results

CUB In Fig. 22 we provide some additional visual results of counterfactuals comparing our method with SC and CVE.
Despite the visual similarity of the retrieved counterfactual images given all three methods, our approach consistently
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Figure 22. Additional qualitative results of counterfactuals of the source class Parakeet Auklet belonging to target class Least Auklet. We
also provide number of total edits per method, with colored instances denoting best results.

achieves significantly fewer number of total edits.

F. Applicability to unannotated datasets
Applicability to unannotated datasets is a valid concern given our approach’s dependence on scene graphs. As previously
established, graphs of images can be obtained either through manual annotations or automated construction methods.
However, not all datasets have such readily available resources, therefore we invest our efforts around proving the applicability
of our proposed approach to completely unannotated datasets.

Studying the impact of annotations is an important aspect, since an intrinsic characteristic of semantic explanations is their
dependence on the knowledge of the individual that provides them. This inherent explainability attribute impacts systems
in the same way it does humans. The knowledge supplied to an explainer will determine the specificity and scope of the
explanations. Selecting the appropriate annotation technique is a critical step in receiving the desired breadth and depth of
explanations.

In the following experiments, we explore these concerns by extracting counterfactual explanations via our proposed
framework on unannotated datasets. Our framework is able to explain any classifier in a black-box manner, either being a
non-neural classifier (humans in the case of the pedestrian vs driver experiment) or a convolution-based model (Zhou et al.,
2017) (in the case of Action Genome).
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Web images: pedestrian vs driver Dervakos et al. (2023) gather images from Google, Bing, and Yahoo search engines
corresponding to ’people’, ’motorbikes’, and ’bicycles’ keywords and their combinations, and then manually split them
in ’pedestrian’ and ’driver’ classes. Finally, 190 ’driver’ images were obtained (63 images of bicycle drivers and 127 of
motorcycle drivers) and 69 ’pedestrian’ images (31 images of people and parked bicycles, and 38 images of people and
parked motorcycles). Those classes are also adopted by us to highlight the importance of relationships (as claimed in
Dervakos et al. (2023)), as well as extend this claim to support the usage of graphs over the relationship roll-up of SC. By
rolling up the roles and converting them into concepts, we might unintentionally overlook important details for a given task.
For example, when examining an image depicting a person on a motorbike in a store, alongside another motorbike on the
street, by inspecting the scene graph, it is easy to assume that the scene represents a dealership, with the person testing the
motorbike for potential purchase, without actually driving it. However, as (Dervakos et al., 2023) encode this information
with the objects: person, riding.motorbike, motorbike, in.store, and motorbike, on.road, they lose the distinction of
which motorbike the user is actually riding, potentially leading to erroneous explanations. Nevertheless, leveraging the
information within the graph allows us to arrive at more accurate conclusions, especially in fields as critical as Explainable
Artificial Intelligence (XAI).

Apart from providing triple edits to explain the ’pedestrian’ vs ’driver’ classification, we also provide global relationship
edits to discover if they are meaningful on their own. Indeed, relationship edits are meaningful in general, especially since
the ’riding’ relationship is inserted frequently (Figure 23, left plot corresponds to immediately deriving the SGG from
the image, while the plot on the left denotes the edits occurring from captioning and then obtaining the graph from the
caption). Moreover, the relationship ’on’ appears frequently (in the SGG case), again confirming the action of sitting on a
bike/motorcycle in order to drive.

Figure 23. Relationships inserted/ deleted/substituted to implement the ’pedestrian’ → ’driver’ transition.

Similarly, we extract global edits for concepts discriminating the pedestrian/driver categories. These edits are presented in
Figure 24. By observing these plots (SGG - left, captioning and graph from text - right) we conclude that these edits are not
really meaningful according to human perception: inserting wheels does not explain the ’pedestrian’ → ’driver’ transition,
since in both classes bike/motorbike wheels may appear as part of these vehicles. The same observation is valid for the rest
of the concepts appearing on these plots, resulting in noisy conceptual edits. To this end, we verify that explanations are
human-dependable, i.e. a human is the final evaluator of any explanation, and while a method is able to provide semantically
meaningful explanations (in this case relationship edits), it is possible that at the same time the same method provides
meaningless explanations (in this case concept edits). Nevertheless, if the derived explanations are not conceptual, a human
cannot verify their validity; therefore, we can safely claim that human interpretability of explanations is highly tied to
semantics.

Action Genome We test our method in a real-world image dataset extracted from Action Genome (Ji et al., 2020), a video
database depicting human-object relations and actions. It is completely unannotated and also like VG has no predetermined
classes for its instances. AG results are not presented in the main paper because they offer no new insights compared to
other extendability experiments. However, a brief qualitative analysis was deemed interesting enough to present in the
appendix. We select a subset of 300 individual frames and generate scene graphs following well-established SGG methods3.
After applying our CE method using predictions made by (Zhou et al., 2017), we obtain results comparable to previous
experiments. Specifically, the binary retrieval metrics ranged from 0.17 - 0.41 for P@k and 0.21 - 0.35 for NDCG@k,

3SGG on Action Genome
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Figure 24. Concepts inserted/ deleted/substituted to implement the ’pedestrian’ → ’driver’ transition.

while overall average edits were 12.86. This experiment validates the relative ease of obtaining graphs from images and
demonstrates the applicability of our method to AI-generated graphs of varying quality.

In Fig. 25, we offer some qualitative results on the AG dataset. Instances in this custom AG subset are individual video
frames that depict mostly indoor spaces with or without people at a variety of angles and settings. Due to the lack of control
in this case, we have identified specific categories that are more meaningful to human perception, such as ’kitchen’, ’hall’,
and ’living room’.

By observing these examples, we can initially note that automatically generated graphs provide a satisfactory representation
of the images. However, there are missing details and known biases resulting from imbalanced triple and relation distributions
in VG, where the SGG models are trained. We analyze the counterfactuals while acknowledging the potentially lower
quality of the input graphs. Since this part of the experiments aims to demonstrate the applicability of our method to
unannotated datasets, in-depth analysis is not performed. Nonetheless, we can observe that the retrieved graphs exhibit
structural similarities and share common concepts, which is also visually apparent. For instance, images featuring kitchens
often involve the removal of cabinets located above counters, while tables are prevalent in hallway depictions.

G. Applicability on other modalities
We will provide some details on the modality-agnostic nature of our approach, and specifically results on audio classification.

The process of SMARTY graph generation differs compared to our previous experiments in a few key ways. In this new
approach, each user or patient was directly connected to their symptoms and characteristics, which were defined to be
audible to a certain extent. Symptom analysis involved treating certain symptoms as sub-symptoms when necessary, based
on the hierarchical structure presented in Dervakos et al. (2023)’s SMARTY hierarchy, as opposed to using WordNet for
computing node edit costs. Regarding edges in the graph, a simpler strategy was adopted due to the limited number of edge
types. Specifically, the approach considered edge swaps between different edge types, as well as the addition and deletion of
edges, as costly operations.

To initialize the GNN similarity component, custom BioBert (Lee et al., 2020) embeddings were utilized because the
language used in the medical field is specific and distinct from general language, unlike previous approaches that relied
on simple Glove embeddings. These changes were made to enhance the accuracy and relevance of the SMARTY graph
generation.

In Table 17 comprehensive global edit lists can be found. It is important to note that in Table 17, triple edits refer to edge
edits and the concepts adjacent to them. For the sake of readability, we have omitted the head and predicate of the triples,
where all heads are the ’User’ concept and all predicates represent symptoms or sub-symptoms. The second half of 17 on
the other hand, focuses on node edits, regardless of edges. Evidently, there is agreement with Table 17, but there are also
additional noteworthy findings. One of these findings relates to the reported gender bias mentioned in Dervakos et al. (2023),
and another suggests a correlation between COVID-19 positivity and younger users.
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Table 17. Global triple and concept edits for COVID-19 Negative → Positive.

Concept Edits Normalized Counts

’Sneezing’ 1.0
’RunnyNose’ 0.78
’DryThroat’ 0.35

’Fever’ 0.34
’Dizziness’ 0.31
’Fatigue’ 0.22

’Respiratory’ 0.22
’DryCough’ 0.21
’TasteLoss’ 0.21

’Cough’ 0.16

Triple Edits Normalized Counts

’Sneezing’ 1.0
’RunnyNose’ 0.73

(’Male’, ’Female’) 0.68
’DryThroat’ 0.36

’Fever’ 0.35
’Dizziness’ 0.31

(’Fourties’, ’Twenties’) 0.29
’DryCough’ 0.23

’Fatigue’ 0.23
’Respiratory’ 0.23

H. Limitations
Our work is subject to certain limitations. First of all, our experiments involving the CUB and VG datasets are highly
dependent on the existing annotations, thus influencing the quality of the derived conceptual explanations. Specifically,
the generated semantics through SGG are influenced by the training datasets, namely VG. This limitation was addressed
through the comparison of our method’s consistency among two vastly different graph generation methods. Despite the
positive results validated by the similar produced global edits, there is much room for exploration in this domain. We plan to
engage in this venture in our future research. Moreover, pre-trained image classifiers, such as ResNet50 and Places365 may
produce imperfect labels for the images under consideration, which may influence the resulting counterfactual explanations.
CEs are also characterized by known limitations, such as robustness (Slack et al., 2021). While we have not addressed
this particular limitation in our work, we plan to explore it in our future work. Despite these limitations, we have ensured
actionability guarantees with the aim of improving the quality of the provided counterfactuals.
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(a)

(b)

(c)

Figure 25. Counterfactual examples from AG dataset for query images belonging to the class ”kitchen”. Here, CEs are classified as ”hall”
or ”living room”.
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