
Learning-Rate-Free Stochastic Optimization over Riemannian Manifolds

Daniel Dodd 1 Louis Sharrock 1 Christopher Nemeth 1

Abstract
In recent years, interest in gradient-based opti-
mization over Riemannian manifolds has surged.
However, a significant challenge lies in the re-
liance on hyperparameters, especially the learning
rate, which requires meticulous tuning by prac-
titioners to ensure convergence at a suitable rate.
In this work, we introduce innovative learning-
rate-free algorithms for stochastic optimization
over Riemannian manifolds, eliminating the need
for hand-tuning and providing a more robust and
user-friendly approach. We establish high prob-
ability convergence guarantees that are optimal,
up to logarithmic factors, compared to the best-
known optimally tuned rate in the deterministic
setting. Our approach is validated through nu-
merical experiments, demonstrating competitive
performance against learning-rate-dependent al-
gorithms.

1. Introduction
We study Riemannian optimization problems of the form

min
x∈M

f(x), (1)

where f is a geodesically convex function, and M is a Rie-
mannian manifold. In recent years, there has been a grow-
ing interest within the machine learning community in ad-
dressing optimization challenges on such geometric spaces.
These problems manifest in diverse applications, including
principal component analysis (Edelman et al., 1998), dictio-
nary learning (Sun et al., 2017), low-rank matrix completion
(Boumal & Absil, 2011), tensor factorization (Ishteva et al.,
2011), Gaussian mixture models (Hosseini & Sra, 2015)
and metric learning (Zadeh et al., 2016).

One of the prominent hurdles in applying Riemannian
gradient-based optimization is the requirement for careful

1Department of Mathematics and Statistics, Lan-
caster University, UK. Correspondence to: Daniel Dodd
<d.dodd1@lancaster.ac.uk>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

(a) Learning rate too large.

RDoG RSGD Optima

(b) Learning rate too small.

Figure 1. Rayleigh quotient maximization on the unit sphere. Our
algorithm, RDoG, converges without tuning, while RSGD shows
sensitivity to the learning rate, leading to (a) overshooting or (b)
slow convergence.

tuning of the learning rate or step size parameter. Selecting
an appropriate learning rate is imperative to the algorithm’s
performance, impacting the convergence rate, final solution
quality, and overall algorithm stability. To illustrate, Figure
1 showcases the impact of inadequate learning rates on the
convergence rate of Riemannian stochastic gradient descent
(RSGD, Bonnabel, 2013).

Recently, the expense and lack of robustness associated
with learning rate tuning have spurred substantial research
of learning-rate-free methods for Euclidean optimization.
These aim to automate tuning by crafting algorithms that
achieve near-optimal convergence rates with minimal knowl-
edge of the function’s properties and do not have any tun-
ing parameters. Notable examples include online learning
schemes like coin betting (Orabona & Pál, 2016) and ex-
ponentiated gradients (McMahan & Orabona, 2014) and
bisection subroutines (Carmon & Hinder, 2022). Our paper
addresses the absence of comparable tools for Riemannian
optimization with the first comprehensive study of learning-
rate-free algorithms in this setting.

Contributions: Building upon the recently proposed Dis-
tance over Gradients (DoG, Ivgi et al., 2023) and Distance
over Weighted Gradients (DoWG, Khaled et al., 2023) Eu-
clidean optimization approaches, we introduce dynamic
learning-rate-scheduler algorithms for stochastic Rieman-
nian optimization. Our results establish high probability con-
vergence guarantees, achieving optimal convergence rates
with logarithmic factors in smooth and Lipschitz settings,
rendering them a robust solution for geodesically convex
stochastic optimization on Riemannian manifolds.
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2. Preliminaries
2.1. Riemannian Geometry

In this section, we recall some fundamental definitions
from Riemannian geometry (e.g., Petersen, 2006; Lee, 2012;
Boumal, 2023).

Riemannian manifold, tangent space, metric. A Rieman-
nian manifold M is a smooth, locally Euclidean space.
At each point x on M, there is a corresponding tan-
gent space TxM representing all possible tangential di-
rections, endowed with a smoothly varying inner product
⟨·, ·′⟩x : Tx × Tx → R termed the Riemannian metric, that
induces a norm ∥·∥x =

√
⟨·, ·⟩x. The metric measures an-

gles, curve lengths, surface areas, and volumes locally, with
global quantities obtained by integrating these contributions.

Geodesics and distances. The length of a curve c : [0, 1] 7→
c(t) ∈ M is L(c) =

∫ 1

0
∥c′(t)∥c(t)dt. Generalizing straight

lines leads to geodesics, constant speed curves represent-
ing the shortest path between points x and y on the man-
ifold: γ = argminc L(c) with γ(0) = x, γ(1) = y, and
∥γ′(t)∥γ(t) = 1, establishing a metric space structure with
geodesic distance d(x, y) = infc L(c).

Exponential maps. The concept of moving along a
“straight” curve with constant velocity is given by the expo-
nential map. As such, for any point x on M, and any
tangent vector v ∈ TxM, there is a unique unit speed
geodesic γ satisfying γ(0) = x and γ′(0) = v. The corre-
sponding exponential map expx : TxM → M is defined
as expx(v) = γ(1). When expx is well-defined on TxM
for all x ∈ M, the geodesic distance d(x, y) is given by
∥exp−1

x (y)∥x.

Parallel transport. Parallel transport Γy
x : TxM → TyM

provides a means to move tangent vectors from one tangent
space to another while preserving their norm, and roughly
speaking, “direction,” analogous to translation in Euclidean
space.

Curvature. The curvature of a Riemannian manifold is
determined by its metric at each point. The sectional cur-
vature at a point x on the manifold is the Gauss curvature
of a two-dimensional submanifold formed as the image of a
two-dimensional subspace of the tangent space TxM under
the exponential map.

Trigonometric bound. The law of cosines in Euclidean
space is fundamental for analyzing optimization algorithms,

a2 = b2 + c2 − 2bc cos(A),

where a, b, c are the sides of a Euclidean triangle with A
the angle between sides b and c. Trigonometric geometry
behaves differently in manifolds compared to Euclidean
spaces. While the equality does not hold for nonlinear

spaces, a trigonometric distance bound can be established
for manifolds with sectional curvature bounded below.
Lemma 2.1. (Zhang & Sra, 2016, Lemma 5) Suppose a, b, c
are the side lengths of a geodesic triangle ∆ in a Rieman-
nian manifold with sectional curvature lower bounded by
κ > −∞ and A is the angle between sides b and c (defined
through the inverse exponential map and inner product in
tangent space). Then

a2 ≤ ζκ(c)b
2 + c2 − 2bc cos(A),

where ζκ : R+ → R is the geometric curvature function

ζκ(d) =


√

|κ|·d
tanh

(√
|κ|·d

) , if κ < 0,

1, if κ ≥ 0.

Proof. Given by Lemma 3.12 of (Cordero-Erausquin et al.,
2001) and by Lemma 5 of (Zhang & Sra, 2016).

2.2. Function Classes

Geodesic convexity. M is geodesically convex if every two
points are connected by a geodesic. A function f : M → R
is geodesically convex if, for any geodesic γ ⊂ M,

f(γ(t)) ≤ (1− t)f(γ(0)) + tf(γ(1)), ∀t ∈ [0, 1].

Equivalently, M is geodesically convex if, for any x, y ∈
M, there exists a tangent vector ∂f(x) ∈ TxM such that

f(y) ≥ f(x) + ⟨∂f(x), exp−1
x (y)⟩x,

where ∂f(x) is a Riemannian subgradient of f at x. When
f is differentiable, {∂f(x)} = grad f(x), the Riemannian
gradient of f at x, defined as the tangent vector in TxM
satisfying

⟨grad f(x), v⟩x = df(x)[v],

where df(x) : TxM → R denotes the differential of f at x.

Geodesic Lipschitz. A function f : M → R is said to be
geodesically L-Lipschitz if, for all x, y ∈ M, there exists a
constant L > 0 such that,

|f(y)− f(x)| ≤ L · ∥exp−1
x (y)∥x.

When f is differentiable, the geodesically L-Lipschitzness
is equivalent to ∥grad f(x)∥x ≤ L for all x ∈ M.

Geodesic smoothness. A differentiable function f is
geodesically S-smooth if its gradient is geodesically S-
Lipschitz. That is, if for all x, y ∈ M,

∥grad f(x)− Γx
y grad f(y)∥x ≤ S · ∥exp−1

x (y)∥x,

where Γx
y is the parallel transport from y to x. One can show

in this case that

f(y) ≤ f(x) + ⟨grad f(x), exp−1
x (y)⟩x +

S

2
· ∥exp−1

x (y)∥2x.
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3. Algorithms and Theory
We are interested in solving optimization problems of the
form (1). We proceed under the following standard regular-
ity conditions (Zhang & Sra, 2016; Alimisis et al., 2020a).

Assumption 3.1 (Geodesic convexity). The geodesically
convex function f : M → R attains its minimum at x⋆

within its closed and geodesically convex domain M, which
includes a well-defined exponential map.

Assumption 3.2 (Lower bounded sectional curvature). M
exhibits sectional curvature bounded from below: κ > −∞.

To minimize f , we will assume access to a stochastic gradi-
ent oracle G. When queried at x ∈ M, the oracle returns
a stochastic (sub)gradient estimator G(x) which satisfies
E [G(x)|x] ∈ ∂f(x). In a slight abuse of notation, we will
henceforth write grad f(x) := E [G(x)|x]. We consider the
following additional assumptions.

Assumption 3.3 (Locally bounded stochastic gradients).
There exists some continuous function ℓ : M → R+ such
that ∥G(x)∥x ≤ ℓ(x) almost surely.

Assumption 3.4 (Locally smooth stochastic gradients).
There exists some continuous function s : M → R+ such
that ∥G(x)−Γx

yG(y)∥x ≤ s(x)∥exp−1
x (y)∥x, almost surely.

Assumption 3.3 corresponds to the Riemannian analog of
Ivgi et al. (2023)’s locally bounded gradient assumption,
whereas Assumption 3.4 introduces a novel condition.

3.1. Riemannian Stochastic Gradient Descent

Our work centers on the Riemannian stochastic gradient
descent algorithm (RSGD) introduced by Bonnabel (2013),
which from an initial point x0 ∈ M iterates the following
update rule:

xt+1 = expxt
(−ηtgt).

Here t ≥ 0 denotes the iteration index, gt := G(xt) repre-
sents the stochastic gradient oracle, and ηt > 0 is a user-
chosen learning rate or step size parameter.

Our analysis commences by characterizing the “ideal step
size” in the deterministic gradient setting, an extension of
Theorem 9 from Zhang & Sra (2016).

Theorem 3.5. Under noiseless conditions and Assumption
3.1, and 3.2, RSGD with a constant step size ηt = η > 0,
for a geodesically L-Lipschitz function, satisfies

min
t≤T

[f(xt)− f(x⋆)] ≤

[
d̄2T
2ηT

+
ηζκ(d̄T )

∑T
t=0∥gt∥2xt

2T

]
,

where d̄t := maxs≤t ds, ds = d(xs, x⋆). Minimizing
this bound with respect to η, gives a convergence rate of

O

(
Ld̄T

√
ζκ(d̄T )

T

)
with corresponding “ideal step size”

η⋆ =
d̄T√

ζκ(d̄T )
∑T

t=0∥gt∥2xt

.

Proof. See Appendix B.1.

3.2. Riemannian Distance Over Gradients

In practice, determining the “ideal step size” η⋆, even in
hindsight, is challenging due to its dependence on the un-
known maximum distance d̄T . In this section, we introduce
an adaptive algorithm that estimates this whilst attaining the
optimal convergence rate up to a logarithmic factor.

Learning-rate-free schedule for RSGD. Our key proposal,
inspired by Ivgi et al. (2023), is to estimate d̄T via a proxy,

r̄t := max
s≤t

rs, rs := max(d(x0, xs), ϵ),

where ϵ > 0 is an initial estimate. Intuitively, the maximum
deviation from the starting point should reflect the maximum
deviation from the optimum, assuming the RSGD iterations
converge to the optimum. Integrating this estimation into
the “ideal step size,” we establish an adaptive sequence of
step sizes

ηt =
r̄t√

ζκ(r̄t)
∑t

s=0∥gs∥2xs

.

We term this step size schedule as Riemannian Distance over
Gradients (RDoG, Algorithm 1). Observe that the initial
step gives a step size of ϵ/∥g0∥x0

, a normalized gradient
step of size ϵ. We demonstrate that, provided ϵ is chosen
sufficiently small, the specific value is insensitive.

Algorithm 1 RDoG
Input: initial point x0, initial estimate ϵ > 0, G−1 = 0.
for t = 0 to T − 1 do

gt = G(xt)
r̄t = max (ϵ,maxs≤t d(xs, x0))
Gt = Gt−1 + ||gt||2xt

ηt =
r̄t√

ζκ(r̄t)Gt

xt+1 = expxt
(−ηtgt)

end for

Optimality gap bounds assuming bounded iterates. We
bound the error of the weighted average sequence

x̃t+1 = expx̃t

(
r̄t/
√
ζκ(r̄t)∑t

s=0 r̄s/
√
ζκ(r̄s)

exp−1
x̃t

(xt)

)
, x̃1 = x0.
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To simplify our analysis, we write log+(·) := 1 + log(·)
where the logarithm has a base of e, and introduce the fol-
lowing quantities

Gt :=

t∑
s=0

∥gs∥2xs
, θt,δ := log

(
60 log(6t)

δ

)
.

Our first result establishes a bound on the optimality gap
under bounded iterates.

Theorem 3.6. Suppose that Assumption 3.1, 3.2, and 3.3
hold. Then, for all δ ∈ (0, 1) and L > 0, and for all
t ≤ T , RDoG (Algorithm 1) satisfies the optimality gap
f(x̃t)− f(x⋆) of

O

 (d0 + r̄t)
√
ζκ(d0 + r̄t)

√
Gt−1 + θt,δGt−1 + θ2t,δL

2∑t−1
s=0

r̄s/
√

ζκ(r̄s)

r̄t/
√

ζκ(r̄t)

 ,

with probability at least 1− δ − P(ℓ̄T > L), where ℓ̄T :=
maxs≤T ℓ(xs).

Proof. See Appendix D.2.

This theorem yields a corollary for bounded manifolds.

Corollary 3.7. Under Assumption 3.1, 3.2, and 3.3, for
any D ≥ d0, let LD := maxx∈M:d(x,x0)≤D ℓ(x). Then, for

all δ ∈ (0, 1) and for τ ∈ argmaxt≤T

∑t−1
s=0

r̄s/
√

ζκ(r̄s)

r̄t/
√

ζκ(r̄t)
,

RDoG (Algorithm 1) satisfies the optimality gap f(x̃τ ) −
f(x⋆) of

O

D
√
ζκ(D)

√
Gτ−1θτ,δ + L2

Dθ2τ,δ

T
log+

(
D
√

ζκ(ϵ)

ϵ
√
ζκ(D)

) ,

with probability at least 1− δ − P(ℓ̄T > L).

Proof. See Appendix D.2.

Unlike prior work on bounded domains (e.g., Zhang & Sra,
2016; Wang et al., 2021), our approach adapts without
knowledge of the domain width to set the learning rate,
achieving optimality up to a logarithmic factor.
Remark 3.8. We enhance this result to a high probability
convergence guarantee of O(1/T ) under uniformly aver-
aged iterates, following Assumption 3.4 in Appendix D.3.
Remark 3.9. In Appendix D.4, we ensure bounded iterates
with high probability by slightly reducing step sizes.
Remark 3.10. Omitting the geometric curvature term ζκ(·)
from RDoG’s step sizes and weighted averaging results in
an additional cost of O(

√
ζκ(D)) in the optimality gap.

Further details are available in Appendix D.5.

3.3. Normalized Riemannian Stochastic Gradient
Descent

We consider extending standard Euclidean normalized gradi-
ent descent (Shor, 2012; Levy, 2016; Konnov, 2003; Hazan
et al., 2015) to Riemannian manifolds, providing scale-free
adaptability, with updates of the form

xt+1 = expxt

(
−ηt

grad f(xt)

∥grad f(xt)∥xt

)
, x0 ∈ M.

We term this algorithm Normalized Riemannian Stochastic
Gradient Descent (NRSGD). In the deterministic Euclidean
setting, normalized gradient descent automatically adjusts
to the Lipschitz constant in non-smooth optimization (Nes-
terov, 2018, Theorem 3.2.2) and the smoothness constant(s)
in smooth optimization (Grimmer, 2019, Corollary 2.2).
This adaptability extends to NRSGD, as we will demon-
strate.

Theorem 3.11. Under noiseless conditions and Assumption
3.1, and 3.2, NRSGD with a constant step size ηt = η > 0,
for a geodesically L-Lipschitz function, satisfies

min
t≤T

[f(xt)− f(x⋆)] ≤ L

[
d̄2T
2ηT

+
η

2
ζκ(d̄T )

]
.

While for a geodesically S-smooth function, we have

min
t≤T

[f(xt)− f(x⋆)] ≤ 2S

[
d̄2T
2ηT

+
η

2
ζκ(d̄T )

]2
.

Minimizing these give respective convergence rates

O

(
Ld̄T

√
ζκ(d̄T )

T

)
and O

(
2Sd̄2

T ζκ(d̄T )
T

)
with correspond-

ing “ideal step size”

η⋆ =
d̄T√

Tζκ(d̄T )
.

Proof. See Appendix C.1.

Learning-rate-free schedule for NRSGD. Normalization
brings adaptivity to Lipschitz and smoothness settings, using
a common universal “ideal step size”. However, like RSGD,
this “ideal step size” relies on the intractable maximum
distance quantity d̄T . Our solution is to substitute this with
our proxy r̄t, resulting in our second algorithm, Normalized
Riemannian Distance over Gradients (NRDoG) algorithm,
summarized in Algorithm 4 in Appendix F.

3.4. Riemannian Distance Over Weighted Gradients

Weighted learning-rate-free schedule for RSGD. We
introduce a third algorithm Riemannian Distance over
Weighted Gradients (RDoWG, Algorithm 2) that extends
the recently proposed Distance over Weighted Gradients
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(DoWG) (Khaled et al., 2023) to the Riemannian set-
ting. Like RDoG and NRDoG, RDoWG estimates the in-
tractable maximum distance quantity d̄T by utilizing the
maximum distance deviation from the initial point, r̄t. How-
ever, in RDoWG, the normalization is based on the square
root of the weighted gradient sum, vt =

∑t
s=0 r̄

2
s ||gs||2xs

,
rather than simply the square root of the gradient sum
Gt =

∑t
s=0 ||gs||2xs

.

The motivation for this normalization choice, as discussed
in Khaled et al. (2023), lies in its improved adaptation to the
problem geometry, especially in regions far from the initial-
ization at x0. Specifically, as the distances {r̄t}t≥0 mono-
tonically increase, later gradients receive greater weights
than earlier gradients. This choice aligns with the prac-
tice in previous Riemannian optimization schemes such as
RADAM (Becigneul & Ganea, 2019), which also utilizes
weighted gradient sums. However, unlike RADAM, where
weights are determined by fixed user-selected hyperparame-
ters, RDoWG adaptively estimates these weights.

Algorithm 2 RDoWG
Input: initial point x0, initial estimate ϵ > 0, v−1 = 0.
for t = 0 to T − 1 do
gt = G(xt)
r̄t = max (ϵ,maxs≤t d(xs, x0))
vt = vt−1 + r̄2t ∥gt∥2xt

ηt =
r̄t√

ζκ(r̄t)vt

xt+1 = expxt
(−ηtgt)

end for

Optimality gap bounds assuming bounded iterates. We
bound the error of the weighted average sequence

x̃t+1 = expx̃t

(
r̄2t /ζκ(r̄t)∑t
s=0 r̄

2
s/ζκ(r̄s)

exp−1
x̃t

(xt)

)
, x̃1 = x0.

We initiate our analysis in the non-smooth setting before
transitioning to the smooth setting. Our initial result, assum-
ing bounded iterates, provides the optimality gap achieved
by RDoWG.
Theorem 3.12. Suppose that Assumption 3.1, 3.2, and 3.3
hold. Then, for all δ ∈ (0, 1) and L > 0, and for all
t ≤ T , RDoWG (Algorithm 2) satisfies the optimality gap
f(x̃t)− f(x⋆) of

O

 (d0 + r̄t)
√
ζκ(d0 + r̄t)

√
Gt−1 + θt,δGt−1 + θ2t,δL

2∑t−1
s=0

r̄2s/ζκ(r̄s)

r̄2t /ζκ(r̄t)

 ,

with probability at least 1− δ − P(ℓ̄T > L).

Proof. See Appendix E.3

We obtain a result on bounded domains which is optimal up
to a logarithmic factor.

Corollary 3.13. Suppose that Assumption 3.1, 3.2, and
3.3 hold. In addition, for any D ≥ d0, let LD :=
maxx∈M:d(x,x0)≤D ℓ(x). Then, for all δ ∈ (0, 1) and for

τ ∈ argmaxt≤T

∑t−1
s=0

r̄2s/ζκ(r̄s)

r̄2t /ζκ(r̄t)
, RDoWG (Algorithm 2)

satisfies the optimality gap f(x̃τ )− f(x⋆) of

O

D
√
ζκ(D)

√
Gτ−1θτ,δ + L2

Dθ2τ,δ

T
log+

(
D
√

ζκ(ϵ)

ϵ
√
ζκ(D)

) ,

with probability at least 1− δ − P(ℓ̄T > L).

Proof. See Appendix E.3

We proceed with analyzing the smooth setting. Our initial
result yields an optimality gap for bounded iterates. It is
worth noting that RDoG achieves similar results via uniform
averaging, albeit with an additional cost (see Appendix D.3
for further details).

Theorem 3.14. Suppose that Assumption 3.1, 3.2, and 3.4
hold and write s̄T := maxt≤T s(xt). Then, for all δ ∈
(0, 1) and S > 0, and for all t ≤ T , RDoWG (Algorithm 2)
satisfies the optimality gap f(x̃t)− f(x⋆) of

O

 (d0 + r̄t)
2ζκ(d0 + r̄t)(Sθ

2
t,δ)∑t−1

s=0
r̄2s/ζκ(r̄s)

r̄2t /ζκ(r̄t)

 ,

with probability at least 1− δ − P(s̄T > S).

Proof. See Appendix E.4

This result achieves the optimal rate, aligning with the
smooth analysis of Zhang & Sra (2016), with an additional
logarithmic factor on bounded domains.

Corollary 3.15. Suppose that Assumption 3.1, 3.2, and
3.4 hold. In addition, for any D ≥ d0, let SD :=
maxx∈M:d(x,x0)≤D s(x). Then, for all δ ∈ (0, 1) and for

τ ∈ argmaxt≤T

∑t−1
s=0

r̄2s/ζκ(r̄s)

r̄2t /ζκ(r̄t)
, RDoWG (Algorithm 2)

satisfies the optimality gap f(x̃τ )− f(x⋆) of

O

(
D2ζκ(D)SDθ2τ,δ

T
log+

(
D
√
ζκ(ϵ)

ϵ
√
ζκ(D)

))
,

with probability at least 1− δ − P(s̄T > S).

Proof. See Appendix E.4

Stability analysis. While RDoWG is generally stable in
practice, in theory, the algorithm trajectories can diverge.
Drawing inspiration from Ivgi et al. (2023), we now intro-
duce a variant of RDoWG that guarantees iterates remain
bounded with high probability. The concept involves using
step sizes that are smaller by a polylogarithmic factor. Fol-
lowing the taxonomy introduced in Ivgi et al. (2023), we
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Figure 2. Results for Rayleigh quotient maximization on the sphere. (a) Geodesic distance between the final iterate and the numerical
solution after T = 5000 iterations as a function of the learning rate for RADAM and RSGD and as a function of the initial distance
estimate for RDoG, RDoWG, and NRDoG. (b) Shows the regret (the function value of each iterate minus the function value of the
numerical solution) for RSGD for a selection of learning rates. (c) Shows the regret for RDoG for a selection of different initial distance
estimates. Results are averaged over ten replications.

Algorithm 3 T-RDoWG
Input: initial point x0, initial estimate ϵ > 0, v−1 = 0.
for t = 0 to T − 1 do
gt = G(xt)
r̄t = max (ϵ,maxs≤t d(xs, x0))
vt = vt−1 + r̄2t ∥gt∥2xt

v′t = 84θ2T,δ log
2
+

(
(1+t)r̄2t ℓ̄

2
t/ζκ(r̄t)

r̄20 ℓ̄
2
0/ζκ(r̄0)

)
(vt−1 + 16

r̄2t
ζκ(r̄t)

ℓ̄2t )

ηt =
r̄t√

ζκ(r̄t)v
′
t

xt+1 = expxt
(−ηtgt)

end for

refer to this scheme as Tamed Riemannian Distance over
Weighted Gradients (T-RDoWG, Algorithm 3).

Our first result characterizes the key property of T-RDoWG:
bounded iterates with high probability.
Theorem 3.16. Suppose that Assumption 3.1, 3.2, and 3.3
hold, and ϵ ≤ 3d0. Then, for any δ ∈ (0, 1), and for any
t ∈ N, the iterations of T-RDoWG (Algorithm 3) satisfy
P(r̄t > 3d0) ≤ δ.

Proof. See Appendix E.5

Using this result, we can now obtain the convergence rate
of T-RDoWG.
Corollary 3.17. Suppose that Assumption 3.1, 3.2, and 3.3
hold, and ϵ ≤ 3d0. For any δ ∈ (0, 1/2), and for any t ∈
N, let τ ∈ argmaxt≤T

∑t−1
s=0

r̄2s/ζκ(r̄s)

r̄2t /ζκ(r̄t)
. Then T-RDoWG

(Algorithm 3) satisfies the optimality gap f(x̃τ )− f(x⋆) of

O

(
c
d0
√

ζκ(d0)(Gτ + L2
⋆)

T

)
= O

(
c
d0
√
ζκ(d0)L⋆√
T

)
,

with probability at least 1 − 2δ, where
L⋆ := maxx∈M:d(x,x0)≤3d(x⋆,x0) ℓ(x) and c =

log+(T
d0L⋆

f(x0)−f(x⋆)
) log+(

d0

ϵ ) log(
log+(T )

δ ).

Proof. See Appendix E.5

Remark 3.18. We can also extend the analysis to obtain a
similar optimality gap in the smooth setting. For brevity, we
omit the details here.

4. Related Work
Riemannian optimization. Numerous authors have studied
optimization on Riemannian manifolds. Earlier works on
this topic established the asymptotic convergence of first-
order methods in both the deterministic (Udrişte, 1994; Ab-
sil et al., 2008) and the stochastic (Liu et al., 2004; Bonnabel,
2013) settings. More recently, Zhang & Sra (2016) obtained
the first non-asymptotic analysis for Riemannian stochas-
tic gradient descent, assuming geodesic convexity. Subse-
quently, other authors have obtained iteration complexity
results for Riemannian proximal-point methods (Bento et al.,
2017), Frank-Wolfe schemes (Weber & Sra, 2021), variance
reduced methods (Zhang et al., 2016; Kasai et al., 2017;
Sato et al., 2019; Zhou et al., 2021), trust-region methods
(Boumal et al., 2018; Agarwal et al., 2021), amongst others.
In parallel, there has also been growing interest in obtaining
Riemannian counterparts of accelerated (Liu et al., 2017;
Alimisis et al., 2020b; Zhang & Sra, 2018; Ahn & Sra, 2020)
and adaptive (Becigneul & Ganea, 2019; Kasai et al., 2019;
Cho & Lee, 2017; Roy et al., 2018) methods used in Eu-
clidean optimization. No existing works, however, consider
learning-rate-free Riemannian optimization algorithms.

Learning-rate-free Euclidean optimization. On the other
hand, learning-rate-free methods for (stochastic) optimiza-
tion on Euclidean spaces are substantial; see, e.g., Orabona
& Cutkosky (2020); Carmon & Hinder (2022) and refer-
ences therein. Most relevant to our work, Carmon & Hinder
(2022) recently introduced a learning-rate-free algorithm
for stochastic convex optimization based on interval bisec-
tion. Building on this work, Ivgi et al. (2023), Defazio &
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Mishchenko (2023) and Khaled et al. (2023) have since
obtained learning-rate-free (stochastic) convex optimization
algorithms which, under varying assumptions, achieve the
optimal convergence rate of (stochastic) gradient descent up
to a logarithmic factor. Many other learning-rate-free opti-
mization algorithms originate in the online learning litera-
ture. These include methods based on coin betting (Orabona
& Pál, 2016; Orabona & Tommasi, 2017), exponentiated
gradients (Streeter & McMahan, 2012; Orabona, 2013),
amongst others (e.g., McMahan & Orabona, 2014; Orabona
& Cutkosky, 2020). Recently, coin betting ideas have
demonstrated effectiveness on Wasserstein spaces (Shar-
rock & Nemeth, 2023; Sharrock et al., 2023; 2024), that
heuristically follow a Riemannian interpretation (Villani,
2003).

5. Experiments
In this section, we assess the numerical performance of
RDoG (Algorithm 1), RDoWG (Algorithm 2), and NRDoG
(Algorithm 4) against manually tuned RSGD (Bonnabel,
2013) and RADAM (Becigneul & Ganea, 2019). Imple-
menting all algorithms in Python 3 with JAX (Bradbury
et al., 2018), our experiments run on a MacBook Pro 16”
(2021) with an Apple M1 Pro chip and 16GB of RAM. De-
tailed manifold descriptions and required operations for the
experiments are provided in Appendix G. Code to reproduce
the experiments is available at https://github.com/
daniel-dodd/riemannian_dog.

5.1. Rayleigh Quotient Maximization on the Sphere

We seek to find the dominant eigenvector of a symmetric
matrix A in Rd×d by minimizing − 1

2x
TAx on the unit

sphere Sd−1. This is challenging for high-dimensional and
ill-conditioned A in the Euclidean case. We consider A =
1
dBBT , with B ∈ Rd×q having standard Gaussian entries.

For illustration purposes, we first consider d = 3 and q = 5
in Figure 1, underscoring the pivotal role of selecting an
optimal learning rate for RSGD, as deviations, whether too
small or too large, adversely affect performance.

In a higher-dimensional scenario with d = 1000 and
q = 1100 ∼= d, resulting in a high condition number, we
employ RADAM and RSGD with a grid of twenty logarith-
mically spaced learning rates η ∈ [10−8, 106]. On the other
hand, we investigate RDoG and RDoWG with ten logarith-
mically spaced initial distance values ϵ ∈ [10−8, 100]. Here,
we initialize ten starting points x0 ∈ Rd by drawing their
entries independently from a standard Gaussian distribution,
then projecting them onto the sphere through normalizing,
a shared procedure for each optimizer.

Our results show that RDoG, RDoWG, and NRDoG are
insensitive to initial distance, consistently achieving robust

performance in recovering negligible geodesic distance to
the numerical solution via the eigendecomposition. In con-
trast, the effectiveness of RADAM and RSGD depends on
selecting an appropriate learning rate. Notably, as seen in
Figure 2, RSGD is highly sensitive to the learning rate, while
RDoG rapidly adapts to optimal regret within a few hundred
iterations, irrespective of the initial distance estimate’s mag-
nitude. Additional regret trace plots for other optimizers
are available in Appendix H.1, along with similar plots for
geodesic distance to the optima. These underscore that the
algorithms quickly adapt within a few hundred iterations
without prior knowledge of the function.

5.2. PCA on the Grassmann Manifold

We investigate principal component analysis (PCA) on
the Grassmann manifold G(d, r), where points are repre-
sented as equivalence classes with an orthogonal matrix
x ∈ Rd×r having orthonormal columns (xTx = I). The
PCA problem minimizes the sum of squared residual er-
rors between projected data points and the original data,
minx∈G(d,r)

1
n

∑n
i=1∥zi − xxT zi∥22, with each zi repre-

sented as a d-dimensional data point. We consider datasets
Wine, Waveform-5000, and Tiny ImageNet. The
numerical solution is computed using the scikit-learn imple-
mentation (Pedregosa et al., 2011). The geodesic distances
of final iterates (using weighted averages for RDoG and
RDoWG) are compared against learning-rate-dependent al-
gorithms, as shown in Figure 3.

In training, Wine uses the full batch for T = 5000 itera-
tions, and Waveform-5000 and Tiny ImageNet use
batch sizes of 64 for T = 2000 iterations. Each dataset has
an 80:20 train-test split per replication. Following Pymanopt
(Townsend et al., 2016), initial points x0 ∈ Rd×r are drawn
from a standard Gaussian distribution and projected onto
the manifold using vectorized QR decomposition.

Results in Figure 3 from five random train-test splits show
RDoG, RDoWG, and NRDoG are insensitive to initial dis-
tance estimates across magnitudes, with ten logarithmically
spaced values in ϵ ∈ [10−8, 100]. In contrast, RADAM and
RSGD require a narrower tuning range of optimal learn-
ing rates, exploring twenty logarithmically spaced values
in η ∈ [10−8, 106]. Additional results in Appendix H.2
further highlight the robust adaptation of RDoG, RDoWG,
and NRDoG.

5.3. Embedding Graphs in the Poincaré Ball

The WordNet noun hierarchy (Miller et al., 1990) is a lex-
ical database of English words organized into a hierarchi-
cal structure, where each word is categorized based on its
semantic relationships with other words. Moreover, the
hypernymy relation, often termed Is-A relation, signifies
that one concept (the hypernym) encompasses another (the
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(a) Wine (d = 13, r = 1).
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(b) Waveform (d = 40, r = 2).
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(c) Tiny ImageNet (d = 12, 288, r = 5).

Figure 3. Results for PCA on the Grassmann manifold. (a)-(c) Geodesic distance between the final iterate and the numerical solution
after T = 2000 iterations as a function of the learning rate for RADAM and RSGD and as a function of the initial distance estimate for
RDoG, RDoWG, and NRDoG. (b)-(c) Uses the final iterate of the weighted average sequence for RDoG, RDoWG, and NRDog. Results
are averaged over five replications.

hyponym). For instance, mammal is a hypernym of dog
and cat. Following Nickel & Kiela (2017), we consider
representing the transitive closure of the mammals’ subtree
that involves 1,180 nouns denoted as N (of which mammal
is a hypernym) and 6,450 hypernymy relations, represented
as R = {(u, v)} ⊂ N ×N .

The embedding is performed in the Poincaré ball of hyper-
bolic geometry which is well-known to be better suited to
embed tree-like graphs than the Euclidean space (Gromov,
1987; Sala et al., 2018). As such, the Poincaré ball model
is defined as Bd = {x ∈ Rd : ∥x∥ < 1} equipped with
the Riemannian metric ⟨·, ·′⟩x = 4/(1− ∥x∥2)2⟨·, ·′⟩. We
adopt the loss function from the official code of Nickel &
Kiela (2017), deviating from the one described in the paper:

min
θ : N→Bd

∑
(u,v)∈R

− log

(
e−d(θ(u),θ(v))∑

v′∈Neg(u,v) e
−d(θ(u),θ(v′))

)
,

where each noun pair (u, v) ∈ R has associated embeddings
θ(u), θ(v) ∈ Bd, and Neg(u, v) = {v′ : (u, v′) /∈ R}∪{v}
is the set of negative examples for u, including v, and

d(·, ·′) = arcosh

(
1 + 2

∥· − ·′∥2

(1− ∥·∥2)(1− ∥·′∥2)

)
,

is the geodesic distance measuring the dissimilarity between
the embeddings of two nouns in the Poincaré ball. Intu-
itively, minimizing this loss function encourages closely
related mammals to be positioned closer together in the
embedding space and less similar pairs to be farther apart.

For initialization, following Nickel & Kiela (2017), we uni-
formly initialize the embeddings in [−10−3, 10−3]d and
consider ten logarithmically spaced learning rates η ∈
[10−2, 102] and five logarithmically spaced initial distance
estimates ϵ ∈ [10−10, 10−6]. In the first ten epochs, we use
RSGD with a reduced learning rate of η/10 for RSGD and
RADAM. During this burn-in phase, negative word sam-
pling is based on the graph degree raised to the power of

3/4, leading to numerical improvements. No burn-in heuris-
tic is applied for RDoG, RDoWG, or NRDoG. Thereafter,
we run the optimizers on the initialized embeddings for one
thousand epochs, with each iteration having a batch size
of ten and fifty uniformly sampled negative samples. We
repeat this experiment over five replications.

To measure the quality of the embeddings obtained from
each optimizer, we follow Nickel & Kiela (2017) and com-
pute, for each observed edge (u, v) ∈ R, the correspond-
ing distance d(u, v) in the embedding space and rank it
among the distances of all unobserved edges for u, i.e.,
{d(u, v′) : (u, v′) /∈ R}. Subsequently, we calculate the
mean average precision of this ranking.

In Figure 4, embeddings of dimension five are presented.
RDoG and RDoWG demonstrate competitive performance,
while RADAM and RSGD require careful tuning. The per-
formance significantly degrades for RADAM and RSGD
without a burn-in heuristic, as exemplified in Appendix H.3.
Visualizing two-dimensional embeddings between RDoG
and RSGD trained for two thousand epochs, with burn-
in applied only for RSGD and using the optimal learn-
ing rate selected from ten logarithmically spaced values
η ∈ [10−2, 102], we observe meaningful groupings across
various categories without employing burn-in heuristics for
RDoG. Additional embedding plots for the other optimizers
are presented in Appendix H.3.

6. Discussion
We have introduced new learning-rate-free optimizers for
Riemannian manifolds and have highlighted significant nu-
merical improvements over learning-rate-dependent algo-
rithms. Our theoretical results provide high probability
convergence guarantees that are optimal, up to a logarith-
mic factor, compared to the theoretically, yet practically
unavailable, optimal deterministic algorithms.
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Figure 4. Results for Poincaré word embeddings. (a) The mean average precision of the embeddings is assessed against the ground truth
after 1000 training epochs. Results are averaged over five replications, with the embedding dimension set to five. (b)-(c) Two-dimensional
embeddings after 2000 training epochs are visualized and annotated for the first 50 nouns of the mammal’s subtree for RDoG and RSGD.

Many existing Riemannian optimization methods rely on a
retraction map, which serves as a cost-effective approxima-
tion of the exponential map on manifolds and is a reasonable
choice in numerous real-world scenarios. Incorporating
this into our framework is paramount for enhancing the
effectiveness of our algorithms, particularly in large-scale
optimization problems. Moreover, certain Riemannian man-
ifolds, such as the Stiefel or multivariate Gaussian Fisher-
Rao manifolds, pose challenges due to the intractability of
the geodesic distance. Recognizing the argument under-
lying our convergence guarantees (though potentially less
robust) holds for upper bounds on geodesic distance, explor-
ing tractable or more economical approximations in these
situations is essential.

Additionally, it is crucial to explore integrating these meth-
ods with recent proven advances in momentum acceleration
(Liu et al., 2017; Alimisis et al., 2020b; Zhang & Sra, 2018;
Ahn & Sra, 2020) — a challenge both in theory and prac-
tice. Furthermore, developing practical algorithms that offer
guarantees on iterate boundedness is a consideration for
future research.
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A. Useful Results
We begin by introducing essential lemmas for the establishment of our theory.

A.1. Trigonometric Distance Bounds for Manifolds

The law of cosines in Euclidean space is fundamental for analyzing optimization algorithms,

a2 = b2 + c2 − 2bc cos(A), (2)

where a, b, c are the sides of a Euclidean triangle with A the angle between sides b and c.

Trigonometric geometry behaves differently in manifolds compared to Euclidean spaces. While the equality does not hold
for nonlinear spaces, a trigonometric distance bound can be established for manifolds with curvature bounded below.

Lemma A.1. (Zhang & Sra, 2016, Lemma 5) If a, b, c are the side lengths of a geodesic triangle ∆ in a Riemannian
manifold with sectional curvature lower bounded by κ > −∞ and A is the angle between sides b and c (defined through the
inverse exponential map and inner product in tangent space), then

a2 ≤ ζκ(c)b
2 + c2 − 2bc cos(A). (3)

Proof. Given by Lemma 3.12 of (Cordero-Erausquin et al., 2001) and by Lemma 5 of (Zhang & Sra, 2016).

This lemma holds profound implications for our analysis of geodesically convex functions f . Specifically, the property
of geodesic convexity allows us to bound f(xt) − f(x⋆) by the inner product ⟨− grad f(xt), exp

−1
xt

(x⋆)⟩xt . The above
trigonometric inequality empowers us to bound this inner product to devise tractable optimization algorithms.

To streamline future analysis, we expand our perspective to encompass bounding the inner product ⟨−gt, exp
−1
xt

(x⋆)⟩xt
for

any tangent vector gt ∈ TxtM.

Lemma A.2. (Zhang & Sra, 2016, Corollary 8) For any Riemannian manifold M where the sectional curvature is lower
bounded by κ > −∞ and any point x⋆, xt ∈ M and any tangent vector gt ∈ Txt

M, scalar ηt > 0 consider the RSGD
update xt+1 = expxt

(−ηtgt). Then by Lemma A.1, we have

⟨−gt, exp
−1
xt

(x⋆)⟩xt ≤
1

2ηt

(
d2t − d2t+1

)
+

ηt
2
ζκ(dt)∥gt∥2xt

. (4)

Proof. Consider the geodesic triangle ∆ with vertices xt+1, xt, and x⋆. Then we have the side lengths of ∆ are given by

a = d(xt+1, x⋆) = dt+1, b = d(xt+1, xt) = ηt∥gt∥xt , c = d(xt, x⋆) = dt. (5)

Recalling that the angle between two tangent vectors u and v at x ∈ M is given by arccos ⟨u,v⟩x
∥u∥x∥v∥x

. Now, considering the
angle, A, between side lengths b and c, we have,

2bc cos(A) = 2bc cos

(
arccos

( ⟨exp−1
xt

(xt+1), exp
−1
xt

(x⋆)⟩xt

∥exp−1
xt (xt+1)∥xt

∥exp−1
xt (x⋆)∥xt

))
= ⟨−ηtgt, exp

−1
xt

(x⋆)⟩xt
. (6)

Substituting these terms in Lemma A.1 and rearranging yields the result as required.

A.2. Jensen’s Inequality for Geodesically Convex Functionals

We present an analog for Jensen’s inequality for geodesically convex functions on Riemannian manifolds. This will allow us
to leverage innovative weighted averaging strategies in the regret analysis of our algorithms.

Lemma A.3. Let f be geodesically convex. For any sequence of iterates x0, . . . , xt ∈ M and positive weights w0, . . . , wt ∈
R+, define the online weighted average sequence by

x̃t+1 = expx̃t

(
wt∑t
s=0 ws

exp−1
x̃t

(xt)

)
, x̃1 = x0. (7)
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Then we have

f(x̃t) ≤
1∑t−1

s=0 ws

t−1∑
s=0

wsf(xs). (8)

Proof. We prove this by induction. The base case for t = 1 holds by definition. Now for t ≥ 2, for the inductive step,
assume the statement is true for t− 1 and consider t. We have,

1∑t−1
s=0 ws

t−1∑
s=0

wsf(xs) =
wt−1∑t−1
s=0 ws

f(xt−1) +
1∑t−1

s=0 ws

t−2∑
s=0

wsf(xs) (9)

=
wt−1∑t−1
s=0 ws

f(xt−1) +

∑t−2
s=0 ws∑t−1
s=0 ws

1∑t−2
s=0 ws

t−2∑
s=0

wsf(xs) (10)

≥ wt−1∑t−1
s=0 ws

f(xt−1) +

∑t−2
s=0 ws∑t−1
s=0 ws

f(x̃t−1). (11)

In the final line, we have exploited the inductive assumption. Finally, we note that γ(s) =
expx

(
(1− s) exp−1

x (x) + s exp−1
x (y)

)
for s ∈ [0, 1] defines a geodesic between any two points x and y in M.

Moreover, by geodesic convexity we have

f(γ(s)) ≤ (1− s)f(γ(0)) + sf(γ(1)) = (1− s)f(x) + sf(y). (12)

Thus applying this to Equation (11) with x = x̃t−1, y = xt−1 and s = wt−1∑t−1
s=0 ws

and noting that for this choice,

γ

(
wt−1∑t−1
s=0 ws

)
= expx̃t−1

((
1− wt−1∑t−1

s=0 ws

)
exp−1

x̃t−1
(x̃t−1) +

wt−1∑t−1
s=0 ws

exp−1
x̃t−1

(xt−1)

)
(13)

= expx̃t−1

(
wt−1∑t−1
s=0 ws

exp−1
x̃t−1

(xt−1)

)
(14)

= x̃t, (15)

yields the result as required.

A.3. Smoothness Bounds

We present smoothness results that establish bounds on individual gradient norms, that we will use in our later analysis to
yield tighter regret bounds under the geodesic smoothness assumption.
Lemma A.4. Suppose f is S-smooth and lower bounded by f(x⋆). Then, for all x ∈ M we have

∥grad f(x)∥x ≤
√

2S(f(x)− f(x⋆)). (16)

Proof. This is a trivial consequence of e.g., Proposition 4.7 and 4.8 of (Boumal, 2023). We include the proof for completeness.
Let x ∈ M and define y = expx

(
− 1

S grad f(x)
)
. Then geodesic smoothness provides,

f(y) ≤ f(x) + ⟨grad f(x), exp−1
x (y)⟩x +

S

2
∥exp−1

x (y)∥2x (17)

= f(x)− 1

S
∥grad f(x)∥2x +

1

2S
∥grad f(x)∥2x (18)

= f(x)− 1

2S
∥grad f(x)∥2x. (19)

Now since f is lower bounded by f(x⋆) we thus have

f(x⋆) ≤ f(y) ≤ f(x)− 1

2S
∥grad f(x)∥2x. (20)

Rearranging gives the result.
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Using the above argument, we provide a bound on the norm of the stochastic error.

Lemma A.5. Under locally smooth stochastic gradients (Assumption 3.4), for the stochastic error ∆(x) := G(x)−grad f(x)
we almost surely have that

∥∆(x)∥x ≤ (
√
s(x) +

√
S)
√
2(f(x)− f(x⋆)). (21)

Proof. Noting that Assumption 3.4 implies that for any x, y ∈ M we almost surely have that

f(s) ≤ f(x) + ⟨G(x), exp−1
x (y)⟩x +

s(x)

2
∥exp−1

x (y)∥2x. (22)

We follow the same argument as in Lemma A.4 to deduce that almost surely,

∥G(x)∥x ≤
√

2s(x)(f(x)− f(x⋆)). (23)

While the triangle inequality and applying Lemma A.4 to ∥grad f(x)∥x gives,

∥∆(x)∥x ≤ ∥G(x)∥x + ∥grad f(x)∥x ≤
√

2s(x)(f(x)− f(x⋆)) +
√
2S(f(x)− f(x⋆)). (24)

A.4. Bounds for Real-Valued Series

Lemma A.6. (Ivgi et al., 2023, Lemma 3) Let a0, a1, . . . , aT be a positive increasing sequence. Then

max
t≤T

t−1∑
s=0

as
at

≥ e−1

(
T

1 + log(aT /a0)
− 1

)
. (25)

Proof. Lemma 3 of (Ivgi et al., 2023). Define K := ⌈log(aT /a0)⌉, and n := ⌊T/K⌋. Then, given the sequence is increasing
we have

log

(
aT
a0

)
≥

K−1∑
k=0

log

(
an(k+1)

ank

)
≥ K min

k<K
log

(
an(k+1)

ank

)
. (26)

Rearranging gives,

min
k<K

log

(
an(k+1)

ank

)
≤ log

(
aT
a0

)
/K ≤ 1 =⇒ min

k<K

an(k+1)

ank
≤ e. (27)

Thus,

max
t≤T

t−1∑
s=0

as
at

≥ max
t∈[n,T ]

n
at−n

at
= max

k≤K
n
an(k−1)

ank
≥ ne−1 (28)

= e−1

⌊
T

⌈log(aT /a0)⌉

⌋
≥ e−1

(
T

1 + log(aT /a0)
− 1

)
. (29)

Lemma A.7. (Ivgi et al., 2023, Lemma 4). Let a0, . . . , at be a nondecreasing sequence of nonnegative numbers. Then

t∑
k=1

ak − ak−1√
ak

≤ 2 (
√
at −

√
a0) . (30)
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Proof. This is a well-known result e.g., Lemma 4 of (Ivgi et al., 2023). We have

t∑
k=1

ak − ak−1√
ak

=

t∑
k=1

(
√
ak +

√
ak−1)(

√
ak −√

ak−1)√
ak

(31)

≤ 2

t∑
k=1

(
√
ak −√

ak−1) = 2(
√
at −

√
a0). (32)

Lemma A.8. (Ivgi et al., 2023, Lemma 6). Recall log+(z) := 1 + log(z). Consider a non-decreasing sequence of
nonnegative numbers, a−1, a0, a1, . . . , at, then

t∑
k=0

ak − ak−1

ak log
2
+(ak/a−1)

≤ 1. (33)

Proof. Lemma 6 of (Ivgi et al., 2023). We have

t∑
k=0

ak − ak−1

ak log
2
+(ak/a−1)

≤
t∑

k=0

∫ ak/a−1

ak−1/a0

dα

α log2+(α)
=

∫ at/a−1

1

dα

α log2+(α)
(34)

≤
∫ ∞

1

dα

α log2+(α)
=

[
1

1 + log(α)

]∞
1

= 1. (35)

A.5. Martingale Concentration bound

Lemma A.9. (Ivgi et al., 2023, Lemma 7). Consider a filtration process Ft and let S be the set of nonnegative and
nondecreasing sequences. Let Ct ∈ Ft−1 and let Xt be a martingale difference sequence adapted to Ft−1 such that
|Xt| ≤ Ct with probability 1 for all t. Recalling that θt,δ := log(60 log(6t)/δ). Then, for all δ ∈ (0, 1), c > 0, and
X̂t ∈ Ft−1 such that |X̂t| ≤ Ct with probability 1,

P

∃t ≤ T, ∃{ys}∞s=1 ∈ S :

∣∣∣∣∣
t∑

s=1

ysXs

∣∣∣∣∣ ≥ 8yt

√√√√θt,δ

t∑
s=1

(
Xs − X̂s

)2
+ c2θ2t,δ

 ≤ δ + P (∃t ≤ T : Ct > c) . (36)

Proof. See Lemma 7 of (Ivgi et al., 2023).
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B. RGD “Ideal Step Size” Analysis
B.1. Proof of Theorem 3.5

Proof. Using geodesic convexity and applying Lemma A.2, we have

min
t≤T

[f(xt)− f(x⋆)] ≤
1

T

T∑
t=0

[f(xt)− f(x⋆)] (37)

≤ 1

T

T∑
t=0

⟨−gt, exp
−1
xt

(x⋆)⟩xt
(38)

≤ 1

T

T∑
t=0

[
1

2η

(
d2t − d2t+1

)
+

η

2
ζκ(dt)∥gt∥2xt

]
(39)

=
d20
2ηT

+
η
∑T

t=0 ζκ(dt)∥gt∥2xt

2T
(40)

≤ d̄2T
2ηT

+
ηζκ(d̄T )

∑T
t=0∥gt∥2xt

2T
. (41)

Now, setting η = d̄T√
ζκ(d̄T )

∑T
t=0∥gt∥2

xt

, we have

min
t≤T

[f(xt)− f(x⋆)] ≤
d̄T

√
ζκ(d̄T )

∑T
t=0∥gt∥2xt

2T
+

ζκ(d̄T )
∑T

t=0∥gt∥2xt

2Tζκ(d̄T )
√∑T

t=0∥gt∥2xt

(42)

=
d̄T

√
ζκ(d̄T )

∑T
t=0∥gt∥2xt

T
(43)

≤ Ld̄T
√

ζκ(d̄T )√
T

. (44)

Where we have bounded ∥gt∥xt
≤ L due to the Lipschitz assumption, and d∞ ≥ dt for all t ≥ 0.

C. NRGD “Ideal Step Size” Analysis
C.1. Proof of Theorem 3.11

Proof of Theorem 3.11. Using Lemma A.2 we have〈
− grad f(xt)

∥grad f(xt)∥xt

, exp−1
xt

(x⋆)

〉
xt

≤ 1

2η

(
d2t − d2t+1

)
+

η

2
ζκ(dt). (45)

Averaging the above, we have

1

T

T∑
t=0

〈
− grad f(xt)

∥grad f(xt)∥xt

, exp−1
xt

(x⋆)

〉
xt

≤ d20
2ηT

+
η

2T

T∑
t=0

ζκ(dt). (46)

Now for the Lipshitz setting, we have ∥grad f(xt)∥xt
≤ L thus,

1

T

T∑
t=0

〈
− grad f(xt)

L
, exp−1

xt
(x⋆)

〉
xt

≤ 1

T

T∑
t=0

〈
− grad f(xt)

∥grad f(xt)∥xt

, exp−1
xt

(x⋆)

〉
xt

≤ d20
2ηT

+
η

2T

T∑
t=0

ζκ(dt). (47)

Multiplying through by L and using definition of geodesic convexity yields,

min
t≤T

[f(xt)− f(x⋆)] ≤
1

T

T∑
t=0

[f(xt)− f(x⋆)] ≤ L

[
d20
2ηT

+
η

2T

T∑
t=0

ζκ(dt)

]
≤
[
d̄2T
2ηT

+
η

2
ζκ(d̄T )

]
. (48)
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Now substituting η = d̄T√
Tζκ(d̄T )

, gives

min
t≤T

[f(xt)− f(x⋆)] ≤
Ld̄T

√
Tζκ(d̄T )

T
≤ Ld̄T

√
ζκ(d̄T )√
T

, (49)

which completes the proof for the Lipshitz case.

Now we proceed to consider the smooth setting. By convexity we have

⟨− grad f(xt), exp
−1
xt

(x⋆)⟩xt
≥ f(xt)− f(x⋆) ≥ 0. (50)

And by smoothness (Lemma A.4), we have

∥grad f(xt)∥xt
≤
√

2S(f(xt)− f(x⋆)). (51)

Now if f(xt) = f(x⋆) the theorem holds trivially, suppose not. Then combining the above expressions, we have〈
− grad f(xt)

∥grad f(xt)∥xt

, exp−1
xt

(x⋆)

〉
xt

≥ f(xt)− f(x⋆)√
2S(f(xt)− f(x⋆))

=

√
(f(xt)− f(x⋆))√

2S
. (52)

Thus we have

min
t≤T

[√
f(xt)− f(x⋆)

]
≤ 1

T

T∑
t=0

√
f(xt)− f(x⋆) ≤

√
2S

[
d20
2ηT

+
η

2T

T∑
t=0

ζκ(dt)

]
≤

√
2S

[
d̄2T
2ηT

+
η

2
ζκ(d̄T )

]
.

(53)

Squaring gives us the first result. Now, plugging in η = d̄T√
Tζκ(d̄T )

, gives

min
t≤T

[f(xt)− f(x⋆)] ≤
2Sd̄2TTζκ(d̄T )

T 2
≤ 2Sd̄2T ζκ(d̄T )

T
. (54)

D. RDoG Theoretical Analysis
D.1. Overview

In this section, we analyze RDoG (Algorithm 1). Thus we consider RSGD with step sizes given by,

ηt =
r̄t√

ζκ(r̄t)
∑t

s=0∥gs∥2xs

, (55)

We consider bounding the error of the weighted average sequence,

x̃t+1 = expx̃t

(
r̄t/
√

ζκ(r̄t)∑t
s=0 r̄s/

√
ζκ(r̄s)

exp−1
x̃t

(xt)

)
, x̃1 = x0.

For a geodesically convex function f : M → R, we have by Lemma A.3 that x̃t satisfies,

f(x̃t)− f(x⋆) ≤
1∑t−1

s=0(r̄s/
√

ζκ(r̄s))

t−1∑
s=0

(r̄s/
√

ζκ(r̄s))⟨− grad f(xs), exp
−1
xs

(x⋆)⟩xs . (56)

Recalling that gs represents the stochastic oracle evaluation at xs, denoted as G(xs), we can decompose the numerator into
two components:

t−1∑
s=0

(r̄s/
√

ζκ(r̄s))⟨−gs, exp
−1
xs

(x⋆)⟩xs︸ ︷︷ ︸
weighted regret

+

t−1∑
s=0

(r̄s/
√

ζκ(r̄s))⟨∆s, exp
−1
xs

(x⋆)⟩xs︸ ︷︷ ︸
noise

, (57)

with ∆s := gs − grad f(xs).
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D.2. Non-Smooth Analysis

We give deterministic bounds for the weighted regret (Lemma D.1) and high probability bounds for the noise term
(Lemma D.2).

Lemma D.1. Under Assumption 3.1 and 3.2, we have that the iterates of RDoG (Algorithm 1) satisfy

t−1∑
s=0

(r̄s/
√

ζκ(r̄s))⟨−gs, exp
−1
xs

(x⋆)⟩xs ≤ r̄t

(
2d̄t +

r̄tζκ(d̄t)

ζκ(r̄t)

)√
Gt−1. (58)

Proof. Applying Lemma A.2, we can bound the weighted average as

t−1∑
s=0

(
r̄s/
√
ζκ(r̄s)

)
⟨−gs, exp

−1
xs

(x⋆)⟩xs
≤ 1

2

t−1∑
s=0

(
r̄s/
√
ζκ(r̄s)

)
ηs

(
d2s − d2s+1

)
︸ ︷︷ ︸

(A)

+
1

2

t−1∑
s=0

(
r̄s/
√
ζκ(r̄s)

)
ηsζκ(ds)∥gs∥2xs︸ ︷︷ ︸

(B)

.

(59)

We bound the terms (A) and (B) in turn, beginning with the former:

(A) =

t−1∑
s=0

√
Gs

(
d2s − d2s+1

)
= d20

√
G0 − d2t

√
Gt−1 +

t−1∑
s=0

d2s

(√
Gs −

√
Gs−1

)
(60)

(i)

≤ d̄2t
√

G0 − d2t
√
Gt−1 + d̄2t

t−1∑
s=0

(√
Gs −

√
Gs−1

)
=

√
Gt−1(d̄

2
t − d2t )

(ii)

≤ 4r̄td̄t
√
Gt−1. (61)

Inequality (i) uses ds ≤ d̄t and that Gt is nondecreasing. Inequality (ii) use that for k ∈ argmaxs≤t ds, we have
d̄2t − d2t = d2k − d2t = (dk − dt)(dk + dt) ≤ d(xk, xt)(dk + dt) ≤ (r̄k + r̄t)(dk + dt) ≤ 4r̄td̄t. Bounding the second term
(B), we have for κ < 0:

(B) =

t−1∑
s=0

r̄2sζκ(ds)∥gs∥2xs

ζκ(r̄s)
√
Gs

=

t−1∑
s=0

r̄2s tanh(
√

|κ| · r̄s)ζκ(ds)∥gs∥2xs√
|κ| · r̄s

√
Gs

=

t−1∑
s=0

r̄s tanh(
√
|κ| · r̄s)ζκ(ds)∥gs∥2xs√
|κ| ·

√
Gs

(62)

≤ 1√
|κ|

r̄t tanh(
√
|κ| · r̄t)ζκ(d̄t)

t−1∑
s=0

∥gs∥2xs√
Gs

≤ 2√
|κ|

r̄t tanh(
√
|κ|r̄t)ζκ(d̄t)

√
Gt−1 (63)

=
2r̄2t tanh (

√
|κ| · r̄t)√

|κ| · r̄t
ζκ(d̄t)

√
Gt−1 =

2r̄2t
ζκ(r̄t)

ζκ(d̄t)
√

Gt−1. (64)

While for κ = 0 the geometric curvature function d 7→ ζκ(d) takes constant value one, thus the same bound above can be
established trivially. Combining (A) and (B), gives the result.

Lemma D.2. For all δ ∈ (0, 1), T ∈ N and L > 0, if Assumption 3.1, 3.2, and 3.3 hold, the iterates of RDoG (Algorithm 1)
satisfy

P

(
∃t ≤ T :

∣∣∣∣∣
t−1∑
s=0

r̄s√
ζκ(r̄s)

⟨−∆s, exp
−1
xs

(x⋆)⟩xs

∣∣∣∣∣ ≥ bt

)
≤ δ + P(ℓ̄T > L), (65)

where bt = 8 r̄t−1√
ζκ(r̄t−1)

d̄t−1

√
θt,δGt−1 + θ2t,δL

2 and ℓ̄T := maxs≤T ℓ(xs).

Proof. For 1 ≤ s ≤ T define the random variables

Ys :=
r̄s−1√
ζκ(r̄s−1)

d̄s−1, Xs :=

〈
∆s−1,

exp−1
xs−1

(x⋆)

d̄s−1

〉
xs−1

, X̂s :=

〈
− grad f(xs−1),

exp−1
xs−1

(x⋆)

d̄s−1

〉
xs−1

. (66)
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By the Cauchy-Schwartz inequality and Assumption 3.3, we have each |Xs| ≤ ℓ(x), and each |X̂s| ≤ ℓ(x) with probability
1. Moreover, and consider the filtration Fs = σ(G(x0) . . . ,G(xs)). Then we have that Xs is a martingale difference
sequence adapted to Fs and X̂s ∈ Fs−1. By construction or any t ≤ T , we have

t∑
s=1

YsXs =

t−1∑
s=0

r̄s√
ζκ(r̄s)

⟨∆s, exp
−1
xs

(x⋆)⟩xs . (67)

Therefore, applying Lemma A.9 yields the result as required.

Combining the above results, we obtain the following.

Theorem D.3. For all δ ∈ (0, 1) and L > 0, if Assumption 3.1, 3.2, and 3.3 hold, then with probability at least
1− δ − P(ℓ̄T > L), for all t ≤ T , the optimality gap on the weighted iterates f(x̃t)− f(x⋆) of RDoG (Algorithm 1) satisfy

O

 (d0 + r̄t)
√
ζκ(d0 + r̄t)

√
Gt−1 + θt,δGt−1 + θ2t,δL

2∑t−1
s=0

r̄s/
√

ζκ(r̄s)

r̄t/
√

ζκ(r̄t)

 . (68)

Proof. Combining Lemma D.1 and Lemma D.2, we have for the given probability that

f(x̃t)− f(x⋆) ≤

(
2d̄t
√
ζκ(r̄t) +

r̄t√
ζκ(r̄t)

ζκ(d̄t)

)√
Gt−1 + 8d̄t−1

√
θt,δGt−1 + θ2t,δL

2

∑t−1
s=0

r̄s/
√

ζκ(r̄s)

r̄t/
√

ζκ(r̄t)

. (69)

Now using the fact d̄t ≤ d0 + r̄t and that d 7→ ζκ(d) and d 7→ d√
ζκ(d)

are increasing functions gives the result.

We then have a useful result when the manifold is bounded but its exact diameter is unknown.

Corollary D.4. Under Assumption 3.1, 3.2, and 3.3, for any D ≥ d0 let LD := maxx∈M:d(x,x0)≤D ℓ(x). Then, for all

δ ∈ (0, 1) and for τ ∈ argmaxt≤T

∑t−1
s=0

r̄s/
√

ζκ(r̄s)

r̄t/
√

ζκ(r̄t)
, with probability at least 1 − δ − P(ℓ̄T > L), iterates of RDoG

(Algorithm 1) satisfy the optimality gap bound

f(x̃τ )− f(x⋆) = O

D
√

ζκ(D)
√

Gτ−1θτ,δ + L2
Dθ2τ,δ

T
log+

(
D/
√

ζκ(D)

ϵ/
√
ζκ(ϵ)

) . (70)

Proof. Apply Lemma A.6 to the denominator term of Theorem D.3.

D.3. Smooth Guarantees via Uniform Averaging

Under the assumption of locally smooth stochastic gradients (Assumption 3.4), we can deduce an O(1/T ) convergence
guarantee under uniformly averaged iterates,

x̂t+1 = expx̂t

(
1

t
exp−1

x̂t
(xt)

)
, x̂1 = x0.

We begin by presenting a theorem that shows a bound under uniform iterate averaging in the non-smooth setting.

Theorem D.5. For all δ ∈ (0, 1) and L > 0, if Assumption 3.1, 3.2, and 3.3 hold, then with probability at least
1 − δ − P(ℓ̄T > L), for all t ≤ T , the optimality gap on the uniformly averaged iterates f(x̂T ) − f(x⋆) of RDoG
(Algorithm 1) satisfy:

O

 (d0 log+
r̄T
ϵ + r̄T )

√
ζκ(d0 + r̄T )

√
GT−1 + θT,δGT−1 + θ2T,δL

2

T

 . (71)
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Proof. Define the times τs = min
{
min{k|r̄k ≥ 2r̄τk−1

}, T
}

, with τ0 := 0. Moreover, let K be the first index such that
τK = T and note that K ≤ 1 + log2

r̄T
ϵ by construction. Now using the argument of Lemma D.13, we have that for k ≤ K

τk−1∑
t=τk−1

r̄t√
ζκ(r̄t)

⟨−gt, exp
−1
xt

(x⋆)⟩ ≤ r̄τk

(
2d̄τk +

r̄τk
ζκ(r̄τk)

ζκ(d̄τk)

)√
Gτk−1 (72)

= O

(
r̄τk

(d0 + r̄τk)

ζκ(d0 + r̄τk)
ζκ(d0 + r̄τk)

√
GT−1

)
(73)

= O
(
r̄τk(d0 + r̄τk)

√
GT−1

)
. (74)

Where the first equality holds due by the virtue of d 7→ d
ζκ(d)

is an increasing function and that d̄τk ≤ r̄τk +d0. Furthermore,
by Lemma D.14 we have for all k ≤ K with probability at least 1− δ − P(ℓ̄T > L),∣∣∣∣∣∣

τk−1∑
t=τk−1

r̄t√
ζκ(r̄t)

⟨∆t, exp
−1
xt

(x⋆)⟩xt

∣∣∣∣∣∣ ≤
∣∣∣∣∣
τk−1∑
t=0

r̄t√
ζκ(r̄t)

⟨∆t, exp
−1
xt

(x⋆)⟩xt

∣∣∣∣∣+
∣∣∣∣∣
τk−1−1∑
t=0

r̄t√
ζκ(r̄t)

⟨∆t, exp
−1
xt

(x⋆)⟩xt

∣∣∣∣∣
(75)

≤ 16
r̄τk−1√
ζκ(r̄τk−1)

d̄τk−1

√
θT,δGT−1 + θ2T,δL

2. (76)

Now combining these two bounds, we have

τk−1∑
t=τk−1

f(xt)− f(x⋆) ≤
1

r̄τk−1
/
√

ζκ(r̄τk−1
)

τk−1∑
t=τk−1

r̄t√
ζκ(r̄t)

[f(xt)− f(x⋆)] (77)

≤ 1

r̄τk−1
/
√

ζκ(r̄τk−1
)

τk−1∑
t=τk−1

r̄t√
ζκ(r̄t)

⟨− grad f(xt), exp
−1
xt

(x⋆)⟩xt
(78)

=
1

r̄τk−1
/
√

ζκ(r̄τk−1
)

τk−1∑
t=τk−1

r̄t√
ζκ(r̄t)

[
⟨−gt, exp

−1
xt

(x⋆)⟩xt + ⟨∆t, exp
−1
xt

(x⋆)⟩xt

]
(79)

= O

(
r̄τk/

√
ζκ(r̄τk)

r̄τk−1
/
√
ζκ(r̄τk−1

)
(d0 + r̄τk)

√
ζκ(d0 + r̄τk)

√
GT−1 + θT,δGT−1 + θ2T,δL

2

)
(80)

= O
(
(d0 + r̄τk)

√
ζκ(d0 + r̄τk)

√
GT−1 + θT,δGT−1 + θ2T,δL

2
)
, (81)

where final reduction holds since d 7→ d
ζκ(d)

is an increasing function, and for any t,

r̄t+1 ≤ r̄t + d(xt+1, xt) = r̄t

(
1 +

∥gt∥xt√
Gt

)
≤ 2r̄t. (82)

Now summing over k from 1 to K we have

T−1∑
t=0

[f(xt)− f(x⋆)] =

K∑
k=1

τk−1∑
t=τk−1

[f(xt)− f(x⋆)] (83)

= O

(
K∑

k=1

(d0 + r̄τk)
√

ζκ(d0 + r̄τk)
√
GT−1 + θT,δGT−1 + θ2T,δL

2

)
(84)

≤ O

 K∑
k=1

(d0 + r̄τk)

√√√√ζκ

(
d0 +

K∑
k=1

r̄τk

)√
GT−1 + θT,δGT−1 + θ2T,δL

2

 . (85)
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Where the final reduction holds since d 7→ ζκ(d) is an increasing function. Now, recall that K = O
(
log+

r̄T
ϵ

)
and note

that
∑K

k=1 r̄τk = O(r̄T ) since r̄τs
r̄τK−1

≤ 2s−(K−1) for all s ≤ K − 1. The proof is complete noting that via Lemma A.3 we

deduce f(x̂T ) ≤ 1
T

∑T−1
t=0 f(xt).

Now under smooth assumption, we present a result for bounding the stochastic term that depends on S.

Lemma D.6. For all δ ∈ (0, 1), T ∈ N and S > 0, if Assumption 3.1, 3.2, and 3.4 hold, then the iterates of RDoG
(Algorithm 1) satisfy

P

(
∃t ≤ T :

∣∣∣∣∣
t−1∑
s=0

r̄s√
ζκ(r̄s)

⟨∆s, exp
−1
xs

(x⋆)⟩xs

∣∣∣∣∣ ≥ bt

)
≤ δ + P(s̄T > S), (86)

where bt = 8 r̄t−1√
ζκ(r̄t−1)

d̄t−1

√
2Sθt,δ + 8Sθ2t,δ

√∑t−1
s=0 [f(xs)− f(x⋆)] and s̄T := maxk≤T s(xk).

Proof. For 1 ≤ s ≤ T define the random variables

Ys :=
r̄s−1d̄s−1√
ζκ(r̄s−1)

, Xs :=

〈
∆s−1,

exp−1
xs−1

(x⋆)

d̄s−1

〉
xs−1

, X̂s :=

〈
− grad f(xs−1),

exp−1
xs−1

(x⋆)

d̄s−1

〉
xs−1

, (87)

and consider the filtration Fs = σ(G(x0) . . . ,G(xs)). Then we have that Xs is a martingale difference sequence adapted to
Fs and X̂s ∈ Fs−1. By construction or any t ≤ T , we have

t∑
s=1

YsXs =

t−1∑
s=0

r̄2s⟨∆s, exp
−1
xs

(x⋆)⟩xs
. (88)

Now we consider bounding, max{|Xt|, |X̂t|} by a constant c. Moreover, by the Cauchy-Schwartz inequality and Lemma A.5
we have with probability P(s̄T > S) we have

|Xs|2 ≤ ∥∆s−1∥2xs−1
· 1 ≤ 8S(f(xs−1)− f(x⋆)) (89)

|X̂s|2 ≤ ∥grad f(xs−1)∥2xs−1
· 1 ≤ 8S(f(xs−1)− f(x⋆)). (90)

Thus we have that,

|Xt| ≤

√√√√ t∑
s=1

|Xs|2 ≤
√
8S

√√√√t−1∑
s=0

[f(xs)− f(x⋆)] =: c (91)

|X̂t| ≤

√√√√ t∑
s=1

|X̂s|2 ≤
√
8S

√√√√t−1∑
s=0

[f(xs)− f(x⋆)] =: c. (92)

(93)

Therefore, applying Lemma A.9 yields,

P

∃t ≤ T :

∣∣∣∣∣
t−1∑
s=0

r̄s
ζκ(r̄s)

⟨∆s, exp
−1
xs

(x⋆)⟩xs

∣∣∣∣∣ ≥ 8
r̄t−1√
ζκ(r̄t−1)

d̄t−1

√√√√θt,δ

t∑
s=1

(
Xs − X̂s

)2
+ c2θ2t,δ

 ≤ δ. (94)

Now, finally noting

t∑
s=1

(Xs − X̂s)
2 ≤

t−1∑
s=0

∥ grad f(xs)∥2xs
≤ 2S

t−1∑
s=0

(f(xs)− f(x⋆)), (95)

yields the result.
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Theorem D.7. For all δ ∈ (0, 1) and S > 0, if Assumption 3.1, 3.2, and 3.4 hold, then with probability at least
1 − δ − P(s̄T > S), for all t ≤ T , the optimality gap of the uniformly averaged iterates f(x̂T ) − f(x⋆) of RDoG
(Algorithm 1) satisfy:

O

(
(d0 log+

r̄T
ϵ + r̄T )

2ζκ(d0 + r̄T )θ
2
T,δS

T

)
. (96)

Proof. Similar to the non-smooth setting, define the times τs = min
{
min{k|r̄k ≥ 2r̄τk−1

}, T
}

, with τ0 := 0. Moreover,
let K be the first index such that τK = T and note that K ≤ 1 + log2

r̄T
ϵ by construction. Now using the argument of

Lemma D.13, we have that for k ≤ K

τk−1∑
t=τk−1

r̄t√
ζκ(r̄t)

⟨−gt, exp
−1
xt

(x⋆)⟩ ≤ r̄τk

(
2d̄τk +

r̄τk
ζκ(r̄τk)

ζκ(d̄τk)

)√
Gτk−1 (97)

= O
(
r̄τk(d0 + r̄τk)

√
GT−1

)
(98)

≤ O

r̄τk(d0 + r̄τk)

√√√√2S
T−1∑
t=0

[f(xt)− f(x⋆)]

 . (99)

Where in the final inequality we have applied Lemma A.4. Now, by Lemma D.6 we have for all k ≤ K with probability at
least 1− δ − P(s̄T > L),∣∣∣∣∣∣

τk−1∑
t=τk−1

r̄t√
ζκ(r̄t)

⟨∆t, exp
−1
xt

(x⋆)⟩xt

∣∣∣∣∣∣ ≤
∣∣∣∣∣
τk−1∑
t=0

r̄t√
ζκ(r̄t)

⟨∆t, exp
−1
xt

(x⋆)⟩xt

∣∣∣∣∣+
∣∣∣∣∣
τk−1−1∑
t=0

r̄t√
ζκ(r̄t)

⟨∆t, exp
−1
xt

(x⋆)⟩xt

∣∣∣∣∣
(100)

≤ 16
r̄τk−1√
ζκ(r̄τk−1)

d̄τk−1

√
2SθT,δ + 8Sθ2T,δ

√√√√T−1∑
t=0

[f(xt)− f(x⋆)]. (101)

Now combining these two bounds, we have

τk−1∑
t=τk−1

f(xt)− f(x⋆) ≤
1

r̄τk−1
/
√
ζκ(r̄τk−1

)

τk−1∑
t=τk−1

r̄t√
ζκ(r̄t)

[f(xt)− f(x⋆)] (102)

≤ 1

r̄τk−1
/
√
ζκ(r̄τk−1

)

τk−1∑
t=τk−1

r̄t√
ζκ(r̄t)

⟨− grad f(xt), exp
−1
xt

(x⋆)⟩xt
(103)

=
1

r̄τk−1
/
√
ζκ(r̄τk−1

)

τk−1∑
t=τk−1

r̄t√
ζκ(r̄t)

[
⟨−gt, exp

−1
xt

(x⋆)⟩xt + ⟨∆t, exp
−1
xt

(x⋆)⟩xt

]
(104)

= O

 r̄τk/
√

ζκ(r̄τk)

r̄τk−1
/
√

ζκ(r̄τk−1
)
(d0 + r̄τk)

√
ζκ(d0 + r̄τk)

√
Sθ2T,δ

√√√√T−1∑
t=0

[f(xt)− f(x⋆)]

 (105)

= O

(d0 + r̄τk)
√
ζκ(d0 + r̄τk)

√
Sθ2T,δ

√√√√T−1∑
t=0

[f(xt)− f(x⋆)]

 . (106)

Where final reduction holds since d 7→ d
ζκ(d)

,and for any t,

r̄t+1 ≤ r̄t + d(xt+1, xt) = r̄t

(
1 +

∥gt∥xt√
Gt

)
≤ 2r̄t. (107)
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Now summing over k from 1 to K we have

T−1∑
t=0

[f(xt)− f(x⋆)] =

K∑
k=1

τk−1∑
t=τk−1

[f(xt)− f(x⋆)] (108)

= O

 K∑
k=1

(d0 + r̄τk)
√

ζκ(d0 + r̄τk)
√
Sθ2T,δ

√√√√T−1∑
t=0

[f(xt)− f(x⋆)]

 (109)

≤ O

 K∑
k=1

(d0 + r̄τk)

√√√√ζκ

(
d0 +

K∑
k=1

r̄τk

)√
Sθ2T,δ

√√√√T−1∑
t=0

[f(xt)− f(x⋆)]

 . (110)

Where the final reduction holds since d 7→ ζκ(d) is an increasing function. Now, recall that K = O
(
log+

r̄T
ϵ

)
and

note that
∑K

k=1 r̄τk = O(r̄T ) since r̄τs
r̄τK−1

≤ 2s−(K−1) for all s ≤ K − 1. We then divide both sides through by√∑T−1
t=0 [f(xt)− f(x⋆)], to yield√√√√T−1∑

t=0

[f(xt)− f(x⋆)] ≤ O
(
(d0r̄T /ϵ+ r̄T )

√
ζκ (d0 + r̄T )

√
Sθ2T,δ

)
, (111)

squaring both sides, the proof is complete noting that via Lemma A.3 we deduce f(x̂T ) ≤ 1
T

∑T−1
t=0 f(xt).

D.4. Iterate Stability Bound

We introduce Tamed Riemannian Distance over Gradients (T-RDoG), a dampened version of RDoG (Algorithm 1) whose
iterates are guaranteed to remain bounded with high probability. T-RDoG has the following step size scheme

ηt =
r̄t√

ζκ(r̄t)G′
t

, G′
t = 84θ2T,δ log

2
+

(
(1 + t)ℓ̄2t

ℓ̄20

)
(Gt−1 + 16ℓ̄2t ), (112)

using G−1 := 0 and recalling ℓ̄t := maxs≤t ℓ(xs) for a function ℓ satisfying Assumption 3.3. To show iterate boundedness
in the stochastic setting, we consider the stopping time

Tout = min{t ≥ 0 : r̄t > 3d0}, (113)

so that the event {r̄T ≤ 3d0} is the same as {Tout > T}. We also define the following truncated step size sequence,

η̃k := ηkI{k<Tout}. (114)

Truncating as such allows us to handle the possibility that r̄T exceeds 3d0. In particular, the following holds for {η̃k} but
not for {ηk}.

Lemma D.8. For all t ≤ T , if Assumption 3.1, 3.2, and 3.3 hold, under the truncated T-RDoG step size sequence {η̃t}, the
iterates satisfy,

η̃t ∈ σ(G(x0), . . . ,G(xt−1)), (115)

|η̃t⟨γ, exp−1
xt

(x⋆)⟩xt | ≤
6d20

82
√
ζκ(3d0)θT,δ

for γ ∈ {gt, grad f(xt),∆t}, (116)

t∑
k=0

η̃2kζκ(dk)∥gk∥2xk
≤ 12d20

84θT,δ
, and (117)

t∑
k=0

(η̃k⟨gk, exp−1
xk

(x⋆)⟩xk
)2 ≤ 3 · 43d40

84θT,δ
. (118)
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Proof. The first line holds directly by definition of the truncated T-RDoG iterates. For bound in the second line, note
(recalling ∆t = gt − grad f(xt) we have ∥∆t∥xt ≤ ∥gt∥xt + ∥grad f(xt)∥xt ≤ 2ℓ(xt). Since G′

t ≥ 4284ℓ2(xt)θ
2
T,δ for

all t, the Cauchy-Schwartz inequality gives,

|η̃t⟨∆t, exp
−1
xt

(x⋆)⟩xt
| ≤ r̄t√

ζκ(r̄t)G′
t

∥∆t∥xt
dt ≤

1

2 · 82θT,δ

r̄T√
ζκ(r̄T )

dt ≤
6d20

82
√

ζκ(3d0)θT,δ

, (119)

where we have used the fact that d 7→ d√
ζκ(d)

is an increasing function, and that dt ≤ d0 + r̄t and r̄t ≤ 3d0 (or else η̃t = 0).

Bounds for γ ∈ {gt, grad f(xt)} hold in a similar fashion.

Now for the third line, we have

t∑
k=0

η̃2kζκ(dk)∥gk∥2xk
≤

Tout−1∑
k=0

η2kζκ(dk)∥gk∥2xk
(120)

=

Tout−1∑
k=0

r̄2kζκ(dk)(Gk −Gk−1)

ζκ(r̄k)G′
k

. (121)

Now d 7→ ζκ(d) is increasing, thus ζκ(dk) ≤ ζκ(d0 + r̄Tout−1) as dk ≤ d̄k ≤ d̄Tout−1 ≤ d0 + r̄Tout−1. Additionally, since
d 7→ d

ζκ(d)
is increasing, we have r̄2k

ζκ(r̄k)
= r̄k

r̄k
ζκ(r̄k)

≤ r̄Tout−1
r̄Tout−1

ζκ(r̄Tout−1)
≤ r̄Tout−1

(r̄Tout−1+d0)

ζκ(r̄Tout−1+d0)
. Thus, we have

Tout−1∑
k=0

r̄2kζκ(dk)(Gk −Gk−1)

ζκ(r̄k)G′
k

≤ r̄Tout−1(r̄Tout−1 + d0)

Tout−1∑
k=0

Gk −Gk−1

G′
k

(122)

(i)

≤ r̄Tout−1(r̄Tout−1 + d0)

84θT,δ

Tout−1∑
k=0

Gk −Gk−1

(Gk + ℓ̄2k) log
2
+

(
Gk+ℓ̄2k

ℓ̄20

) (123)

(ii)

≤ 12d20
84θT,δ

. (124)

Where we have used in (i) that

G′
k ≥ 84θT,δ(Gk−1 + ∥gk∥2xk

+ ℓ2k) log
2
+

(∑k
s=0 ℓ̄

2
s + ℓ̄2k

ℓ̄20

)
≥ 84θT,δ(Gk + ℓ̄2k) log

2
+

(
Gk + ℓ̄2k

ℓ̄20

)
, (125)

holding since ∥gk∥xk
≤ ℓk. Additionally, in (ii) we have used Lemma A.8 with ak = Gk + ℓ̄2k and r̄Tout−1 ≤ 3d0.

The final line holds from the previous noting that,

t∑
k=0

(η̃k⟨gk, exp−1
xk

(x⋆)⟩xk
)2 ≤

t∑
k=0

η̃2kζκ(dk)∥gk∥2xk
d2k ≤ (4d0)

2
t∑

k=0

η̃2kζκ(dk)∥gk∥2xk
, (126)

where the first inequality follows from the Cauchy-Schwartz inequality and the second inequality holds from the fact that
only terms with k < Tout contribute to the sum.

Using the above lemma, we can establish the following concentration bound.

Lemma D.9. If Assumption 3.1, 3.2, and 3.3 hold, under the truncated T-RDoG step size sequence {η̃t}, the iterates satisfy,

P

(
∃t ≤ T :

t−1∑
k=0

η̃k⟨∆k, exp
−1
xk

(x⋆)⟩xk
> d20

)
≤ δ. (127)

Proof. Consider the filtration Ft = σ(G(x0) . . . ,G(xt)) and define Xt = η̃t⟨∆t, exp
−1
xt

(x⋆)⟩xt
and X̂t =

−η̃t⟨grad f(xt), exp
−1
xt

(x⋆)⟩xt . Then we have that Xt is a martingale difference sequence adapted to Ft and X̂t ∈ Ft−1.
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Moreover, we have max{|Xt|, |X̂t|} ≤ c almost surely for c = 24d2
0

84θT,δ
. Substituting into Lemma A.9, we have

P

∃t ≤ T :

∣∣∣∣∣
t−1∑
k=0

Xk

∣∣∣∣∣ ≥ 4

√√√√θt,δ

t−1∑
k=0

(Xk − X̂k)2 + c2θ2t,δ

 ≤ δ. (128)

Noting that Xt − X̂t = η̃t⟨gt, exp−1
xt

(x⋆)⟩xt
and substituting the definition of c and the bound gives for every t < T ,

4

√√√√θt,δ

t−1∑
k=0

(Xk − X̂k)2 + c2θ2t,δ ≤ 4

√√√√θt,δ
3 · 43d40
84θT,δ

+

(
6θt,δd20

82
√

ζκ(3d0)θT,δ

)2

≤ d20. (129)

Finally, we show that the event defined in the previous lemma implies the desired distance bound.

Lemma D.10. Suppose Assumption 3.1, 3.2, and 3.3 hold. If
∑t−1

k=0 η̃k⟨∆k, exp
−1
xk

(x⋆)⟩xk
≤ d20 for all t ≤ T then

Tout > T i.e., r̄t ≤ 3d0.

Proof. To condense notation, let Bt := maxt′≤t

∑t′−1
k=0 η̃k⟨∆k, exp

−1
xk

(x⋆)⟩xk
, so the claim becomes Bt ≤ d20 implies

Tout > t for all t ≤ T . We prove the claim by induction on t. The basis of the induction is that Tout > 0 always hold since
r̄0 = ϵ ≤ 3d0 by assumption. For the induction step, we assume that Bt−1 implies Tout ≥ t and show that Bt ≤ d20 implies
Tout > t. To that end, we use ⟨grad f(xt), exp

−1
xt

(x⋆)⟩xt ≥ f(xt)− f(x⋆) ≥ 0 to rearrange Lemma A.2 as

d2k+1 − d2k ≤ η2kζκ(dk)∥gk∥2xk
+ 2ηk⟨∆k, exp

−1
xk

(x⋆)⟩xk
(130)

for all k. Summing from 0 ≤ k ≤ t− 1, we have

d2t − d20 ≤
t−1∑
k=0

η2kζκ(dk)∥gk∥2xk
+ 2

t−1∑
k=0

ηk⟨∆k, exp
−1
xk

(x⋆)⟩xk
(131)

=

t−1∑
k=0

η̃2kζκ(dk)∥gk∥2xk
+ 2

t−1∑
k=0

η̃k⟨∆k, exp
−1
xk

(x⋆)⟩xk
. (132)

where the equality holds since Tout > t− 1 and therefore ηk = η̃k for all 0 ≤ k ≤ t− 1. Now, by previous lemma we have∑t−1
k=0 η̃

2
kζκ(dk)∥gk∥2xk

≤ 12d2
0

84θT,δ
≤ d20. Moreover, by assumption we have

∑t−1
k=0 η̃k⟨∆k, exp

−1
xk

(x⋆)⟩xk
≤ Bt ≤ d20, from

which we conclude, d2t ≤ 4d20 and hence rt ≤ d0 + dt ≤ 3d0. Finally, since r̄t = max{r̄t−1, rt} and r̄t−1 ≤ 3d0 by the
induction assumption, we have that r̄t ≤ 3d0.

Theorem D.11. Suppose ϵ ≤ 3d0 and Assumption 3.1, 3.2, and 3.3 hold. Then for any δ ∈ (0, 1) and t ∈ N, under the
T-RDoG step size sequence {ηt}, the iterates satisfy P(r̄t > 3d0) ≤ δ.

Proof. A consequence of combining the previous two lemmas.

Corollary D.12. Suppose that Assumption 3.1, 3.2, and 3.3 hold. For any δ ∈ (0, 1/2), t ∈ N, consider T iterations of

T-RDoG, with an initial step size of ϵ ≤ 3d0. Then for τ ∈ argmaxt≤T

∑t−1
s=0

r̄s/
√

ζκ(r̄s)

r̄t/
√

ζκ(r̄t)
we have, with probability at least

1− 2δ, that

f(x̃τ )− f(x⋆) = O

(
cδ,ϵ,T

d0
√

ζκ(d0)(Gτ−1 + L2
⋆)

T

)
= O

(
cδ,ϵ,T

d0
√
ζκ(d0)L⋆√
T

)
. (133)

where L⋆ := maxx∈M:d(x,x0)≤3d(x⋆,x0) ℓ(x) and cδ,ϵ,T = log+(T
d0L⋆

f(x0)−f(x⋆)
) log+(

d0

ϵ ) log(
log+(T )

δ ).
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Proof. Here we adapt Theorem D.3. Using that r̄t ≤ 3d0, we have ζκ(d0 + r̄t) ≤ ζκ(4d0) ≤
√
κ4d0

tanh(
√
κ4d0)

≤
√
κ4d0

tanh(
√
κd0)

=

O(ζκ(d0)) for κ > 0, otherwise ζκ(d0 + r̄t) = 1 = ζκ(d0) = O(ζκ(d0)) in the case κ = 0. Now, by Assumption 3.3
we have ℓ0 ≥ ∥grad f(x0)∥x0

≥ (f(x0) − f(x⋆))/d0, while r̄T ≤ 3d0 gives ℓ̄T ≤ L⋆. Therefore, log+
(
1 +

T ℓ̄2T
ℓ̄20

)
=

O
(
log+

(
T d0L⋆

f(x0)−f(x⋆)

))
.

D.5. Omitting Geometric Curvature Term Analysis

We analyze omitting the geometric curvature term from the denominator RDoG (Algorithm 1). Thus we consider step sizes
of the form

ηt =
r̄t√∑t

s=0∥gs∥2xs

. (134)

We term this algorithm Curvature Omitted Riemannian Distance over Gradients (CO-RDoG).

We consider bounding the error of the weighted average sequence,

x̃t+1 = expx̃t

(
r̄t∑t
s=0 r̄s

exp−1
x̃t

(xt)

)
, x̃1 = x0.

For a geodesically convex function f : M → R, we have by Jensens inequality (Lemma A.3) that x̃t satisfies,

f(x̃t)− f(x⋆) ≤
1∑t−1

s=0 r̄s

t−1∑
s=0

r̄s⟨− grad f(xs), exp
−1
xs

(x⋆)⟩xs . (135)

Recalling gs is the stochastic oracle evaluation, G(xs), the numerator decomposes into two components:

t−1∑
s=0

r̄s⟨−gs, exp
−1
xs

(x⋆)⟩xs︸ ︷︷ ︸
weighted regret

+

t−1∑
s=0

r̄s⟨∆s, exp
−1
xs

(x⋆)⟩xs︸ ︷︷ ︸
noise

, (136)

with ∆s := gs − grad f(xs).

We give deterministic bounds for the weighted regret (Lemma D.13) and high probability bounds for the noise term
(Lemma D.14).

Lemma D.13. Under Assumption 3.1 and 3.2, the iterates of CO-RDoG, satisfy

t−1∑
s=0

r̄s⟨−gs, exp
−1
xs

(x⋆)⟩xs
≤ r̄t

(
2d̄t + r̄tζκ(d̄t)

)√
Gt−1. (137)

Proof. Applying Lemma A.2, we can bound the weighted average as

t−1∑
s=0

r̄s⟨−gs, exp
−1
xs

(x⋆)⟩xs ≤ 1

2

t−1∑
s=0

r̄s
ηs

(
d2s − d2s+1

)
︸ ︷︷ ︸

(A)

+
1

2

t−1∑
s=0

r̄sηsζκ(ds)∥gs∥2xs︸ ︷︷ ︸
(B)

. (138)

We bound the terms (A) and (B) in turn, beginning with the former:

(A) =

t−1∑
s=0

√
Gs

(
d2s − d2s+1

)
= d20

√
G0 − d2t

√
Gt−1 +

t−1∑
s=1

d2s

(√
Gs −

√
Gs−1

)
(139)

(i)

≤ d̄2t
√

G0 − d2t
√
Gt−1 + d̄2t

t−1∑
s=1

(√
Gs −

√
Gs−1

)
=

√
Gt−1(d̄

2
t − d2t )

(ii)

≤ 4r̄td̄t
√
Gt−1. (140)
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Inequality (i) uses ds ≤ d̄t and that Gt is nondecreasing. Inequality (ii) use that for k ∈ argmaxs≤t ds, we have
d̄2t − d2t = d2k − d2t = (dk − dt)(dk + dt) ≤ d(xk, xt)(dk + dt) ≤ (r̄k + r̄t)(dk + dt) ≤ 4r̄td̄t.

Bounding the second term (B), using d 7→ ζκ(d) is an increasing function, we have:

(B) =

t−1∑
s=0

r̄2sζκ(ds)∥gs∥2xs√
Gs

≤
t−1∑
s=0

r̄2sζκ(d̄s)∥gs∥2xs√
Gs

≤ r̄2t ζκ(d̄t)

t−1∑
s=0

∥gs∥2xs√
Gs

≤ 2r̄2t ζκ(d̄t)
√

Gt−1. (141)

Thus, combining (A) and (B) together, gives the result.

Lemma D.14. For all δ ∈ (0, 1), T ∈ N and L > 0, if Assumption 3.1, 3.2, and 3.3 hold, the iterates of CO-RDoG satisfy

P

(
∃t ≤ T :

∣∣∣∣∣
t−1∑
s=0

r̄s⟨∆s, exp
−1
xs

(x⋆)⟩xs

∣∣∣∣∣ ≥ bt

)
≤ δ + P(ℓ̄T > L), (142)

where bt = 8r̄t−1d̄t−1

√
θt,δGt−1 + θ2t,δL

2 and ℓ̄T := maxs≤T ℓ(xs).

Proof. For 1 ≤ s ≤ T define the random variables

Ys := r̄s−1d̄s−1, Xs :=

〈
∆s−1,

exp−1
xs−1

(x⋆)

d̄s−1

〉
xs−1

, X̂s :=

〈
− grad f(xs−1),

exp−1
xs−1

(x⋆)

d̄s−1

〉
xs−1

. (143)

By the Cauchy-Schwartz inequality and Assumption 3.3 we have each |Xs| ≤ ℓ(x), and each |X̂s| ≤ ℓ(x) with probability
1. Moreover, for any t ≤ T , we have

t∑
s=1

YsXs =

t−1∑
s=0

r̄s⟨∆s, exp
−1
xs

(x⋆)⟩xs . (144)

Therefore, applying Lemma A.9 yields the result as required.

Combining the above results, we obtain the following.

Theorem D.15. For all δ ∈ (0, 1) and L > 0, if Assumption 3.1, 3.2, and 3.3 hold, then with probability at least
1− δ − P(ℓ̄T > L), for all t ≤ T , the optimality gap on the weighted iterates f(x̃t)− f(x⋆) of CO-RDoG satisfy

O

 (d0 + r̄t)ζκ(d0 + r̄t)
√

Gt−1 + θt,δGt−1 + θ2t,δL
2∑t−1

s=0 r̄s/r̄t

 (145)

with probability at least 1− δ − P(ℓ̄T > L).

Proof. Combining Lemma D.13 and Lemma D.14 and utilizing d̄t ≤ d0 + r̄t and that d 7→ ζκ(d) is an increasing function
yields the result as required.

Thus in comparison to standard RDoG, we pay an additional cost of O
(√

ζκ(d0 + r̄t)
)

for omitting the geometric curvature
term with CO-RDoG.

We then have a useful result when the manifold is bounded but its exact diameter is unknown.

Corollary D.16. Under Assumption 3.1, 3.2, and 3.3, for any D ≥ d0 let LD := maxx∈M:d(x,x0)≤D ℓ(x). Then, for all

δ ∈ (0, 1) and for τ ∈ argmaxt≤T

∑t−1
s=0

r̄s/
√

ζκ(r̄s)

r̄t/
√

ζκ(r̄t)
, with probability at least 1− δ − P(ℓ̄T > L), iterates of CO-RDoG

satisfy the optimality gap bound

f(x̃τ )− f(x⋆) = O

Dζκ(D)
√

Gτ−1θτ,δ + L2
Dθ2τ,δ

T
log+(D/ϵ)

 . (146)
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Proof. Apply Lemma A.6 to the denominator term of Theorem D.15.

Thus in comparison to standard RDoG, we pay an additional cost of O
(√

ζκ(D)
)

for omitting the curvature term with
CO-RDoG.

E. RDoWG Theoretical Analysis
E.1. Overview

In this section, we analyze RDoWG (Algorithm 2). Thus we consider RSGD with step sizes given by,

ηt =
r̄2t

ζκ(r̄t)
√
vt
, vt = vt−1 +

r̄2t
ζκ(r̄t)

∥gt∥2xt
, v−1 = 0. (147)

We consider the bounding the error of the weighted average sequence,

x̃t+1 = expx̃t

(
r̄2t /ζκ(r̄t)∑t
s=0 r̄

2
s/ζκ(r̄s)

exp−1
x̃t

(xt)

)
, x̃1 = x0.

For a geodesically convex function f : M → R, we have by Lemma A.3 that x̃t satisfies,

f(x̃t)− f(x⋆) ≤
1∑t−1

s=0(r̄
2
s/ζκ(r̄s))

t−1∑
s=0

(r̄2s/ζκ(r̄s))⟨− grad f(xs), exp
−1
xs

(x⋆)⟩xs . (148)

Recalling that gs represents the stochastic oracle evaluation at xs, denoted as G(xs), we can decompose the numerator into
two components:

t−1∑
s=0

(r̄2s/ζκ(r̄s))⟨−gs, exp
−1
xs

(x⋆)⟩xs︸ ︷︷ ︸
weighted regret

+

t−1∑
s=0

(r̄2s/ζκ(r̄s))⟨∆s, exp
−1
xs

(x⋆)⟩xs︸ ︷︷ ︸
noise

, (149)

with ∆s := gs − grad f(xs).

E.2. Supporting Analysis

Our first result gives deterministic bounds for the weighted regret (Lemma E.2).

Lemma E.1. Under Assumption 3.1 and 3.2, we have that the iterates of RDoWG (Algorithm 2) satisfy

t−1∑
s=0

(r̄2s/ζκ(r̄s))⟨−gs, exp
−1
xs

(x⋆)⟩xs
≤ r̄t

(
2d̄t +

r̄t
ζκ(r̄t)

ζκ(d̄t)

)
√
vt−1. (150)

Proof. Follow same argument as Lemma D.1 but with weights r̄2s
ζκ(r̄s)

replacing r̄s√
ζκ(r̄s)

and weighted gradient sum vs

replacing the standard gradient sum Gs.

E.3. Non-Smooth Analysis

We give deterministic bounds for the weighted regret (Lemma E.2) and high probability bounds for the noise term
(Lemma E.3) for the non-smooth setting.

Lemma E.2. Under Assumption 3.1 and 3.2, we have that the iterates of RDoWG (Algorithm 2) satisfy

t−1∑
s=0

(r̄2s/ζκ(r̄s))⟨−gs, exp
−1
xs

(x⋆)⟩xs ≤ r̄2t√
ζκ(r̄t)

(
2d̄t +

r̄t
ζκ(r̄t)

ζκ(d̄t)

)√
Gt−1. (151)
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Proof. Using the bound of E.2 and that
√
vt−1 ≤ r̄t−1√

ζκ(r̄t−1)

√
Gt−1 ≤ r̄t√

ζκ(r̄t)

√
Gt−1 gives the result.

Lemma E.3. For all δ ∈ (0, 1), T ∈ N and L > 0, if Assumption 3.1, 3.2, and 3.3 hold, the iterates of RDoWG (Algorithm 2)
satisfy

P

(
∃t ≤ T :

∣∣∣∣∣
t−1∑
s=0

r̄2s
ζκ(r̄s)

⟨∆s, exp
−1
xs

(x⋆)⟩xs

∣∣∣∣∣ ≥ bt

)
≤ δ + P(ℓ̄T > L), (152)

where bt = 8
r̄2t−1

ζκ(r̄t−1)
d̄t−1

√
θt,δGt−1 + θ2t,δL

2 and ℓ̄T := maxs≤T ℓ(xs).

Proof. Following the argument of Lemma D.2.

Combining the above results, we obtain the following.

Theorem E.4. For all δ ∈ (0, 1) and L > 0, if Assumption 3.1, 3.2, and 3.3 hold, then with probability at least
1 − δ − P(ℓ̄T > L), for all t ≤ T , the optimality gap on the weighted iterates f(x̃t) − f(x⋆) of RDoWG (Algorithm 2)
satisfy

O

 (d0 + r̄t)
√
ζκ(d0 + r̄t)

√
Gt−1 + θt,δGt−1 + θ2t,δL

2∑t−1
s=0

r̄2s/ζκ(r̄s)

r̄2t /ζκ(r̄t)

 . (153)

Proof. Using Lemma E.2 and Lemma E.3 we have

f(x̃t)− f(x⋆) ≤

(
2d̄t
√
ζκ(r̄t) +

r̄t√
ζκ(r̄t)

ζκ(d̄t)

)√
Gt−1 + 8d̄t

√
θt,δGt−1 + θ2t,δL

2∑t−1
s=0

r̄2s/ζκ(r̄s)

r̄2t /ζκ(r̄t)

. (154)

Now using the fact d̄t ≤ d0 + r̄t and that d 7→ ζκ(d) and d 7→ d√
ζκ(d)

are increasing functions gives the result.

Corollary E.5. Suppose Assumption 3.1, 3.2, and 3.3 hold, and for any D ≥ d0 let LD := maxx∈M:d(x,x0)≤D ℓ(x). Then,

for all δ ∈ (0, 1) and for τ ∈ argmaxt≤T

∑t−1
s=0

r̄s/
√

ζκ(r̄s)

r̄t/
√

ζκ(r̄t)
, with probability at least 1 − δ − P(ℓ̄T > L), iterates of

RDoWG (Algorithm 2) satisfy the optimality gap bound

f(x̃τ )− f(x⋆) = O

D
√

ζκ(D)
√

Gτ−1θτ,δ + L2
Dθ2τ,δ

T
log+

(
D/
√

ζκ(D)

ϵ/
√
ζκ(ϵ)

) . (155)

Proof. Apply Lemma A.6 to the denominator term of Theorem E.4.

E.4. Smooth Analysis

Lemma E.6. Suppose f is S-smooth and assume Assumption 3.1 and 3.2 hold. Then we have that the iterates of RDoWG
(Algorithm 2) satisfy

t−1∑
s=0

(r̄2s/ζκ(r̄s))⟨−gs, exp
−1
xs

(x⋆)⟩xs
≤ r̄t

(
2d̄t +

r̄t
ζκ(r̄s)

ζκ(d̄t)

)√√√√2S

t−1∑
s=0

r̄2s
ζκ(r̄s)

(f(xs)− f(x⋆)). (156)

Proof. By smoothness we can use Lemma A.4 to deduce ∥grad f(x)∥2x ≤ 2S(f(x)− f(x⋆)) for all x ∈ M. Therefore

vt =

t−1∑
s=0

r̄2s
ζκ(r̄s)

∥grad f(xs)∥2xs
≤ 2S

t−1∑
s=0

r̄2s
ζκ(r̄s)

(f(xs)− f(x⋆)). (157)

Taking square roots and substituting this into Lemma E.2 gives the result.
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Lemma E.7. Suppose Assumption 3.1, 3.2, and 3.4 hold. Then for all δ ∈ (0, 1), T ∈ N and S > 0, Then we have that the
iterates of RDoWG (Algorithm 2) satisfy

P

(
∃t ≤ T :

∣∣∣∣∣
t−1∑
s=0

r̄2s
ζκ(r̄s)

⟨∆s, exp
−1
xs

(x⋆)⟩xs

∣∣∣∣∣ ≥ bt

)
≤ δ + P(s̄T > S), (158)

where bt = 8 r̄t−1√
ζκ(r̄t−1)

d̄t−1

√
2Sθt,δ + 8Sθ2t,δ

√∑t−1
s=0

r̄2s
ζκ(r̄s)

[f(xs)− f(x⋆)] and s̄T := maxt≤T s(xt).

Proof. Define for 1 ≤ s ≤ T the following random variables as

Ys :=
r̄s−1√
ζκ(r̄s−1)

d̄s−1, Xs :=
r̄s−1√
ζκ(r̄s−1)

〈
∆s−1,

exp−1
xs−1

(x⋆)

d̄s−1

〉
xs−1

, (159)

X̂s :=
r̄s−1√
ζκ(r̄s−1)

〈
− grad f(xs−1),

exp−1
xs−1

(x⋆)

d̄s−1

〉
xs−1

, (160)

and follow similar argument to Lemma D.6.

Combining the above results, we obtain the following.
Theorem E.8. Suppose Assumption 3.1, 3.2, and 3.4 hold. Then for all δ ∈ (0, 1) and S > 0, with probability at least
1 − δ − P(s̄T > S), for all t ≤ T , the optimality gap on the weighted iterates f(x̃t) − f(x⋆) of RDoWG (Algorithm 2)
satisfy

O

 (d0 + r̄t)
2ζκ(d0 + r̄t)(Sθ

2
t,δ)∑t−1

s=0
r̄2s/ζκ(r̄s)

r̄2t /ζκ(r̄t)

 . (161)

Proof. Using Lemma E.20 and Lemma E.21 above, we have with the relevant probabilistic conditions,
t−1∑
s=0

r̄2s
ζκ(r̄s)

[f(xs)− f(x⋆)] ≤

(
√
2Sr̄t

(
2d̄t +

r̄t
ζκ(r̄t)

ζκ(d̄t)

)
+ 8

r̄t√
ζκ(r̄t)

d̄t

√
2Sθt,δ + 8Sθ2t,δ

)

×

√√√√t−1∑
s=0

r̄2s
ζκ(r̄s)

[f(xs)− f(x⋆)].

Now if f(xs)− f(x⋆) = 0 for some iterate, then the statement is trivial. Otherwise diving by sides by the square root term,
we have√√√√t−1∑

s=0

r̄2s
ζκ(r̄s)

[f(xs)− f(x⋆)] ≤

(
√
2Sr̄t

(
2d̄t +

r̄t
ζκ(r̄t)

ζκ(d̄t)

)
+ 8

r̄t√
ζκ(r̄t)

d̄t

√
2Sθt,δ + 8Sθ2t,δ

)
. (162)

We square both sides and divide through by r̄2s
ζκ(r̄s)

. Finally using the fact, d̄t ≤ d0 + r̄t, in the above bound gives the result
since d 7→ ζκ(d) and d 7→ d√

ζκ(d)
are increasing functions.

We then have a useful result when the manifold is bounded but its exact diameter is unknown.
Corollary E.9. Under Assumption 3.1, 3.2, and 3.4 hold, for any D ≥ d0 let SD := maxx∈M:d(x,x0)≤D s(x). Then, for all

δ ∈ (0, 1) and for τ ∈ argmaxt≤T

∑t−1
s=0

r̄2s/ζκ(r̄s)

r̄2t /ζκ(r̄t)
, with probability at least 1− δ − P(s̄T > S), iterates of Algorithm 1

satisfy the optimally gap on the weighted iterates f(x̃τ )− f(x⋆) of RDoWG (Algorithm 2) satisfy

O

(
D2ζκ(D)SDθ2τ,δ

T
log+

(
D/
√
ζκ(D)

ϵ/
√
ζκ(ϵ)

))
. (163)

Proof. Apply Lemma A.6 to the denominator term of Corollary E.23.
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E.5. Iterate Stability Bound

We introduce Tamed Riemannian Distance over Weighted Gradients (T-RDoWG), a dampened version of RDoWG (Algo-
rithm 2) whose iterates are guaranteed to remain bounded with high probability. T-RDoWG has the following step size
scheme

vt = vt−1 +
r̄2t

ζκ(r̄t)
∥gt∥2xt

, v−1 = 0, (164)

ηt =
r̄2t

ζκ(r̄t)
√

v′t
, v′t = 84θ2T,δ log

2
+

(
(1 + t)r̄2t ℓ̄

2
t/ζκ(r̄t)

r̄20 ℓ̄
2
0/ζκ(r̄0)

)
(vt−1 + 16

r̄2t
ζκ(r̄t)

ℓ̄2t ). (165)

To show iterate boundedness in the stochastic setting, we consider the stopping time

Tout = min{t ≥ 0 : r̄t > 3d0}, (166)

so that the event {r̄T ≤ 3d0} is the same as {Tout > T}. We also define the following truncated step size sequence,

η̃k := ηkI{k<Tout}. (167)

Truncating as such allows us to handle the possibility that r̄T exceeds 3d0. In particular, the following holds for {η̃k} but
not for {ηk}.

Lemma E.10. For all t ≤ T , if Assumption 3.1, 3.2, and 3.3 hold, under the truncated T-RDoWG step size sequence {η̃t},
the iterates satisfy

η̃t ∈ σ(G(x0), . . . ,G(xt−1)), (168)

|η̃t⟨γ, exp−1
xt

(x⋆)⟩xt | ≤
6d20

82
√
ζκ(3d0)θT,δ

for γ ∈ {gt, grad f(xt),∆t}, (169)

t∑
k=0

η̃2kζκ(dk)∥gk∥2xk
≤ 12d20

84θT,δ
, and (170)

t∑
k=0

(η̃k⟨gk, exp−1
xk

(x⋆)⟩xk
)2 ≤ 3 · 43d40

84θT,δ
. (171)

Proof. The first line holds directly by definition of the truncated T-RDoWG iterates. For bound in the second line, note
(recalling ∆t = gt − grad f(xt) we have ∥∆t∥xt

≤ ∥gt∥xt
+ ∥grad f(xt)∥xt

≤ 2ℓ(xt). Since v′t ≥ 4284
r̄2t

ζκ(r̄t)
ℓ2(xt)θ

2
T,δ

for all t, the Cauchy-Schwartz inequality gives,

|η̃t⟨∆t, exp
−1
xt

(x⋆)⟩xt
| ≤ r̄2t

ζκ(r̄t)
√
v′t
∥∆t∥xt

dt ≤
1

2 · 82θT,δ

r̄T√
ζκ(r̄T )

dt ≤
6d20

82
√

ζκ(3d0)θT,δ

, (172)

where we have used the fact that d 7→ d√
ζκ(d)

is an increasing function, and that dt ≤ d0 + r̄t and r̄t ≤ 3d0 (or else η̃t = 0).

Bounds for γ ∈ {gt, grad f(xt)} hold in a similar fashion.

Now for the third line, we have

t∑
k=0

η̃2kζκ(dk)∥gk∥2xk
≤

Tout−1∑
k=0

η2kζκ(dk)∥gk∥2xk
(173)

=

Tout−1∑
k=0

r̄4kζκ(dk)∥gk∥2xk

ζκ(r̄k)2v′k
(174)

=

Tout−1∑
k=0

r̄2kζκ(dk)(vk − vk−1)

ζκ(r̄k)v′k
. (175)
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Now d 7→ ζκ(d) is increasing, thus ζκ(dk) ≤ ζκ(d0 + r̄Tout−1) as dk ≤ d̄k ≤ d̄Tout−1 ≤ d0 + r̄Tout−1. Additionally, since
d 7→ d

ζκ(d)
is increasing, we have r̄2k

ζκ(r̄k)
= r̄k

r̄k
ζκ(r̄k)

≤ r̄Tout−1
r̄Tout−1

ζκ(r̄Tout−1)
≤ r̄Tout−1

(r̄Tout−1+d0)

ζκ(r̄Tout−1+d0)
. Thus, we have

Tout−1∑
k=0

r̄2kζκ(dk)(Gk −Gk−1)

ζκ(r̄k)G′
k

≤ r̄Tout−1(r̄Tout−1 + d0)

Tout−1∑
k=0

vk − vk−1

v′k
(176)

(i)

≤ r̄Tout−1(r̄Tout−1 + d0)

84θT,δ

Tout−1∑
k=0

vk − vk−1

(vk +
r̄2k

ζκ(r̄k)
ℓ̄2k) log

2
+

(
vk+

r̄2
k

ζκ(r̄k)
ℓ̄2k

r̄20
ζκ(r̄0)

ℓ̄20

) (177)

(ii)

≤ 12d20
84θT,δ

. (178)

Where we have used in (i) that

v′k ≥ 84θT,δ

(
vk−1 +

r̄2k
ζκ(r̄k)

∥gk∥2xk
+

r̄2k
ζκ(r̄k)

ℓ2k

)
log2+

∑k
s=0

r̄2s
ζκ(r̄s)

ℓ̄2s +
r̄2k

ζκ(r̄k)
ℓ̄2k

r̄20
ζκ(r̄0)

ℓ̄20

 (179)

≥ 84θT,δ

(
vk +

r̄2k
ζκ(r̄k)

ℓ̄2k

)
log2+

vk +
r̄2k

ζκ(r̄k)
ℓ̄2k

r̄20
ζκ(r̄0)

ℓ̄20

 , (180)

holding since ∥gk∥xk
≤ ℓk. Additionally, in (ii) we have used Lemma A.8 with ak = vk +

r̄2k
ζκ(r̄k)

ℓ̄2k and r̄Tout−1 ≤ 3d0.

The final line holds from the previous noting that,

t∑
k=0

(η̃k⟨gk, exp−1
xk

(x⋆)⟩xk
)2 ≤

t∑
k=0

η̃2kζκ(dk)∥gk∥2xk
d2k ≤ (4d0)

2
t∑

k=0

η̃2kζκ(dk)∥gk∥2xk
, (181)

where the first inequality follows from the Cauchy-Schwartz inequality and the second inequality holds from the fact that
only terms with k < Tout contribute to the sum.

Using the above lemma, we can establish the following concentration bound.

Lemma E.11. If Assumption 3.1, 3.2, and 3.3 hold, under the truncated T-RDoWG step size sequence {η̃t}, the iterates
satisfy,

P

(
∃t ≤ T :

t−1∑
k=0

η̃k⟨∆k, exp
−1
xk

(x⋆)⟩xk
> d20

)
≤ δ. (182)

Proof. Consider the filtration Ft = σ(G(x0) . . . ,G(xt)) and define Xt = η̃t⟨∆t, exp
−1
xt

(x⋆)⟩xt
and X̂t =

−η̃t⟨grad f(xt), exp
−1
xt

(x⋆)⟩xt . Then we have that Xt is a martingale difference sequence adapted to Ft and X̂t ∈ Ft−1.

Moreover, we have max{|Xt|, |X̂t|} ≤ c almost surely for c = 24d2
0

84θT,δ
. Substituting into Lemma A.9, we have

P

∃t ≤ T :

∣∣∣∣∣
t−1∑
k=0

Xk

∣∣∣∣∣ ≥ 4

√√√√θt,δ

t−1∑
k=0

(Xk − X̂k)2 + c2θ2t,δ

 ≤ δ. (183)

Noting that Xt − X̂t = η̃t⟨gt, exp−1
xt

(x⋆)⟩xt
and substituting the definition of c and the bound gives for every t < T ,

4

√√√√θt,δ

t−1∑
k=0

(Xk − X̂k)2 + c2θ2t,δ ≤ 4

√√√√θt,δ
3 · 43d40
84θT,δ

+

(
6θt,δd20

82
√

ζκ(3d0)θT,δ

)2

≤ d20. (184)
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Lemma E.12. Suppose Assumption 3.1, 3.2, and 3.3 hold. If
∑t−1

k=0 η̃k⟨∆k, exp
−1
xk

(x⋆)⟩xk
≤ d20 for all t ≤ T then

Tout > T i.e., r̄t ≤ 3d0.

Proof. To condense notation, let Bt := maxt′≤t

∑t′−1
k=0 η̃k⟨∆k, exp

−1
xk

(x⋆)⟩xk
, so the claim becomes Bt ≤ d20 implies

Tout > t for all t ≤ T . We prove the claim by induction on t. The basis of the induction is that Tout > 0 always hold since
r̄0 = ϵ ≤ 3d0 by assumption. For the induction step, we assume that Bt implies Tout ≥ t and show that Bt ≤ d20 implies
Tout > t. To that end, we use ⟨grad f(xt), exp

−1
xt

(x⋆)⟩xt ≥ f(xt)− f(x⋆) ≥ 0 to rearrange Lemma A.2 as

d2k+1 − d2k ≤ η2kζκ(dk)∥gk∥2xk
+ 2ηk⟨∆k, exp

−1
xk

(x⋆)⟩xk
(185)

for all k. Summing from 0 ≤ k ≤ t− 1, we have

d2t − d20 ≤
t−1∑
k=0

η2kζκ(dk)∥gk∥2xk
+ 2

t−1∑
k=0

ηk⟨∆k, exp
−1
xk

(x⋆)⟩xk
(186)

=

t−1∑
k=0

η̃2kζκ(dk)∥gk∥2xk
+ 2

t−1∑
k=0

η̃k⟨∆k, exp
−1
xk

(x⋆)⟩xk
. (187)

where the equality holds since Tout ≥ t and therefore ηk = η̃k for all 0 ≤ k ≤ t− 1. Now, by previous lemma we have∑t−1
k=0 η̃

2
kζκ(dk)∥gk∥2xk

≤ 12d2
0

84θT,δ
≤ d20. Moreover, by assumption we have

∑t−1
k=0 η̃k⟨∆k, exp

−1
xk

(x⋆)⟩xk
≤ Bt ≤ d20, from

which we conclude, d2t ≤ 4d20 and hence rt ≤ d0 + dt ≤ 3d0. Finally, since r̄t = max{r̄t−1, rt} and r̄t−1 ≤ 3d0 by the
induction assumption, we have that r̄t ≤ 3d0.

Theorem E.13. Suppose Assumption 3.1, 3.2, and 3.3 hold, and ϵ ≤ 3d0. Then for any δ ∈ (0, 1) and t ∈ N, under the
T-RDoWG step size sequence {ηk}, the iterates satisfy P(r̄t > 3d0) ≤ δ.

Proof. A consequence of combining the previous two lemmas.

Corollary E.14. Suppose that Assumption 3.1, 3.2, and 3.3 hold. For any δ ∈ (0, 1/2), t ∈ N, consider T iterations of {ηk},
with initial step size of ϵ ≤ 3d0. Then for τ ∈ argmaxt≤T

∑t−1
s=0

r̄2s/ζκ(r̄s)

r̄2t /ζκ(r̄t)
we have, with probability at least 1− 2δ, that

f(x̃τ )− f(x⋆) = O

(
cδ,ϵ,T

d0
√
ζκ(d0)(Gτ + L2

⋆)

T

)
= O

(
cδ,ϵ,T

d0
√

ζκ(d0)L⋆√
T

)
. (188)

where L⋆ := maxx∈M:d(x,x0)≤3d(x⋆,x0) ℓ(x) and cδ,ϵ,T = log+(T
d0L⋆

f(x0)−f(x⋆)
) log+(

d0

ϵ ) log(
log+(T )

δ ).

Proof. Here we adapt theorem Theorem E.4. Using that r̄t ≤ 3d0, we have ζκ(d0 + r̄t) ≤ ζκ(4d0) ≤
√
κ4d0

tanh(
√
κ4d0)

≤
√
κ4d0

tanh(
√
κd0)

= O(ζκ(d0)) for κ > 0, otherwise ζκ(d0 + r̄t) = 1 = ζκ(d0) = O(ζκ(d0)) in the case κ = 0. Now, by
Assumption 3.3 we have ℓ0 ≥ ∥grad f(x0)∥x0 ≥ (f(x0) − f(x⋆))/d0, while r̄T ≤ 3d0 gives ℓ̄T ≤ L⋆. Therefore,
log+

(
1 +

T ℓ̄2T
ℓ̄20

)
= O

(
log+

(
T d0L⋆

f(x0)−f(x⋆)

))
.

E.6. Omitting Geometric Curvature Term Analysis

We analyze omitting the geometric curvature term from the denominator RDoWG (Algorithm 2). Thus we consider step
sizes of the form

ηt =
r̄2t√
vt
, vt = vt−1 + r̄2t ∥gs∥2xs

, v−1 = 0. (189)

We term this algorithm Curvature Omitted Riemannian Distance over Weighted Gradients (CO-RDoWG).

We consider the bound the error of the weighted average sequence,

x̃t+1 = expx̃t

(
r̄2t∑t
s=0 r̄

2
s

exp−1
x̃t

(xt)

)
, x̃1 = x0.
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For a geodesically convex function f : M → R, we have by Lemma A.3 that x̃t satisfies,

f(x̃t)− f(x⋆) ≤
1∑t−1

s=0 r̄
2
s

t−1∑
s=0

r̄2s⟨− grad f(xs), exp
−1
xs

(x⋆)⟩xs
. (190)

Recalling gs is the stochastic oracle evaluation, G(xs), the numerator decomposes into two components:

t−1∑
s=0

r̄2s⟨−gs, exp
−1
xs

(x⋆)⟩xs︸ ︷︷ ︸
weighted regret

+

t−1∑
s=0

r̄2s⟨∆s, exp
−1
xs

(x⋆)⟩xs︸ ︷︷ ︸
noise

, (191)

with ∆s := gs − grad f(xs).

SUPPORTING ANALYSIS

We give a deterministic bound for the weighted regret (Lemma E.15).

Lemma E.15. Under Assumption 3.1 and 3.2, the iterates of CO-RDoWG, satisfy

t−1∑
s=0

r̄2s⟨−gs, exp
−1
xs

(x⋆)⟩xs ≤ r̄t
(
2d̄t + r̄tζκ(d̄t)

)√
vt−1. (192)

Proof. Follow the same argument as Lemma D.13 but with weights r̄2s replacing r̄s and weighted gradient sum vs replacing
the standard gradient sum Gs.

NON-SMOOTH ANALYSIS

We give deterministic bounds for the weighted regret (Lemma E.16) and high probability bounds for the noise term
(Lemma E.17) in the non-smooth setting.

Lemma E.16. Under Assumption 3.1 and 3.2, the iterates of CO-RDoWG, satisfy

t−1∑
s=0

r̄2s⟨−gs, exp
−1
xs

(x⋆)⟩xs ≤ r̄2t
(
2d̄t + r̄tζκ(d̄t)

)√
Gt−1. (193)

Proof. Using the bound of E.15 and that
√
vt−1 ≤ r̄t−1

√
Gt−1 ≤ r̄t

√
Gt−1 gives the result.

Lemma E.17. For all δ ∈ (0, 1), T ∈ N and L > 0, if Assumption 3.1, 3.2, and 3.3 hold, the iterates of CO-RDoWG satisfy

P

(
∃t ≤ T :

∣∣∣∣∣
t−1∑
s=0

r̄2s⟨∆s, exp
−1
xs

(x⋆)⟩xs

∣∣∣∣∣ ≥ bt

)
≤ δ + P(ℓ̄T > L), (194)

where bt = 8r̄2t−1d̄t−1

√
θt,δGt−1 + θ2t,δL

2 and ℓ̄T := maxs≤T ℓ(xs).

Proof. Follow argument of Lemma D.14.

Combining the above results, we obtain the following.

Theorem E.18. For all δ ∈ (0, 1) and L > 0, if Assumption 3.1, 3.2, and 3.3 hold, then with probability at least
1− δ − P(ℓ̄T > L), for all t ≤ T , the optimality gap on the weighted iterates f(x̃t)− f(x⋆) of CO-RDoWG satisfy

O

 (d0 + r̄t)ζκ(d0 + r̄t)
√

Gt−1 + θt,δGt−1 + θ2t,δL
2∑t−1

s=0 r̄
2
s/r̄

2
t

 . (195)
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Proof. Combine Lemma E.16 and Lemma E.17 and use the fact d̄t ≤ d0 + r̄t.

Thus in comparison to standard RDoWG, we pay an additional cost of O
(√

ζκ(d0 + r̄t)
)

for omitting the geometric
curvature term with CO-RDoWG.

We then have a useful result when the manifold is bounded but its exact diameter is unknown.

Corollary E.19. Under Assumption 3.1, 3.2, and 3.3, for any D ≥ d0 let LD := maxx∈M:d(x,x0)≤D ℓ(x). Then, for all

δ ∈ (0, 1) and for τ ∈ argmaxt≤T

∑t−1
s=0

r̄2s
r̄2t

, with probability at least 1− δ − P(ℓ̄T > L), iterates of CO-DoWG satisfy
the optimality gap bound

f(x̃τ )− f(x⋆) = O

Dζκ(D)
√

Gτ−1θτ,δ + L2
Dθ2τ,δ

T
log+(D/ϵ)

 . (196)

Proof. Apply Lemma A.6 to the denominator term of Theorem E.18.

Thus in comparison to standard RDoWG, we pay an additional cost of O
(√

ζκ(D)
)

for omitting the curvature term with
CO-RDoWG.

SMOOTH ANALYSIS

Lemma E.20. Suppose f is S-smooth and assume Assumption 3.1 and 3.2 hold. Then we have that the iterates of
CO-RDoWG satisfy

t−1∑
s=0

r̄2s⟨−gs, exp
−1
xs

(x⋆)⟩xs
≤ r̄t

(
2d̄t + r̄tζκ(d̄t)

)√√√√2S

t−1∑
s=0

r̄2s(f(xs)− f(x⋆)). (197)

Proof. By smoothness we can use Lemma A.4 to deduce ∥grad f(x)∥2x ≤ 2S(f(x)− f(x⋆)) for all x ∈ M. Therefore

vt =

t−1∑
s=0

r̄2s∥grad f(xs)∥2xs
≤ 2S

t−1∑
s=0

r̄2s(f(xs)− f(x⋆)). (198)

Taking square roots and substituting this into Lemma A.4 gives the result.

Lemma E.21. Suppose Assumption 3.1, 3.2, and 3.4 hold. Then for all δ ∈ (0, 1), T ∈ N and S > 0, Then we have that the
iterates of CO-RDoWG satisfy

P

(
∃t ≤ T :

∣∣∣∣∣
t−1∑
s=0

r̄2s⟨∆s, exp
−1
xs

(x⋆)⟩xs

∣∣∣∣∣ ≥ bt

)
≤ δ + P(s̄T > S), (199)

where bt = 8r̄t−1d̄t−1

√
2Sθt,δ + 8Sθ2t,δ

√∑t−1
s=0 r̄

2
s [f(xs)− f(x⋆)] and s̄T := maxt≤T s(xt).

Proof. Follow argument of Lemma E.7.

Combining the above results, we obtain the following.

Theorem E.22. For all δ ∈ (0, 1) and S > 0, if Assumption 3.1, 3.2, and 3.4 hold, then with probability at least
1− δ − P(s̄T > S), for all t ≤ T , CO-RDoWG satisfies the optimality gap f(x̃t)− f(x⋆) of

O

 ((d0 + r̄t)ζκ(d0 + r̄t))
2
(Sθ2t,δ)∑t−1

s=0
r̄2s
r̄2t

 . (200)
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Proof. Using Lemma E.20 and Lemma E.21 above, we have with the relevant probabilistic conditions,

t−1∑
s=0

r̄2s [f(xs)− f(x⋆)] ≤
(√

2Sr̄t
(
2d̄t + r̄tζκ(d̄t)

)
+ 8r̄td̄t

√
2Sθt,δ + 8Sθ2t,δ

)√√√√t−1∑
s=0

r̄2s [f(xs)− f(x⋆)]. (201)

Now if f(xs)− f(x⋆) = 0 for some iterate, then the statement is trivial. Otherwise diving by sides by the square root term,
we have √√√√t−1∑

s=0

r̄2s [f(xs)− f(x⋆)] ≤
(√

2Sr̄t
(
2d̄t + r̄tζκ(d̄t)

)
+ 8r̄td̄t

√
2Sθt,δ + 8Sθ2t,δ

)
. (202)

We square both sides and divide through by
∑t−1

s=0 r̄
2
s ,

1∑t−1
s=0 r̄

2
s

t−1∑
s=0

r̄2s [f(xs)− f(x⋆)] ≤ O

(2d̄t + r̄tζκ(d̄t)
)2

(Sθ2t,δ)∑t−1
s=0

r̄2s
r̄2t

 . (203)

Now using the fact, d̄t ≤ d0 + r̄t, in the above bound gives the result.

Thus in comparison to standard RDoWG, we pay an additional cost of O
(√

ζκ(d0 + r̄t)
)

for omitting the geometric
curvature term with CO-RDoWG.

We then have a useful result when the manifold is bounded but its exact diameter is unknown.

Corollary E.23. Under Assumption 3.1, 3.2, and 3.4, for any D ≥ d0 let SD := maxx∈M:d(x,x0)≤D s(x). Then, for all

δ ∈ (0, 1) and for τ ∈ argmaxt≤T

∑t−1
s=0

r̄2s
r̄2t

, with probability at least 1 − δ − P(s̄T > S), the iterates of CO-RDoWG
satisfies the optimally gap f(x̃τ )− f(x⋆) of

O

(
D2ζκ(D)2SDθ2τ,δ

T
log+(D/ϵ)

)
. (204)

Proof. Apply Lemma A.6 to the denominator term of Theorem E.22.

Thus in comparison to standard RDoWG, we pay an additional cost of O
(√

ζκ(D)
)

for omitting the curvature term with
CO-RDoWG.

F. NRDoG Overview
Here we present a learning-rate-free schedule for NRSGD: Normalized Riemannian Distance over Gradients (NRDoG).

Algorithm 4 NRDoG
Input: initial point x0, initial estimate ϵ > 0, G−1 = 0.
for t = 0 to T − 1 do
gt = G(xt)
r̄t = max (ϵ,maxs≤t d(xs, x0))
ηt =

r̄t√
(t+1)ζκ(r̄t)

xt+1 = expxt

(
−ηt

gt
∥gt∥xt

)
end for

37



Learning-Rate-Free Stochastic Optimization over Riemannian Manifolds

G. Geometry of Specific Riemannian Manifolds
G.1. Sphere Manifold

The sphere manifold Sd−1 := {x ∈ Rd : ∥x∥ = 1} is an embedded submanifold of Rd with tangent space TxSd−1 = {v ∈
Rd : xT v = 0}. The Riemannian metric is given by the Euclidean inner product ⟨·, ·′⟩x = ⟨·, ·′⟩. The exponential map
is given by expx(v) = cos(∥v∥)x+ sin(∥v∥) v

∥v∥ with inverse exponential map as exp−1
x (y) = arccos(xT y) Projx(y−x)

∥Projx(y−x)∥
where Projx(v) = v − (xT v)x is the orthogonal projection of any v ∈ Rd to the tangent space TxSd−1. Following the
Pymanopt implementation (Townsend et al., 2016), parallel transport is approximated with the projection operation, i.e.,
Γy
xv ≈ Projx(v).

G.2. Grassmann Manifold

The Grassmann manifold of dimension d× r, denoted as G(d, r) is the set of all r dimensional subspaces in Rd (d ≥ r).
Each point on the Grassmann manifold can be identified as a column of orthonormal matrices x ∈ Rd×r, xTx = I and
two points x, y are equivalent if x = yo for some r × r orthogonal matrix o. For our implementation of the exponential
map, inverse exponential map, and parallel transport, we directly translate the Pymanopt code (Townsend et al., 2016) from
NumPy to JAX.

G.3. Poincaré Manifold

The Poincaré manifold of dimension d is given by the open d-dimensional unit ball Bd := {x ∈ Rd : ∥x∥ < 1} equipped
with Riemannian metric ⟨·, ·′⟩x = 4/(1− ∥x∥2)2⟨·, ·′⟩. The Möbius addition of x and y in Bd is defined as (Ungar, 2008)

x⊕ y :=
(1 + 2⟨x, y⟩+ ∥y∥2)x+ (1− ∥x∥2)y

1 + 2⟨x, y⟩+ ∥x∥2∥y∥2
.

Defining the conformal factor as λx := 2/(1−∥x∥2), the exponential map is given by expx(v) = x⊕
(
tanh

(
λx

∥x∥
2

))
v

∥v∥
and the inverse exponential map is given by exp−1

x (y) = 2
λx

tanh−1(∥−x ⊕ y∥) −x⊕y
∥−x⊕y∥ . Parallel transport can also be

given in closed form (see Ungar, 2008, for further details).

H. Additional Numerical Results
H.1. Rayleigh Quotient Maximization on the Sphere

In this section, we provide additional results for the Rayleigh quotient maximization discussed in Section 5.1 with a
consistent setup across d = 1000 dimensions. The initial figures in Figure 5 emphasize the learning-rate-free adaptability
and insensitivity to the choice of the initial distance estimate, ϵ ∈ [10−8, 100], for RDoG, RDoWG, and NRDoG, particularly
after a few hundred iterations. In contrast, we observe a notable impact on the performance of RSGD due to the choice of
the learning rate, η ∈ [10−8, 100]. This sensitivity in regret also influences solution quality, as illustrated in Figure 6.

We proceed to evaluate the algorithms for various numbers of iterations T ∈ {100, 500, 1000, 2000}, showcasing regret in
Figure 7 and geodesic distance to a numerically computed optimum in Figure 8 for different learning rates, η ∈ [10−8, 106],
for RSGD and RADAM. Additionally, we explore different initial distance estimates, ϵ ∈ [10−8, 10−1], for RDoG, RDoWG,
and NRDoG. Notably, we observe that for T = 100 iterations, the initial distance estimate does impact the algorithms, but
after T = 500 iterations, the effect becomes insensitive over several orders of magnitude, mirroring Figure 7 and Figure 8.
Conversely, RADAM and RSGD exhibit a requirement for careful tuning.

H.2. PCA on the Grassmann Manifold

In this section, we present additional results for the PCA on the Grassmann manifold discussed in Section 5.2, maintaining
a consistent experimental setup. In Table 1, we observe that while RSGD exhibits sensitivity to the learning rate η ∈
[10−8, 100], RDoG, RDoWG, and NRDoG quickly adapt and achieve performance comparable to the best learning rate for
RSGD within 500 iterations, irrespective of the chosen initial distance ϵ ∈ [10−8, 100]. This adaptability is further evident
in Table 2, where we consider halting the algorithms for T ∈ {100, 500, 1000, 2000} iterations and comparing the geodesic
distance of the output of the optimizer with the numerical solution. Discrepancies are noticeable for T = 100, but these
discrepancies diminish for T = 500 iterations and beyond.
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(c) RDoWG.
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Figure 5. Supplementary results for Rayleigh quotient maximization on the sphere (Section 5.1). The plots depict regret as a function
of the iteration, considering various learning rates. Results are averaged over ten random replications. The optimal RSGD is chosen based
on minimizing the regret after 5000 iterations. Note that (a) and (b) are equivalent to Figure 2 (b) and (c) respectively.
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(c) RDoWG.
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Figure 6. Supplementary results for Rayleigh quotient maximization on the sphere (Section 5.1). The plots display the geodesic
distance from an optimum as a function of the iteration, considering various learning rates. Results are averaged over ten replicates with
different initial points. The optimal RSGD is selected based on minimizing the geodesic distance from the optimum after 5000 iterations.

H.3. Embedding Graphs in the Poincaré Embeddings

In this section, we provide supplementary results concerning Poincaré embeddings, as detailed in Section 5.3.

Table 3 maintains a consistent experimental framework with the main paper, focusing on five-dimensional embeddings. The
top-left section of the table corresponds to Figure 4(a) presented in the main paper, serving as a reference for comparison.
In the bottom-left segment, we explore the algorithmic performance of RADAM and RSGD without implementing the
burn-in heuristic, which results in inferior performance. Notably, our optimizers demonstrate robustness, eliminating the
need for such heuristics. On the left-hand column, we investigate the impact of omitting the curvature term from the
learning rates. For RDoG and RDoWG, the curvature omission corresponds to CO-RDoG (Appendix D.5) and CO-RDoWG
(Appendix E.6). This omission leads to a performance decrease for NRDoG and RDoWG, while RDoG remains unaffected
in performance.

Table 4 adheres to a consistent experimental framework for two-dimensional embeddings outlined in the main paper. In the
right-hand column, we discern meaningful groupings across various categories without resorting to burn-in heuristics for
RDoG, RDoWG, and NRDoG. Conversely, in the left-hand column, we emphasize the pivotal role of geometric curvature in
governing step sizes; its absence results in inferior groupings. This discrepancy is reflected in the mean average precision

10−6 10−3 100 103 106

Learning rate η

0.0

0.5

1.0

1.5

R
eg

re
t

RADAM

RSGD

NRDoG (Ours)

RDoG (Ours)

RDoWG (Ours)

10−8 10−6 10−4 10−2
Initial distance ε

(a) T = 100.

10−6 10−3 100 103 106

Learning rate η

0.0

0.6

1.2

1.8

R
eg

re
t

RADAM

RSGD

NRDoG (Ours)

RDoG (Ours)

RDoWG (Ours)

10−8 10−6 10−4 10−2
Initial distance ε

(b) T = 500.

10−6 10−3 100 103 106

Learning rate η

0.0

0.6

1.2

1.8

R
eg

re
t

RADAM

RSGD

NRDoG (Ours)

RDoG (Ours)

RDoWG (Ours)

10−8 10−6 10−4 10−2
Initial distance ε

(c) T = 1000.

10−6 10−3 100 103 106

Learning rate η

0.0

0.6

1.2

1.8

R
eg

re
t

RADAM

RSGD

NRDoG (Ours)

RDoG (Ours)

RDoWG (Ours)

10−8 10−6 10−4 10−2
Initial distance ε

(d) T = 2000.

Figure 7. Supplementary Results for Rayleigh Quotient Maximization (Section 5.1). Each plot illustrates the regret after the algorithm
is halted for the specified number of iterations. Results are averaged over ten replicates with different initial points.
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Figure 8. Supplementary results for Rayleigh quotient maximization on the sphere (Section 5.1). Each plot illustrates the geodesic
distance to a numerically computed optimum after the algorithm is halted for the specified number of iterations. Results are averaged over
ten replicates with different initial points.
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Table 1. Supplementary results for PCA on the Grassmann manifold (Section 5.2). The plots display the geodesic distance from a
numerically computed optimum as a function of the iteration, considering various learning rates. Results are averaged over five replicates
with different initial points. The optimal RSGD is selected based on minimizing the geodesic distance from the optimum after 2000
iterations.
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Table 2. Supplementary results for PCA on the Grassmann manifold (Section 5.2). Results for different datasets and methods. Each
plot illustrates the geodesic distance to a numerically computed optimum after the algorithm is halted for the specified number of iterations.
Results are averaged over ten replicates with different initial points.
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Table 3. Supplementary results for the five-dimensional Poincaré word embeddings (Section 5.3). We compute the mean average
precision of the embeddings against the ground truth after 1000 training epochs. The reported results represent the average over five
replications, with the dimension of the embeddings set to five. In the columns, “with geometric curvature term” corresponds to learning
schedulers for RDoG, RDoWG, and NRDoG that retain the geometric curvature term in the denominator, while “without geometric
curvature term” denotes the omission of this term. On the rows, “with burn-in period” indicates running RADAM and RSGD with a
burn-in heuristic. In this case, the algorithms are executed with learning rates divided by ten for the initial ten epochs before regular
training. “without burn-in period” signifies the absence of this heuristic.
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Table 4. Supplementary results for the two-dimensional Poincaré word embeddings (Section 5.3). We compute the mean average
precision of the embeddings against the ground truth after 2000 training epochs. The reported results represent the average over five
replications, with the dimension of the embeddings set to two. Plots of embeddings obtained under each optimizer are visualized and
annotated for the first 50 nouns of the mammal’s subtree. In the columns, “with geometric curvature term” corresponds to learning
schedulers for RDoG, RDoWG, and NRDoG that retain the geometric curvature term in the denominator, while “without geometric
curvature term” denotes the omission of this term.
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