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Abstract
We apply an information-theoretic perspective to
reconsider generative document retrieval (GDR),
in which a document x ∈ X is indexed by t ∈ T ,
and a neural autoregressive model is trained to
map queries Q to T . GDR can be considered
to involve information transmission from docu-
ments X to queries Q, with the requirement to
transmit more bits via the indexes T . By applying
Shannon’s rate-distortion theory, the optimality
of indexing can be analyzed in terms of the mu-
tual information, and the design of the indexes
T can then be regarded as a bottleneck in GDR.
After reformulating GDR from this perspective,
we empirically quantify the bottleneck underlying
GDR. Finally, using the NQ320K and MARCO
datasets, we evaluate our proposed bottleneck-
minimal indexing method in comparison with var-
ious previous indexing methods, and we show that
it outperforms those methods.

1. Introduction
The importance of accurate document retrieval is increas-
ing, especially with the limitation of recent large language
models. Generative document retrieval (GDR) is a new,
promising framework for information retrieval. First, every
document x ∈ X (a document set) is represented by a short,
distinct identifier string t ∈ T (the identifier set). Then, an
autoregressive model, typically a neural network, is trained
to map a query q ∈ Q (a query set) to an identifier string
t representing a document x. Figure 1(a) schematically
illustrates GDR.

GDR thus typically involves two stages, and the main re-
search question has been about how to acquire good identi-
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Figure 1: (a) Generative document retrieval (GDR) frame-
work. (b) Our contribution using bottleneck-minimal in-
dexing: (b-1) distortion-optimal indexing for documents X ;
(b-2) optimal indexing for both documents and queries Q.

fier strings T for documents X in the first stage. Previously,
Tay et al. (2022) clustered X according to vectorial embed-
dings generated by the BERT model (Devlin et al., 2019),
by using the k-means algorithm. Bevilacqua et al. (2022)
used a substring of each document as its ID string. All of
those works were based on good intuition about how to se-
mantically partition X , but we can theoretically reconsider
how best to partition it in terms of T .

For such reconsideration, it is natural to apply the rate-
distortion theory initiated by Shannon (Shannon, 1948;
1959; Berger, 1968), which is based on the mutual informa-
tion. Let X , T , and Q denote random variables defined over
X , T , and Q, respectively. As the rate-distortion theory
only involves two terms corresponding to X and T , the aim,
in short, is to acquire T that minimally distorts X . All pre-
vious GDR proposals thus consider its distortion optimality,
as illustrated in Figure 1(b-1).

In this paper, we deal with the particularity of the second
stage, which involves mapping Q to T . The design of T ,
which we call indexing here, was previously considered
only with respect to X , but the best T can theoretically be
obtained by considering both X and Q. For this purpose,
we apply the information bottleneck theory by Tishby et al.

1



Bottleneck-Minimal Indexing for Generative Document Retrieval

(2000), an extension of rate-distortion theory.

Under this bottleneck theory, GDR involves information
transmission from documents to queries, with the require-
ment to transmit more bits via T . Obviously this suggests
a tradeoff between the two relations T ↔ X and T ↔ Q,
and T then becomes a bottleneck of Q in searching X . Our
paper’s main contribution is to provide a theoretical formal-
ization to evaluate the quality of T in terms of not only X
but also Q.

The bottleneck suggests that the optimal T is determined by
the probability distribution of queries rather than documents,
becauseQ is posterior toX . This suggests a novel design for
T by clustering Q rather than X . We experimentally evalu-
ate this approach’s effectiveness in comparison with previ-
ous methods, including k-means (Hartigan & Wong, 1979)
and locality-sensitive hashing (Datar et al., 2004). The re-
sults show that our idea indeed improves the Recall@1 score
on the NQ320K and MARCO Lite datasets, by 1.26 and
3.72 points, respectively, with a finetuned T5-base model.
The margins increase greatly to 7.06 and 6.45 points, re-
spectively, for T5-mini, which has fewer parameters. The
code is available at https://github.com/kduxin/
Bottleneck-Minimal-Indexing.

2. Related Works
We start with an overview of the recent progress in GDR in
Section 2.1. In Section 2.2, we briefly summarize methods
in discrete representation learning, which provide options
for indexing methods in GDR. In Section 2.3, we introduce
the historic rate-distortion theory initiated by Shannon and
the bottleneck theory by Tishby et al. (2000).

2.1. Generative Document Retrieval

Conventional document retrieval methods use a score func-
tion to quantify the degree of relevance between a document
and a query. Score functions have been manually chosen and
include the Hamming distance, (Salakhutdinov & Hinton,
2009), TF-IDF (Manning & Schutze, 1999), BM25 score
(Robertson et al., 2009), and cosine similarity between vec-
toral embeddings of texts (Mikolov et al., 2013; Devlin et al.,
2019; Karpukhin et al., 2020; Khattab & Zaharia, 2020). Al-
ternatively, score functions can also be learned from data,
e.g., based on a learning-to-rank loss function (Burges et al.,
2005; Cao et al., 2007; Li et al., 2023).

In contrast, generative document retrieval aims to directly
generate a document x from a query q by using a sequence-
to-sequence model. In relation to indexing, Cao et al. (2021)
proposed the concept of the entity retrieval task, in which a
model generates an entity comprising either words, phrases,
or article titles. While documents are typically long, with
hundreds of words, an entity is short, and their work showed

the potential effectiveness of using entities as indexes. Since
then, several works have studied generation of short textual
summaries to represent long documents (Bevilacqua et al.,
2022; Chen et al., 2022). Using short texts as indexes was
also explored for recommendation tasks (Geng et al., 2022).

Tay et al. (2022) generalized this idea as a differentiable
search index (DSI), a more straightforward indexing method
to obtain document ID strings that are acquired by applying
hierarchical k-means clustering to a set of document vec-
toral embeddings produced by a BERT model (Devlin et al.,
2019). In DSI, a document set X is partitioned into clusters
that are organized hierarchically (by having subclusters in
each cluster). An identifier number represents each cluster,
and a document is identified by a sequence of identifiers t
representing the hierarchical clusters. This simple method
was further explored in Wang et al. (2022); Mehta et al.
(2023); Tang et al. (2023); Zeng et al. (2023); Rajput et al.
(2023). Recent works (Sun et al., 2023; Jin et al., 2023) pro-
posed to learn the index T by using an autoencoder model
with X .

While all these previous works consider organization of X
to design T , our contribution is to also include Q in the
designed approach.

2.2. Discrete Representation Learning

Acquisition of T can be considered as one kind of repre-
sentation learning. Learning of discrete representations has
been studied in multiple domains, as summarized below.

Vector quantization (VQ). VQ encodes vectors in a Eu-
clidean space as discrete codes with the least distortion.
Lloyd (1982); Wu & Yu (2019) recognized that the optimal
vector quantization corresponds to the k-means clustering
algorithm’s results when the distortion is defined via the
Euclidean distance. A Euclidean space can be partitioned
by assuming different structures, such as a tree (Nister &
Stewenius, 2006), in which case the approach corresponds to
hierarchical k-means clustering. Deep learning techniques
can be combined to learn better vector quantization (van den
Oord et al., 2017).

Hash-based methods. A hash function maps vectors to
discrete classes. Locality-sensitive hashing (LSH) (Datar
et al., 2004) uses a property of p-stable distributions to
construct a family of hash functions that is guaranteed to
map close vectors to the same class. By using multiple
independent hash functions, the dissimilarity of two vectors
is measured by the Hamming distance. Semantic hashing
(Salakhutdinov & Hinton, 2009) learns hash functions by
using an autoencoder to acquire compact discrete represen-
tations. Many works since have studied the use of deep neu-
ral networks as hash functions (Venkateswara et al., 2017;
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Chaidaroon & Fang, 2017; Jin et al., 2019; Lin et al., 2022).

2.3. Rate-Distortion Theory

Rate-distortion (RD) theory (Shannon, 1948) provides an
information-theoretic framework for optimal indexing in
GDR. RD theory is based on I(X;T ), the mutual informa-
tion for transmitting data between X and T . Such transmis-
sion introduces distortion that is measured by a distortion
function d(X,T ) 7→ R+. This function depends on the ap-
plication, and the choice is sometimes not obvious (Slonim,
2002). The overall distortion EX,T d(X,T ) has a tradeoff
with the transmission rate I(X;T ). For p(T |X), the proba-
bility of T given X , let p∗(T |X) be the probability when T
is optimal for X via RD theory. In GDR, this T would be
considered the optimal indexing of documents.

The vector quantization problem mentioned in Section 2.2
is closely related to RD theory (Gray, 1984). RD theory can
be extended to include a third variable Q via the informa-
tion bottleneck (IB) theory (Tishby et al., 2000), and the
distortion function is implicitly determined via the mutual
information I(T ;Q). Here, T is called an information bot-
tleneck (IB) because it determines the “data transmission
rate” between X and Q.

The IB theory was originally proposed for bottom-up hier-
archical (i.e., agglomerative) clustering (Slonim & Tishby,
1999) applied to words (Slonim & Tishby, 2000). It has
also been applied to explain the superior generalizability
of feedforward deep neural networks (Tishby & Zaslavsky,
2015; Saxe et al., 2019).

We adopt IB theory to analyze GDR. The relation between
documents X and queries Q can be complex, especially in
cross-lingual (Grefenstette, 2012) or multimodal (Gabeur
et al., 2020) scenarios. Hence, the distortion function
d(X,T ) must involve the queries Q, which naturally leads
to the IB theory.

3. Bottleneck-Minimal Indexing
3.1. Mathematical Setting

As mentioned above, in the GDR context, each document
x ∈ X is indexed with an ID string t ∈ T , described by
a function f(x) = t. It is anticipated that information
loss occurs during the application of f , as the semantic
associations between documents are simplified into discrete
ID strings. To quantify this information loss, the domain of
f must be considered within an abstract semantic space of
documents, denoted as X . Here, a document is a point in
X , and the set X of all documents in a dataset is a subset
of X , i.e., x ∈ X ⊂ X . For convenience, Q is defined
over the same semantic vector space X , and T is defined
over T , the set of all ID strings.

The indexing function f is formally defined as f : X →
T . By leveraging f−1 : t 7→ Xt ⊂ X , the semantic
space X can be split into multiple regions. According to
the standard GDR setting (Tay et al., 2022), it is required
that |T | = |X |; every t ∈ T is associated with a distinct
document x in X , the only document in f−1(t) ∩ X . When
|T | < |X |, indicating that an ID string is associated with
multiple documents, this configuration typically aligns with
semantic-hash methods where hash collison is desirable
(Salakhutdinov & Hinton, 2009).

3.2. Distortion Optimality

Previous works considered the design of T only with re-
spect to X . As mentioned above, Shannon’s rate-distortion
theory can be applied to acquire T as an optimal split of X ,
formulated as:

min
p(T |X)

I(X;T ), (1)

where I(X;T ) denotes the mutual information of X and
T . This formalization allows for a reconsideration of the
optimal T given X for previous works, as will be analyzed
in Section 4.

Information retrieval involves another term, Q, and the opti-
mization can be extended as follows:

min
p(T |X)

I(X;T )

s.t. I(T ;Q) ≥ ε,
(2)

where ε > 0 is a threshold. This additional constraint is
essential, as I(X;T ) = 0 when T is constant, but it also de-
creases I(T ;Q). The mutual information I(T ;Q) is closely
connected to the likelihood p(T |Q) that reflects retrieval
accuracy; therefore, having I(T ;Q) in the optimization
problem facilitates optimization of retrieval accuracy.

Formula (2) characterizes the tradeoff between index con-
ciseness, denoted by I(X;T ), and retrieval accuracy, linked
to I(T ;Q). This dual perspective highlights the superiority
of one indexing method over another: for a fixed I(X;T ),
aiming for a higher I(T ;Q) improves retrieval accuracy.
Conversely, with a constant I(T ;Q), the emphasis shifts
towards more compact indexes, encouraging the sharing of
semantics across the indexes.

This optimal split is equivalently reformulated via a La-
grangian L as follows:

L(p(T |X)) = I(X;T )− βI(T ;Q), (3)

where β is the Lagrange multiplier. This coefficient β de-
termines the relative importance of I(T ;Q) in L. When
β → 0, the latter term can be ignored, and T shrinks to a
single point so that the former term decreases to 0. Con-
versely, as β becomes large, T tends to simply copy X .
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Figure 2: Bottleneck curves

Because the possibilities for X are observed via the subset
X , a large β corresponds to observing more documents.

To summarize, β is a hyperparameter related to the docu-
ment set’s size, |X |. This is natural because the optimal in-
dexing p∗(T |X) would change if the number of documents
increases. Nevertheless, some indexing method is optimal
with respect to different β under certain assumptions, as we
will show in Section 4.

3.3. GDR Bottleneck

We now examine the tradeoff, or bottleneck, between
I(X;T ) and I(T ;Q). Tishby & Zaslavsky (2015) showed
that the Lagrangian in Formula (3) is equivalent to the fol-
lowing:

L(p(T |X)) = I(X;T ) + βI(X;Q|T ) + constant. (4)

The equivalence requires assuming the Markovian relation
T ↔ X ↔ Q, i.e., p(T |X,Q) = p(T |X), and Appendix
A.1 summarizes the proof.

In this formulation, the conditional mutual information
I(X;Q|T ) quantifies the information distortion due to T .
I(X;Q) is constant and unrelated to the indexing T . Hence,
a small I(X;Q|T ) means a good T for representing the
joint distribution p(X,Q).

As mentioned above, Tishby et al. (2000) defined this trade-
off as an information bottleneck. The bottleneck can be
visualized by a curve in the space of the two terms of
Formula (4), as shown in Figure 2. The lower bound of
I(X;Q|T ) captures the optimal indexing, and it monotoni-
cally decreases as I(X;T ) increases. We will empirically
show in Section 6.1 that this bottleneck curve indeed occurs
for GDR.

3.4. A Theoretical Solution to Optimality

Tishby et al. (2000) showed that a stationarity point of the
Lagrangian L in Formula (4) must satisfy the following
equation:

p∗(T |X) =
p∗(T )

Z(X,β)
exp
(
−βKL

[
p(Q|X)

∥∥ p(Q|T )
])
,

(5)

where Z(X,β) is a probability normalization term,
p∗(T ) = EX [p∗(T |X)]. The Kullback-Leibler divergence
term reflects the information distortion caused by f : x 7→ t
in terms of the discrepancy between p(Q|x) and p(Q|t).

In GDR, we pursue an indexing f : x 7→ t that is consistent
with this optimal solution p∗(T |X). That is, the identifier
string t = f(x) for a document x should be drawn from this
“best” probability distribution p∗(T |X = x). A natural way
to incorporate this intuition is to evaluate f by a likelihood
function p(X ,Q|f) defined as follows.

Definition 3.1. f : X → T is called a bottleneck-minimal
indexing (BMI) if it maximizes the likelihood function as
follows:

p(X ,Q|f) ≡
∏
x∈X

p∗
(
X = x

∣∣ T = f(x)
)
. (6)

where p∗ is given by Formula (5).

Definition 3.1 is presented in a general manner, intentionally
avoiding assumptions about any specific distribution family
for p(Q|X) and p(Q|T ) as outlined in Formula (5). In
Section 4, we will examine some existing indexing methods
regarding their relations with BMI. Under this background,
a new indexing method will be introduced in Section 4.4.

4. Indexing Methods
In the following, we consider X as the semantic vector
space produced by a pretrained BERT model. In this sec-
tion we introduce different indexing methods under this
perspective and compare them theoretically, while Section
6.2 describes our experimental comparison.

An index t ∈ T is represented as a sequence of elements
of alphabet, denoted as V . An ID string of length m is
represented as t = [t1, · · · , tm], where ti ∈ V is the string’s
i-th “digit” for i = 1, · · · ,m.

4.1. Hierarchical Random Indexing (HRI)

We consider the most basic method, random indexing. For
each document, an ID digit is randomly selected according
to some prior distribution p(T ). X is partitioned into |V |
subsets. Furthermore, each subset is recursively partitioned
for representation by V . The recursive subdivision consti-
tutes a hierarchy of subdivisions of depth m. A special
case arises when |V | ≥ |X | and m = 1; such indexing is
termed atomic (Tay et al., 2022), since T lacks hierarchical
structure.

A representative partition is obtained when p(Q|X) is uni-
formly distributed over a compact subset of X . In this
case, queries corresponding to a document x are completely
unrelated to the semantics of x.
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In the experiments described in Section 6.2, we set V =
[1, 2, · · · , 30]. The ID string’s maximum length m was set
to the minimum value such that |V |m ≥ |X |.

4.2. Hierarchical k-Means Indexing (HKmI)

The typical indexing uses a hierarchical k-means clustering
algorithm. A document’s ID string t = [t1, · · · , tm] is set
to the indices of clusters of depth m, such that the docu-
ment belongs at every level of the hierarchy, where k-means
clustering is applied to partition the set of documents.

In a k-means clustering process, the clusters’ centroid vec-
tors are optimized to minimize the sum of the squared dis-
tances from each centroid to the cluster members. This
procedure can be interpreted within a maximum-likelihood
formulation by assuming that a document belonging to a
cluster is sampled from a Gaussian distribution with the
mean vector as the centroid.

Hence, k-means provides a BMI if we assume p(Q|X) ∼
N(µx,Σ) and p(Q|T ) ∼ N(µt, σ

2I), where N represents
a Gaussian distribution; µx and µt are mean vectors specific
to x and t, respectively; Σ is any covariance matrix; and
σ2I is a diagonal matrix. This conclusion immediately
follows from substituting the Gaussian density functions
into Formula (5). The optimality holds for any choice of
β in Formula (3). A proof is provided in Appendix A.2.
The linkage between k-means clustering and information
bottleneck theory has been theoretically explored by Still
et al. (2003) in depth.

Following Tay et al. (2022), we set µx as the vectoral em-
bedding generated by a BERT model (Devlin et al., 2019)
for a document x. In our experiments, we used the same
settings for V and m as in HRI (Section 4.1). These settings
were used as the default for the neural corpus indexer (NCI)
(Wang et al., 2022).

4.3. Locality-Sensitive Hashing Indexing (LSHI)

Locality-sensitive hashing (LSH) can be considered in
the same formulation. In LSH the index ti is Boolean;
that is, V = {0, 1}, where each element of t =
[t1, · · · , ti, · · · , tm] is independently generated by a p-
stable LSH algorithm (Datar et al., 2004), which is a hy-
perplane classifier in Euclidean space. The hyperplane’s
location and direction are randomly determined. Unlike
hierarchical indexing methods, LSH-based indexing does
not produce “semantic prefixes”; nevertheless, T encodes
location-related information.

In our experiments, LSH indexing was implemented in three
steps. First, a standard LSH code, a Boolean vector, was
acquired for every document. Second, every fifth entry of
the vector was mapped to V = [1, 2, · · · , 32]. Third, LSH
code collisions were resolved by appending additional digits

acquired by a hierarchical k-means algorithm.

4.4. Our Proposal: Bottleneck-Minimal Indexing (BMI)

Formula (5) indicates that the optimal indexing is dictated
by the distributions p(Q|X) and p(Q|T ) over the query
space, rather than the document space. In other words,
any indexing method implemented without considering the
distribution ofQ would not be able to acquire the optimal in-
dexing. Typical previous works on GDR have this problem.
The concept of leveraging query information has been em-
pirically investigated in the contexts of vector quantization
(Gupta et al., 2022; Lu et al., 2023) and recommendation
systems (Zeng et al., 2023); our contribution extends this
exploration by offering a theoretical rationale for the sig-
nificance of query distribution, grounded in information
bottleneck theory.

Hence, we propose a new indexing method that incorpo-
rates both the queries and the documents. For the purposes
of simplicity in this paper, we assume p(Q|X = x) and
p(Q|T = t) to follow Gaussian distributions, enabling the
analytical derivation of bottleneck-minimizing indexing. In
a manner akin to HKmI discussed in Section 4.2, k-means
emerges as the optimal indexing strategy under this Gaus-
sian assumption. However, our approach diverges from
HKmI by employing hierarchical k-means clustering on the
set {µQ|x : ∀x ∈ X}, which comprises the mean vectors
of the Gaussian p(Q|X = x) for each document x. We
examine k-means here for a fair comparison with HKmI,
in addition to its simplicity. However, Definition 3.1 of
BMI can be used to analyze more complex clustering al-
gorithms under more sophisticated assumptions on p(Q|x)
and p(Q|t).

Unlike µx for HKmI, however, it is not straightforward to
obtain µQ|x, and it must be estimated for each document x.
In this paper, we estimate µQ|x as the mean of the BERT
embeddings of queries generated from document x, which
is the maximum-likelihood estimator given the previously
mentioned Gaussian distribution assumption of p(Q|x). A
proof is provided in Appendix A.3. We chose BERT for
consistency with previous works, including DSI (Tay et al.,
2022) and NCI (Wang et al., 2022); in a future work, we
may examine other models that are adapted to short texts.

Let Qx denote a set of queries for x. The document x
is now represented by mean(BERT(Qx)), the mean vector
of the BERT embeddings of queries in Qx, instead of the
document’s BERT embedding. The hierarchical k-means
algorithm is applied to {µQ|x = mean(BERT(Qx)) : x ∈
X}, which produces a new set of ID strings, T .

We follow Wang et al. (2022) in constructingQx to comprise
the following three kinds of queries, as follows:

RealQ: Real queries from the training set;
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Table 1: Descriptive statistics of the datasets (upper) and
generated queries (lower).

NQ320K MS MARCO Lite
# mean # words # mean # words

documents 109,739 4902.7 138,457 1210.1
queries (train) 307,373 9.2 183,947 6.0
queries (test) 7,830 9.3 2,792 5.9

Generated queries
GenQ 1,646,085 5.6 692,285 5.5
DocSeg 1,168,585 62.9 1,393,329 59.0

GenQ: Queries generated by a pretrained model
docT5query 1(Nogueira et al., 2019);

DocSeg: Random segments of the original documents.

Section 5.1 gives the details of generating these queries.

In a real application, the distributions p(Q|X = x) and
p(Q|T = t) may deviate from Gaussian assumptions, po-
tentially exhibiting multi-modal characteristics. Under these
conditions, k-means clustering methods become suboptimal
and should be replaced by another sophisticated clustering
methods that reflect the true distribution of the data. Devel-
oping such methods form a future direction.

5. Data and Settings
5.1. Datasets and Metrics

We evaluated different indexing methods on two datasets:
NQ320K (Kwiatkowski et al., 2019), and MARCO Lite,
which is a subset extracted from the document ranking
dataset in MS MARCO (Nguyen et al., 2016). The up-
per half of Table 1 summarizes the basic statistics of the two
datasets.

The entire MS MARCO dataset has 3.2 million documents
and 367,013 queries. MARCO Lite was constructed by
first randomly selecting half the queries and then extracting
those queries’ gold-standard documents.

The lower half of Table 1 summarizes our proposed
method’s generated queries (i.e., Qx) for creating docu-
ment ID strings, as described at the end of Section 4.4. For
NQ320K, we followed the settings in Wang et al. (2022) to
produce 15 GenQ queries; for MARCO Lite, we produced
5 GenQ queries per document. As for DocSeg queries, we
randomly selected 10∼12 segments (depending on the doc-
ument length) per document as queries for both datasets;
each segment had around 60 words.

We followed previous works by using the recall (Rec@N)
and mean reciprocal rank (MRR) for evaluation, where a
higher Rec@N or MRR indicates a better GDR system. For

1
huggingface.co/castorini/doc2query-t5-base-msmarco

each query, GDR produces a ranking of documents with
respect to their degrees of relevance to the query, via a beam-
search procedure as suggested in Tay et al. (2022). In our
evaluation across two datasets, each query was associated
with a single gold-standard document. The Rec@N mea-
sures the percentage of queries for which the gold-standard
document is among the top N documents in the ranking,
while the MRR is equal to the gold-standard document’s
MRR. We used values of N = 1, 10, 100.

5.2. Model and Training Settings

We used the same neural-network architecture as in NCI
(Wang et al., 2022). For sequence-to-sequence generation
of an index for a query, the NCI architecture combined a
standard transformer (Vaswani et al., 2017) with a prefix-
aware weight-adaptive (PAWA) decoder. The Transformer
encoder’s parameters were initialized with T5 weights (Raf-
fel et al., 2020) acquired by large-scale pretraining, while
the decoder weights were randomly initialized.

We tested models of different sizes, which were initialized
from the weights of T5-tiny2, T5-mini3, T5-small4, and
T5-base5, where the string after “T5” indicates the weights.
The PAWA decoder had four transformer layers. All models
were trained using the default hyperparameters of NCI, as
provided in its official GitHub repository6.

For ablation tests, we considered different Qx variants.
Apart from setting Qx = GenQ + RealQ + DocSeg to in-
clude all three kinds of queries, we also tested GenQ alone
and GenQ + RealQ. In addition, the previous method of
clustering documents by their embeddings also constitutes
an ablated version, denoted here as Doc, because it is almost
equivalent to DocSeg, which uses an average of random
document segments.

5.3. Estimation of Mutual Information

To verify the information bottleneck in GDR, the mutual
information I(X;T ) and I(X;Q|T ) must be calculated.
They are defined as follows:

I(X;T ) = EX,T log
p(X|T )

p(X)
, (7)

I(X;Q|T ) = EX,T,Q log
p(X,Q|T )

p(X|T )p(Q|T )
(8)

= EX,T,Q log
p(X|Q)

p(T |Q)

p(T )

p(X)
. (9)

2
https://huggingface.co/google/t5-efficient-tiny

3
https://huggingface.co/google/t5-efficient-mini

4
https://huggingface.co/t5-small

5
https://huggingface.co/t5-base

6
github.com/solidsea98/Neural-Corpus-Indexer-NCI

6
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https://huggingface.co/google/t5-efficient-tiny
https://huggingface.co/google/t5-efficient-mini
https://huggingface.co/t5-small
https://huggingface.co/t5-base
github.com/solidsea98/Neural-Corpus-Indexer-NCI
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(a) (b)

Figure 3: Experimental information bottleneck curves corre-
sponding to Figure 2. (a) Empirical information curves for
HKmI, measured with T5 models of different sizes. (b) Em-
pirical information curves for different indexing methods,
estimated on the NQ320K dataset with the T5-base model.

Figure 4: Rec@1 scores on the test set of NQ320K for
document IDs generated by hierarchical k-means (blue) or
random (red) clustering, for different sizes of the finetuned
language model T5.

Appendix A.1 gives the detailed derivation of Formula (9).
The two definitions above are calculated as further detailed
in Appendix A.4. To acquire the mutual information values
for |T | < |X |, we considered a generalized GDR task of
predicting the prefixes of ID strings rather than the whole
strings, for a prefix length l. In addition to the default setting
l = m (i.e., standard GDR), we also tested l = 2, 3.

6. Experiments
6.1. Quantification of GDR Bottleneck

Figure 3(a) shows I(X;Q|T ) with respect to I(X;T ), as
measured on the NQ320K dataset’s training set. The ID
strings were acquired by HKmI. A curve was obtained for
every neural network model of a different size. The points
on each curve were acquired with different l values, as de-
tailed at the end of Section 5.3. As seen in the figure, a larger
model corresponded to a curve closer to the graph’s lower-
left corner, thus suggesting the existence of a bottleneck as
anticipated by the IB theory.

Figure 3(b) compares several existing indexing methods.
Here, HKmI was closer to the lower-left corner than the
other two methods. Hence, the optimal condition for k-
means indexing better fits the reality of data.

Next, Figure 4 compares the random (black) and k-means
(blue) hierarchical indexing methods in terms of the Rec@1
on the NQ320K test set. As the model size is reduced,
Rec@1 shows a general decline for both methods. With
the reduction in size, the superiority of the k-means method
over the random method became apparent. While the per-
formance of the two methods was similar for the T5-base
model, the Rec@1 of the k-means method was more than
twice that of the random method in the T5-tiny model.

These observations suggests that the IB curve indicates the
quality of GDR, specifically in terms of its distance from
the graph’s lower-left corner. While the Rec@1 merely
evaluates the case of |T | = |X |, the IB curve evaluates the
case of |T | < |X |, thus enabling recognition of overfitting
in GDR.

6.2. Comparison Among Indexing Methods

We also evaluated our proposed indexing method in com-
parison with the existing methods. Table 2 summarizes
our experimental results on the two datasets. The table’s
three blocks correspond to training models of different sizes:
T5-mini, T5-small, and T5-base, from top to bottom. Each
row represents an indexing method, and each column cor-
responds to a metric. The scores were acquired on the test
sets. A higher score indicates a better indexing method.

As seen in the table, our method (bottom row in each block)
achieved the best scores under most settings. In particular,
our method consistently outperformed hierarchical k-means
(third row in each block), often with a large difference. On
MARCO Lite and with T5-base (right side, bottom block),
our method had a Rec@1 of 45.20, 3.72 points higher than
the score for the original hierarchical k-means indexing.
This margin was even larger than that between k-means and
random clustering (2.48 points).

With the smaller model T5-mini (top block), the improve-
ment achieved by our method was dramatic. Specifi-
cally, compared with the original hierarchical k-means,
our method improved the Rec@1 by 7.06 points (17%)
on NQ320K and 6.45 points (91%) on MARCO Lite. This
improvement is corroborated by the observation that our
method’s IB curve is located closer to the lower-left corner,
as shown in Figure 6 in Appendix B.

These large improvements indicate that there is a better in-
dexing than with the previous methods, but this indexing
must involveQ. Recall that our method is also based on hier-
archical k-means, and the only difference from the original
method is application of the clustering algorithm to queries
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Table 2: Performance of different indexing methods.

NQ320k MARCO Lite
Indexing Methods Rec@1 Rec@10 Rec@100 MRR@100 Rec@1 Rec@10 Rec@100 MRR@100

T5-mini
Hier. random clustering 24.90 54.89 76.78 34.72 5.98 10.57 19.59 7.69
Locality-sensitive hashing 27.94 57.28 78.07 37.63 7.06 20.42 41.26 11.28
Hier. k-means clustering 41.43 72.16 87.75 52.30 7.09 23.17 50.50 12.51

Our method (BMI) 48.49 76.73 88.84 58.48 13.54 42.77 71.49 22.94

T5-small
Hier. random clustering 54.93 77.20 87.79 62.75 12.64 43.88 71.91 22.42
Locality-sensitive hashing 52.16 77.01 87.87 61.05 15.62 47.46 76.00 25.71
Hier. k-means clustering 58.94 82.94 92.08 67.67 22.35 56.30 83.02 33.04

Our method (BMI) 58.61 82.76 91.42 67.38 26.71 61.00 85.46 38.02

T5-base
Hier. random clustering 65.85 84.16 91.51 72.59 39.00 70.45 88.65 49.54
Locality-sensitive hashing 62.82 83.27 91.42 70.37 39.83 70.77 87.00 50.29
Hier. k-means clustering 65.43 85.20 92.64 72.73 41.48 74.39 89.65 52.57

Our method (BMI) 66.69 86.17 93.23 73.91 45.20 76.04 90.62 55.47

rather than documents. These improvement results indi-
cate that the information bottleneck theory applies well to
GDR. In other words, it is important to pursue “bottleneck-
minimal” rather than “distortion-minimal” indexing.

6.3. Ablation Study

Table 3: Ablation study results on the test set of MARCO
Lite. GQ and RQ are abbreviations of GenQ and RealQ,
respectively.

Rec@1 Rec@10 Rec@100 MRR@100

T5-mini
Doc 7.09 23.17 50.50 12.51
GenQ 9.24 27.51 56.27 15.55
GenQ+RealQ 10.03 30.91 56.59 16.70
GQ+RQ+DocSeg 13.54 42.77 71.49 22.94

T5-small
Doc 22.35 56.30 83.02 33.04
GenQ 22.74 52.90 79.55 32.29
GenQ+RealQ 25.25 58.92 82.84 36.52
GQ+RQ+DocSeg 26.71 61.00 85.46 38.02

T5-base
Doc 41.48 74.39 89.65 52.57
GenQ 39.04 70.70 88.93 49.88
GenQ+RealQ 39.43 72.31 88.93 50.62
GQ+RQ+DocSeg 45.20 76.04 90.62 55.47

Furthermore, we compared our proposed method with ab-
lated versions of it, as detailed in Section 5.2. Table 3
summarizes the results on the MARCO Lite dataset. Each
row besides the last one represents an ablated version used
a certain subset of the generated queries as Qx to estimate
µQ|x, as mentioned in Section 4.4.

With the smaller models (T5-mini and T5-small), even the

ablated versions outperformed Doc. For example, GenQ
achieved a Rec@1 of 9.24 with T5-mini, which was higher
than the Doc result of 7.09. This is quite surprising because
GenQ (or GenQ+RealQ) only used short queries. As seen
in the lower half of Table 1, the GenQ queries had a mean
length of only 5.5 words, much shorter than the document
lengths.

Nevertheless, there was a significant margin between
the results with and without DocSeg. With T5-base,
GenQ+RealQ+DocSeg had a Rec@1 of 45.20, 5.77 points
higher than that for GenQ+RealQ.

The addition of DocSeg is effective for adding rich infor-
mation existing in documents. Compared with the DocSeg
queries, the GenQ and RealQ queries had limited variety:
many of them were duplicates that compromised the re-
trieval performance.

6.4. Comparison with SOTA

Finally, we compare our proposed method against state-of-
the-art (SOTA) methods beyond the DSI/NCI framework
utilizing the NQ320K dataset. To show the power of our
method at full strength, we enhanced the GenQ queries by
finetuning the document-to-query model (docT5query)
on the training set of NQ320K, thus producing higher-
quality ID strings. Details of this finetuning process are
left to Appendix C.

Figure 5 shows the results of the finetuning process.
Solid curves shows the performance using enhanced GenQ
queries, while dashed curves represent the baseline results
reported in the second column of Table 2. The HKmI
method was also examined for its use of enhanced GenQ
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58.1

63.6

67.8

Figure 5: Performance enhancement by finetun-
ing the docT5query model for generating im-
proved GenQ documents.

Table 4: Performance of BMI on NQ320K, with improved GenQ
queries by finetuning docT5query on the training set of NQ320K,
compared with existing GDR methods.

GDR Method Index Type Rec@1

DSI (Tay et al., 2022) static number 27.4
Ultron-PQ (Zhou et al., 2022) static number 25.6
NCI (Wang et al., 2022) static number 66.9
Tied-At. (Nguyen & Yates, 2023) static number 65.3
SEAL (Bevilacqua et al., 2022) static textual 26.3
Ultron-URL (Zhou et al., 2022) static textual 33.8
Our method static number 67.8

LMIndexer (Jin et al., 2023) learned textual 66.3
GENRET (Sun et al., 2023) learned textual 68.1
NOVO (Wang et al., 2023) learned textual 69.3

queries as augmented training data, although it, unlike our
method, did not utilize these enhanced GenQ queries for
indexing.

An improvement in Rec@1 is observable across all model
sizes for both our method (in red) and HKmI (in blue),
with our approach showing a more significant enhancement,
particularly with smaller models such as T5-mini or T5-
small. After fine-tuning, our method surpassed HKmI across
all model sizes. This substantial enhancement underscores
the critical role of accurately estimating µQ|x, the mean of
query vectors, in improving the quality of document indexes.

Table 4 compares our new results with previous methods be-
yond the DSI/NCI scope, using the T5-base retrieval model
for consistency with most prior studies. Excluding NCI (i.e.,
HKmI) and our method—whose results are shown in Figure
5—the performance scores for all other methods are taken
directly from their original papers.

The methods are categorized based on whether indexes are
determined before or during the training phase of the re-
trieval model, labeled as “static” and “learned,” respectively,
as detailed in Table 4’s second column. Moreover, the third
column specifies whether an index is a numeric string of
text (a sequence of words). Designing text-based indexing
is inherently more complex and extends beyond number-
based methods. This analysis includes only methods which
reported their performance on the NQ320K dataset, which
means we focus on document retrieval. Related works in
vector quantization or recommendation systems are not com-
pared here.

Our approach achieved a Rec@1 of 67.8, surpassing all mod-
els that relied on static indexes. This performance closely
competes with SOTA methods, such as GENRET (Sun et al.,
2023) at 68.1 and NOVO (Wang et al., 2023) at 69.3, which
employ textual ID strings and design sophisticated ways
of learning indexes concurrent with the retrieval model’s

training.

These findings underscore our method’s effectiveness and
simplicity, utilizing static, number-based indexes generated
through a simple k-means process. Our model’s training
procedure is the same as that of NCI, without necessitating
additional computational resources, with the sole distinction
being the production of document indexes by incorporating
query distribution.

7. Conclusion
We introduced a new way to formulate generative document
retrieval (GDR) by applying the information bottleneck the-
ory. In GDR, a document x ∈ X is indexed by t ∈ T , and
queries Q are trained by neural autoregressive models for
mapping to indexes T . GDR can thus be treated as the trans-
mission of information from documents X to queries Q,
with the requirement to transmit more bits via the indexes
T . While previous methods considered how to acquire the
best T with respect to X , this work also incorporated Q.

This reformulation naturally suggested a new document in-
dexing method to design GDR by using Q. Our method,
which applies the hierarchical k-means algorithm to queries
instead of document vectors, achieved a significant improve-
ment on two datasets in terms of the recall and MRR scores.
The margin was especially large when a smaller neural net-
work was used, with an improvement of up to 6.45 points,
or 91% relative improvement.

In a comparison with various indexing methods, our method
not only outperformed all the other models that are based
on static indexes, but also achieved a competitive accu-
racy against those SOTA models which employ textual ID
strings and sophisticated index-learning strategies during
the retrieval model’s training. These results affirm the ef-
fectiveness of our approach, positioning it as a simple yet
strong competitor within the field.
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A. Mathematical Details
A.1. I(X;Q|T ) in Information Bottleneck Context

The information bottleneck theory assumes the Markovian condition T ↔ X ↔ Q, which means that p(Q|X,T ) =
p(Q|X).

Proposition A.1.
I(X;Q|T ) = −I(T ;Q) + constant (10)

Proof.

I(X;Q|T ) = EX,T,Q log
p(X,Q|T )

p(X|T )p(Q|T )
(11)

= EX,T,Q log
p(Q|X,T )p(X|T )

p(X|T )p(Q|T )
(12)

= EX,T,Q log
p(Q|X)

p(Q|T )

(
∵ p(Q|X,T ) = p(Q|X)

)
(13)

= EX,T,Q log
p(X|Q)

p(T |Q)

p(T )

p(X)
(∵ Bayes’ theorem) (14)

= −EX,T,Q log
p(T |Q)

p(T )
+ EX,T,Q

p(X|Q)

p(X)
(15)

= −I(T ;Q) + I(X;Q). (16)

The mutual information I(X;Q) is a constant determined by the dataset. Therefore, I(X;Q|T ) = −I(T ;Q)+constant.

Proposition A.2. The Lagrangians in Formulas (3) and (4) are equivalent.

Proof. Substitution of Formula (10) into (3) immediately produces Formula (4), which implies the two Lagrangians’
equivalence.

A.2. k-Means Produces Bottleneck Minimum

In both the HKmI (Section 4.2) and BMI (Section 4.4), the k-means clustering method is applied hierarchically to the
vector representations of documents X . We demonstrate that at each hierarchical level, as X is assigned identifiers from the
alphabet V , k-means clustering effectively minimizes the information bottleneck as defined in Definition 3.1.

Let x represent the vector representation of a document x. The goal of k-means clustering is to partition {x : x ∈ X}
into k clusters, aiming to minimize the sum of the squared distances from each document to its cluster’s centroid. This is
represented by the partition function f : x 7→ i. The optimization problem is described as follows (Hartigan & Wong, 1979):

min
f
S(f) =

k∑
i=1

∑
x∈f−1(i)

‖x− x̄i‖2, (17)

where x̄i =
1

|f−1(i)|
∑

x∈f−1(i)

x. (18)

This paper focuses on the optimal solution f∗ of Formula (17). We acknowledge various implementations for achieving f∗;
however, they are not covered in this paper.

We now aim to establish the following proposition:

Proposition A.3. Assume that p(Q|x) ∼ N(x,Σ) and p(Q|t) ∼ N(µt, σ
2I), where Σ is an arbitrary covariance matrix

and σ2I is an isotropic diagonal matrix; µt is the vector estimated for every element t ∈ V in the alphabet V , Then, any
optimal solution f∗ to Formula (17) also maximizes the likelihood p(X ,Q|f) as defined in Formula (6).
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Proof. By definition, p(X ,Q|f) =
∏
x∈X p

∗(X = x | T = f(x)), where p∗ is detailed in Formula (5). From Bayes’
theorem:

p∗(X|T ) =
p∗(T |X)

p∗(T )
p(X), (19)

where p(X) is a constant independent of f .

Applying Formula (19) and then inserting Formula (5), we derive:

p(X ,Q|f) ∝
∏
x∈X

p∗(T = f(x)|X = x)

p∗(T = f(x))
(20)

=
1∏

x∈X Z(x, β)
exp

(
−β

∑
x∈X

KL
[
p(Q|X = x)

∥∥∥ p(Q|T = f(x)
)])

(21)

Assuming p(Q|x) ∼ N(x,Σ) and p(Q|t) ∼ N(µt, σ
2I), the KL divergence is computed analytically; expanding the

expression in Formula (21) leads to:

p(X ,Q|f) = p(X ,Q|f, {µt : t ∈ V }) (22)

∝ exp

{
− β

2σ2

∑
x∈X
‖x− µf(x)‖2

}
exp

{
−β

2
|X |
(
d log σ2 − d− log |Σ|+ tr

(
Σ
)
/σ2
)}

,︸ ︷︷ ︸
constant

(23)

∝ exp

{
− β

2σ2

∑
x∈X
‖x− µf(x)‖2

}
(24)

= exp

− β

2σ2

∑
t∈V

∑
x∈f−1(t)

‖x− µt‖2
 . (25)

Since β and σ are constants, maximizing p(X ,Q|f) equates to minimizing
∑
t∈V

∑
x∈f−1(t)‖x− µt‖2. At the maximum,

µt corresponds to the centroid x̄t. This directly aligns with the k-means objective in Formula (17) and the selection of
centroid as the cluster center in Formula (18).

Therefore, any optimal solution f∗ to Formula (17) also optimally maximizes the likelihood p(X ,Q|f).

The effectiveness of k-means in HKmI or BMI is validated through Proposition A.3. In HKmI, assuming p(Q|x) ∼
N(µx,Σ), where µx represents the BERT vector representation for the document, aligns with maximizing p(X ,Q|f). For
BMI, where the assumption is p(Q|x) ∼ N(µQ|x,Σ), we also achieve maximization of p(X ,Q|f).

However, it is a simplification in HKmI to assume p(Q|x) ∼ N(µx,Σ) as µx describes the document, not necessarily its
query distribution. In contrast, BMI’s assumption of p(Q|x) ∼ N(µQ|x,Σ) is more suitable.

A.3. Average of Query Vectors as A Maximum-Likelihood Estimator for Gaussian p(Q|x) Mean

In Section 4.4, we used the following approximation

µQ|x ≈ mean(BERT(Qx)). (26)

Here, µQ|x represents the mean vector of the distribution p(Q|x) which we assumed to be Gaussian. The expression
BERT(Qx) = {BERT(q) : q ∈ Qx} denotes the set of BERT-generated query vector embeddings associated with
the gold-standard document x. This section elaborates on the rationale behind the approximation, demonstrating that
mean(BERT(Qx)) serves as a maximum-likelihood estimator for µQ|x.
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To demonstrate that mean(BERT(Qx)) is a maximum-likelihood estimator for µQ|x, it is necessary to assume that the
queries in Qx represent independent samples drawn from p(Q|x). p(Q|x) is a Gaussian distribution with mean µQ|x and
covariance matrix Σ that is unknown. Then, the likelihood function p(Qx|µQ|x) can be formulated:

p(Qx|µ) =
∏
q∈Qx

p(q|µ) (27)

∝ exp

−1

2

∑
q∈Qx

(q − µ)>Σ−1(q − µ)

 (28)

= exp−1

2

(
|Qx|µ>Σ−1µ− 2µ>Σ−1

∑
q∈Qx

q︸ ︷︷ ︸
=:g(µ)

+
∑
q∈Qx

q>Σ−1q

)
, (29)

where |Qx| denotes the number of queries. Here, q represents the BERT-generated vector embedding of a query.

g(µ) in Formula (29) is a quadratic function, and its derivative is as follows:

dg(µ)

dµ
= 2Σ−1

(
|Qx|µ−

∑
q∈Qx

q

)
(30)

Upon solving dg(µ)/dµ = 0, we derive the maximum-likelihood estimator for µQ|x as:

µ̂Q|x =
1

|Qx|
∑
q∈Qx

q, (31)

which precisely corresponds to mean(BERT(q)). This outcome affirms that taking the average of BERT embeddings for the
set of queries Qx associated with a document x provide the most probable estimation of µQ|x, under the assumed Gaussian
distribution of queries conditioned on documents.

Therefore, the accuracy of this approximation relies on the degree to which the queries in Qx adhere to the independent and
identically distributed (i.i.d.) assumption underlying p(Q|x). As demonstrated in Appendix C, optimizing the GenQ queries
through fine-tuning the document-to-query model (which estimates p(Q|x)) results in enhanced retrieval performance. This
underscores the practical relevance of our theoretical framework in actual applications.

A.4. Estimation of I(X;T ) and I(X;Q|T )

Among the three variables, T is a discrete variable, while X and Q are continuous variables in Euclidean spaces and do not
follow standard distributions. In this paper, we estimate mutual information values via the empirical distributions X̂ and Q̂,
which are uniform over X and Q, respectively.

In other words,

I(X;T ) = lim
|X |→∞

1

|X |
∑
X̂∈X

log
p(X̂|T̂ )

1/|X |
, (32)

I(X;Q|T ) = lim
|X |→∞

1

|X |
∑
X̂∈X

∑
Q̂∈Q

log
p(X̂|Q̂)

p(T̂ |Q̂)

1/|T |
1/|X |

. (33)

Here, p(X̂|T̂ ) is determined by the indexing. In contrast, p(X̂|Q̂) is unrelated to the indexing and is a degenerate distribution:
it has a probability mass of 1 if and only if X̂ is the gold-standard document for query Q. We estimate p(T̂ |Q̂) with a
transformer neural network after fitting to the dataset.

The estimation of p(X̂|T̂ ) is not straightforward. In standard GDR, a document is assigned a distinct ID string, and p(X̂|T̂ )
is a degenerate distribution. In this case, I(X;T ) reaches its maximum, i.e., H(X) = log |X |, which corresponds to the
rightmost points of the IB curves shown in Figure 2, where β =∞.
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To obtain the rest of the IB curves (β <∞) in Figure 2, we used a generalized GDR task that permitted ID collisions. This
was implementing by training the transformer neural network to predict prefixes of a document ID string [t1, · · · , tl], instead
of the whole string [t1, · · · , tm], where l < m. An ID prefix thus corresponds to multiple documents. In this setting,

p(X̂|T̂ = t) =

{
1/|X lt | x̂ ∈ X lt

0 otherwise , (34)

where X lt ⊂ X is the set of documents for which the ID prefix is identical to the first l digits of t.

B. More Results on Information Bottleneck Curves

Figure 6: Information bottleneck curves for different indexing methods on the NQ320K training set with the T5-mini model.

Figure 6 compares our proposed method (red) with two other indexing methods on the information bottleneck plane, as
measured with the T5-mini model on the NQ320K training set. Our method’s curve is consistently located to the lower left
of the other two methods’ curves. This suggests that our BMI method reduces the bottleneck.

C. Details of Finetuning docT5query
The docT5query model underwent fine-tuning using the standard next-word prediction task and a cross-entropy loss
function. Specifically, given a query q and its corresponding gold-standard document x, the model parameters were adjusted
to maximize the likelihood p(q|x) =

∏|q|−1
i=1 p(qi|x; q1, · · · , qi−1), where qi denotes the i-th word in the query text, and |q|

is the query length. Updates to the parameters were implemented using the AdamW optimizer (Loshchilov & Hutter, 2017),
with β1 = 0.9, β2 = 0.999, eps = 10−8, and a weight decay of 0.01. The learning rate was set at 5× 10−5. This finetuning
process was executed 10 epochs on the training set of NQ320K.

D. Visualized Comparison of µx and µQ|x

Figure 7 shows a visualization, using the t-SNE method (Van der Maaten & Hinton, 2008), of the vectors on which we
applied the hierarchical k-means algorithm to obtain the indexing. 5,000 documents were randomly selected and are each
represented by a point in the graphs. Figures 7(a-d) respectively correspond to the four rows in each block of Table 3. (a)
was obtained by using the documents’ BERT embeddings, i.e., {µx : x ∈ X}, and (b-d) were generated by using the mean
vectors of queries, i.e., {µQ|x = mean(BERT(Qx)) : x ∈ X} where Qx consists of GenQ queries, GenQ+RealQ queries,
and all queries (i.e., GenQ+RealQ+DocSeg) for (b-d), respectively. In (e), we report the result of (d) when GenQ queries
were produced with the finetuned docT5query model using the training set of NQ320K.

Documents that were categorized in the same cluster are indicated by the same color. The cluster borders are more evident
in (d-e) than in (a-c). This visualization suggests that µQ|x better represents “semantics” in the ID prefixes than µx does,
which explains why our method achieved better retrieval performance.
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(a) Doc (b) GenQ

(c) GenQ+RealQ (d) GenQ+RealQ+DocSeg

(e) GenQ (finetuned) + RealQ + DocSeg

Figure 7: Visualization of (a) µx and (b-d) µQ|x obtained with 5,000 documents in the NQ320K dataset. The colors indicate
different clusters assigned by k-means clustering in the original high-dimensional space (k = 10). Every point represents a
document and was obtained as (a) the document’s BERT embedding, (b) the mean BERT embedding of GenQ queries, (c) the
mean BERT embedding of GenQ+RealQ queries, (d-e) the mean BERT embedding of all queries (GenQ+RealQ+DocSeg).
The GenQ queries used to produce (e) were generated with a finetuned version of the model on NQ320K, as detailed in
Appendix C, whereas those for (b-d) were not finetuned.
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