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Abstract
Despite the remarkable capabilities, Large Lan-
guage Models (LLMs) face deployment chal-
lenges due to their extensive size. Pruning meth-
ods drop a subset of weights to accelerate, but
many of them require retraining, which is pro-
hibitively expensive and computationally demand-
ing. Recently, post-training pruning approaches
introduced novel metrics, enabling the pruning of
LLMs without retraining. However, these met-
rics require the involvement of human experts and
tedious trial and error. To efficiently identify su-
perior pruning metrics, we develop an automatic
framework for searching symbolic pruning met-
rics using genetic programming. In particular,
we devise an elaborate search space encompass-
ing the existing pruning metrics to discover the
potential symbolic pruning metric. We propose
an opposing operation simplification strategy to
increase the diversity of the population. In this
way, Pruner-Zero allows auto-generation of sym-
bolic pruning metrics. Based on the searched re-
sults, we explore the correlation between pruning
metrics and performance after pruning and sum-
marize some principles. Extensive experiments
on LLaMA and LLaMA-2 on language modeling
and zero-shot tasks demonstrate that our Pruner-
Zero obtains superior performance than SOTA
post-training pruning methods. Code at: https:
//github.com/pprp/Pruner-Zero.

1. Introduction
Recent breakthroughs in Large Language Models
(LLMs) (OpenAI, 2023; Touvron et al., 2023a;b; Abdin
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et al., 2024) have revolutionized the field of Natural
Language Processing (NLP) tasks, enabling remarkable
progress across a wide spectrum of tasks, including both
Natural Language Understanding and Natural Language
Generation. A key differentiator of LLMs from prior
convolution-based models is their unprecedented scale.
With billions of parameters, LLMs can effectively manage
complex tasks and have exhibited exceptional performance.
However, the vast number of parameters that these models
possess necessitates substantial computational resources,
highlighting a critical challenge in their deployment. For
instance, deploying models like GPT-3, with its 175
billion parameters, underscores the intense computational
demands, necessitating advanced GPU technologies.

Several model compression techniques are developed to
solve these problems, such as model quantization (Frantar
et al., 2023; Liu et al., 2023b; Yao et al., 2022), model spars-
ing (Frantar & Alistarh, 2023; Sun et al., 2024), and knowl-
edge distillation (Xiaolong et al., 2023; Li & Jin, 2022; Li,
2022). Model sparsing compresses the model by identifying
and eliminating redundant elements in the weight matrix.
Model sparsing is one of the most promising techniques for
model deployment due to its flexibility. Previous research
works on model sparsing require training from random ini-
tialization (Hoang et al., 2023; Sreenivasan et al., 2022;
Louizos et al., 2018), retraining process (Liu et al., 2019;
Chen et al., 2023) or extensive iterative pruning (Chijiwa
et al., 2021; Tanaka et al., 2020). However, the inherent
complexities, along with the substantial computational and
data requirements of LLMs, present significant challenges
that render these conventional sparse strategies less feasible.

Given the extensive data corpus and substantial model di-
mensions required by LLMs, post-training pruning has
become an increasingly crucial methodology. Due to its
minimal resource demands, this approach is highly advan-
tageous, offering a cost-efficient alternative for optimiz-
ing LLMs. The development of the post-training pruning
method, as highlighted in recent studies (Lu et al., 2022;
Frantar & Alistarh, 2023; Sun et al., 2024), marks a signifi-
cant advancement in this field. These methods streamline
the pruning process, further reducing the resource require-
ments and making LLMs more democratized and accessible.
SparseGPT (Frantar & Alistarh, 2023) is proposed to con-
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Table 1. The existing pruning metrics tailored for LLMs. “W” denotes weight update, and “C” denotes the calibration data. “UOP”
denotes unary operations, and “BOP” denotes binary operations. σ denotes the min-max scaling operation.

Method W C Pruning Metric S UOP BOP

Magnitude (Han et al., 2016a) ✗ ✗ |W| | · | ∅
SparseGPT (Frantar & Alistarh, 2023) ✓ ✓

[
|W|2/diag

[
H−1

]]
ij

| · |, (·)2 ÷
Wanda (Sun et al., 2024) ✗ ✓ |Wij | · ∥Xj∥2 | · |, || · ||2 ×
GBLM-Prunerl1 (Das et al., 2023) ✗ ✓ |W| · ||G||1 | · |, || · ||1 ×
GBLM-Prunerl2 (Das et al., 2023) ✗ ✓ |W| · ||G||2 | · |, || · ||2 ×
Pruner-Zero ✗ ✓ ||W| × |W|| × σ(|G|) | · |, σ(·) ×

duct post-training pruning for LLMs, which allows for a
significant reduction in the size of these models to prune the
GPT family to 50% sparsity. Wanda (Sun et al., 2024) does
not require retraining or weight updates, which makes the
pruned LLM immediately ready for inference tasks. GBLM-
Pruner (Das et al., 2023) further dives into the design of
the pruning metric by emphasizing the importance of first-
order information, a.k.a. gradient. As shown in Table 9, we
identify two key challenges of the existing pruning metrics:
(1) Human-Dependence: existing methods heavily rely on
domain knowledge and thus require massive efforts of trial
and error. (2) Format-Sensitivity: As illustrated in Table 9,
pruning metrics demonstrate a pronounced sensitivity to
their format, demanding a rigorous and systematic approach
to experimentation. These points of contention raise pivotal
inquiries:

(1) How to formulate and devise comprehensive pruning
metrics that encapsulate the strengths of existing ones?

(2) How to find the optimal pruning metric tailored for
Large Language Models?

To address the first question, we present a comprehensive
search space through an exhaustive review of the existing
pruning metrics, as detailed in Table 1. We meticulously
dissect the structure of these metrics by analyzing their con-
stituent inputs and operations. The inputs considered are
Weight (W), Gradient (G), Hessian (H), and Activation (X),
while the operations are categorized into unary or binary
ones. Given the computational complexity of the Hessian
metric, which scales quadratically with the dimensional-
ity of the hidden layer, (O(d2hidden)), we opt to exclude it
from our considerations within this paper. For symbolic
operations, we collect the operation utilized in the existing
pruning metrics to build the operation vocabulary in Ta-
ble 10. Inspired by Symbolic Regression (SR), we observe
that the pruning metrics are composed of a series of sym-
bols, and thus can be represented as an expression tree, here
we call it a symbolic pruning metric. We formulate these
pruning metrics as Symbolic Pruning Metrics (SPM), de-
noting them as a combination of symbolics. However, SR

is a complex combinatorial problem, as the search space
for equations grows exponentially with the number of its
operations, which comes to the second question.

In addressing the second question, we introduce the
Pruner-Zero framework, which employs Genetic Program-
ming (GP) to devise a symbolic pruning metric (SPM) en-
capsulated within a tree structure, as depicted in Figure 1.
The terminal nodes represent variables such as Weight (W),
Gradient (G), and Activation (X), while its internal nodes
represent mathematical operations. This innovative method
facilitates the organic growth of an expression tree that em-
ulates the principles of biological evolution, complete with
node mutations and subtree crossovers that effectively probe
the diversity of potential pruning metrics. We conduct fast
post-training pruning evaluations for each SPM for LLaMA-
7B on the WikiText2 dataset to get the perplexity of its
fitness in less than 5 minutes. However, we recognize the
existence of correlations among certain operations, partic-
ularly those that are inversely related, which complicates
the search space with multiple symbolic trees that, despite
their differences, are mathematically equivalent. To coun-
teract this challenge, we propose the Opposing Operation
Simplification (OOS) strategy. This strategy is designed to
pinpoint and streamline opposing patterns, thereby curbing
the redundancy within the search space and enhancing the
efficiency of the metric discovery process.

Upon identifying the most promising SPM candidate, we
adapt it across a wider spectrum of LLM families, includ-
ing LLaMA (Touvron et al., 2023a), LLaMA-2 (Touvron
et al., 2023b), Tiny-LLaMA (Zhang et al., 2024a), and
OPT (Zhang et al., 2022b). Utilizing this framework, we
delve deeper into the relationship between low perplexity
and the design of pruning metrics. This exploration involves
a comprehensive analysis of the correlations among dif-
ferent operations. From this analysis, we can distill and
summarize key principles for developing effective pruning
metrics. These principles are in harmony with the insights
gained from our previously identified SPM, providing a co-
hesive and informed approach to pruning metric design. Our
contributions are summarized as follows:
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1. We formulate the pruning metric discovery as a Symbolic
Regression problem and propose a unified and comprehen-
sive search space that encompasses existing pruning metrics
(Sec. 3.1).

2. We introduce Pruner-Zero, the first Symbolic Pruning
Metric search framework for the automated discovery of
optimal pruning metrics tailored for LLMs utilizing Genetic
Programming. We propose the Opposing Operation Sim-
plification (OOS) strategy to reduce the redundancy in the
search space (Sec. 3.2).

3. Our comprehensive experiments on language modeling
and zero-shot tasks demonstrate that our Pruner-Zero can
achieve SOTA performance without retraining or weight
update for LLMs (Sec. 4).

4. We further investigate the correlation between the perfor-
mance and the SPM design and uncover some principles in
designing pruning metrics (Sec. 4.6).

2. Related Work
2.1. Language Model Pruning

Network pruning can significantly reduce model complexity
while maintaining performance, albeit typically necessitat-
ing extensive retraining. Given the substantial parameter
sizes and extensive datasets of LLMs, traditional pruning
methods (Hoang et al., 2023; Sreenivasan et al., 2022; Liu
et al., 2019; Chen et al., 2023; Chijiwa et al., 2021) become
impractical. In this paper, we focus on the post-training
pruning techniques.

Problem Statement. Post-training pruning serves as a prac-
tical scenario where we are given a well-optimized W and
a symbolic pruning metric S. Post-training compression is
conducted by splitting the full-model compression problem
into layer-wise sub-problems. Specifically, for post-training
pruning, our objective is to find a sparsity mask (binary
mask) Ml for each layer l with a certain target sparsity ratio
to minimize the l2-error, formulated as:

argminMl
||WlXl − (Ml ⊙Wl)Xl||22 (1)

Here, the mask Ml is determined by symbolic pruning met-
ric S through Ml = f(S,Wl, ϕ). The function f ranks
the weights in Wl according to their importance as per
S(Wl, Xl, Gl), and then selects the most significant weights
up to the sparsity ratio ϕ. For example, a basic pruning met-
ric is magnitude (Han et al., 2016b), where S(Wl) = |Wl|
employs the element-wise absolute value to assess weight
significance. Thus, the key to post-training pruning lies in
the symbolic pruning metric.

Post-training Pruning for LLMs. Deep Compres-
sion (Han et al., 2016a) proposed magnitude-based prun-
ing, which eliminates weights with the smallest absolute

values, based on their minimal impact on network output.
SparseGPT (Frantar & Alistarh, 2023) proposed a frame-
work for post-training pruning that obviates the need for
retraining by using Hessian matrices and calibration data
to update weights. Complementing this, Wanda (Sun et al.,
2024) streamlines the process by simplifying SparseGPT’s
methodology. Additionally, GBLM-Pruner (Das et al., 2023)
employs the first-order term of the Taylor expansion, em-
phasizing the significance of gradients. Structured prun-
ing methods, such as activation pruning and neuron/filter
output statistics, are used for GPU acceleration. LLM-
Pruner (Ma et al., 2023) examines model dependencies, in-
corporating both first-order and approximated Hessian infor-
mation. LLM Surgeon (van der Ouderaa et al., 2024) adapts
Kronecker-factored curvature approximations to LLMs, tar-
geting 20%-25% low sparsity. In this paper, our focus is
on the post-training pruning of language models without
retraining or weight updates.

Efficient and Low Resource Compression. Due to the
large size of language models, there is an increasing de-
mand for efficient LLM compression without using the orig-
inal training data. As for efficient compression, (Kwon
et al., 2022) accelerates the post-training by defining the
reconstruction error as a linear least squares problem.
SparseGPT (Frantar & Alistarh, 2023) and GPTQ (Frantar
et al., 2023) propose the layer-wise optimal brain surgeon.
Due to the constraint of availability of the training corpus,
data-free methods (Srinivas & Babu, 2015; Yvinec et al.,
2021) prune the neural network by measuring the similarity
of neurons. Most related to our approach is pruning with
limited data, which requires no modification to the original
training procedure and no retraining of the pruned network
on the full training datasets. To mitigate the accuracy drop,
a layer-wise reconstruction problem is involved to minimize
the change of output evaluated on the calibration data.

2.2. Symbolic Regression

Symbolic Regression (SR) is a distinctive approach within
genetic programming, aiming at discovering the analytical
expression that accurately models a complex dataset without
the need for pre-specified functional forms. This adaptive
nature of SR allows it to dynamically evolve when fitting
data, making it especially useful in scenarios where the
underlying relationships are complex or unknown. Originat-
ing from genetic programming (Koza, 1994), which applies
principles of natural selection to evolve computer programs,
SR has evolved into an essential tool for modeling and pre-
diction. It stands out for its flexibility in handling complex
modeling tasks, surpassing traditional regression methods
in adaptability and interpretability.

The integration of deep learning techniques with SR, particu-
larly through approaches like Equation Learner (EQL) (Mar-
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Figure 1. Overview of the Automatic Symbolic Pruning Metric Discovery Process in our Pruner-Zero framework. This process employs
genetic programming to iteratively generate and refine symbolic pruning metrics via tournament selection, subtree crossover, and
node mutation. Upon generating offspring, the Opposing Operation Simplification (OOS) strategy is applied to diminish repetition.
Subsequently, evaluation is conducted on the LLaMA-2-7B using the WikiText2 dataset, with perplexity serving as the fitness metric.
Note that it only takes less than 5 minutes to perform the post-training pruning evaluation.

tius & Lampert, 2016; Sahoo et al., 2018; Werner et al.,
2021), marks a significant advancement in the field. EQL
and similar methods employ neural networks, utilizing basic
mathematical operations as activation functions to construct
and train networks until a sparse and efficient structure is
achieved. The resulting structure is then unrolled into a
final symbolic expression. This synthesis of neural network
capabilities with symbolic regression illustrates the poten-
tial for scalable and flexible model generation, enhancing
the applicability of SR in various complex scenarios. No-
tably, in this paper, we pioneer the conceptualization of the
pruning metric problem within the framework of symbolic
regression.

3. Pruner-Zero Framework
In this section, we first introduce the search space design of
pruning metrics and then present the details of the Pruner-
Zero framework to search for symbolic pruning metrics.

3.1. Pruner-Zero Search Space Design

To ensure the effectiveness of Pruner-Zero, we devise a
unified framework that encompasses and extends beyond
existing pruning metrics. This framework’s search space
includes three types of inputs and 17 primitive operations,
enabling us to reconstruct existing pruning metrics as de-
tailed in Table 1 and Table 9.

LLM Statistics as Inputs. Our search space comprises
three specific input types: activations (X), gradients (G),
and weights (W). We exclude the Hessian matrix in
SparseGPT (Frantar & Alistarh, 2023) due to its quadratic
complexity. Given the substantial size of LLMs, we col-

lect and preprocess gradient information using 128 calibra-
tion samples and archive it locally. Consequently, during
the search phase, only activation and weight are required,
thereby expediting the search process.

Primitive Operations. Inspired by AutoML-Zero (Real
et al., 2020) and EMQ (Dong et al., 2023b), we utilize a
comprehensive suite of primitive operations that include
unary and binary ones. These operations are informed
by existing symbolic pruning metrics, as detailed in Ta-
ble 1. The complete primitive operations are available in
Appendix C.2, with an in-depth analysis provided in Sec. 4.6
and Appendix C.4.

Pruning Metric as Expression Tree. We define the pruning
metrics, as outlined in Table 1, through a structured com-
bination of operations and Large Language Model (LLM)
statistics. In this framework, LLM statistics are situated
at the leaf nodes, while primitive operations occupy the in-
ternal nodes. Binary operations are characterized by two
child nodes, whereas unary operations possess a single child
node, with the second node represented by a “#” placeholder.
The root node, designated as a primitive operation, yields
a singular output. Within this expression tree, the output’s
dimensions are required to align with those of the weights,
thereby indicating the saliency of each weight.

3.2. Genetic Programming Framework

We conceptualize the identification of symbolic pruning met-
rics as a challenge within Symbolic Regression (SR), rec-
ognized as a complex combinatorial NP-hard problem (Vir-
golin & Pissis, 2022). This complexity is attributed to the
search space for pruning metrics, which expands exponen-
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Algorithm 1 Evolution Search for Pruner-Zero
Input: Search space S , population size |P|, sample ratio r,
top-k k, selection ratio ρ, max iteration N , tree depth d.
Output: Best symbolic tree with lowest Perplexity (PPL)
after post-training pruning evaluation.

1: Initialize promising candidates C to ∅
2: P0 ← SymbolicMetricInitialization(Pi)
3: for i = 1 · · · N do
4: Clear promising candidates C to ∅
5: Randomly select r × |P| subnets P̂i ∈ P to get C
6: Candidates {Si}k ← GetTopk(C, k)
7: Parent S1i ,S2i ← RandomSample({Si}k)
8: Sci ← CROSSOVER(S1i ,S2i )
9: Smi ← MUTATE(Sci ) with probability p

10: Ssi ← OOS(Smi )
11: if IsEquivalent(Ssi ,S1i ) OR IsEquivalent(Ssi ,S2i )

then
12: Ssi ← RandomSample(S, d)
13: end if
14: Append offspring Ssi to population with its PPL
15: Remove the symbolic tree with the highest PPL
16: end for
17: Procedure OOS(Smi )
18: for each node in Smi do
19: Determine if the current node is opposing operations

compared to Smi .
20: if opposing operation is found then
21: Remove the opposing operation pair.
22: end if
23: end for
24: end Procedure

tially with the increase in the number of primitive operations.
Genetic Programming (GP), being the predominant method-
ology for addressing SR problems, guides our approach.
Accordingly, we leverage GP to iteratively search for the
optimal symbolic pruning metric.

An overview of our framework is depicted in Figure 1 and
elaborated upon in Algorithm 1. Initially, we populate P
with symbolic trees of varying depths. In each iteration,
two parent symbolic pruning metrics are selected via tour-
nament selection from the top-k candidates ({Si}k) with
GetTopk(C, k) in line 6 of Algorithm 1. These parents then
undergo subtree crossover and node mutation at a probabil-
ity p, generating offspring symbolic pruning metrics. To
minimize population redundancy, we implement the Op-
posing Operation Simplification (OOS) strategy, ensuring
uniqueness among the metrics within the population.

Symbolic Metric Initialization. Each symbolic tree Si
represents an analytical equation aimed at quantifying the
saliency of weights. To ensure balanced complexity through-

Figure 2. Comparison between Evolution Search and Random
Search Processes. Notably, the individual perplexity is lower in
the evolution search method, leading to significant improvements
in the search efficiency and overall stability.

Figure 3. Left: Perplexity under Various Sparsity Ratio; Right:
Perplexity with Different Calibration Samples.

out the population, we initialize symbolic metrics with
depths varying from three to five. Given the necessity for
shape conformity between the symbolic tree and the weights,
we impose specific restrictions on the activation because
the shape of activation X differs from that of weight W .
Typically, the norm of activation ||X||2 is utilized for com-
putation to address this discrepancy. To resolve the shape-
matching issue, we stipulate that if ||X||2 serves as the child
node of a unary operation, it is excluded from the search
space, and a new node is generated in its stead. This process
is illustrated in the SymbolicMetricInitialization function in
line 2 of Algorithm 1.

Crossover and Mutation. As shown in Figure 1, the pro-
cess of subtree crossover involves the selection of two sub-
trees from the parent symbolic trees at random, followed by
their subsequent interchange, as shown in the lines 8 and
9 of Algorithm 1. This crossover technique facilitates the
combination of genetic symbols from parents, potentially
leading to offspring with enhanced performance metrics.
Following the crossover, node mutation is conducted with
a probability of p. This mutation process is constrained to
altering nodes within the same operation type, ensuring that
unary operations can only mutate into other unary opera-
tions, and similarly for binary operations. This constraint
maintains the structural integrity of the symbolic trees.

Opposing Operation Simplification (OOS). During our
exploration of the search space, we observe that equivalent
symbolic pruning metrics frequently encompass pairs of
antagonistic operations, such as exp and log, or sub and neg,
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Table 2. Perplexity of pruned LLaMA and LLaMA-2 models on WikiText2. Our Pruner-Zero outperforms SparseGPT and Wanda,
achieving lower Perplexity without weight updates.

LLaMA LLaMA-2

Method Weight Update Sparsity 7B 13B 30B 65B 7B 13B 70B

Dense - 0% 5.68 5.09 4.77 3.56 5.12 4.57 3.12
Magnitude (Han et al., 2016b) ✗ 50% 17.29 20.21 7.54 5.90 14.89 6.37 4.98
SparseGPT (Frantar & Alistarh, 2023) ✓ 50% 7.22 6.21 5.31 4.57 6.51 5.63 3.98
Wanda (Sun et al., 2024) ✗ 50% 7.26 6.15 5.24 4.57 6.42 5.56 3.98
Pruner-Zero ✗ 50% 6.95 5.94 5.01 4.33 6.26 5.36 3.82
Magnitude (Han et al., 2016b) ✗ 4:8 16.84 13.84 7.62 6.36 16.48 6.76 5.54
SparseGPT (Frantar & Alistarh, 2023) ✓ 4:8 8.61 7.40 6.17 5.38 8.12 6.60 4.59
Wanda (Sun et al., 2024) ✗ 4:8 8.57 7.40 5.97 5.30 7.97 6.55 4.47
Pruner-Zero ✗ 4:8 8.12 6.81 5.65 4.92 7.67 6.10 4.31
Magnitude (Han et al., 2016b) ✗ 2:4 42.13 18.37 9.10 7.11 54.59 8.33 6.33
SparseGPT (Frantar & Alistarh, 2023) ✓ 2:4 11.00 9.11 7.16 6.28 10.17 8.32 5.40
Wanda (Sun et al., 2024) ✗ 2:4 11.53 9.58 6.90 6.25 11.02 8.27 5.16
Pruner-Zero ✗ 2:4 10.61 8.11 6.51 5.67 10.52 7.41 4.81

leading to an unnecessary increase in complexity. This re-
dundancy detracts from the efficiency of the search process
and obfuscates the interpretability of the expression trees.
The OOS methodology is designed to refine the search space
by eliminating these pairs of opposing operations, thereby
streamlining the genetic representation and facilitating the
identification of more concise and potent symbolic expres-
sions. To implement this strategy, we meticulously catalog
all opposing operations as detailed in Appendix E.1. Upon
detecting operations within the same symbolic pruning met-
ric that are opposed, we proceed to eliminate them as in line
17 of Algorithm 1.

Perplexity as Fitness. Upon generating offspring metrics,
we undertake a post-training pruning evaluation using the
LLaMA-2-7B model on the WikiText2 dataset (Merity et al.,
2017) to determine their perplexity, which serves as the
measure of fitness. In this context, a lower perplexity score
indicates superior fitness, reflecting a more effective pruning
metric in terms of model performance.

Searched Symbolic Pruning Metric. Here is the formula
of the searched Symbolic Pruning Metric:

Pruner-Zero = ||W | × |W || × σ(|G|) (2)

where (σ) represents the min-max scaling function. This
scaling function is pivotal in normalizing the weights (|W |)
and gradients (|G|). By applying the min-max scaling, the
weights and gradients are transformed to a common scale
without distorting differences in the ranges of values. The
squaring of the normalized weights and the subsequent mul-
tiplication with the normalized gradients, all under a square
root, suggests a geometric mean approach. This form of
averaging is beneficial for pruning metrics as it tends to

dampen the effect of extreme values.

4. Experiments
4.1. Models and Implementation Details

Implementation Details.

In this section, we primarily assess the effectiveness of our
Pruner-Zero on two of the most extensively used LLM fam-
ilies: LLaMA 7B/13B/30B/65B (Touvron et al., 2023a) and
LLaMA-2-7B/13B/70B (Touvron et al., 2023b). To further
explore the generalizability of Pruner-Zero, we apply the
developed symbolic pruning metric to earlier LLM families,
such as OPT (Zhang et al., 2022b) and Tiny-LLaMA (Zhang
et al., 2024a), as detailed in Appendix E.4. The performance
of the pruned models is evaluated in terms of language mod-
eling and zero-shot tasks. For language modeling, we follow
the established protocols in LLM compression research (Sun
et al., 2024; Frantar & Alistarh, 2023) to assess the perplex-
ity on the WikiText2 (Merity et al., 2017) validation set. For
zero-shot tasks, we utilize seven tasks from the EleutherAI
LM Harness (Gao et al., 2021).

Counterparts. In comparing Pruner-Zero with established
Post-training Pruning methods, magnitude pruning (Han
et al., 2015) serves as a baseline, removing weights based
on the absolute value of magnitude. SparseGPT (Frantar &
Alistarh, 2023) introduces second-order pruning for LLMs,
incorporating layer-wise reconstruction, while Wanda (Sun
et al., 2024) simplifies this by using a diagonal approx-
imation, avoiding matrix inverse calculations. Our ap-
proach avoids the computationally expensive Hessian matrix
and aligns with magnitude pruning and Wanda in forgo-
ing retraining or weight updates during pruning. Unlike

6



Pruner-Zero: Evolving Symbolic Pruning Metric From Scratch for Large Language Models

Table 3. Mean zero-shot accuracies (%) of pruned LLaMA and LLaMA-2 models on the BoolQ, RTE, HellaSwag, WinoGrande, ARC,
and OBQA datasets. Wanda performs competitively against prior best method SparseGPT, without introducing any weight update.

LLaMA LLaMA-2

Method Weight Update Sparsity 7B 13B 30B 65B 7B 13B 70B

Dense - 0% 59.99 62.59 65.38 66.97 59.71 63.03 67.08
Magnitude (Han et al., 2016b) ✗ 50% 46.94 47.61 53.83 62.74 51.14 52.85 60.93
SparseGPT (Frantar & Alistarh, 2023) ✓ 50% 54.94 58.61 63.09 66.30 56.24 60.72 67.28
Wanda (Sun et al., 2024) ✗ 50% 54.21 59.33 63.60 66.67 56.24 60.83 67.03
Pruner-Zero ✗ 50% 59.56 62.67 67.49 69.81 58.87 64.83 71.10
Magnitude (Han et al., 2016b) ✗ 4:8 46.03 50.53 53.53 62.17 50.64 52.81 60.28
SparseGPT (Frantar & Alistarh, 2023) ✓ 4:8 52.80 55.99 60.79 64.87 53.80 59.15 65.84
Wanda (Sun et al., 2024) ✗ 4:8 52.76 56.09 61.00 64.97 52.49 58.75 66.06
Pruner-Zero ✗ 4:8 56.24 59.03 64.04 68.04 55.82 61.97 69.94
Magnitude (Han et al., 2016b) ✗ 2:4 44.73 48.00 53.16 61.28 45.58 49.89 59.95
SparseGPT (Frantar & Alistarh, 2023) ✓ 2:4 50.60 53.22 58.91 62.57 50.94 54.86 63.89
Wanda (Sun et al., 2024) ✗ 2:4 48.53 52.30 59.21 62.84 48.75 55.03 64.14
Pruner-Zero ✗ 2:4 52.06 56.78 62.00 65.42 52.02 58.38 67.69

SparseGPT and Wanda, which require calibration data, we
use WikiText2 to estimate input statistics like Gradients (G)
and Activations (X).

Sparsity. We adopt a uniform sparsity across all linear lay-
ers in unstructured pruning settings, maintaining consistency
with the approach used by Wanda. Our focus for all pruning
methods is exclusively on the linear layers of the model. To
ensure a fair comparison with SparseGPT and Wanda, we
assess three types of sparsity: unstructured, structured 4:8,
and structured 2:4. These sparsity types are chosen to reflect
different levels of granularity and constraints in pruning.
All our implementations are based on Wanda’s framework,
providing a robust and consistent basis for evaluating the
effectiveness of the various pruning strategies.

Evolution Settings. The evolutionary search starts with an
initial population of 50 and 300 iterations. The depth of sym-
bolic trees ranges from 3 to 5. Tournament selection utilizes
a top-K parameter of 10, selecting two parent symbolic
pruning metrics from the 10 best-performing candidates.
The mutation probability is set to 0.5. This search, focused
on identifying an optimal symbolic pruning metric, is ex-
ecuted using the LLaMA-2-7B model. Perplexity is eval-
uated under unstructured pruning with 50% sparsity. The
searched metric, detailed in Table 1, is applied to various
model sizes. The genetic programming tasks are executed
on two NVIDIA 4090 GPUs, while the generalization ex-
periments involving zero-shot tasks and language modeling
on the LLaMA-2-70B are conducted using 8 A100 GPUs.

4.2. Language Modeling

As shown in Table 2, this study reports on the perplexity of
pruned LLaMA and LLaMA-2 models under 50% unstruc-

tured and 2:4, 4:8 structured pruning scenarios. We annotate
the necessity of weight updates and the corresponding spar-
sity levels for both unstructured and structured pruning meth-
ods. Remarkably, Pruner-Zero outperforms all established
pruning techniques without requiring any weight updates.
Notably, it surpasses the magnitude baseline by a significant
margin. A trend observed is that Pruner-Zero demonstrates
a lesser performance drop in larger ones. For instance, in un-
structured pruning, the LLaMA-7B model shows a decrease
of 1.27 in perplexity, whereas the LLaMA-30B model only
exhibits a 0.24 drop. Similarly, the LLaMA-2-7B model
experiences a 1.14 drop in perplexity, while the drop for
the LLaMA-2-70B model is only 0.7. This indicates that
Pruner-Zero is particularly advantageous for larger models,
such as LLaMA-30B and LLaMA-2-70B. In comparison,
Pruner-Zero consistently outperforms Wanda and mostly
surpasses SparseGPT, except for the LLaMA-2 model in the
2:4 structured pruning setting. For robustness analysis under
different seeds, refer to Table 25. For experiments on previ-
ous pruning methods applied to BERT (Devlin et al., 2019),
see Appendix E.3. For comparison with GBLM-Pruner (Das
et al., 2023), see Table 13.

4.3. Zero-shot Tasks

To assess the generalizability of Pruner-Zero, we evaluate
its performance on seven common-sense tasks from the
Eleuther AI lm-evaluation-harness benchmark (Gao et al.,
2021) in a zero-shot setting. The selected tasks encompass
BoolQ (Clark et al., 2019), RTE (Wang et al., 2018), Hel-
laSwag (Zellers et al., 2019), WinoGrande (Sakaguchi et al.,
2019), ARC (Clark et al., 2018), and OBQA (Mihaylov
et al., 2018). Although zero-shot evaluation on individual
tasks can exhibit variability, Table 3 presents the average per-
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Table 4. Perplexity of the pruned OPT family models with various sizes on WikiText2. † denotes updating weights using 128 samples. §
denotes we utilize 128 samples using iterative update.

OPT

Method Weight Update Sparsity 125m 350m 1.3B 2.7B 6.7B 13B

Dense - 0% 27.66 22.00 14.62 12.47 10.86 10.13
Magnitude ✗ 50% 7e3 6e3 1e4 9e3 9e4 2e4
Wanda ✗ 50% 38.96 35.92 19.12 14.28 11.94 11.42
Pruner-Zero ✗ 50% 37.69 35.91 18.19 13.85 11.86 11.32
SparseGPT ✓ 50% 37.07 34.76 17.44 13.48 11.57 11.19
Pruner-Zero† ✓ 50% 34.04 30.47 18.57 13.31 11.52 11.54
Pruner-Zero§ ✓ 50% 35.51 29.75 18.60 13.24 11.52 10.86

Table 5. Perplexity and Searched SPM w.r.t. OOS

Method Perplexity Searched SPM Expression

w OOS 6.7079 ||W || × ||W || × σ(G)

w/o OOS 6.8395 ||W ||+G√
||W ||

+ σ(ζ(||W ||))

Table 6. Fine-tuning can mitigate the perplexity gap to dense LLM.
Evaluation Dense Fine-tuning 50% 4:8 2:4

LLaMa-7B 5.68 ✗ 6.95 8.12 10.61
LoRA 6.74 7.40 8.24

LLaMa-2-7B 5.12 ✗ 6.26 7.67 10.52
LoRA 6.41 7.01 7.73

formance of Pruner-Zero across all seven tasks to enhance
the interpretability of the model’s overall performance.

The results demonstrate that our Pruner-Zero significantly
outperforms the magnitude baseline and competes effec-
tively with previous top-performing approaches, such as
SparseGPT and Wanda. Additionally, we observe that with
increasing model size, the accuracy gap in zero-shot tasks
decreases. The larger models like LLaMA-2-70B even sur-
pass the dense model baselines. Detailed performance met-
rics for each task are provided in Appendix E.2.

4.4. Evaluation of In-Context Learning

In-context learning, a pivotal capability of large language
models (LLMs), is crucial for tasks requiring adaptability
and reasoning without explicit retraining. To assess this
capability within various models, we focused our evalua-
tion on the GSM8K dataset, comprised of diverse and com-
plex grade school math problems that effectively challenge
the models’ reasoning abilities. Utilizing the LightLLM
framework (ModelTC, 2023), a Python-based tool opti-
mized for efficient and scalable inference with LLMs, we
tested the LLaMA2 13B model’s in-context learning per-
formance using a fixed set of eight demonstrations aligned
with the Chain-of-Thought (Wei et al., 2022) approach. The

Table 7. In-Context Learning Accuracy on the GSM8K Dataset

Dataset GSM8K

Dense 0.287

Magnitude 0.0607
SparseGPT (Frantar & Alistarh, 2023) 0.1152
Wanda (Sun et al., 2024) 0.1312
Pruner-Zero 0.1403

comparative analysis presented in Table 7 indicates that
Pruner-Zero outperforms other pruning approaches such
as SparseGPT (Frantar & Alistarh, 2023) and Wanda (Sun
et al., 2024) in the in-context learning tasks, despite the
general trend of decreased performance post-pruning. This
observation, consistent with findings from recent studies (Li
et al., 2024c) documenting a reduction in in-context learn-
ing capabilities of LLMs following quantization, highlights
a significant challenge in the field of model pruning and
optimization: preserving the nuanced capabilities of LLMs
while reducing their computational overhead. Although
Pruner-Zero shows a marked improvement over other meth-
ods, the noticeable decline in the performance of the un-
pruned (Dense) model underscores the delicate balance be-
tween model size and functionality, particularly in tasks
requiring high cognitive functions such as reasoning and
comprehension.

4.5. Ablation Study

Evolution Search vs. Random Search. To evaluate the ef-
ficacy of Evolution Search, ablation studies were conducted,
the results of which are presented in Figure 2. It was ob-
served that Evolution Search achieves convergence in fewer
than 100 iterations, in contrast to Random Search, which
requires approximately 300 iterations to converge.

Robustness across Different Sparsity Ratios. The left
side of Figure 3 presents the perplexity results for LLaMA-
2-7B on WikiText2 across varying sparsity ratios, ranging
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from 0.1 to 0.6. These results demonstrate that Pruner-Zero
consistently outperforms SparseGPT and Wanda across all
tested sparsity levels. This confirms the robustness and
effectiveness of our symbolic pruning metric under diverse
sparsity ratios, ensuring reliable performance even as the
level of pruning increases.

Robustness to Calibration Sample Size. The right side of
Figure 2 illustrates the impact of varying calibration sam-
ple sizes, ranging from 8 to 256 samples. A distinct trend
emerges as the calibration sample size changes: all prun-
ing methods demonstrate increased robustness and lower
perplexity. Our Pruner-Zero demonstrates robustness to cal-
ibration samples; specifically, when the sample size exceeds
16, the perplexity value is below 7. Finally, we chose 128
as the calibration size to ensure alignment with Wanda.

Robustness to OPT family. Table 4 showcases the pruning
performance on OPT models ranging from 125 million to
13 billion parameters. We find that Pruner-Zero outperforms
both Magnitude and Wanda in post-training pruning without
weight updates across various model sizes. Our Pruner-Zero
also outperforms SparseGPT with weight updates following
Wanda (Sun et al., 2024). A sequential update (†) means
that at each layer, the full pruned mask is first computed
and a weight update is performed on the remaining weights.
An iterative update (§) means that the pruning and weight
update steps proceed iteratively within each layer.

Effectiveness of OSS. Opposing Operation Simplification
(OOS) strategy plays a crucial role in reducing redundancy
among the candidate symbolic pruning metrics. Without
OOS, the population may contain a large number of math-
ematically equivalent metrics, which is undesirable. The
OOS strategy helps maintain diversity in the candidate solu-
tion space by eliminating such redundancies, aligning the
search process with our expectations, and improving its ef-
ficiency. To quantize the influence of OOS, we conducted
experiments under different depths of the symbolic tree us-
ing Effective probability. Effective probability calculates the
frequency of when OOS works. The effective probability is
computed based on 1,000 randomly generalized trees. And
we conduct four trials to get the final result. From Table
12, we can find that the effective probability is very high
denoting the redundancy of the search space. Besides, we
present the searched SPM and their corresponding perplex-
ity w.r.t OOS strategy in Table 5. The experiments were
conducted for 300 iterations on the LLaMA-2-7B model
with 50% unstructured pruning settings. The experiments
without the OOS strategy showed deteriorated performance,
likely due to redundancy in the small population size of
50, where high homogeneity in metrics prevented further
performance increase.

4.6. Analysis

Correlation Analysis. During the evolutionary search, we
gathered various symbolic pruning metrics and their cor-
responding perplexities, identifying those with perplexi-
ties below 7 as potential metrics (detailed in Table 11, Ap-
pendix C.3). The analysis of operation frequencies in these
metrics, as shown in Figure 4, revealed several key insights:
(1) Multiplication operations exhibit a strong correlation
with perplexity, highlighting their importance. (2) Opposite
operations (sqrt and sqr) show a high correlation, suggesting
counteractive effects. (3) The min-max scaling (mms) oper-
ation is robust, displaying a low correlation with other op-
erations, underscoring its significance. These observations
support our metric development discussed in Section 3.2.

LoRA Fine-tuning. We further explore the potential of
fine-tuning to mitigate the performance reduction observed
in pruned Large Language Models (LLMs). Specifically, we
employ LoRA (Hu et al., 2022) (r = 8) for fine-tuning on
the C4 training dataset (Raffel et al., 2019) using 1 GPU and
12 hours, targeting the auto-regressive loss. Experiments
were conducted on both the LLaMA and LLaMA-2-7B
models, encompassing 50% unstructured as well as 2:4 and
4:8 structured pruning scenarios. The resulting perplexity on
WikiText2 is detailed in Table 6. In most cases, fine-tuning
with LoRA can restore the performance of pruned LLMs,
especially for hard cases like 2:4 structured pruning.

5. Conclusion
In this paper, we present a Pruner-Zero framework for sym-
bolic pruning metric discovery for Large Language Models
(LLMs) by formulating it as a symbolic regression problem.
We leverage genetic programming to efficiently search for
superior symbolic pruning metrics that have lower perplex-
ity after pruning. During the search, we find the opposing
operation that affects the quality of the population and pro-
pose the Opposing Operation Simplification (OOS) strategy
to enhance search efficiency. Our comprehensive experi-
mental evaluation, conducted on the LLaMA and LLaMA-2
for both language modeling and zero-shot tasks, reveals that
our Pruner-Zero framework surpasses current state-of-the-
art (SOTA) methods, including Wanda and SparseGPT, in
terms of both structured and unstructured pruning
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Impact Statement
Pruner-Zero significantly refines the post-training pruning
process of large language models, employing genetic pro-
gramming to evolve symbolic pruning metrics. This method
effectively identifies and eliminates non-critical parameters,
thereby preserving the model’s performance. The focus of
this research is on technological innovation, and it does not
extend to the analysis of ethical considerations or societal
impacts.
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A. Related Work
The development of Large Language Models (LLMs) has witnessed a surge in model and dataset sizes, necessitating
distributed training across numerous devices (Tang et al., 2020; 2023; 2024). This distributed approach, while effective,
demands substantial computational and storage resources, with LLMs incurring higher energy costs compared to their
smaller counterparts (Luccioni et al., 2023; Schwartz et al., 2020; Tang et al., 2019). Consequently, energy-efficient LLM
training and inference are crucial for green computing, with LLM pruning emerging as a key technique for achieving this
goal. Post-training pruning, in particular, has gained prominence due to its minimal resource requirements, making it a
cost-effective approach for democratizing access to LLMs (Lu et al., 2022; Frantar & Alistarh, 2023; Sun et al., 2024). This
method’s efficiency and accessibility contribute significantly to the broader impact and applicability of LLMs.

Network Pruning Network pruning is an effective technique for reducing model complexity while preserving performance,
although it often requires extensive retraining. However, traditional pruning methods (Hoang et al., 2023; Sreenivasan
et al., 2022; Liu et al., 2019; Chen et al., 2023; Chijiwa et al., 2021) become impractical when dealing with the substantial
parameter sizes and vast datasets of Large Language Models (LLMs). Deep Compression (Han et al., 2016a) popularized
magnitude-based pruning for deep neural networks, which removes the weights with the smallest absolute values, assuming
that they have the least impact on the network’s output. Network pruning techniques can be broadly categorized into two
main approaches: unstructured pruning and structured pruning.

(1) Unstructured Pruning involves removing individual weights or connections based on certain criteria.
SparseGPT (Frantar & Alistarh, 2023) is the first post-training quantization method that performs unstructured prun-
ing using an approximated Hessian matrix. Wanda (Sun et al., 2024) further simplifies the Hessian matrix by using just the
weight and l2 norm of activation. GBLM-Pruner (Das et al., 2023) further introduces the gradient to boost the performance.
Plug-and-play (Zhang et al., 2024b) The paper presents a plug-and-play post-training pruning method for large language
models (LLMs) that introduces two innovative components: Relative Importance and Activations (RIA), a new pruning
metric, and Channel Permutation, a technique to maximize the preservation of important weights under N:M sparsity
constraints. The proposed method, named plug-and-play, outperforms existing pruning techniques and achieves practical
speed-up on specific hardware without the need for additional fine-tuning or retraining. PERP (Zimmer et al., 2023) uses
Low-rank adaptation to mitigate the expense of the retraining process in the original prune-retrain paradigm. NutePrune (Li
et al., 2024b) combines structure pruning with progressive knowledge distillation by utilizing the unpruned model as a
teacher and the pruned model as a student. OWL (Yin et al., 2024) proposed outliers metric to re-assign the sparsity of
different layers. BESA (Xu et al., 2024) proposes to use parameter-efficient sparsity learning to learn the sparsity ratio
in a differentiable manner. GRAIN (Yang et al., 2022) utilizes gradient information to prune intra-attention structures,

Table 8. Comparison of Pruner-Zero with its counterparts.

Description AutoML-
Zero (Real et al.,
2020)

EZNAS (Akhauri
et al., 2022)

Auto-Prox(Wei
et al., 2024)

EMQ (Dong et al.,
2023b)

Pruner-Zero

Task Machine Learning
Program Discovery

Zero-shot NAS Zero-shot NAS Mixed-precision
Quantization

Symbolic Pruning
Metric

Targets - CNN ViT CNN LLMs
Params - 0.3-1.5MB 2-25MB 13.4-44.6MB 7B-70B
Retrain No Yes Yes Yes No
Input Multiple inputs One or two inputs Two inputs Two inputs Unlimited inputs
Output Machine Learning

Task (accuracy)
One scalar One scalar One scalar Matrix with the same

shape as weight
Strategy Evolutionary Algo-

rithm
Distributed Evolu-
tionary Algorithm in
Python (DEAP)

Elitism-Preserve
Strategy

Diversity Prompting
Selection

Opposing Operation
Simplification strat-
egy

Objective Find machine learn-
ing algorithms from
scratch

Find optimal proxy
that can measure the
convolution-based
architectures

Find the optimal
proxy that can mea-
sure the vit-based
architectures

Find the optimal met-
ric that can better
rank candidate bit-
width configurations

Find the optimal
symbolic pruning
metric that can mea-
sure the importance
of different weights
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Table 9. Impact of Pruning Metrics on GBLM-Pruner Performance. This figure illustrates the performance variations under 50% sparsity
ratio in GBLM-Pruner (Das et al., 2023) when utilizing weight, gradient, and activation-based pruning metrics. The observed sensitivity
of the results to seemingly minor format changes highlights the challenges of manual metric selection and underscores the need for an
automated pruning framework, which serves as the motivation for this work.

Metric Perplexity Metric Perplexity

|W| · ||G||1 7.17 (|W| · ||X||2)2 + λ · |W| · ||G||1 180490.19
|W| · ||G||2 7.09 (|W| · ||X||2)2 + λ · |W| · ||G||2 91781.49
|W| · ||X||2 · ||G||1 7.31 (|W| · ||X||2)2 − λ · |W| · ||G||1 248646.28
|W| · ||X||2 · ||G||2 7.31 (|W| · ||X||2)2 − λ · |W| · ||G||2 283620.75
|W| · ||X||22 + λ · |W| · ||G||1 6.86 (|W| · ||X||2)2 + λ · |W| · ||G||1 6.90
|W| · ||X||22 + λ · |W| · ||G||2 6.89 (|W| · ||X||2)2 + λ · |W| · ||G||2 6.88
|W| · ||X||22 − λ · |W| · ||G||1 1180.67 (|W| · ||X||2)2 − λ · |W| · ||G||1 6.94
|W| · ||X||22 − λ · |W| · ||G||2 7.10 (|W| · ||X||2)2 − λ · |W| · ||G||2 9377.00

incorporating knowledge distillation to enhance performance.

(2) Structured Pruning , also known as N:M structured pruning, is a specialized technique designed to enhance
computational efficiency during the inference phase in deep learning models. This method is particularly tailored for
compatibility with NVIDIA’s Ampere architecture and its Sparse Tensor Cores. In the context of N:M structured pruning,
for each block of M parameters, only N parameters are actively retained while the remainder is pruned, effectively set to
zero or eliminated. Common configurations such as 2:4 and 4:8 structured pruning maintain a fixed sparsity ratio of 50%,
indicating that only half of the parameters are preserved. Notably, the 4:8 structured pruning format offers less restrictive
conditions than the 2:4 format, permitting a more adaptable parameter reduction. This flexibility in 4:8 structured pruning is
demonstrated by superior performance metrics, as detailed in Tables 2 and 3, where 4:8 pruning consistently outperforms
2:4 configurations under identical experimental conditions. Furthermore, NVIDIA’s A100 GPU represents a significant
milestone as the first mainstream hardware to incorporate sparse capabilities directly into its architecture. This allows the
Sparse Tensor Cores of the A100 to support a wide array of operations prevalent in modern neural networks, including linear
transformations, convolutional layers, recurrent neural networks, and transformer architectures. This integration heralds
a new era of efficiency, enabling more rapid and energy-efficient computation across diverse deep-learning applications.
SliceGPT (Ashkboos et al., 2024), focuses on compressing LLMs by eliminating rows and columns from weight matrices,
though it is mainly effective at lower sparsity ratios. LLM-Pruner (Ma et al., 2023) is inspired by DepGraph (Fang et al.,
2023) to detect the dependency lies in the model, which also considers both first-order information and approximated
Hessian information.

Neural Architecture Search (Zoph et al., 2018; Pham et al., 2018) aims to automate the design of neural network
architectures. Traditional methods (Hu et al., 2021; Dong et al., 2022; Li et al., 2023; 2024a) for designing neural networks
rely heavily on human expertise and extensive trial-and-error, which can be both time-consuming and resource-intensive.
NAS methods (Dong et al., 2023b; Lu et al., 2024; Dong et al., 2024; He et al., 2022) seek to alleviate this burden by
leveraging algorithmic strategies to discover optimal network architectures. Our method is partly related to Zero-Shot Neural
Architecture Search (Zero-Shot NAS) (Wei et al., 2023; Dong et al., 2023a; Zhu et al., 2024), an emerging subfield within
NAS. Zero-Shot NAS aims to predict the performance of neural network architectures without the need for extensive training
and evaluation. The key to Zero-Shot NAS is the use of proxy metrics. Some Zero-Shot NAS methods propose to formulate
the proxy as an automated discovery process (Akhauri et al., 2022; Wei et al., 2024). For example, EZNAS (Akhauri et al.,
2022) and Auto-Prox (Wei et al., 2024) represent significant advancements in the field of zero-shot NAS by focusing on
the automatic identification of zero-cost proxies tailored to CNN-based and ViT-based architectures, respectively. These
methodologies align with the broader domain of program synthesis, which is dedicated to the automated generation of
programs that meet specific user-defined constraints. An illustrative example within this domain is AutoML-Zero (Real et al.,
2020), which innovatively evolves complete machine learning algorithms from a foundational level. Similarly, EMQ (Dong
et al., 2023b) addresses the challenges of mixed-precision quantization. It aims to create a proxy capable of effectively
ranking candidate bit-width configurations, thereby enhancing computational efficiency and model performance without
extensive manual tuning.
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Table 10. Operations vocabulary. Summary of Unary and Binary Operations in Computational Functions. This table includes operation
identifiers, code examples, input and output types, and detailed descriptions for each operation.

Op ID Code Example Symbols Input / Types Output / Type Description

U01 sc=sqr(sa) (·)2 a / matrix c / matrix sc = s2a
U02 sc=neg(sa) −(·) a / matrix c / matrix sc = −sa
U03 sc=abs(sa) | · | a / matrix c / matrix sc = |sa|
U04 sc=log(sa) log a / matrix c / matrix sc = log(sa)
U05 sc=exp(sa) e(·) a / matrix c / matrix sc = esa

U06 sc=sqrt(sa)
√
· a / matrix c / matrix sc =

√
sa

U07 sc=tanh(sa) tanh a / matrix c / matrix sc = tanh(sa)
U08 sc=pow(sa, sb) (·)(·) a,b / matrixs c / matrix sc = ssba
U09 sc=skp(sa) ∅ a / matrix c / matrix sc = sa (skip)
U10 sc=mms(sa) σ(·) a / matrix c / matrix sc = min-max scale(sa)
U11 sc=zsn(sa) ζ(·) a / matrix c / matrix sc = z-score scale(sa)
U12 sc=norm2(sa) || · ||2 a / matrix c / matrix sc = ||sa||2
U13 sc=norm1(sa) || · ||1 a / matrix c / matrix sc = ||sa||1
B01 sc=add(sa, sb) (·) + (·) a,b / matrixs c / matrix sc = sa + sb
B02 sc=sub(sa, sb) (·)− (·) a,b / matrixs c / matrix sc = sa − sb
B03 sc=mul(sa, sb) (·)× (·) a,b / matrixs c / matrix sc = sa · sb
B04 sc=div(sa, sb) (·)/(·) a,b / matrixs c / matrix sc =

sa
sb

Characteristics and Innovations:

• Model Scale: Pruner-Zero is designed to manage exceptionally large-scale language models (LLMs), with parameters
ranging from 7 billion to 70 billion. This scale surpasses that of the other discussed methods, highlighting its capability
to handle extensive computational loads and complex data structures.

• Retraining Necessity: Unlike other approaches that necessitate retraining to fulfill their objectives, Pruner-Zero
operates efficiently without the requirement for further retraining. This feature significantly reduces the computational
overhead and accelerates the optimization process.

• Input/Output Paradigms: Pruner-Zero employs a unique approach to inputs and outputs; it accepts an unlimited
number of inputs and produces an output matrix that retains the same dimensions as the model weights. This distinct
I/O schema facilitates direct interventions in model pruning and optimization.

• Objective: The primary goal of Pruner-Zero is to discover an optimal symbolic pruning metric that assesses the
significance of different weights in large language models. This objective focuses on enhancing model efficiency and
performance through targeted weight reduction.

These distinctions underscore the varied landscape of program synthesis, where different problems are defined and
differentiated by their specific constraints, which are inherently linked to the tasks at hand. Such innovations contribute
substantially to the field, pushing the boundaries of what is possible in automated machine learning and architecture search.

B. Motivation of Searching Pruning Metric
In this section, our exploration into the design of an effective pruning metric is inspired by the GBLM-Pruner (Das et al.,
2023). The intricacies of pruning metrics are exemplified in Table 9, which is derived from their paper. A meticulous
analysis of these metrics underscores the complexity and iterative nature of their design process. Notably, metrics that are
nearly identical in their formulation can yield vastly divergent outcomes, as evidenced by the last two metrics in the second
column of the table. These metrics differ only slightly in their normalization approach, yet the resulting perplexities are
starkly contrasting (6.94 vs. 9377). Such findings illuminate the challenges faced in metric design and catalyze for our
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development of Pruner-Zero, an automated solution aimed at refining the pruning metric formulation process. This initiative
is geared towards enhancing the efficiency and efficacy of pruning within large language models.

C. Detailed Search Space
C.1. Search Space Composition

Our search space comprises three specific input types: activations (X), gradients (G), and weights (W). These inputs provide
complementary perspectives on the significance and contribution of different model components to the overall performance.

Activation. Activation values from a model’s layers offer rich, interpretable information about the role of individual neurons
in processing input data. By considering activation magnitudes or patterns across a calibration dataset, we can identify and
prune less important neurons or connections. For instance, consistently low activations might suggest redundancy, while
highly correlated activations could point to opportunities for merging similar neurons.

Gradient. Gradients reflect the sensitivity of a model’s output with respect to its parameters (weights). Larger gradient
magnitudes indicate that small changes in the corresponding weights would significantly impact the model’s predictions.
Therefore, gradients can guide pruning by highlighting weights crucial for the model’s performance. Pruning strategies
might target weights with consistently small gradients, as their impact on the output is likely less significant.

Weight. Weights represent the learned parameters of a neural network and are fundamental to its ability to make predictions.
The importance of weights can be assessed by evaluating their magnitudes and the roles they play within the network.
Weights with larger magnitudes typically have a greater influence on the network’s output, while smaller weights might
contribute less significantly. By analyzing the distribution and significance of weights, we can identify which ones are
essential for maintaining model performance. Pruning methods often focus on removing weights that have minimal impact,
thereby simplifying the network and reducing its complexity without substantially degrading its accuracy.

Hessian Matrix, a fundamental concept in multivariable calculus, is instrumental in understanding the curvature of scalar
fields and optimizing complex functions. While the utility of the Hessian matrix in various mathematical and engineering
disciplines is well-documented, its specific application in the pruning of large language models (LLMs) merits particular
attention due to its potential for enhancing model efficiency. The Hessian is a square matrix consisting of second-order
partial derivatives of a scalar-valued function. For a function f(x1, x2, . . . , xn) of n variables, the Hessian matrix H is
given by:

H =


∂2f
∂x2

1

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x2

2
· · · ∂2f

∂x2∂xn

...
...

. . .
...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

· · · ∂2f
∂x2

n


This matrix is crucial for determining the local curvature of a function, which in turn helps in identifying maxima, minima,
and saddle points — essential for optimization algorithms.

In the context of LLM pruning, the Hessian matrix offers a theoretically sound approach to evaluating the importance of
weights within a neural network. Pruning methods aim to reduce the computational complexity of LLMs by removing
weights that contribute minimally to the model’s output. By assessing the impact of weight removal through the lens of
the Hessian’s curvature effects, one can theoretically predict and mitigate potential losses in model performance more
effectively.

However, the practical application of the Hessian matrix in LLM pruning is not without challenges. The computation of the
Hessian matrix is notably resource-intensive, particularly due to the necessity of calculating second-order derivatives for
large matrices and potentially inverting these matrices to analyze their characteristics. These operations entail significant
computational costs and can be prohibitive in terms of time, especially for models as large as those used in contemporary
LLMs.

Given these considerations, our investigation into Hessian-based methods for LLM pruning not only enhances our theoretical
understanding but also challenges us to develop more computationally feasible approaches. Future work could explore
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Table 11. Pruning Metrics Discovered by Pruner-Zero with Corresponding Perplexity (PPL) Scores

Equation PPL

(σ
(
(|W |+ |W |) +

√
|G|
)
) 6.9175

(log (|(|W | × |W |)|+ (G× |W |))) 6.7483

(
(
(|W |+ |W |) +

√
|G|
)
+

(
G√√
|W |

)
) 6.9182

((|W |+ |W |) +
√
|G|) 6.9175

(tanh (||W | × |W ||) +
(

G√
|W |

)
) 6.9814

(|(|W | × |W |)| ×
√
|G|) 6.7701

(σ (|W |)× σ(|W |)× σ(|G|)) 6.7079

approximate methods to compute the Hessian or its relevant characteristics, such as using randomized algorithms or
leveraging sparsity within the matrix to reduce the computational burden. By refining these methods, we aim to make
Hessian-based pruning a practical tool for optimizing large-scale neural networks, ultimately contributing to more efficient
and effective deployments of LLMs in real-world applications.

C.2. Operation Vocabulary

As presented in Table 10, we provide operations vocabulary for describing common unary and binary functions used
in mathematical and machine learning operations. The vocabulary is organized into two sections for unary and binary
operations respectively. For the unary operations section, this Table lists 13 operations denoted by unique operation IDs
from U01 to U13. For each operation, it provides a code example, a description of input and output addresses/types, and
a mathematical definition of the operation. Some common unary functions included are square, negative value, absolute
value, logarithm, exponent, square root, and tanh. The binary operations section similarly lists four common operations -
addition, subtraction, multiplication, and division. These binary operations take two matrix inputs and produce a matrix
output. Overall, this operations vocabulary provides a standardized indexing and definition of commonly used mathematical
and machine learning building blocks to facilitate the description and replication of computational models and algorithms.

C.3. Searched Metrics with Equations.

In the pursuit of optimizing neural network structures, Pruner-Zero has identified a set of novel pruning metrics, as illustrated
in Table 11. These metrics are critical in the context of model simplification while maintaining, and in some instances,
enhancing the performance of the neural network models. Each equation presented is accompanied by its Perplexity (PPL)
score, which serves as an indicator of the model’s predictive performance post-pruning. The scores close to the lower bound
of this range suggest that the corresponding pruning metric has led to a model that balances the complexity and predictive
capability effectively.

C.4. More Discussion over the Discovered SPM

We provide a concise theoretical analysis below and shed light on the insights gained from the investigated metric. Given
an L-layer Large Language Model (LLM) denoted as W = {w0, . . . , wL} and a dataset D = {(x0, y0), . . . , (xk, yk)}, the
task is to minimize the error E by optimizing the model parameters:

min
W

E(D,W ) = min
W

E(y|x,W ) (3)

In the context of pruning, the importance of a parameter is quantified by the error induced when the parameter is removed.
The induced error can be measured as the squared difference with respect to a specific parameter wm:

Im = (E(D,W )− E(D,Wwm=0))
2 (4)
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To approximate this error, we can use a second-order Taylor expansion:

I(2)m (W ) =

(
gmwm −

1

2
wmHmW

)2

(5)

where gm is the gradient and Hm is the Hessian matrix. However, computing the Hessian matrix is computationally
expensive, thus we employ a first-order expansion to obtain a more tractable approximation:

I(1)m (W ) = (gmwm)
2 (6)

This can be further simplified to:

I(W ) = (W ×G)2 (7)

where W is the weight vector and G is the gradient vector.

Insight 1: Measurement of Kurtosis. We measure the kurtosis of the weights and gradients for the LLaMA-2-7B model,
obtaining values of 0.7734 and 5.8203, respectively. This indicates that both weights and gradients significantly contribute
to the Sparsity Promoting Metric (SPM) and influence the relative importance of different weights. To balance their
contributions, we employed an evolutionary algorithm to automatically find the optimal scaling factors.

Insight 2: Inspired by Quantization Methods. Inspired by quantization methods such as AWQ (Lin et al., 2024),
SmoothQuant (Xiao et al., 2023), and LLM-FP4 (Liu et al., 2023a), we employ scaling factors to balance weights and
activations. This step is critical in reducing computational requirements without significantly compromising model accuracy.
This approach underscores the importance of balancing weights and gradients when evaluating weight significance.

Based on these insights, we simplify Equation 3.2 to:

I(W ) = (s1(W )× s2(G))2 (8)

Here, s1 and s2 are scaling functions that control the contributions of weights and gradients to the final importance metric.
Our goal is to identify these functions. Specifically, s1 is a square operation that penalizes minor weights, and s2 is a
mean-median scaling (mms) operation that moderates the influence of gradients, preventing excessive dominance due to
scaling disparities.

In Appendix C.2, we analyze the impact of these operations on final performance by using a correlation matrix to identify
the most influential operations. Our findings highlight the critical role of the mms operation in optimizing the balance
between weight and gradient contributions.

By systematically investigating and refining these scaling operations, we achieve a more nuanced understanding of
parameter importance in LLM pruning. This approach not only enhances computational efficiency but also preserves model
performance, demonstrating the efficacy of our proposed metric in practical applications.

D. Genetic Programming in SPM Optimization
In our study, we utilize genetic programming as outlined in Algorithm 1 to optimize the search space for pruning metrics in
large language models. Genetic programming is a type of evolutionary algorithm that automates the generation of computer
programs to solve specific computational problems. Our application of this methodology focuses on the development of
symbolic pruning metrics for neural networks.

Implementation Details: Each individual in the genetic programming population represents a potential pruning metric,
where the structure of each individual is modeled as a symbolic tree. Nodes within these trees correspond to either unary or
binary operations, crucial for defining the computational logic of the pruning metric.

Evolutionary Process: The evolutionary process unfolds through several distinct stages, ensuring the continuous improve-
ment of the population with respect to the pruning task:
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Figure 4. Correlation Matrix of Primitive Operations with Perplexity.

1. Initialization: The process begins with the generation of a random population of symbolic trees. This initial population
forms the basis from which better-suited solutions can evolve over successive generations.

2. Selection: We implement a selection strategy where the top-k symbolic pruning metrics are chosen based on their
performance. From this subset, two candidates are randomly sampled to serve as parents for the next generation. This
selective approach ensures that only the most promising metrics contribute to the gene pool.

3. Crossover: The crossover operation is vital for introducing variability and combining beneficial traits from two parents.
It involves scanning each parent using Depth-First Search (DFS) to identify a node. A node from each parent is then
randomly selected, and their subtrees are exchanged to produce offspring. This method of recombination allows
offspring to inherit and reconfigure traits from both parents, potentially leading to more effective pruning metrics.

4. Mutation: After crossover, each node in the offspring undergoes a mutation with a probability of 50%. This mutation
can alter the node’s operation, encouraging diversity within the population and aiding in the exploration of the search
space.

Evaluation of Offspring: The newly generated offspring, now representing different symbolic pruning metrics, are
evaluated based on their fitness. Fitness is measured by the perplexity of the pruned model, specifically the LLaMA-2-7B
model under 50% sparsity. This measure helps determine how well the pruning metric performs in reducing the model’s
complexity without significantly impacting its effectiveness.

Iterative Process: The selection, crossover, and mutation processes are repeated for N iterations, or until a satisfactory
pruning metric is found. Each iteration refines the population, ideally leading to increasingly effective pruning strategies
over time.

By employing genetic programming, we leverage a robust evolutionary framework to explore a diverse array of pruning
metrics systematically. This approach not only aids in discovering highly effective pruning techniques but also contributes to
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Table 12. Data from trials at various depths

Depth Trial1 Trial2 Trial3 Trial4 Average Standard deviation

3 0.34 0.25 0.33 0.32 0.31 0.035
5 0.33 0.34 0.26 0.24 0.29 0.043
7 0.27 0.26 0.15 0.24 0.23 0.047
9 0.26 0.31 0.31 0.26 0.28 0.027

the broader understanding of how symbolic operations can impact the performance of large neural networks under sparsity
constraints.

E. Expanding the Results
E.1. Detailed Correlation Analysis

Methodology. During the evolutionary search phase, a comprehensive dataset of symbolic pruning metrics was established
alongside their associated perplexity scores. Metrics yielding a perplexity score below 7 were earmarked as potential
candidates for effective pruning strategies. These metrics are systematically enumerated in Table 11 within Appendix C.3.

Visualization and Interpretation. Figure 4 visualizes the correlation coefficients between the frequency of various
operations within the potential metrics and their corresponding perplexity scores. A heatmap representation facilitates an
intuitive understanding of these relationships. The following points summarize the major findings from this analysis:

• Multiplication Operations (#mul): A strong positive correlation with perplexity was observed for multiplication
operations, denoted by #mul in the heatmap. The frequency of multiplication within a metric tends to coincide with
lower perplexity scores, suggesting that incorporating multiplication may be beneficial for pruning effectiveness.

• Opposite Operations (#sqrt and #sqr): A noteworthy correlation was detected between square roots (#sqrt) and squaring
(#sqr) operations, indicating that they often occur in tandem and may have compensatory dynamics within the metrics.

• Min-Max Scaling (#mms): The min-max scaling operation, referred to as #mms in the heatmap, showed minimal
correlation with perplexity and other operations. This implies that mms contributes a stabilizing effect on the metric’s
performance, reinforcing its utility in the pruning process.

Conclusion and Implications for Metric Design. The insights gleaned from this correlation analysis provide a data-driven
foundation for refining symbolic pruning metrics. Specifically, the importance of multiplication and the potential balancing
act between opposite operations offer avenues for enhancing metric sophistication. Meanwhile, the robust nature of
min-max scaling underscores its value as a consistent component in pruning metrics. These analytical observations have
been instrumental in the formulation of the symbolic pruning metrics presented in Section 3.2, and may inform future
developments in pruning methodology.

E.2. Expanding the Zero-Shot Tasks

Detailed Results of Zero-shot Tasks. In the context of zero-shot learning, our evaluation encompasses a diverse set of tasks,
as presented in Table 3. These tasks include BoolQ (Clark et al., 2019), RTE (Wang et al., 2018), HellaSwag (Zellers et al.,
2019), WinoGrande (Sakaguchi et al., 2019), ARC Easy and Challenge (Clark et al., 2018), and OpenbookQA (Mihaylov
et al., 2018). To ensure the reproducibility of our results, we adhere to the settings and methodologies outlined in the Wanda
study (Sun et al., 2024). Detailed task-wise performance metrics are systematically presented across several tables: Table 14
demonstrates the unstructured evaluation, while Tables 15 and 16 provide insights into structured evaluations. Furthermore,
the nuanced performances under the LLaMA framework are captured in Tables 17, 18, and 19, offering a comprehensive
understanding of the zero-shot capabilities of the models in question.

Discussion. Pruning involves removing redundant or less important parameters from the model, which can act as a form of
regularization or denoising. (1) Regularization: Pruning can act as a form of regularization (Wang et al., 2020), reducing
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Table 13. Perplexity of pruned LLaMA models on WikiText2. Our Pruner-Zero outperforms SparseGPT (Frantar & Alistarh, 2023),
Wanda (Sun et al., 2024) and GBLM-Pruner (Das et al., 2023), achieving lower Perplexity without weight updates.

Method Sparsity LLaMA-7B LLaMA-13B LLaMA-30B

Dense 0 5.68 5.09 4.10
Magnitude (Han et al., 2016b) 0.5 17.29 20.21 7.54
SparseGPT (Frantar & Alistarh, 2023) 0.5 7.22 6.19 5.32
Wanda (Sun et al., 2024) 0.5 7.26 6.15 5.24
GBLM-Pruner2 (Das et al., 2023) 0.5 7.19 6.14 5.23
GBLM-Pruner1 (Das et al., 2023) 0.5 7.15 6.11 5.18
Pruner-Zero(Ours) 0.5 6.95 5.94 5.01
Magnitude (Han et al., 2016b) 2:4 42.54 18.36 9.11
SparseGPT (Frantar & Alistarh, 2023) 2:4 10.88 9.0 7.12
Wanda (Sun et al., 2024) 2:4 11.53 9.59 6.90
GBLM-Pruner2 (Das et al., 2023) 2:4 11.36 9.45 6.90
GBLM-Pruner1 (Das et al., 2023) 2:4 11.33 9.16 6.87
Pruner-Zero(Ours) 2:4 10.61 8.11 6.51
Magnitude (Han et al., 2016b) 4:8 16.83 13.87 7.62
SparseGPT (Frantar & Alistarh, 2023) 4:8 8.45 7.44 6.18
Wanda (Sun et al., 2024) 4:8 8.57 7.41 5.97
GBLM-Pruner2 (Das et al., 2023) 4:8 8.50 7.38 5.94
GBLM-Pruner1 (Das et al., 2023) 4:8 8.48 7.26 5.89
Pruner-Zero(Ours) 4:8 8.12 6.81 5.65

overfitting by applying dropout to the model. Dense models might overfit the training data or learn spurious correlations that
do not generalize well to unseen tasks. In contrast, the pruned model might generalize better to new tasks due to this implicit
regularization. (2) Denoising: In dense models, some parameters act as noise (Diao et al., 2023), contributing little to the
model’s performance or even detracting from it. Pruning eliminates much of this noise and thus leads to a clearer signal
within the model. This denoising effect can make weakly learned facts or knowledge more accessible to the model, leading
to improved performance on zero-shot tasks. For instance, LASER (Sharma et al., 2024) finds that even under extreme
reductions, the performance of LLM on natural language understanding tasks continues to improve. Recent research (Li
et al., 2024c) suggests a similar phenomenon in quantization, observing that quantization even brings notable accuracy gain
for multi-choice zero-shot tasks. They conducted experiments to verify that there is less uncertainty for the quantized model,
resulting in the phenomenon that quantization brings accuracy gain. Additionally, previous methods like Wanda (Sun et al.,
2024) and SparseGPT (Frantar & Alistarh, 2023) have also demonstrated improved performance on zero-shot tasks after
pruning. This suggests that these post-training pruning techniques can be effective in enhancing the reasoning capabilities of
language models, particularly in scenarios where they need to rely on their pre-trained knowledge without task-specific
fine-tuning.

E.3. Comparison with Previous Pruning Methods

In this section, we extend the scope of pruning methods traditionally applied to BERT (Devlin et al., 2019) and evaluate their
efficacy on larger language models (LLMs). Table 20 provides an overview of these pre-existing pruning methods, primarily
utilized for BERT. A notable difference between these methods and our approach is their integration of pruning with the
fine-tuning process. Additionally, BERT-specific pruning techniques typically focus on downstream task performance, in
contrast to our aim of preserving the general language modeling capabilities of pre-trained LLMs.

Adapting these methods for LLM pruning, we employ the pre-training auto-regressive loss as the metric to guide the pruning
process. Our evaluation considers two scenarios: post-training pruning and post-training pruning followed by a constrained
period of fine-tuning, limited to one day. The effectiveness of the pruning is determined using the metrics outlined in
Table 20. In the post-training pruning scenario, these metrics are directly applied to the LLMs. The pruned models are
then subjected to fine-tuning within the stated computational constraints. The results, summarized in Table 21, reveal that
the traditional pruning methods, when adapted to LLMs, do not yield effective outcomes. This observation underscores
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Table 14. Accuracies (%) of LLaMA for 7 zero-shot tasks with unstructured 50% sparsity.

Params Method BoolQ RTE HellaSwag WinoGrande ARC-e ARC-c OBQA Mean

7B

Dense 75.05 66.43 56.92 69.93 75.34 41.89 34.40 59.99

Magnitude 54.59 54.51 45.49 59.19 58.84 33.53 22.40 46.94
SparseGPT 72.05 54.15 51.43 67.88 71.38 37.71 30.00 54.94

Wanda 71.22 55.60 51.85 66.06 69.11 36.86 28.80 54.21
Pruner-Zero 68.87 63.54 69.12 67.80 69.19 38.82 39.60 59.56

13B

Dense 77.89 70.4 59.94 72.77 77.40 46.50 33.20 62.59

Magnitude 54.89 51.26 44.16 63.14 58.80 33.79 27.20 47.61
SparseGPT 76.97 61.01 54.95 71.67 72.47 41.98 31.20 58.61

Wanda 75.90 62.82 55.71 71.98 73.19 43.52 32.20 59.33
Pruner-Zero 74.77 59.57 74.00 71.19 74.12 42.06 43.00 62.67

30B

Dense 82.69 66.79 63.35 75.69 80.30 52.82 36.00 65.38

Magnitude 64.34 50.18 50.59 66.54 72.39 43.77 29.00 53.83
SparseGPT 82.32 62.45 59.15 75.22 78.96 48.56 35.00 63.09

Wanda 81.90 65.34 60.93 73.48 79.29 49.66 34.60 63.60
Pruner-Zero 81.04 67.15 79.25 73.32 78.07 48.81 44.80 67.49

65B

Dense 84.83 69.68 64.54 77.27 81.40 52.90 38.20 66.97

Magnitude 79.15 62.45 61.90 74.74 76.40 49.57 35.00 62.74
SparseGPT 84.60 70.76 63.90 77.43 79.35 50.85 37.20 66.30

Wanda 84.70 71.48 64.55 76.87 79.75 50.51 38.80 66.67
Pruner-Zero 84.45 70.04 81.75 75.77 79.45 52.65 44.60 69.81

the necessity for developing pruning techniques that are more suited to the unique characteristics of large-scale language
models.

E.4. Comparative Analysis of Pruning Techniques

This section extends the discourse on pruning methodologies to the Tiny-LLaMA (Zhang et al., 2024a) and OPT (Zhang et al.,
2022b), which is engineered for optimal performance with a minimal parameter set. Table 22 benchmarks Tiny-LLaMA
against a suite of pruning approaches, which include unstructured pruning as well as structured pruning with specific ratios,
namely 2:4 and 4:8.

We scrutinize a range of pruning methods: Magnitude-based pruning, the SparseGPT algorithm, the Wanda technique,
and our proposed Pruner-Zero. The post-pruning performance metrics illuminate the interplay between model size and
operational effectiveness. While Magnitude pruning serves as a ubiquitous benchmark, it demonstrates a variable efficacy
across the pruning ratios, particularly underperforming at the 2:4 ratio. Contrastingly, SparseGPT and Wanda deliver
enhanced capabilities over Magnitude pruning, attesting to their prowess in preserving model competence during downsizing.
Our Pruner-Zero is noteworthy for its competitive performance, especially prominent at the unstructured and 4:8 pruning
thresholds, which underscores its suitability as an adept pruning strategy for Tiny-LLaMA. The empirical evidence
accentuates the proficiency of Pruner-Zero in closely approximating the performance of models with lower levels of pruning,
a critical consideration for deployment in resource-limited settings where compact models are requisite without considerable
compromise in functionality.

Subsequently, Table 4 delineates the pruning performance across the spectrum of OpenAI’s OPT models, with sizes ranging
from 125 million to 13 billion parameters. The methodologies under scrutiny here comprise a baseline dense model,
Magnitude pruning, SparseGPT, Wanda, and Pruner-Zero, each targeting a consistent sparsity quotient of 50%.

The results conspicuously reveal that Pruner-Zero outperforms other approaches that forego a weight update phase,
specifically Magnitude pruning and Wanda. This is manifested in markedly lower perplexity scores for models pruned via
Pruner-Zero, indicating substantial retention of predictive capacity post-pruning.
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Table 15. Accuracies (%) of LLaMA for 7 zero-shot tasks with 4:8 sparsity.

Params Method BoolQ RTE HellaSwag WinoGrande ARC-e ARC-c OBQA Mean

7B

Dense 75.05 66.43 56.92 69.93 75.34 41.89 34.40 59.99

Magnitude 51.19 50.54 46.73 60.69 58.96 30.89 23.20 46.03
SparseGPT 73.06 58.12 47.88 65.98 66.75 32.42 25.40 52.80

Wanda 70.97 58.24 46.81 65.83 65.53 33.97 28.00 52.76
Pruner-Zero 69.97 60.65 63.70 64.88 64.23 34.64 35.60 56.24

13B

Dense 77.89 70.40 59.94 72.77 77.40 46.50 33.20 62.59

Magnitude 61.07 51.26 48.91 65.11 63.26 35.67 28.40 50.53
SparseGPT 76.61 57.76 51.24 70.17 71.17 37.20 27.80 55.99

Wanda 74.89 57.89 51.26 70.56 70.29 37.97 29.80 56.09
Pruner-Zero 69.20 53.07 70.01 69.22 70.50 39.42 41.80 59.03

30B

Dense 82.69 66.79 63.35 75.69 80.30 52.82 36.00 65.38

Magnitude 63.55 50.18 49.45 65.75 73.36 42.83 29.60 53.53
SparseGPT 78.69 61.73 56.15 74.35 76.94 46.08 31.60 60.79

Wanda 77.38 58.80 58.79 74.28 77.34 46.46 34.00 61.00
Pruner-Zero 77.71 58.48 75.76 72.14 75.72 45.90 42.60 64.04

65B

Dense 84.83 69.68 64.54 77.27 81.40 52.90 38.20 66.97

Magnitude 74.95 68.23 60.85 74.27 76.45 47.61 32.80 62.17
SparseGPT 84.35 68.95 61.00 77.19 78.75 48.46 35.40 64.87

Wanda 84.29 70.92 59.54 76.64 79.00 48.83 35.60 64.97
Pruner-Zero 81.50 66.43 79.15 76.48 78.50 50.00 44.20 68.04

Remarkably, Pruner-Zero achieves these benchmarks sans the weight update step, which is indispensable for SparseGPT.
Nevertheless, Pruner-Zero showcases results that are congruent with those of SparseGPT, underscoring its robustness and
streamlined efficiency as a pruning modality. This is particularly salient for the 13B parameter model, where Pruner-Zero’s
performance virtually mirrors that of SparseGPT, thus solidifying its stance as an efficacious pruning strategy.

E.5. Pruning Time Comparison.

The efficiency of pruning algorithms is critical in their application to large language models, such as the LLaMa 2-7b.
Pruning time, an important metric for evaluating such algorithms, depends on various computational factors, including
gradients, Hessian matrices, weight adjustments, and activation computations. The sequence of time consumption for these
components generally follows:

Time(Hessian) > Time(Gradient) > Time(Activation) > Time(Weight)

This hierarchy highlights the computational intensity of calculating the Hessian matrix, which requires the most time due
to the complexity of computing second-order derivatives for each element in the weight matrix. To enhance the pruning
process’s efficiency, gradients are pre-computed offline. This preparatory step significantly speeds up the pruning phase by
eliminating real-time gradient computation, thus streamlining the entire procedure.

A comparative analysis of pruning time was conducted under fair conditions, where extraneous factors such as dataset
loading and evaluation procedures were systematically excluded to ensure a level comparison field. The following table
presents the pruning times and the associated perplexity results of various pruning methods, including our Pruner-Zero,
SparseGPT (Frantar & Alistarh, 2023), and Wanda (Sun et al., 2024):

The data reveals that Pruner-Zero is twice as fast as SparseGPT (Frantar & Alistarh, 2023) and is slightly slower compared
to Wanda (Sun et al., 2024), taking only 10% more time. However, this modest increase in time is offset by a significant
improvement in model performance, as evidenced by Pruner-Zero’s lower perplexity score (6.95) compared to Wanda’s
(7.26). This improvement underscores Pruner-Zero’s ability to balance efficiency with effectiveness, optimizing not just for
speed but also for enhancing the model’s linguistic capabilities post-pruning.
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Table 16. Accuracies (%) of LLaMA for 7 zero-shot tasks with 2:4 sparsity.

Params Method BoolQ RTE HellaSwag WinoGrande ARC-e ARC-c OBQA Mean

7B

Dense 75.05 66.43 56.92 69.93 75.34 41.89 34.40 59.99

Magnitude 53.09 55.60 42.30 59.91 53.28 27.13 21.80 44.73
SparseGPT 70.46 60.65 42.99 64.88 61.49 30.12 23.60 50.60

Wanda 69.30 51.99 42.06 62.75 60.94 28.07 24.60 48.53
Pruner-Zero 66.54 53.79 56.29 62.19 60.56 30.63 34.40 52.06

13B

Dense 77.89 70.40 59.94 72.77 77.40 46.50 33.20 62.59

Magnitude 60.95 49.10 45.81 62.75 58.75 31.06 27.60 48.00
SparseGPT 72.14 55.23 48.11 68.98 66.71 34.98 26.40 53.22

Wanda 70.21 53.43 46.74 68.82 65.82 33.87 27.20 52.30
Pruner-Zero 69.20 53.07 64.67 68.51 67.13 36.09 38.80 56.78

30B

Dense 82.69 66.79 63.35 75.69 80.30 52.82 36.00 65.38

Magnitude 65.11 52.35 51.72 66.22 70.88 38.23 27.60 53.16
SparseGPT 75.60 62.13 53.10 72.61 75.13 41.98 31.80 58.91

Wanda 74.68 63.80 54.41 72.93 74.41 42.06 32.20 59.21
Pruner-Zero 70.92 62.09 72.47 70.24 73.36 42.32 42.60 62.00

65B

Dense 84.83 69.68 64.54 77.27 81.40 52.90 38.20 66.97

Magnitude 77.9 64.98 58.65 72.85 75.15 45.05 34.40 61.28
SparseGPT 83.15 65.34 57.20 76.72 78.20 45.18 32.20 62.57

Wanda 83.58 66.79 56.36 75.82 78.23 45.56 33.60 62.84
Pruner-Zero 79.45 60.29 76.95 73.48 77.20 46.76 43.80 65.42

E.6. Performance on Higher Sparisty Ratio

For higher sparsity at 60%, to further explore the efficacy of various pruning methods under increased constraints. The results
of this analysis are encapsulated in Table 24. At this sparsity threshold, the pruning methods exhibit varied performance
across different model sizes of both LLaMA and LLaMA-2. Our method, Pruner-Zero, demonstrates commendable
robustness, consistently achieving lower perplexity scores across all model configurations. This is indicative of Pruner-
Zero’s effectiveness in maintaining model performance even under substantial reduction in parameters. Notably, at 60%
sparsity, the method exhibits a competitive edge over other approaches, including Wanda and SparseGPT, especially with
larger model sizes.

E.7. Robustness Assessment

To evaluate the stability of our Pruner-Zero, we conduct experiments for LLaMA and LLaMA-2 under different Seeds to
test their robustness in generating consistent performance outcomes. Our results, as encapsulated in Table 25, exhibit that
the variability in performance, as indicated by the standard deviation (STD), remains within an acceptable range, confirming
the inherent stability of our Pruner-Zero. Specifically, the LLaMA model shows a moderate standard deviation at the 2:4
ratio, which suggests that while there is some variability, it does not significantly detract from the overall reliability of the
model. In comparison, the LLaMA-2 model demonstrates an even lower standard deviation across all ratios, notably at the
50% ratio, which underlines a high level of consistency in performance despite the initialization variability.

The average (AVG) performance metrics further reinforce the conclusion that our Pruner-Zero maintains a dependable
performance level. For instance, the average performance metric for LLaMA at the 50% ratio is 6.8799, whereas for
LLaMA-2 it slightly improves to 6.2511, which could be indicative of model-specific optimizations or inherent architectural
advantages. These findings suggest that our method not only sustains performance across various initial conditions but may
also benefit from further tuning specific to the model variant being utilized.

Moreover, the systematic evaluation across multiple seeds provides a comprehensive understanding of the performance
spectrum that one can anticipate when employing these models in practical scenarios. It also lays a foundation for future
explorations into the causes of variability, enabling targeted enhancements to our Pruner-Zero for improved stability and
performance consistency.
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Table 17. Accuracies (%) of LLaMA-2 for 7 zero-shot tasks with unstructured 50% sparsity.

Params Method BoolQ RTE HellaSwag WinoGrande ARC-e ARC-c OBQA Mean

7B

Dense 77.74 62.82 57.17 68.90 76.39 43.52 31.40 59.71

Magnitude 63.00 57.04 49.13 63.30 64.10 34.64 26.80 51.14
SparseGPT 75.02 54.15 52.37 69.85 73.27 39.85 29.20 56.24

Wanda 75.99 53.43 52.49 68.19 72.77 39.59 31.20 56.24
Pruner-Zero 70.92 53.07 69.10 65.98 71.89 39.76 41.40 58.87

13B

Dense 80.52 65.34 60.06 72.22 79.42 48.46 35.20 63.03

Magnitude 57.61 55.96 54.40 65.27 70.54 38.40 27.80 52.85
SparseGPT 81.44 65.34 55.83 72.77 74.83 42.24 32.60 60.72

Wanda 81.84 64.02 56.90 71.35 76.18 43.52 32.00 60.83
Pruner-Zero 79.79 66.06 74.60 70.88 75.67 43.60 43.20 64.83

70B

Dense 83.40 67.87 66.10 78.06 82.55 54.44 37.20 67.08

Magnitude 70.55 60.65 61.50 73.48 75.70 49.23 35.40 60.93
SparseGPT 83.55 70.40 63.80 78.85 82.40 53.75 38.20 67.28

Wanda 82.50 73.65 64.10 78.14 80.80 52.65 37.40 67.03
Pruner-Zero 83.20 73.29 81.70 76.72 81.10 55.12 46.60 71.10

F. Searched Metrics with Expressions.
Table 26 provides a symbolic string representation of the pruning metrics, offering an alternative perspective on the structural
patterns that emerged from Pruner-Zero’s search algorithm. Symbol “#” denotes the left operation as a unary operation.
For each string, we can define the only symbolic pruning metric exclusively. These representations are directly linked to
the mathematical equations in Table 11, with the accompanying PPL values validating their efficacy. This string-based
format encapsulates the operational essence of the pruning metrics, allowing for an abstract view that can be particularly
useful for algorithm interpretation and further computational analysis. The variations in PPL scores across different metrics
underscore the sensitivity of model performance to the pruning strategy employed, highlighting the importance of careful
selection and evaluation of pruning metrics in model optimization processes.

G. Limitations and Future Works
Limitations: Our Pruner-Zero framework, while pioneering in unstructured pruning at a 50% sparsity level, encounters
specific limitations in its specialization and evaluative scope. It primarily excels within its tested scenario but lacks empirical
support for its effectiveness in alternative configurations such as structured pruning or higher sparsity levels, where challenges
escalate due to the complexity of removing structured network components or a greater proportion of weights. It is possible
to have better performance under higher sparsity levels or structured pruning. Furthermore, the evaluation of Pruner-Zero
has predominantly focused on perplexity and accuracy within constrained contexts, specifically on the Wikitext2 dataset
and zero-shot tasks. While these measures offer insights into language modeling and general reasoning, they fall short
of capturing the full breadth of capabilities essential for Large Language Models (LLMs), such as in-context learning,
commonsense reasoning, instruction following, and self-calibration. These abilities are vital for gauging the comprehensive
intelligence and versatility of LLMs, particularly in assessing their operational efficacy post-pruning.

Future Work: Recognizing these gaps, future research will aim to broaden the evaluative framework of the Pruner-Zero
to encompass a wider array of capabilities intrinsic to LLMs. This expansion will involve devising tests and benchmarks
specifically tailored to accurately measure the impacts of pruning on aspects like in-context learning, commonsense reasoning,
and other advanced functionalities. The goal is to ensure that pruning not only mitigates model size and computational
demands but also preserves or enhances the model’s capacity for complex tasks and exhibiting human-like intelligence.
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Table 18. Accuracies (%) of LLaMA-2 for 7 zero-shot tasks with 4:8 sparsity.

Params Method BoolQ RTE HellaSwag WinoGrande ARC-e ARC-c OBQA Mean

7B

Dense 77.74 62.82 57.17 68.90 76.39 43.52 31.40 59.71

Magnitude 63.00 52.35 50.08 62.43 64.73 35.92 26.00 50.64
SparseGPT 72.69 55.23 48.20 68.11 69.15 35.84 27.40 53.80

Wanda 73.91 53.79 46.45 66.61 66.71 34.13 25.80 52.49
Pruner-Zero 67.52 53.43 63.06 64.48 66.96 36.69 38.60 55.82

13B

Dense 80.52 65.34 60.06 72.22 79.42 48.46 35.20 63.03

Magnitude 63.33 57.76 53.96 64.40 68.48 35.75 26.00 52.81
SparseGPT 79.97 66.79 52.01 70.64 73.61 41.04 30.00 59.15

Wanda 80.26 65.62 52.05 69.48 73.88 41.54 28.40 58.75
Pruner-Zero 79.45 60.65 70.00 67.64 74.03 41.64 40.40 61.97

70B

Dense 83.40 67.87 66.10 78.06 82.55 54.44 37.20 67.08

Magnitude 70.95 59.21 60.05 74.11 76.25 46.76 34.60 60.28
SparseGPT 82.20 72.20 61.45 77.82 80.85 51.19 35.20 65.84

Wanda 84.30 71.80 61.90 76.24 80.40 51.80 36.00 66.06
Pruner-Zero 83.55 71.12 80.40 75.37 80.45 52.47 46.20 69.94

Table 19. Accuracies (%) of LLaMA-2 for 7 zero-shot tasks with 2:4 sparsity.

Params Method BoolQ RTE HellaSwag WinoGrande ARC-e ARC-c OBQA Mean

7B

Dense 77.74 62.82 57.17 68.90 76.39 43.52 31.40 59.71

Magnitude 56.23 51.35 42.27 60.93 59.18 27.31 21.80 45.58
SparseGPT 70.52 58.84 43.26 66.69 64.10 29.97 23.20 50.94

Wanda 67.65 53.07 40.92 62.43 61.78 31.20 24.20 48.75
Pruner-Zero 69.14 53.43 54.68 60.54 61.57 32.17 32.60 52.02

13B

Dense 80.52 65.34 60.06 72.22 79.42 48.46 35.20 63.03

Magnitude 65.69 54.15 50.13 62.04 62.46 31.74 23.00 49.89
SparseGPT 76.79 59.38 46.58 68.67 70.62 36.60 25.40 54.86

Wanda 76.80 61.22 47.82 66.90 69.24 36.82 26.40 55.03
Pruner-Zero 77.89 56.68 63.37 67.72 69.70 37.29 36.00 58.38

70B

Dense 83.40 67.87 66.10 78.06 82.55 54.44 37.20 67.08

Magnitude 73.20 57.04 58.40 74.27 76.15 45.22 35.40 59.95
SparseGPT 79.50 70.76 59.00 76.64 78.95 48.55 33.80 63.89

Wanda 82.20 69.85 59.34 76.23 79.30 47.26 34.80 64.14
Pruner-Zero 81.40 67.87 77.60 74.11 79.45 50.00 43.40 67.69

Table 20. Summary of prior pruning methods on BERT.

Pruning Method Pruning Type Pruning Metric Training Procedure
SNIP (Lee et al., 2019) Unstructured Loss Sensitivity Pruning at Initialization
BERT-LTH (Chen et al., 2020) Unstructured Magnitude Fine-tuning BERT
Movement (Sanh et al., 2020) Unstructured Loss Sensitivity Fine-tuning BERT
Platon (Zhang et al., 2022a) Unstructured Loss Sensitivity Fine-tuning BERT
PINS (Ren & Zhu, 2023) Unstructured Loss Sensitivity Fine-tuning BERT

27



Pruner-Zero: Evolving Symbolic Pruning Metric From Scratch for Large Language Models

Table 21. Comparisons with prior pruning methods on BERT (unstructured 50% sparsity).

Pruning method

Model Dense Fine-tuning SNIP BERT-LTH Movement Platon PINS Pruner-Zero

LLaMA-7B 5.68 ✗ 231.48 17.29 349.33 124.91 89.12 6.95
✓ 102.32 12.43 168.17 102.34 72.13 6.74

Table 22. Comparative Pruning Performance on Tiny-LLaMA (Zhang et al., 2024a).

Tiny-LLaMA Unstructured (50%) Structured (2:4) Structured (4:8)

Magnitude 21.64 64.07 23.13
SparseGPT 10.71 18.79 13.84

Wanda 11.21 27.17 16.18
Pruner-Zero 10.65 22.17 14.47

Table 23. Comparison of Pruning Times and Perplexity Across Different Methods

Pruning Method Pruning Time Only (s) Perplexity

Magnitude 0.92 17.29
Wanda 402.25 7.26
SparseGPT 1178.62 7.22
Pruner-Zero 444.12 6.95

Table 24. WikiText2 validation perplexity of pruned LLaMA and LLaMA-2 models with unstructured 60% sparsity.

LLaMA LLaMA-2

Method Weight Update Sparsity 7B 13B 30B 65B 7B 13B 70B

Dense - 0% 5.68 5.09 4.77 3.56 5.12 4.57 3.12
Magnitude ✗ 60% 6e2 2e2 27.67 9.34 4e3 11.23 8.21
SparseGPT ✓ 60% 10.51 8.56 6.66 5.82 9.58 7.80 4.98
Wanda ✗ 60% 10.66 8.56 6.49 5.83 9.71 7.75 4.98
Pruner-Zero ✗ 60% 9.83 7.66 6.22 5.31 9.58 6.90 4.64

Table 25. Performance Metrics (Perplexity) of LLaMA Models of Pruner-Zero Across Different Seeds

LLaMA Seed-0 Seed-1 Seed-2 Seed-3 AVG STD

50% 6.8827 6.8819 6.8959 6.8592 6.8799 0.0132
2:4 10.3582 10.3536 10.4872 10.2486 10.3997 0.0619
4:8 8.0697 8.0505 8.0171 8.0006 8.0345 0.0271

LLaMA-2 Seed-0 Seed-1 Seed-2 Seed-3 AVG STD

50% 6.2467 6.2587 6.2449 6.2542 6.2511 0.0056
2:4 10.6715 10.5575 10.6180 10.6440 10.6227 0.0421
4:8 7.6963 7.6748 7.7072 7.6512 7.6824 0.0214
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Table 26. Expressions of Searched Pruning Metrics and Their Associated PPL Values on LLaMA-7b
Expression Perplexity
(((W ) mms (#)) add (G))sqrt(#) 7.670979499816894
((G)exp(#))mul((W )mul((G) abs (#))) 6.774543285369873
(((G) add (W ))div((W )exp(#)))mul(((W )mul(W ))sqr(#)) 7.059216022491455
(((G) mms (#)) add ((W )tanh(#)))sqrt(#) 7.096769332885742
((((W ) mms (#)) add ((G) pow (#))) neg (#)) pow (#) 6.921246528625488
((((W )sqrt(#)) abs (#)) sub (((W ) sub (G))tanh(#)))log(#) 6.933580875396728
((G)mul(W )) 6.770424842834473
((W ) mms (#)) add (G) 7.671018600463867
((G) skp (#))mul((W )div(W )) 6.770524024963379
((G)sqr(#)) add ((W ) abs (#)) 6.990375518798828
((G) skp (#))mul(((W )tanh(#))tanh(#)) 6.770989894866943
(((W )tanh(#))mul((G) mms (#)))sqr(#) 6.821769714355469
(((G)div(G))sqr(#)) sub (((W )tanh(#)) sub ((W ) abs (#))) 7.053229808807373
(((G)mul(W )) add ((W )mul(W )))div(((W ) sub (W )) add ((W ) pow (#))) 6.748305320739746
((((G) abs (#))exp(#))mul(W )) sub ((((W ) abs (#))div((W )exp(#)))exp(#)) 7.161033630371094
(((G) pow (#))exp(#))mul(((W ) skp (#))div(W )) 7.531239986419678
((((W ) abs (#))mul((G) skp (#))) pow (#))log(#) 6.77089786529541
((((W )tanh(#))mul((G)mul(G)))div(((G)div(W ))tanh(#))) mms (#) 7.190669059753418
((((G) pow (#)) add ((W )exp(#))) abs (#))div((((W ) mms (#))div((G) zsn (#)))exp(#)) 6.987056732177734
((((W )mul(W )) skp (#)) zsn (#)) sub ((((W )tanh(#)) abs (#)) sub (((G)sqr(#)) zsn (#))) 7.274583339691162
((((W )tanh(#))exp(#))sqrt(#)) sub ((((W )log(#)) add ((G)sqrt(#))) neg (#)) 7.018911838531494
(((((W ) add (G))exp(#))sqr(#)) sub ((G) sub ((G) neg (#)))))sqrt(#) 6.949575901031494
(((((G)div(G)) mms (#))mul(((W )mul(W ))sqrt(#)))exp(#))tanh(#) 6.821941375732422
(((((W )exp(#))sqr(#))log(#))exp(#)) add (((((G) pow (#))sqr(#)) skp (#))sqr(#)) 7.282495498657227
((((W ) abs (#))mul((G) skp (#))) pow (#)) sub ((((W )log(#)) add ((G)sqrt(#))) neg (#)) 7.013281345367432
((((W )mul(W )) abs (#))sqrt(#)) sub ((((W )log(#)) add ((G)sqrt(#))) neg (#)) 7.023911952972412
((W )mul(G))mul(((W )mul(W )) mms (#)) 6.785792350769043
((((W )mul(W )) abs (#))mul((G) mms (#))) sqr (#) 6.707982063293457
(((G) abs (#)) abs (#)) add (((W )log(#)) mms (#)) 6.763171672821045
(((W )tanh(#))mul((G)mul(W )))div(((W )mul exp(#))exp(#)) 6.712837696075439
((((W )log(#))mul((G)mul(W )))sqrt(#))sqr(#) 6.843364715576172
(((W )add(W ))add((G)sqr(#))) mms (#) 6.917529582977295
((((W )mul(W ))abs(#))add((G)mul(W ))) log (#) 6.748325347900391
(((W )add(W ))add((G)sqr(#))) add ((((G)pow(#))exp(#))div(((W )sqrt(#))sqrt(#))) 6.918227195739746
((W )add(W )) add ((G)sqr(#)) 6.917529582977295
((((W )mul(W ))abs(#))tanh(#))add((((G)pow(#))exp(#))div((W )sqrt(#))) 6.981475353240967
((((W )mul(W ))abs(#))mul((G)sqr(#)))skp(#) 6.770103454589844
(((W )add(W ))add((G)sqr(#)))log(#) 6.917529582977295
(((G)mul(W ))exp(#)) sqr (#) 6.770689487457275
((G)mul((W )tanh(#))) mms (#) 6.770922660827637
((W )pow(#)) mul (((G)sqr(#))mul(G)) 6.982866764068603
(((W )abs(#))pow(#)) mul (((G)mms(#))mms(#)) 6.707982063293457
((((W ) + (G))abs(#))mul(((W )skp(#))sqr(#))) sqr (#) 6.735072135925293
((((G)tanh(#))mul((W )mms(#)))tanh(#))tanh(#) 6.775103092193603
((W )pow(#))mul(((W )sqr(#))mul(G)) 6.952877998352051
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