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Abstract
We introduce AnyTool, a large language model
agent designed to revolutionize the utilization of
a vast array of tools in addressing user queries.
We utilize over 16,000 APIs from Rapid API,
operating under the assumption that a subset of
these APIs could potentially resolve the queries.
AnyTool primarily incorporates three elements:
an API retriever with a hierarchical structure, a
solver aimed at resolving user queries using a se-
lected set of API candidates, and a self-reflection
mechanism, which re-activates AnyTool if the ini-
tial solution proves impracticable. AnyTool is
powered by the function calling feature of GPT-4,
eliminating the need for training external modules.
We also revisit the evaluation protocol introduced
by previous works and identify a limitation in this
protocol that leads to an artificially high pass rate.
By revising the evaluation protocol to better re-
flect practical application scenarios, we introduce
an additional benchmark, termed AnyToolBench.
Experiments across various datasets demonstrate
the superiority of our AnyTool over strong base-
lines such as ToolLLM and a GPT-4 variant tai-
lored for tool utilization. For instance, AnyTool
outperforms ToolLLM by +35.4% in terms of av-
erage pass rate on ToolBench. Code is available
at https://github.com/dyabel/AnyTool.

1. Introduction
From the dawn of civilization, humanity has embarked on
a relentless journey of discovery and innovation, mastering
an ever-expanding array of tools to enhance our capabilities
and increase production efficiency. As we have evolved,
so have our tools, transitioning from simple stone imple-
ments to complex machines and beyond. Today, we stand
at the forefront of a new era, reaping the benefits of the
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(a) AnyTool addresses user queries by leveraging 16k+ APIs.
It integrates a hierarchical API-retriever, a solver, and a self-
reflection mechanism in a closed loop, all operating without
the need for additional training.

(b) Comparison with ToolLLM and a GPT-4 variant tailored for
tool utilization across six subsets of ToolBench (Qin et al., 2023b),
using pass rate defined in Eq 2 as the evaluation metric.

Figure 1: (a) Illustration of AnyTool. (b) Comparison in
performance.

rapid developments in artificial intelligence, particularly the
recent advances in large language models (LLMs) (Brown
et al., 2020; Touvron et al., 2023a;b; Chowdhery et al., 2023;
Achiam et al., 2023; Ouyang et al., 2022). A pivotal chal-
lenge now is learning how to drive LLMs to effectively use
tools (Qin et al., 2023a; Xu et al., 2023; Cai et al., 2023;
Song et al., 2023; Ruan et al., 2023; Shen et al., 2023; Hao
et al., 2023), a task that could redefine our interaction with
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Figure 2: Overview of AnyTool. It primarily consists of a hierarchical API retriever tasked with identifying the most
relevant API candidates to the user query from a large API pool, a solver aimed at addressing the queries using the generated
API-candidate pool, and a self-reflection mechanism. The hierarchical structure includes a meta-agent linked with several
category agents, each of which manages a collection of tool agents. We leverage the API structure defined by Rapid API as
a guideline. Each type of agent is assigned several functions that it can use to explore the API space. Refer to Table 10 in
the appendix for the details of each function.

technology. Towards this end, we introduce AnyTool, a
GPT-4-empowered agent, as depicted in Figure 1a. It is
designed to effectively leverage more than 16,000 APIs to
address user queries, with a significant performance leap as
depicted in Figure 1b.

Previous research (Qin et al., 2023b) formulated tool uti-
lization in a dual-phase approach: initially retrieving, then
resolving. Specifically, the first phase involves retrieving the
most pertinent APIs from a substantial collection of 16K+
APIs in response to user queries. The subsequent phase fo-
cuses on utilizing these chosen APIs to address user queries.
Our AnyTool uses this design principle while introducing
four distinct characteristics (see Figure 2 for an overview):

Plug-and-Play. Our AnyTool does not require the training
of any modules, except for the function-calling feature of
GPT-4 (Achiam et al., 2023). This aspect sets it apart from
existing methods like ToolLLM, which necessitates training
an API retriever capable of selecting a set of candidate APIs
from the API pool (Qin et al., 2023b).

Hierarchical Structure. To identify the most relevant APIs
for user queries, we design a hierarchical structure within
our API retriever. This structure is composed of three tiers,
each containing one or multiple agents with diverse roles.
This arrangement is inspired by the divide-and-conquer ap-

Figure 3: The performance of our AnyTool on different
datasets (each denoted by a curve) improves as the number
of self-reflection rounds increases. ATB: AnyToolBench.

proach. Additionally, we effectively incorporate the API
categorization suggested by Rapid API into our hierarchical
structure. Consequently, this significantly reduces the search
scope for each agent and overcomes constraints related to
the maximum context length in LLMs.

Self-Reflection Mechanism. Our AnyTool is designed to
address user queries through a process of initial attempt
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followed by reflection. Upon receiving a query, AnyTool
suggests a solution, which is then evaluated for feasibility
by GPT-4. In cases where the proposed solution is deemed
impractical, AnyTool is re-activated, with the considera-
tion of reasons for failure and relevant historical contexts.
This mechanism significantly reduces the tendency to “over-
search” for simpler queries, while also providing a more
context-rich and in-depth search for complex queries. This
closed-loop system enhances the efficiency and effective-
ness of the query resolution process. Figure 3 shows how
the pass rate improves w.r.t. the self-reflection rounds. With
only 4-6 self-reflection iterations, the pass rate improves by
up to 20% across all datasets.

Evaluation for Realistic Scenarios. The evaluation frame-
work presented in ToolBench (Qin et al., 2023b) commences
with categorizing user queries as either solvable or non-
solvable, employing a set of reference APIs. Following this,
the solvable queries undergo further scrutiny to determine if
they are successfully addressed or not. However, for those
non-solvable queries, the evaluation system regards them as
solved when calculating the pass rate, leading to an artifi-
cially high pass rate. Our study delves into the intricacies of
this evaluation methodology and proposes a revised protocol
that better mirrors practical application scenarios.

In addition to evaluation on ToolBench, we introduce an
extra benchmark, termed AnyToolBench, to facilitate the
application of our new evaluation protocol. Experimen-
tally, AnyTool achieves state-of-the-art performance, sur-
passing strong baselines such as ToolLLM and a version of
GPT-4 specifically tailored for tool utilization across various
datasets, as illustrated in Figure 1b.

2. Related Works
Tool Utilization in LLMs. Large language models (Rad-
ford et al., 2018; 2019; Brown et al., 2020; Touvron et al.,
2023a;b; Thoppilan et al., 2022) may commit factual errors
when responding to queries, particularly struggling with pre-
cise numbers and specific fields of expertise (Huang et al.,
2023; Augenstein et al., 2023). Utilizing tools can help miti-
gate this issue (Li et al., 2023; Qin et al., 2023b; Parisi et al.,
2022; Tang et al., 2023; Hsieh et al., 2023; Schick et al.,
2023). Previous work has involved using an API retriever
to match relevant APIs from a large API pool based on the
documents, employing either an pretrained text embedding
model (Li et al., 2023; Patil et al., 2023) or one finetuned
with curated API retrieval data (Qin et al., 2023b). How-
ever, this approach typically suffers from low accuracy and
may overlook the truly relevant APIs. Moreover, there is a
lack of feedback mechanism in their retrieval, often leading
to unsolved queries due to incorrect API candidates being
provided. Our AnyTool fills this gap by directly using the
GPT-4 as the API retriever with a hierarchical structure de-

sign, and introduces the self-reflection mechanism into the
whole process.

Self-Reflection Mechanism in LLMs. Self-reflection is a
featured ability of LLMs. It was first studied in the LLM
alignment problems. Wang et al. (2022) considered the
ability of GPT-3 to self-generate instructions for alignment
finetuning. Without finetuning, Li et al. (2024) introduced
an inference method, RAIN, that allows pre-trained LLMs to
evaluate their own generation and use the evaluation results
to guide rewind and generation for AI safety. Recently,
Chen et al. (2024) proposed a self-play mechanism, where
the LLM refines its capability by playing against instances of
itself. Yuan et al. (2024) proposed self-rewarding language
models, where the language model itself is used via LLM-
as-a-Judge prompting to provide its own rewards for the
following DPO finetuning (Rafailov et al., 2023). On the
other hand, some negative results on self-reflection were
also investigated. For example, Huang et al. (2023) showed
that GPT-3.5-Turbo and GPT-4 cannot self-correct reasoning
yet. But whether GPT-4 can serve as a self-reflective agent
for API calling remains an open problem in the existing
literature.

3. Preliminaries
3.1. Function Calling

Function calling is a core characteristic of GPT-4 (Achiam
et al., 2023). Specifically, in response to a user’s query Q,
the function calling system accesses a set of M distinct
functions {Fi}Mi=1. Each function Fi has the potential to
solve Q, a part of Q, or may not be relevant to Q at all.
The functionality of Fi is elaborated in a specific document
that outlines its purpose, required and optional parameters
along with their explanations, the types of output it gener-
ates, and the interpretations of these outputs. Note that the
function calling feature of GPT-4 does not require visibility
into the detailed implementations of each function. It under-
stands their intentions and functionalities through linguistic
comprehension.

The process of function calling involves: 1) the user inputs
both the query Q and the function list {Fi}Mi=1, alongside
a designated “Finish Function” F∗, into GPT-4; 2) GPT-
4 generates a function calling request for the user, with
clear input parameters; 3) the user executes the specific
function and provides the historical context and function
response to GPT-4; 4) this cycle of steps two and three is
repeated multiple times until GPT-4 activates the “Finish
Function” F∗, signaling the resolution of query Q. Users
have the option to either employ the output of F∗ directly,
or to gather the interim results generated during the function
calling process, according to their specific goals or design.
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Figure 4: Illustration of the evaluation protocols used by: (a) ToolLLM (Qin et al., 2023b); and (b) ours. In (a), if the API
retriever selects candidates completely unrelated to the user’s query, GPT-4 may classify all queries as “non-solvable”,
leading to an artificially high pass rate, despite the queries remaining unsolved. In (b), we conduct a manual review of all
queries and retain only those queries that can be resolved with specific APIs from the API pool for ToolBench.

3.2. Problem Formulation and Evaluation

Problem Formulation. The objective of this work is to de-
velop a proficient agent capable of utilizing a vast collection
of real-world APIs to address user queries. We use over 16K
real-world APIs from the RapidAPI Hub, as collected in the
ToolLLM (Qin et al., 2023b). These APIs are represented as
{APIi}Ni=1, forming our API pool. The effectiveness of the
solutions generated by the agent is assessed using GPT-4.
This evaluation involves processing both the user query Q
and the proposed solution S , in accordance with established
evaluation protocols and criteria, to ascertain the solution’s
ability to adequately address the query. We have also con-
ducted human evaluation and find a correlation as high as
96.5% between GPT-4 and human evaluations.

Evaluation Protocol. We first revisit the evaluation pro-
tocol initially introduced by ToolLLM (Qin et al., 2023b).
ToolLLM employs a dual-phase approach for utilizing vari-
ous APIs. In the first phase, an API retriever is developed
to select the most relevant API candidates from the API
pool according to a user query Q. The second phase in-
volves ToolLLaMA, a specialized agent that formulates a
solution using the selected API candidates. Due to its dual-
phase nature, ToolLLM’s evaluation is twofold. Initially,
GPT-4 evaluates whether the selected API candidates can
address the query Q, categorizing them as either “solvable”
or “non-solvable”. If a query is deemed “solvable”, GPT-
4 then assesses the effectiveness of the provided solution,
classifying it as either “solved” or “unsolved”. Figure 4(a)
illustrates how the pass rate R is calculated:

R =
#(Non-solvable) + #(Solved)

#(Non-solvable) + #(Solved) + #(Unsolved)
. (1)

However, a significant flaw exists in this evaluation protocol.
If the API retriever selects candidates completely unrelated
to the user’s query, GPT-4 may classify all queries as “non-

solvable”, leading to an artificially high pass rate, despite
the queries remaining unsolved. Our experimental evidence
confirms this issue, showing that when API candidates are
randomly selected for each query, GPT-4 predominantly
labels them as “non-solvable”, resulting in an inflated pass
rate of 99.0% through the metric defined in Eq 1.

To address the limitations inherent in ToolLLM’s evaluation
protocol, we propose an alternative evaluation methodol-
ogy that aligns more closely with real-world scenarios, as
illustrated in Figure 4(b). Specifically, we bypass the first
evaluation phase of ToolLLM, which assesses the potential
of candidate APIs in addressing query Q. Instead, we di-
rectly utilize GPT-4 to determine the efficacy of the agent’s
proposed solution in resolving the query. The pass rate R is
thus calculated using the formula:

R =
#(Solved)

#(Solved) + #(Unsolved)
. (2)

To ensure that all queries in the benchmark, namely Tool-
Bench (Qin et al., 2023b), are solvable using certain APIs
from the API pool, we conduct a manual review of all
queries. We retain only those queries that can be resolved
with specific APIs from this pool. The detailed process is
available in Section A.7 of the appendix.

4. AnyTool
Our AnyTool exhibits several distinctive features: Firstly, it
eliminates the need for training external modules, and solely
relies on the function calling feature of GPT-4. Secondly,
it can directly search the entire API pool, which contains
over 16K APIs, using a hierarchical structure and a divide-
and-conquer principle. Lastly, it is capable of self-reflection,
enabling it to review and analyze unsolved user queries by
taking into account reasons for failure and relevant historical
contexts.
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Overview. The overview of AnyTool is depicted in Fig-
ure 2. It primarily follows a three-step process to efficiently
resolve the user query Q. The first step (Section 4.1) in-
volves the creation of an API candidate pool. For efficiency,
AnyTool is designed with a hierarchical architecture, taking
advantage of the structured API organization available in
Rapid API. In the second step (Section 4.2), a solver at-
tempts to resolve query Q by utilizing these API candidates.
Finally, if the query remains unsolved, AnyTool engages
in a self-reflection process (Section 4.3) in an attempt to
resolve it. A case study is shown in Section C.

4.1. API Retriever

Structured API Organization in Rapid API. Rapid API
employs a structured system to categorize its extensive col-
lection of 16K+ APIs. Specifically, this organization is
divided into three distinct tiers: the first tier is the category
level, encompassing various domains such as “sports” and
“finance”; the second tier, designated as the tool level, con-
sists of tools that belong to specific categories; and the third
tier focuses on individual APIs, with each API belonging
to a specific tool, as illustrated in Figure 2. This hierarchi-
cal arrangement serves as a foundational guideline in the
development of our API retriever.

Hierarchical Structure. As depicted in Figure 2, the struc-
ture of our API retriever consists of three tiers. At the initial
tier, a meta-agent exists, tasked with dynamically generat-
ing a series of category agents in response to the user query
Q. The intermediary tier is comprised of multiple category
agents, each established by the meta-agent. These agents
correspond to individual categories as defined by Rapid
API, with their primary objective being to identify the most
relevant tools for the query Q from their respective tool
collections. Subsequently, these category agents initiate the
creation of various tool agents. It is important to note that
each tool agent may manage multiple tools, depending on
the decisions made by the category agents. The goal of each
tool agent is to search through its managed APIs for those
that might solve the query Q, and then add these APIs to an
API-candidate pool. Each type of agent possesses its own
distinct set of functions. These are illustrated in Figure 2
and further detailed in Table 10 in the appendix.

Generation of API-Candidate Pool. AnyTool is initiated
upon receiving a query Q, the function list detailed in Ta-
ble 10, and a bootstrap prompt as outlined in Section B.1
of the appendix. This process heavily relies on the function
calling feature of GPT-4 (refer to Section 3.1). Operating
interactively, our system enables agents (starting with the
meta-agent) to send requests for calling their managed func-
tions. These functions may involve creating a specific agent
(either a category agent or a tool agent) or executing a par-

ticular function, in accordance with the historical context.1

The requests are parsed, and the corresponding functions
are executed. The results produced by these functions are
subsequently incorporated into the historical context, which
is then returned to the agents. This process repeats contin-
uously until the termination criteria are met. All agents,
including meta-agents, category agents, and tool agents,
operate independently in a multi-threaded manner, signifi-
cantly accelerating the process. We maintain a global API
candidate pool, allowing each tool agent to add APIs to
this pool, using the function “add API into API pool”
(refer to Figure 2 and Table 10). All agents cease
operations only when a tool agent calls the function
“check if request solvable” and receives a return
value of “True”. Subsequently, an API-candidate pool is ob-
tained. In addition, we record the historical context and sta-
tus of each agent. An agent’s status is marked as “Finished”
only if it calls the function “finish search” during the
process. Agents marked as “Finished” are excluded in the
self-reflection process, which will be described later.

4.2. Solver

Functionality. The primary goal of the solver is to ad-
dress the user’s query Q, utilizing the generated API candi-
date pool. It is implemented as a singular agent that lever-
ages the function-calling capabilities inherent in GPT-4.
Two potential implementations for the solver are the Depth-
First Search-Based Decision Tree (DFSDT) or the Chain
of Thought (CoT) approach. A concise overview of the
process is provided, with comprehensive details available
in ToolLLM (Qin et al., 2023b). The solver activates upon
receiving a query Q, in conjunction with a suite of func-
tions, which includes those from the API candidate pool and
a distinctive function named “finish”, as well as a boot-
strap prompt detailed in Section B.2 of the appendix. The
“finish” function yields one of three possible outcomes:
“Give Solution”, “Try Backtrack”, or “Give Up”, with “Try
Backtrack” being specific to the DFSDT implementation.
Each iteration involves: 1) the solver sending a request to
call a function, 2) the interpretation of this request and the
execution of the function, and 3) the integration of the func-
tion’s outcomes into the contextual history, which is then
returned to the solver. This cycle continues until the solver
gives a “Give Solution” or “Give Up” decision. Note that
when the solver makes a “Give Up” decision, it is required
to provide both the reason and the function name of the APIs
that are irrelevant to the user’s query or do not work properly.
Self-reflection mechanism is triggered under two scenarios:
1) “Give Solution”, where GPT-4 reviews the solution and
determines that the query remains unresolved, and 2) “Give
Up”, where the solver fails to address the query.

1Each agent, whether it is a meta-agent, category agent, or tool
agent, maintains its own historical context independently.
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Table 1: Main results on the filtered ToolBench. We use pass rate defined in Eq 2 and illustrated in Figure 4(b), as the metric.
All results are reproduced. *: OpenAI’s text-embedding-ada-002; Ref.: reference; Avg.: average; SR: self-reflective.

Model API Retriever Solver Use Ref.
APIs

G1 G2 G3
Avg. (%)

I (%) T (%) C (%) I (%) C (%) I (%)

ToolLLM OpenAI TE∗ ToolLLaMA w/ DFSDT 8.7 6.8 12.0 4.7 8.2 10.5 8.5
ToolLLM ToolLLM’s ToolLLaMA w/ DFSDT 28.4 26.3 38.4 21.5 15.1 7.7 22.9
ToolLLM ToolLLM’s GPT-4 w/ DFSDT 42.6 46.2 51.4 23.4 24.5 2.6 31.8
ToolLLM None ToolLLaMA w/ DFSDT ✓ 29.4 31.8 37.1 19.6 22.4 13.2 25.6

GPT-4 None GPT-4 w/ CoT ✓ 31.3 34.8 47.1 27.1 34.7 2.6 29.6
GPT-4 None GPT-4 w/ DFSDT ✓ 36.5 49.2 51.4 38.3 39.8 18.4 38.9
GPT-4 Plain Agent GPT-4 w/ DFSDT 13.9 23.5 17.6 13.9 9.2 13.2 15.2
GPT-4 AutoGen-RAG GPT-4 w/ DFSDT 14.8 19.7 19.7 7.4 9.2 7.9 13.1

GPT-3.5 None GPT-3.5 w/ CoT ✓ 37.5 37.1 42.9 24.3 22.4 5.3 28.3
GPT-3.5 None GPT-3.5 w/ DFSDT ✓ 39.1 40.2 48.6 31.8 25.5 15.8 33.5

AnyTool (Ours) SR Agent SR GPT-4 w/ DFSDT 52.2 61.4 67.6 58.9 45.9 63.2 58.2

4.3. Self-Reflection Mechanism

If the initial solution fails to resolve user queries, the self-
reflection mechanism re-activates AnyTool sequentially, first
activating the API retriever and then the solver. It is worth
noting that this mechanism can be applied repeatedly until
the termination condition is met.

Self-Reflection in the API Retriever. Our self-reflection
mechanism first identifies the reason why a user query re-
mains unsolved. In instances where the solver opts to “Give
Up”, the rationale provided by the solver is utilized. Con-
versely, if the solver proposes a solution but GPT-4 assesses
that it does not adequately address the query, the reasoning
ascribed by GPT-4 is employed. Recall that we maintain a
record of historical context for each agent within the API re-
triever. We initially incorporate the identified reason into all
these historical contexts. Owing to the hierarchical design
of our API retriever, we systematically re-activate various
agents for efficiency purposes, following an ascending order
from tool agents, to category agents, and finally to the meta-
agent. It is worth noting that only the agents not marked
with a “Finished” status are re-activated. As a result, this
process expands our API-candidate pool, incorporating new
APIs that could potentially resolve the user’s query.

Self-Reflection in the Solver. Recall that when the solver
makes a “Give Up” decision, it is designed to identify the
function names of the APIs that are irrelevant to the user’s
query. For efficiency, we first remove these APIs from the
expanded API-candidate pool and exclude items where these
APIs are called from the historical context of the solver. The
solver is then re-activated with a new bootstrap prompt (refer
to Section B.3 in the appendix), the updated API-candidate
pool, and the cleaned historical context. The remaining
process is the same as described in Section 4.2.

5. Experiments
5.1. Setup

Benchmarks. We conduct experiments on two benchmarks:
1) ToolBench (Qin et al., 2023b); and 2) our own benchmark,
termed AnyToolBench. ToolBench comprises six subsets:
G1-Instruction (G1-I), G1-Tool (G1-T), G1-Category (G1-
C), G2-Instruction (G2-I), G2-Category (G2-C), and G3-
Instruction (G3-I). As described at the end of Section 3.2,
we perform a manual review on ToolBench to exclude non-
solvable queries. Details of this process can be found in
Section A.7 of the appendix. After filtering, the remaining
queries in these six subsets are 115, 132, 142, 107, 98, and
38, respectively. Unless otherwise specific, we adopt the fil-
tered ToolBench. Our benchmark, AnyToolBench, includes
400 instances. The process of creating AnyToolBench is
detailed in Section A.8 of the appendix.

Evaluation Protocol. We employ the pass rate (as defined
in Eq. 2) as our evaluation metric. To assess whether a
solution generated by an agent can resolve the query, we
use GPT-4-32K. The same prompt utilized in ToolBench is
applied when GPT-4 serves as the judge.

Alignment between GPT-4’s Decisions and Decisions
Made by Human Evaluators. We conduct a compara-
tive analysis between decisions made by human evaluators
and those generated by GPT-4, focusing on samples from
the G1-I subset of ToolBench. Specifically, for each query
sample, AnyTool generates a solution, which is then as-
sessed for its feasibility in addressing the query by both
human evaluators and GPT-4. Our results reveal that GPT-
4’s alignment with human evaluation stands at 96.5%, while
that of GPT-3.5 is only 73.9%. Based on these findings, we
exclusively utilize GPT-4 for our evaluations.
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5.2. Main Results

We compare our AnyTool with the pioneering Tool-
LLM (Qin et al., 2023b) and its variants, as well as various
GPT-4 models tailored for tool utilization.

ToolLLM and Its Variants. ToolLLM integrates an API
retriever2 and a solver designed to address user queries by
employing API candidates produced by the retriever. The
solver operates using a finely-tuned LLaMA model, named
ToolLLaMA, and employs a depth-first search-based deci-
sion tree (DFSDT) algorithm to resolve queries. For each
query, ToolBench provides a set of reference APIs that are
potentially relevant. These reference APIs offer a means to
evaluate the solver’s effectiveness by allowing the bypassing
of the API retriever step. It is worth noting that additional
APIs from the complete API pool, containing over 16,000
APIs, may also contribute to effectively resolving queries.
Beyond the original ToolLLM, our experiments also ex-
amine two variants: 1) one that substitutes ToolLLaMA
with GPT-4 in the solver; 2) another that foregoes the API
retriever and relies solely on reference APIs.

Various GPT-4 Models. The function-calling feature of
GPT-4 enables it to use APIs directly for resolving user
queries. However, in our setting, we deal with over 16,000
APIs. Integrating all these APIs—each with its unique
function description, input, and output—into GPT-4 si-
multaneously exceeds the maximum context length of the
model, even for the version with the largest context length of
128,000 tokens. Therefore, we compare four GPT-4 models:
1) one that uses reference APIs and the Chain of Thought
(CoT) (Wei et al., 2022) algorithm in the solver; 2) another
that uses reference APIs and the DFSDT algorithm; 3) a
third that employs a plain agent for API retrieval and incor-
porates the DFSDT algorithm in the solver; 4) a fourth that
leverages the Retrieval Augmented Generation (RAG) fea-
ture from AutoGen (Zhu et al., 2023) for API retrieval, and
uses the DFSDT algorithm to resolve user queries through
the selected API candidates.

In the implementation of GPT4-plain-agent, we divide the
set of over 16K APIs into 33 groups, each containing 500
APIs, with the exception of the 33rd group. These groups are
then sequentially processed by GPT-4. The specific task as-
signed to GPT-4 involves identifying the relevant APIs using
the add API into API pool function, which integrates
them into the API-candidate pool. Refer to Section A.4 for
more details. Information on AutogGen-RAG can be found
in Section A.5.

Main Results on ToolBench. In Table 1, we compare our
AnyTool with various ToolLLM variants and GPT-4 models
across six subsets of the filtered ToolBench dataset. The re-

2ToolLLM’s API retriever is trained on pair-wise data. Each
pair includes a user query and a set of APIs relevant to the query.

Table 2: Main results on our AnyToolBench. All models use
DFSDT implementation in the solver. SR: self-reflective;
PR: pass rate.

Method API Retriever Solver PR (%)

ToolLLM ToolLLM’s ToolLLaMA 18.9
ToolLLM ToolLLM’s GPT-4 36.6
GPT-4 Plain Agent GPT-4 14.0

AnyTool (Ours) SR Agent SR GPT-4 73.8

Table 3: Ablation study on the pass rate of main components.
“-” and “+” symbols denote the removal and addition of a
component from and into AnyTool, respectively.

Configuration G2-I (%) G3-I (%)

AnyTool 58.9 63.2

-Hierarchical Structure 22.4 15.8
-Self-Reflection 19.6 15.8
-DFSDT/+CoT 50.5 60.3

sults on the original ToolBench are available in Section A.3.
Both the API retriever and the solver contribute to the final
performance. The API retriever’s role is to efficiently iden-
tify the most pertinent APIs from an extensive collection,
while the solver is tasked with generating viable solutions
for user queries. Instead of training an API retriever as
ToolLLM does, we leverage the powerful function-calling
feature of GPT-4 and overcome the challenge posed by its
inherent maximum context length limitation, through the im-
plementation of a hierarchical structure. Our self-reflection
mechanism applies to both the API retriever and the solver,
enabling the whole system to operate in a closed loop. Ow-
ing to these factors, our AnyTool significantly outperforms
both the original ToolLLM and GPT-4 using reference APIs,
by +32.6 and +19.3 points, respectively, in terms of the
average pass rate.

Main Results on AnyToolBench. AnyToolBench evaluates
an agent’s capability to resolve user queries utilizing the
entire API pool. Consequently, an API retriever is essential
in this setting. We do not supply reference APIs for each
query; thus, making comparisons with counterparts lacking
an API retriever is impractical. In Table 2, we compare
our AnyTool with a top-performing ToolLLM variant and
GPT-4, where a plain agent serves as the retriever. The
consistent improvements demonstrated by AnyTool over
these approaches affirm its effectiveness in a realistic setting.

5.3. Ablation Studies

Unless otherwise specific, all ablation studies are conducted
on G2-I and G3-I of the filtered ToolBench.
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Table 4: Ablation study on the pass rate of self-reflection
mechanism. All agents include the tool agents, the category
agents and the meta-agent.

Re-Activation G2-I (%) G3-I (%)

Tool Agents 43.9 44.7
Tool Agents + Category Agents 55.2 55.3
All Agents 58.9 63.2

Table 5: Comparison between our default self-reflection
strategy with an alternative approach that initiates all agents
simultaneously.

Method G1-T (%) G1-C (%) G3-I (%)

Default 61.4 67.6 63.2
Synchronous Starting 58.3 61.3 52.6

Effectiveness of the Main Elements. Our AnyTool com-
prises two principal elements: firstly, an API retriever with a
hierarchical structure, and secondly, a self-reflection mecha-
nism. In Table 3, we examine three distinct configurations
of AnyTool. These include: a) substituting our hierarchical
API retriever with a flat-structure version, which merges the
functions of agents at the category and tool levels (except for
“agent creation” and “finish search” functions) into the func-
tion list of the meta-agent; b) eliminating the self-reflection
mechanism; and c) substituting the DFSDT algorithm with
CoT, thereby disabling the backtracking feature in DFSDT.
Our findings demonstrate significant positive effects of both
the hierarchical structure and the self-reflection feature on
AnyTool’s performance. Choosing CoT over DFSDT results
in a decline in pass rates by 8.4 and 2.9, respectively.

Self-Reflection Mechanism. In Section 4.3, we introduce
a self-reflection mechanism that is first applied to the API
retriever module. It re-activates various agents in ascending
order, from tool agents to category agents, and finally to the
meta-agent. In Table 4, we examine the different versions
that reactivate distinct types of agents. Reactivating all
agents results in the best performance, owing to the larger
search space.

We also compare our default self-reflection strategy with an
alternative approach that initiates all agents simultaneously.
Table 5 demonstrates that our default strategy is superior.
The initial tree structure (comprising meta-agent, category
agents, and tool agents) being already closer to a solution
for addressing user queries, even though it does not yet
fully address them. We aim to gradually expand the API
search scope (i.e., our default strategy) rather than abruptly
searching the entire API space (i.e., initiating all agents
simultaneously). The latter approach may generate several
unrelated category or tool agents, leading to the addition
of unrelated or redundant APIs into the API candidate tool.

Table 6: Study on the effects of the API pool’s size to the
pass rate.

Size of API Pool G2-I (%) G3-I (%)

1,000 18.6 7.9
5,000 26.3 23.7

10,000 38.1 36.8
All 58.9 63.2

Table 7: Study on the maximal size of API-candidate pool.

Maximal Size of API-Candidate Pool G2-I (%) G3-I (%)

16 49.5 42.1
32 58.9 55.3
64 58.9 63.2

Table 8: We study the maximum number of tools that a tool
agent can manage in our API retriever.

Maximum Number of Tools G2-I (%) G3-I (%)

3 48.6 42.1
5 58.9 57.9
10 52.3 39.5

This increases the difficulty for the subsequent module, i.e.,
the solver, in resolving user queries using the API candidate
pool.

Size of the API Pool. Users typically submit a wide range
of queries to the AI system, seeking solutions to real-world
problems. To effectively address these queries, the sys-
tem requires access to a diverse array of APIs. In general,
a larger API pool is more likely to successfully resolve
user queries, as it offers a higher probability of containing
relevant APIs. This hypothesis is evaluated by randomly
selecting subsets of APIs from the complete pool and using
only these subsets to address user queries with our AnyTool.
The results, presented in Table 6, support our hypothesis.

Maximal Size of the API-Candidate Pool. AnyTool op-
erates through a two-step process—the solver addresses
queries by using an API-candidate pool, which is generated
by our hierarchical API Retriever. One termination criterion
for the API retriever is the fullness of this pool. We examine
the impact of the maximal size of the API-candidate pool as
shown in Table 7. We observe that a pool size of 64 nearly
reaches saturation in terms of performance.

Tool Agent in API retriever. Our API retriever is designed
with a hierarchical structure, in which the tool agents at the
bottom layer directly add APIs that may potentially address
user queries, into the API-candidate pool. As described
in Section 4.1, a tool agent can manage a maximum of K
tools existing in Rapid API. We examine the value of K in
Table 8. A trade-off is observed: managing too many tools
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Figure 5: Statistics of average self-reflection frequency.
ATB: AnyToolBench.

Figure 6: Statistics of average agent quantity.

(e.g., K = 10) leads to a larger search space and may cause
overlooking of relevant APIs, while managing too few tools
(e.g., K = 3) might result in lower recall.

Statistics of Self-Reflection Frequency. In Figure 5, we
report the average self-reflection frequency across all in-
stances within each subset of the filtered ToolBench and
our AnyToolBench. As described in Section 4.3, we re-
activate various agents in ascending order. Consequently,
the frequency of tool agents is much higher than that of
category agents and meta-agent. Additionally, calculating
the processing time for resolving queries with AnyTool is
infeasible. AnyTool relies on the function-calling feature of
GPT-4, whose server response is often unstable.

Agent Quantity in API Retriever. The API retriever of
AnyTool is hierarchically structured. Depending on the na-
ture of user queries, the meta-agent can dynamically create
a varying number of category agents. This process is anal-
ogous to the way category agents create tool agents. The
average number of agents across all instances in each subset
of the filtered ToolBench and our AnyToolBench is depicted
in Figure 6.

Table 9: Performance of AnyTool with other LLMs beyond
GPT-4.

Method G1-T (%) G1-C (%) G3-I (%)

AnyTool with GPT-4 61.4 67.6 63.2
AnyTool with ChatGLM 53.0 49.3 45.8
AnyTool with GPT-3.5 47.7 45.1 39.5

AnyTool with Other LLMs. We conduct experiments using
two less advanced LLMs than GPT-4, specifically GPT-3.5
and ChatGLM. The costs associated with these two mod-
els are significantly lower than those for GPT-4. Table 9
presents the results from three subsets of the filtered Tool-
Bench, offering a comparison with GPT-4. GPT-4 signifi-
cantly outperforms GPT-3.5 and ChatGLM; however, it also
introduces a higher budget cost.

6. Conclusion
In this work, we introduce AnyTool, an advanced agent capa-
ble of harnessing 16K+ APIs to effectively handle realistic
user inquiries. The core of AnyTool is a hierarchical API re-
triever coupled with a solver. Additionally, it incorporates a
unique self-reflection mechanism, enhancing its proficiency
in responding to user queries. We also revise the prior
evaluation protocol to better reflect real-world application
scenarios. Rigorous experiments conducted on ToolBench
and our AnyToolBench demonstrate our approach’s supe-
riority over established models. Finally, we highlight two
future research directions: 1) optimizing the organization
of APIs for improved performance and efficiency; 2) devel-
oping an advanced open-source LLM specifically for API
utilization, which could facilitate local deployments.
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Table 10: Function list of each type of agent. ∗: descriptions of input, output and functionality.

Type Function Name Functionality Input Output

Meta Agent

create agent category level Create a category agent. Category name Category agent
get tools in category Get tool names under a category. Category name [Tool names]
get tool descriptions Get description of each tool. [Tools] [Tool descriptions]
finish search Send out finish signal. None None

Category Agent

create agent tool level Create a tool agent. [Tools] Tool agent
get tools in category Get tool names under a category. Category name [Tool names]
get tool descriptions Get description of each tool. [Tools] [Tool descriptions]
finish search Send out finish signal. None None

Tool Agent

add API into API pool Add APIs into candidate pool. [APIs] None
get APIs in tool Get API names under a tool. Tool name [API names]
get API detail Get detail∗ of each API. [API names] [API details]

check if request solvable
Check whether the query is solv-
able using the current candidate
pool.

None True\False

finish search Send out finish signal. None None

Table 11: Results on the original ToolBench (Qin et al., 2023b). Note that the original ToolBench includes non-solvable
queries. We use pass rate defined in Eq 2 and illustrated in Figure 4(b), as the metric. All results are reproduced. Ref.:
reference; Avg.: average; SR: self-reflective.

Model API Retriever Solver Use Ref.
APIs

G1 G2 G3
Avg. (%)

I (%) T (%) C (%) I (%) C (%) I (%)

ToolLLM ToolLLM’s ToolLLaMA w/ DFSDT 24.0 23.0 37.5 17.5 16.5 4.0 20.4
ToolLLM ToolLLM’s GPT-4 w/ DFSDT 32.0 43.5 46.5 30.0 33.0 8.0 32.2
AnyTool (Ours) SR Agent SR GPT-4 w/ DFSDT 46.0 54.0 53.0 37.0 46.5 32.0 44.8

A. More Implementation Details and Experimental Results
A.1. More Implementation Details of AnyTool

For the solver implementing DFSDT, we set the maximum number of API calls to 10. Additionally, for our AnyTool, we
establish a limit of 200,000 tokens for efficiency. This limit encompasses the token consumption by various components,
including the meta-agent, the tool agents, the category agents, the solver, and the self-reflection mechanism.

A.2. Detailed Function List

We provide the function list of each type of agent in Table 10.

A.3. Results on the Original ToolBench

We also provide the results on the original ToolBench (Qin et al., 2023b) without undergoing filtering process. In the
original ToolBench, each subset comprises 200 queries, except for G3-I, which contains 100 queries. Note that the original
ToolBench includes non-solvable queries. We test all queries, regardless of whether they are solvable or not, using pass rate
defined in Eq 2 and illustrated in Figure 4(b), as the metric. All results are reproduced. As shown in Table 11, our AnyTool
outperforms all ToolLLM (Qin et al., 2023b) variants.

A.4. GPT-4 with Various Plain Agents

In Table 1 of the main paper, we present a comparison between our AnyTool and a GPT-4 variant. This variant em-
ploys a plain agent as the API retriever, which is limited to accessing only the names of tools and APIs. It utilizes the
add API into API pool function to incorporate APIs into the API candidate pool. When an API is added to the pool,
we use the check if request solvable function to determine whether the current API candidates are adequate for
addressing the query. If the evaluation returns “True”, the solver begins to resolve the query using the API candidates with
the DFSDT algorithm. Note that the plain agent does not involve any self-reflection mechanism.
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Table 12: Comparison of AnyTool and GPT-4 using various plain agents as the API retriever. The only difference among
these plain agents lies in the information they can access.

GPT-4 Variant G2-I (%) G3-I (%)

w/ Names 13.1 13.2
w/ Names+Description 15.9 13.2
w/ Names+Description+Details 13.1 13.2

AnyTool (Ours) 58.9 63.2

Table 13: Comparison of AnyTool and GPT-4 using various AutoGen-RAG agents as the API retriever. The only difference
among these AutoGen-RAG agents lies in the embedding model they use.

Embedding Model G2-I (%) G3-I (%)

text-embedding-ada-002 8.4 7.9
all-mpnet-base-v2 7.4 7.9

AnyTool (Ours) 58.9 63.2

In Table 12, we explore alternative configurations where the plain agent could access both names and detailed descriptions
of tools and APIs (every 100 APIs a group), or even comprehensive information including the names, descriptions, and
specific API details (every 50 APIs a group). Our findings suggest that the addition of more detailed information leads
to only marginal improvements in performance. In contrast, our AnyTool exhibits superior performance, which can be
attributed to its hierarchical structure.

A.5. GPT-4 with Various AutoGen-RAG Agents

Retrieval-augmented generation (RAG) operates by receiving an input and sourcing a collection of pertinent or corroborative
documents from a reference, such as Wikipedia. These documents are then combined with the initial input prompt to provide
context. This enriched input is subsequently processed by LLMs to generate the final output. The RAG method enhances
the performance of LLMs in situations that require accurate factual information.

In Table 1 of the main paper, we present a version of GPT-4 designed for tool utilization. This version employs AutoGen-
RAG as the API retriever. The embedding model, known as “all-mpnet-base-v2”3, is utilized in this version. Specifically,
we integrate the category names, tool names, API names, and their descriptions into a document, which is then divided into
numerous text segments, each containing 1,000 tokens. Then, given a user query, AutoGen-RAG identifies the most relevant
segments based on the embedding similarities between the user query and each text segment. Finally, we use GPT-4 to
extract the most relevant API candidates from the selected text segments.

We provide another variant, where OpenAI’s “text-embedding-ada-002” is used as the embedding model. The comparison
with our AnyTool is shown in Table 13.

A.6. Consumption Analysis

In our analysis of resource consumption by AnyTool for solving queries across all datasets, we find that, on average,
each query consumes 13.5 × 104 tokens, identifies 14.1 API candidates, and involves 43.3 OpenAI API calls and 4.6
self-reflections. Table 14 presents the statistics for each dataset. Additionally, calculating the processing time for resolving
queries with AnyTool is infeasible. AnyTool relies on the function-calling feature of GPT-4, whose server response is often
unstable.

A.7. Filtering Process for ToolBench

We primarily screen out non-solvable queries in ToolBench based on the following principles:

• Queries lacking essential information, such as unspecified phone numbers or ambiguous references like “my friend”.

3https://huggingface.co/sentence-transformers/all-mpnet-base-v2
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Table 14: Consumption statistics for each dataset.

Statistics
G1 G2 G3

ATB Avg.
I T C I C I

Average Token Consumption (×104) 13.6 12.1 8.5 17.7 14.8 16.2 12.2 13.6
Average Call Number 39.3 38.8 33.8 54.0 57.6 35.7 44.2 43.3
Average Self-Reflection Number 4.2 3.8 4.1 5.7 5.2 5.1 4.0 4.6
Average API Candidate Number 13.8 13.0 7.7 16.8 16.0 16.3 14.9 14.1

Table 15: Examples of our AnyToolBench.

I am creating an art project about the influence of music on visual arts and for my centerpiece, I would love to have an
AI-generated image based on the current number one hit song on the Billboard Hot 100 chart. Could you provide me
with such an image that encapsulates the essence of the song ’Bad Habit’ by Steve Lacy?

For a business presentation on global trends in music and sports performance analysis, could you provide the top
streaming songs on Spotify for the most recent available global chart data, along with the corresponding ’hello world’
placeholder text that will be used for introducing programmatic greetings, and the win-loss records for NFL teams from
the 2022 season to illustrate the competitive landscape?

Could you analyze potential profit or loss from bitcoin arbitrage among exchanges, considering the market order fees,
and check if the IP 23.129.64.215 is flagged for any suspicious activity, and why? I’m interested in arbitrage between
Bitfinex, Kraken, and Bittrex for BTC/USD and knowing what risks I might face using the mentioned IP address for
transactions.

I plan to improve my daily fitness level, but I always lack proper planning. My current weight is 70 kilograms and
my height is 1.75 meters. Given this, could you provide me a health plan regarding the weather condition for outdoor
activities in New York for the next five days and the nutrition I intake by usually eating salad?

These are inherently non-solvable since APIs require explicit input parameters.

• Queries containing fake parameters, such as non-existent URLs.

• Queries that specify a specific API are filtered out because they do not represent realistic scenarios. Moreover, if the
problem can be solved using another API, it is difficult to determine whether it counts as a resolution.

• Unreasonable queries, such as asking for information about popular movies on YTS, which are too broad in scope and
difficult to evaluate.

A.8. Construction of AnyToolBench

We provide GPT-4 with several functions to freely explore the entire API pool, including {get tools in category,
get tool descriptions, get APIs in tool, get API detail}. The functionality of these functions are listed
in Table 10. GPT-4 then utilizes the add API into API pool function to incorporate the selected APIs into an API
candidate pool. Following this step, GPT-4 generates the required parameters for these APIs and formulates queries based
on the actual responses from these APIs. We also prompt GPT-4 to generate a solution for each query, which significantly
reduces the potential for hallucinations—the queries may be formulated without utilizing the APIs. Moreover, we enhance
the quality of these queries by verifying that the provided reference solutions truly resolve the queries. This rigorous process
ensures that every query in our dataset is solvable. The prompt for constructing AnyToolBench is detailed in Section B.4.
We show some examples of our AnyToolBench in Table 15.

B. Prompts
B.1. Bootstrap Prompt for the API Retriever

The API retriever is composed of a meta-agent along with several category agents and tool agents. The bootstrap prompts
for these three types of agents are presented in Table 16, Table 17, and Table 18, respectively.
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Table 16: Bootstrap prompt for meta-agent.

You are APIGPT, with access to a database of APIs. This database is organized
into the following categories: {categories}. Your task is to help users
identify the relevant categories for their needs. To do this, you can
use the ’query tools in category’ function to retrieve the available tools
within a specific category. If you are unsure about the functionality of
some tools, the ’get tools descriptions’ function can be used to obtain
detailed information about these tools. This information will aid you in
understanding the general functionality of each category. Additionally, the
’create agent category level’ function allows you to assign a relevant category
to an agent, with each agent being assigned only one category. However,
you can assign multiple categories to different agents. It is important
to explore as many categories as possible, as the solution to a query may
be found in unexpected categories. Remember, your goal is not to answer
the query directly but to identify all potentially relevant categories and
assign them to agents. Once you have completed the assignment, call the
’Finish’ function. At each step, you should briefly analyze the current
status and determine your next action, including the function calls needed to
execute your step. Keep your analysis concise, ideally no longer than three
sentences.

Table 17: Bootstrap prompt for category agent.

You are APIGPT, with access to a database of APIs categorized into various
groups. Each category contains numerous tools, and each tool encompasses
multiple APIs. Your task is to assist users in finding relevant tools within
a specific category. If uncertain about the functionality of some tools, use
the ’get tools descriptions’ function to obtain detailed information. Then,
employ the ’create agent tool level’ function to allocate a subset of pertinent
tools to an agent, ensuring that similar tools are assigned to the same agent
and limiting the allocation to no more than five tools per agent. You may
assign different subsets to multiple agents. Remember, your role is not to
answer queries directly, but to assign all possible tools. Once you complete
the assignment, or if you determine the query is irrelevant to the tools in
the specified category, invoke the ’Finish’ function. Execute each step by
calling the appropriate functions, and keep your thought process concise,
ideally within three sentences.

Table 18: Bootstrap prompt for tool agent.

You are APIGPT with access to a database of APIs, categorized into various
sections. Each category contains multiple tools, and each tool encompasses
numerous APIs. Your task is to assist users in finding relevant APIs within
the tools ’{tools}’ of the ’{category}’ category. You will be provided with
descriptions and details of these tools and their APIs. Upon identifying
relevant API names, use the ’add apis into api pool’ function to add them to
the final API list. If you conclude that all possible APIs have been explored,
or if there are no relevant APIs in these tools, invoke the Finish function.
During the process, you may receive feedback on these APIs. At each step,
ensure to execute your actions using the appropriate functions. Keep your
responses concise, ideally within three sentences.

B.2. Bootstrap Prompt for the Solver

We adapt the prompt from ToolLLM (Qin et al., 2023b) to include a “give up” option without restarting. Furthermore, we
prompt it to provide a reason when choosing either “give up and restart” or “give up”. The reason should mention specific
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Table 19: Bootstrap prompt for the solver.

You are AutoGPT, you can use many tools (functions) to do the following task.
First I will give you the task description, and your task start. At each step,
you need to give your thought to analyze the status now and what to do next,
with a function call to actually excute your step. After the call, you will
get the call result, and you are now in a new state. Then you will analyze
your status now, then decide what to do next... After many (Thought-call)
pairs, you finally perform the task, then you can give your finial answer. If
you feel you cannot solve the task or can only solve it partially, you should
choose to give up and give your reason which should mention the names of the
failed functions. Remember: 1.the state change is irreversible, you can’t go
back to one of the former state, if you want to restart the task, say "I give
up and restart" and give the reason. 2.All the thought is short, at most in 5
sentence. 3.You can do more then one try, so if your plan is to continuously
try some conditions, you can do one of the conditions per try. Let’s Begin!
Task description: {task description}

Table 20: Bootstrap prompt for re-activating tool agents.

The current APIs have failed to solve the query, resulting in: {fail reason}.
You need to analyze this result and seek additional APIs. It’s possible that
the tools lack the relevant APIs. In such cases, you should call the Finish
function. Remember not to invent tool or API names.

Table 21: Bootstrap prompt for re-activating category agents.

The current APIs have failed to solve the query, and the reason is:
{fail reason}. Please consider assigning more unexplored tools to the agents.

Table 22: Bootstrap prompt for re-activating meta-agent.

The current APIs have failed to solve the query, and the reason is:
{fail reason}. Please consider assigning more unexplored categories to the
agents.

function names. Table 19 details the prompt for the DFSDT implementation. The task description includes descriptions of
accessible functions; therefore, it should be updated to reflect changes in the API candidate pool.

B.3. Bootstrap Prompt for the Self-Reflection Mechanism

Self-reflection mechanism re-activates AnyTool sequentially, first activating the API retriever and then the solver. Owing to
the hierarchical design of our API retriever, we systematically re-activate various agents, following an ascending order from
tool agents, to category agents, and finally to the meta-agent. The prompts for re-activating the tool agents, the category
agents and the meta-agent are presented in Table 20, Table 21, and Table 22, respectively.

B.4. Prompt for Creating AnyToolBench

This can be found in Table 23.

C. Case Study
In Figure 7, we present a case study that demonstrates the process of resolving a user query using AnyTool. The self-
reflection mechanism reactivates the tool, category, and the meta agents sequentially. It is worth noting that not all agents
are reactivated. Subsequently, the solver is reactivated to attempt addressing the user query again, utilizing the updated API
candidate pool. This self-reflection mechanism can be employed multiple times until the termination criteria are met—either
the query is regarded as solved by the evaluator, or the number of self-reflections reaches the maximum limit.
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Table 23: Prompt for Creating AnyToolBench.

Your task is to interact with a sophisticated database of tools and functions,
often referred to as APIs, to construct a user query that will be answered
using the capabilities of these APIs. This database is organized into various
categories, indicated by {categories}. To guide your exploration and selection
of the appropriate APIs, the database offers several meta functions:
Exploration Functions:
1. Use get tools in category to explore tools in a specific category.
2. Employ get apis in tool to discover the list of APIs available within a
selected tool.
3. If you need detailed information about a tool, get tool descriptions will
provide it.
4. For in-depth understanding of an API’s functionality, turn to
get api details.
Selection and Testing Functions:
1. As you identify relevant functions, add them to your working list using
add apis into api pool.
2. Test these functions by synthesizing and applying various parameters.
This step is crucial to understand how these functions can be practically
applied in formulating your query.
3. Should you find any function obsolete or not fitting your query context,
remove them using remove apis from api pool.
Query Formulation Guidelines:
1.Your formulated query should be comprehensive, integrating APIs from 2
to 5 different categories. This cross-functional approach is essential to
demonstrate the versatility and broad applicability of the database.
2.Avoid using ambiguous terms. Instead, provide detailed, specific
information. For instance, if your query involves personal contact details,
use provided placeholders like {email} for email, {phone number} for phone
number, and URLs like {url} for a company website.
3.The query should be relatable and understandable to users without requiring
knowledge of the specific tools or API names used in the background. It
should reflect a real-world user scenario.
4. Aim for a query length of at least thirty words to ensure depth and
complexity.
Final Steps:
1.Once you’ve crafted the query, use the Finish function to submit it along
with the corresponding answer. The answer should be direct and concise,
addressing the query without delving into the operational plan of the APIs.
2.Remember, the total number of calls to the initial meta functions should not
exceed 20.
3.Consider various use cases while formulating your query, such as data
analysis in business contexts or educational content in academic settings.
Your approach should be creative and inclusive, catering to users with
different skill levels and cultural backgrounds. Ensure that the query is
globally relevant and straightforward, serving a singular purpose without
diverging into unrelated areas. The complexity of your query should stem from
the synthesis of information from multiple APIs.
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Query

“I'm organizing a charity event to raise awareness for animal rights. Can you recommend a book that highlights the 

importance of compassion towards animals? Additionally, provide me with a random word that symbolizes unity and 

empathy.”

Meta-Agent

1. Call get_tools_descriptions (['GetBooksInfo', 'Book 

Finder', 'Random Word', 'Dictionary', 'Master 

Dictionary', 'Random Words', 'Random Ukrainian 

Word', 'Random Words - Spanish and French'])

2. Call create_agent_tool_level(['GetBooksInfo', 'Book 

Finder']) → Create Tool-Agent-1

3. Call create_agent_tool_level(['Random Word', 

'Random Words', 'Random Ukrainian Word', 

'Random Words - Spanish and French’]) → Create 

Tool-Agent-2

4. Call create_agent_tool_level(['Dictionary', 'Master 

Dictionary']) → Create Tool-Agent-3

5. Call finish_search()

Category-Agent ('Education') Category-Agent ('Text Analysis')

Bootstrap Prompt for the API Retriever 

1. Call get_tools_in_category('Education') 

2. Call get_tools_in_category('Other')                       

3. Call create_agent_category_level(‘Education’) → Create Category-Agent ('Education')  

4. Call get_tools_in_category('Text Analysis')

5. Call create_agent_category_level(‘Text Analysis’) → Create Category-Agent ('Text Analysis')

6. Call finish_search()

1. Call get_tools_descriptions (['Random Word by API-

Ninjas')

2. Call get_tools_descriptions (['Synonyms Words'])

3. Call get_tools_descriptions (['Best Paraphrasing 

API'])

Tool-Agent-1

1. Call add_API_into_API_pool(['Search','Find 

books']) → Add APIs

2. Call check_if_request_solvable()

Tool-Agent-2

1. Call add_API_into_API_pool (['wordSearchEnglish', 

'Word infos']) → Add APIs

2. Call check_if_request_solvable()

Tool-Agent-3

1. Call add_API_into_API_pool (['run.cgi','Get a 

random word']) → Add APIs

2. Call check_if_request_solvable()

API Candidate Pool

'Search'              'Find books’               'wordSearchEnglish'            'Word infos'          'run.cgi'           'Get a random word'                     

Bootstrap Prompt for the Solver

Solver

“Here is a book that might interest you: 'Animal Spy: Animal Welfare Behind Enemy Lines' by Terry Spamer & Gordon 

Thorburn. However, due to the query limit, I couldn't generate a random word that symbolizes unity and empathy. 

Apologies for the inconvenience.”

Bootstrap Prompt for the Self-Reflection Mechanism

Tool-Agent-1, Tool-Agent-2, Tool-Agent-3,

Category-Agent ('Text_analysis')

Solver

"Here are some book recommendations that highlight the importance of compassion towards animals:  'Animal Spy: 

Animal Welfare Behind Enemy Lines' by Terry Spamer, Gordon Thorburn. A book by Leslie Irvine on the effect of disasters 

on animals. The random word generated is 'transcendental', signifying elevated thinking and broader understanding, which 

might be seen as relevant to unity and empathy in a broader sense."

Updated API Candidate Pool

'Find books', 'Get multiple random words’,  'Retrieve Response'

Re-activate: 

Figure 7: Illustration of a case study.
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