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Abstract
Learning a decent representation from unlabeled
time series is a challenging task, especially when
the time series data is derived from diverse chan-
nels at different sampling rates. Our motivation
stems from the financial domain, where sparsely
labeled covariates are commonly collected at dif-
ferent frequencies, e.g., daily stock market index,
monthly unemployment rate and quarterly net rev-
enue of a certain listed corporation. This paper
presents Multi-Frequency Contrastive Learning
Representation (MF-CLR), aimed at learning
a good representation of multi-frequency time
series in a self-supervised paradigm by lever-
aging the ability of contrastive learning. MF-
CLR introduces a hierarchical mechanism that
spans across different frequencies along the fea-
ture dimension. Within each contrastive block,
two groups of subseries with adjacent frequen-
cies are embedded based on our proposed cross-
frequency consistency. To validate the effective-
ness of MF-CLR, we conduct extensive experi-
ments on five downstream tasks, including long-
term and short-term forecasting, classification,
anomaly detection and imputation. Experimen-
tal evidence shows that MF-CLR delivers a lead-
ing performance in all the downstream tasks and
keeps consistent performance across different tar-
get dataset scales in the transfer learning sce-
nario. The source code is publicly available at
https://github.com/duanjufang/MF-CLR.

1. Introduction
Time series data plays an increasingly significant role in
various industries, e.g., finance (Houssein et al., 2022; Zhao
et al., 2023), supply chain (Punia et al., 2020; Punia &
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Shankar, 2022) and health care (Qin et al., 2023; Saveliev
& van der Schaar, 2023). How to extract usable information
from time series data and use them for the downstream task
is a long run interest in the artificial intelligence community.
As what is illustrated by previous works, the performance of
AI methods depends heavily on data representations (Bengio
et al., 2013). Inspired by the success in domains like com-
puter vision (CV) (Chen et al., 2020) and natural language
processing (NLP) (Gao et al., 2021), contrastive representa-
tion learning becomes more and more well-studied in time
series realm. Approaches evolve from the naı̈ve inspira-
tions by experiences in CV or NLP domains (Franceschi
et al., 2019; Eldele et al., 2021) to the ones that are more
capable of depicting temporal dependencies (Woo et al.,
2022; Zhang et al., 2022). However, unlike NLP domains
(which have discrete signal space to build tokenized dic-
tionaries) and CV domains (which have strong inductive
bias such as cropping invariance) where researchers pursue
a universal solution, representation learning in time series
domains are more problem-oriented with enlightenment of
domain knowledge (Mohsenvand et al., 2020; Tonekaboni
et al., 2021; Sarkar & Etemad, 2022) or expert features
(Nonnenmacher et al., 2022).

The motivation of our work is derived from real-world prob-
lems in the financial realm, where the ability to learn a
decent representation from sparsely labeled data is crucial.
Aside from the historical observations and covariates, many
publicly available data can be collected to compensate for
the shortage of input features. These include macroeco-
nomic indicators, financial reports, and stock market trading
information. Normally, the aforementioned data covers a
much longer horizon 1 than the historical observations do.
Under this circumstance, a self-supervised representation
learning model can be trained on the unlabeled part of these
fetched external data, and then the learned knowledge rep-
resentation can be applied to the specific downstream task.
However, different sources of external data may be sam-
pled at different frequencies (we use the term frequency
to refer to the sampling rate in the rest of this paper), e.g.,
the GDP that is revealed monthly while the net income of
a listed company that is revealed quarterly. Addressing

1For example, 13 datasets of fiscal data dating back before
2000 can be found in https://fiscaldata.treasury.gov/datasets/
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Figure 1. The architecture of MF-CLR. It hierarchically learns the representation from the highest frequency to the lowest using cross-
frequency contrastive block. In each block, two groups of subseries with consecutive frequencies are processed.

these real-world challenges necessitates a self-supervised
representation learning method capable of handling multiple
frequencies inputs.

Unfortunately, most of the existing contrastive representa-
tion learning methods do not pay special attention to the
modeling of multi-frequency time series. Consequently,
their proposals in data augmentations, positive and nega-
tive pair selections, and contrastive losses may not be suf-
ficiently suitable. For example, permutation is often used
as a strong augmentation and its effectiveness has been
validated (Eldele et al., 2021). In the multi-frequency set-
ting, however, this augmentation method would increase the
frequency of the low-frequency sequences and break the
original frequency structure. Another example is that in uni-
frequency setting, temporal consistency is an useful method
in choosing positive pairs (Tonekaboni et al., 2021). But
when processing the multi-frequency input data, this method
may generate false positive pairs when the low-frequency
sequences contain change points.

To address the above challenges, we propose a simple but
effective model named Multi-frequency Contrastive Learn-
ing Representation (MF-CLR), which specializes in self-
supervised representation learning for multi-dimensional
time series with various frequencies. MF-CLR employs a
set of cross-frequency contrastive blocks to establish a hier-
archical mechanism along the feature dimension. For each
block, two groups of subseries with consecutive frequencies
are processed. It firstly augments a positive view on the high-
frequency subseries using our proposed data augmentation
method, Dual Twister, before implementing the instance
discrimination pretext task. Simultaneously, low-frequency
information is incorporated into the representation of high-

frequency through cross-frequency consistency. Based on
the aforementioned two consistency, representation on these
frequencies are learned and the results are recursively served
as the input of the next block. With this setting, MF-CLR
explicitly learns invariant representations from the highest
frequency subseries to the lowest ones until the information
on all the frequency levels has been extracted. Extensive
experiments are conducted to prove its effectiveness. To
deliver a comprehensive assessment of the representation,
comparable studies are investigated on five downstream
tasks, which are classification, anomaly detection, short-
and long-term forecasting, and imputation. We also conduct
two real-world case studies, i.e., stock price forecasting and
net income forecasting, to show the usability of MF-CLR in
practice. Experimental evidence shows that MF-CLR can
deliver a leading and stable performance across all the tasks.

The contributions of our work are summarized as follows:

(1) We propose MF-CLR, a novel contrastive learning rep-
resentation method designed for multi-dimensional time
series containing multiple frequencies. It learns the rep-
resentations from the highest frequency to the lowest in a
hierarchical manner.

(2) We propose a new data augmentation method, Dual
Twister, which adds noise along both dimensions of an input
time series. The method can generate positive views with
similar semantic meanings while preserving the original
frequency structure.

(3) To capture the invariance between adjacent frequencies
more effectively, we introduce cross-frequency consistency
and propose corresponding contrastive losses.

(4) Extensive experiments are conducted to validate effec-
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tiveness of MF-CLR effectiveness. Experimental evidence
demonstrates that MF-CLR delivers a leading and consistent
performance across all the downstream tasks and requires
less scale of the target datasets.

2. Related Works
To discuss the self-supervised representation learning for
time series, we have to first deviate our attention to other
domains where this type of method thrives. In NLP do-
mains, methods have been extensively studied dating back
to Word2Vec (Mikolov et al., 2013) and the early form
GPT (Radford et al., 2018), while in CV domains, meth-
ods based on contrastive learning have boomed in recent
years. Their proposals threw light on time series domains
a lot. For example, the momentum encoder introduced by
MoCo (He et al., 2020), the projection head introduced
by SimCLR (Chen et al., 2020), and the predictive pretext
task introduced by CPC (Oord et al., 2018) are all more or
less absorbed by later works for self-supervised time series
representation learning. However, obstacles occur when
these approaches are migrated directly to the time series
domain. The main reason is that most of the approaches in
other domains implement augmentations and pretext tasks
by leveraging inductive bias, e.g., image colorization (Tian
et al., 2020) and image rotation (Gidaris et al., 2018) in CV
domains and the mask language model (Devlin et al., 2019)
in NLP domains, which is not always suitable in modeling
time series data.

Although self-supervised representation learning is less stud-
ied for time series compared with domains like CV or NLP,
many approaches have been proposed in recent years. T-
Loss (Franceschi et al., 2019), which is enlightened by
Word2Vec, is one of the pioneers implementing contrastive
learning on time series data. TS-TCC (Eldele et al., 2021)
uses a pair of augmentations, i.e., a weak one and a strong
one, and tries to capture the invariance between them. CA-
TCC (Eldele et al., 2023) extends TS-TCC into the semi-
supervised setting by leveraging the pseudo labels produced
by TS-TCC. Another method focusing on data augmentation
is InfoTS (Luo et al., 2023). It implements meta-learning
to automatically select the appropriate data augmentation
strategy and uses it for later contrasting. Some approaches
try to leverage temporal properties for contrastive learning.
For example, CoST (Woo et al., 2022) and ACST (Hu et al.,
2023) capture seasonality and trend in the latent space while
TF-C (Zhang et al., 2022) learns the invariant representation
between time and frequency domain. As discussed before,
domain-specific expert knowledge plays an important role
in time series problems. Many approaches (Mohsenvand
et al., 2020; Tonekaboni et al., 2021; Sarkar & Etemad,
2022; Raghu et al., 2023) are directly inspired by domain-
specific problems, while other approaches, such as ExpCLR

(Nonnenmacher et al., 2022), intent to incorporate expert
features into the contrastive learning architecture. There
are also methods trying to give a universal solution for all
time series problems. TS2Vec (Yue et al., 2022) learns how
to distinguish the positive and negative samples based on
contextual consistency. TimesURL (Liu & Chen, 2023) pro-
poses that enroll time reconstruction as a joint target enables
better segment- and instance-level representation. Besides
contrastive learning, Transformer-based pre-trained models
are also becoming popular recently. TimeGPT (Garza &
Mergenthaler-Canseco, 2023) leverages the principles of
transfer learning to apply the time series foundation model
pre-trained on the largest collection of publicly available
time series based on its channel-independence setting. The
forecasting task in the target datasets demonstrates its lead-
ing performance.

However, all of the aforementioned approaches fail to
pay special attention to multi-frequency data. The multi-
frequency inputs are simply treated as uni-frequency-
sampled multi-dimensional time series. This leads to the
inconsistency of performance in the multi-frequency setting
as in the uni-frequency setting on which these algorithms
are originally designed.

3. Proposed Method
3.1. Preliminary

The goal of MF-CLR is to learn a good embedding ri,t =
f(xi,t|θ) from the training set X = {xi|i ∈ 1, 2, ..., N},
where ri,t ∈ RL, xi ∈ RT×D, T is the length, D is the
input channel size and L is the dimension of the represen-
tation in the latent space. For each xi there are m different
frequencies across the total dimension of D, and we have
x = x1

i ⊕ x2
i ⊕ · · · ⊕ xm

i dividing the total dimension
into m groups of subseries, where each xj

i ∈ RT×dj and∑m
j=1 dj = D. For each pair of consecutive groups xj

i

and xj+1
i , we define the frequency of xj

i is higher than the
frequency of xj+1

i .

3.2. Architecture

The architecture of MF-CLR is illustrated in Figure 1.

Instead of training one deeper encoder, MF-CLR deploys a
smaller and more easy-to-train encoder for each frequency
level. The learning is in a hierarchical manner from the
highest frequency to the lowest by the cross-frequency con-
trastive blocks, where two groups of subseries with consec-
utive frequencies are processed. For the j-th block, we first
generate z̃ji using our proposed data augmentation strategy
to create a twisted view on the block input zji . Then both of
the two views are encoded by the backbone encoder, which
optimizes with the instance-wise contrasting between hj

i
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and h̃j
i , and the cross-frequency contrasting between hj

i and
xj+1
i . To get the output of this block, we concatenate the

latent vector hj
i with the embedded lower-frequency input

bj+1
i along the feature dimension. Note that instead of using
xj+1
i directly, we use a non-linear projection to align the two

consecutive frequency. Till this end, the output zj+1
i con-

tains the learned invariance of both the lower-frequency sub-
series’ and the higher ones’, and can be recursively served
as the input for the (j + 1)-th block.

3.3. Dual Twister

Data augmentation is an essential process in contrastive
learning where positive samples are generated for later dis-
crimination in solving the pretext task. A good data aug-
mentation strategy adds deviation to create different views
without breaking the semantic similarity between the aug-
mented sequence and the input.

Due to the local time shifting, two similar time series will
not always perfectly pair on each corresponding time step
(Berndt & Clifford, 1994). Enlightened by this phenomenon,
we present Dual Twister, which augments the input sequence
in both temporal-wise and value. First, we randomly gen-
erate the alignment policy, pairing time steps between the
input and the augmented sequence. This policy is shared
across different frequency levels to keep the frequency struc-
ture unchanged. Following the alignment policy, the aug-
mented sequence is twisted along the temporal horizon.
Next, we set a total deviation value and assign it to each
pair of time steps. This allows the augmented sequence
to be twisted w.r.t. the value corresponding to each time
step. Here the total deviation follows Proposition 3.1 and
it ensures the second twist is not too large to break the se-
mantic similarities. Due to the space limitation, we place
the detailed process of implementing Dual Twister in Ap-
pendix A.2

Proposition 3.1. The total deviation is the tight upper
bound of the DTW distance between the augmented se-
quence and the original input.

Using Dual Twister, we can generate a twisted view on the
input subseries with a constraint of total deviation. The
generated positive sample pairs share similar yet practical
semantic meanings while maintaining the original frequency
structure.

3.4. Cross-frequency Consistency

Aiming to capture the invariant representation between con-
secutive frequencies for each block, we come up with cross-
frequency consistency which motivates the model with the
following two properties:

Property 1: For higher-frequency subseries, the representa-

tion should follow the instance-wise consistency.

Property 2: The more similar the lower-frequency subseries
are, the closer the representation of the higher-frequency
subseries should be in the latent space.

The first property encourages the representation to capture
the invariance inside the same frequency by implementing
the instance discrimination task. As for the positive and
negative sample selection strategy, the representations of
the original subseries and the augmented subseries are con-
sidered positive, while the representations of different time
series inside a batch are taken as negatives. Some works
(Yue et al., 2022) argue that adding temporal contrast is
necessary to capture invariance along the time dimension.
However, since we augment the time series as a whole in-
stead of adding noise on each time step, it is more reasonable
to discriminate the whole instance of the time series. We
show that introducing temporal consistency to MF-CLR
brings no benefit in Section 4.6.1.

The second property aims to add lower-frequency informa-
tion to the higher-frequency representations. By pulling the
representations closer in the latent space based on the dis-
tance of the corresponding lower-frequency in the original
space of the raw signals, the representations combine the
invariance of both frequency levels to form a comprehensive
result.

3.5. Contrastive Loss

For each frequency level, the contrastive loss is built up
by two parts, i.e., instance-wise contrastive loss and cross-
frequency contrastive loss. Follow the idea of Property 1 in
Section 3.4, the instance-wise contrastive loss is formulized
in Equation (1), where h and h′ are representations encoded
from the block input and the augmentations, respectively
and B is the batch size.

l
i,t,j
inst = − log

exp(hj
i,t·h̃

j
i,t)∑B

k=1

(
exp(hj

i,t·h̃
j
k,t)+Ii̸=k exp(hj

i,t·h
j
k,t)

) (1)

For the cross-frequency contrastive loss introduced by the
Property 2, we apply a variation of the quadratic contrastive
loss (Nonnenmacher et al., 2022), as shown in Equation (2).

l
i,t,j
freq =

∑B
k=1

( ∥xj+1
i,t −xj+1

k,t ∥2

maxl,n ∥xj+1
l,t −xj+1

n,t ∥2
− ∥hj

i,t − hj
k,t∥2

)2

(2)

The total loss is the weighted average between the two loss
term controlled by the hyper-parameter α.

L
j
dual =

∑N
i=1

∑T
t=1

(
(1− α) · li,t,jinst + α · li,t,jfreq

)
(3)

3.6. Training

The hierarchical training from the highest frequency to the
lowest can be implemented based on Algorithm 1. For each
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block, we first generate an augmented view from the input
by Dual Twister before encoding them separately by the
backbone encoder. Loss for this frequency level is calculated
based on Equation (3), and the parameters of this level’s
encoder are updated accordingly. Finally, we concatenate
the encoded vector with projected lower-frequency subseries
to get the block output, which also serves as the next block’s
input recursively.

Algorithm 1 Hierarchical training.

Initialize θ1 to θm−1.
e← 0
while e < Epoch do

for j = 1 to m− 1 do
z̃j ← augment(zj)
hj ← f(zj |θj)
h̃j ← f(z̃j |θj)
lossj ← L

j
dual(h

j , h̃j , xj+1)
θj ← θj −∇lossj(θj)
zj+1 ← hj ⊕ projector(xj+1)

end for
e← e+ 1

end while

4. Experiments
To evaluate MF-CLR’s usability, we perform extensive ex-
periments on five downstream tasks. We enroll several
self-supervised representation learning methods as base-
lines, including T-Loss (Franceschi et al., 2019), TS-TCC
(Eldele et al., 2021), TNC (Tonekaboni et al., 2021), CPC
(Oord et al., 2018), TS2Vec (Yue et al., 2022), CoST (Woo
et al., 2022) and TF-C (Zhang et al., 2022). For comprehen-
siveness, some of the supervised methods are also enrolled,
including DeepAR (Salinas et al., 2020), TCN (Bai et al.,
2018), Informer (Zhou et al., 2021), Autoformer (Wu et al.,
2021), FEDformer (Zhou et al., 2022), DLinear (Zeng et al.,
2023), PatchTST (Nie et al., 2022) and TimesNet (Wu et al.,
2023). Baselines are listed and introduced in Appendix E.

Long-term Forecasting

(MSE)

Classification

(Accuracy)

Imputation

(MSE)

Anomaly Detection

(F1 score)

Short-term Forecasting

(MSE)

MF-CLR

T-Loss

TS-TCC

TNC

CPC

TS2Vec

CoST

TF-C

Figure 2. Average ranks on five downstream tasks compared with
other self-supervised baselines.

Table 1. Performance for classification on 30 UEA datasets. Met-
rics are macro averaged.

Methods Acc. P. R. F1 ROC PRC

MF-CLR 0.6487 0.6411 0.6297 0.6130 0.7989 0.6672

self-supervised

T-Loss 0.6044 0.6094 0.5855 0.5687 0.7876 0.6496
TS-TCC 0.5892 0.5884 0.5642 0.5465 0.7828 0.6080
TNC 0.2579 0.1836 0.2363 0.1791 0.4989 0.2470
CPC 0.6179 0.6063 0.5987 0.5814 0.7954 0.6492
TS2Vec 0.6167 0.6006 0.5957 0.5751 0.7821 0.6424
CoST 0.6262 0.6139 0.6043 0.5848 0.7738 0.6282
TF-C 0.2577 0.2113 0.2444 0.2048 0.5087 0.2563

supervised

DLinear 0.6207 0.6134 0.6085 0.5999 0.7841 0.6407
PatchTST 0.6540 0.6395 0.6364 0.6191 0.7978 0.6598
TimesNet 0.6436 0.6395 0.6271 0.6085 0.7980 0.6633
Autoformer 0.5902 0.5865 0.5706 0.5549 0.7558 0.5917
Informer 0.6468 0.6396 0.6296 0.6008 0.7869 0.6453
FEDformer 0.6196 0.6035 0.6028 0.5819 0.7876 0.6393

4.1. Data

Most of the datasets that are heavily used in the time se-
ries domain are sampled in uni-frequency, leaving them
inappropriate for direct usage. To balance between the gen-
eral acceptance and suitability, we resample these public
datasets by different frequencies along the feature dimen-
sion to meet the multi-frequency setting. Details about the
public datasets preprocessing can be found in Appendix B.

4.2. Classification

The performance of classification is evaluated on 30 UEA
datasets. For all the self-supervised methods, we train an
SVM with RBF kernel on the learned representation of the
whole sequence. Table 1 summarizes the average perfor-
mance across all the datasets. The best performance ones
are bolded and the second best ones are underlined.

Compared with self-supervised methods, MF-CLR outper-
forms all the baselines in all the six metrics. When the
comparison is made against supervised methods, MF-CLR
realizes the best performance w.r.t. three metrics and the
second best w.r.t. the other three ones.

4.3. Anomaly Detection

Anomaly detection is tested on four public datasets, i.e.,
SMD, SMAP, MSL and SWaT. For self-supervised methods,
a ridge regressor is firstly trained on the learned represen-
tations rt to forecast the observation yt. Then we list all
the MSE between ŷt and yt, and determine a threshold to
separate between the normal and the anomalous. Results
summarized in Table 2 illustrate that MF-CLR achieve the
best performance w.r.t. accuracy, precision and F1 score,
outperforming the second for 0.63%, 1.69% and 2.22%,
respectively. The full results can be found in Appendix F.2.
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Table 2. Performance for anomaly detection. For datasets contain-
ing multiple subsets, the metrics are averaged across the datasets.

Methods Acc. P. R. F1

MF-CLR 0.9689 0.6203 0.8036 0.6798

self-supervised

T-Loss 0.9498 0.4922 0.5696 0.5194
TS-TCC 0.9623 0.6034 0.7707 0.6400
TNC 0.9626 0.5817 0.7930 0.6439
CPC 0.9259 0.3815 0.5686 0.4334
TS2Vec 0.9591 0.5827 0.8499 0.6576
CoST 0.9582 0.5662 0.8013 0.6318
TF-C 0.9612 0.5991 0.8006 0.6475

supervised

DLinear 0.9596 0.5960 0.5645 0.5703
PatchTST 0.9613 0.5923 0.5665 0.5685
TimesNet 0.9574 0.5648 0.5384 0.5409
Autoformer 0.9522 0.5839 0.4672 0.5056
Informer 0.9511 0.5759 0.4590 0.4984
FEDformer 0.9520 0.5794 0.4651 0.5024

4.4. Short- and Long-term Forecasting

The performance of forecasting is evaluated on traffic,
ETTm1, ETTm2, and weather. The forecasting is made
on different frequencies and horizons. For short-term fore-
casting, we set the forecast horizon to be less than or equal
to a week, while for long-term forecasting the horizon is one
week above. For all the self-supervised methods, we train a
ridge regressor on the learned representations to get the fore-
cast results. Table 3 summarizes the average performance
across the four datasets w.r.t. these two tasks and the metric
used is MSE. We place the detailed results in Appendix F.1
due to the space limitation. From Table 3 we can conclude
that MF-CLR achieves the best performance in both short-
and long-term forecasting.

4.5. Imputation

We select the same four datasets used in Section 4.4 to
evaluate the performance of imputation. Different from
forecasting, imputation can use both historical observations
and forward values to predict the masked values in the mid-
dle. For the self-supervised methods, we train two ridge
regressors with one predicting the masked timestamp for-
ward while the other one giving predictions backward. The
final output is the averaged results given by these two regres-
sors. To deliver a robust and comprehensive assessment, we
follow TimesNet (Wu et al., 2023) to mask these datasets
by 12.5%, 25.0%, 37.5% and 50%. The metric shown in
Table 4 is averaged MSE across the 4 mask ratios. Full
results are shown in Appendix F.3.

Results show that MF-CLR leads in most datasets except

Table 3. Performance for short-term and long-term forecasting.

Methods traffic ETTm1 ETTm2 weather

short-term forecasting

MF-CLR 0.7033 0.0479 0.1227 0.1635
T-Loss 0.7179 0.0487 0.1310 0.4094
TS-TCC 0.6206 0.0574 0.1331 0.1314
TNC 1.6992 0.0971 0.1665 0.6142
CPC 0.9947 0.0483 0.3653 0.1874
TS2Vec 0.8800 0.0601 0.1264 0.2171
CoST 0.9604 0.0699 0.1436 0.3583
TF-C 0.9218 0.1914 0.1509 0.2934

long-term forecasting

MF-CLR 0.7466 0.0495 0.2060 0.5496
T-Loss 0.9546 0.0712 0.2163 0.7149
TS-TCC 1.1737 0.0503 0.4257 0.6202
TNC 2.0632 0.0938 0.5754 1.0166
CPC 1.6865 0.1059 0.4915 0.4811
TS2Vec 0.8199 0.1073 0.3597 0.7656
CoST 0.9886 0.0648 0.2119 0.7979
TF-C 2.1745 0.5142 0.8250 1.0066

traffic when compared with self-supervised methods and
leads in traffic and weather when compared with supervised
methods. Since temporal contrasting is not enrolled based
on our data augmentation, our method intentionally focuses
more on less refined granularity. On the other hand, super-
vised end-to-end training methods can learn better neigh-
borhood relationships by modeling each time step, like the
attention mechanism used by Informer. This explains why
MF-CLR fails to achieve the best performance when com-
pared with supervised baselines.

4.6. Analysis

4.6.1. ABLATION STUDY

In order to verify the effectiveness of each component in MF-
CLR, we demonstrate comparisons between the full MF-
CLR and different model variants. These variants are (1) w/o
Dual Twister, (2) w/o cross-frequency contrast, (3) w/o low-
frequency projector, (4) w/o hierarchical contrast. We use
ETTm2 with hourly OT as the benchmark and the average
performance gaps are summarized in Table 5. Details about
ablation settings can be found in Appendix C.2.

As discussed in Section 3.4, the temporal contrast is theo-
retically not effective for MF-CLR. To give experimental
evidence of this proposal, we add temporal contrastive loss
term, as shown in Equation (4), and use Equation (5) to
re-train MF-CLR. The result in Table 5 shows enrolling
temporal contrast drags the performance significantly.

l
i,t,j
temp = − log

exp(hj
i,t·h̃

j
i,t)∑

t∈W

(
exp(hj

i,t·h̃
j

i,t′ )+It ̸=t′ exp(h
j
i,t·h

j

i,t′ )
) (4)
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Table 4. Performance for imputation.

Methods traffic ETTm1 ETTm2 weather

comparison against self-supervised methods

MF-CLR 0.4844 0.0852 0.0400 0.0159
T-Loss 0.4632 0.1233 0.0485 0.0323
TS-TCC 0.4600 0.1349 0.0687 0.0556
TNC 0.4447 0.1246 0.0677 0.0573
CPC 0.7128 0.1387 0.0661 0.0963
TS2Vec 0.4025 0.0864 0.0483 0.0363
CoST 0.4072 0.0969 0.0424 0.0274
TF-C 0.4991 0.1261 0.0646 0.0586

comparison against supervised methods

MF-CLR 0.4844 0.0852 0.0400 0.0159
DLinear 0.2444 0.0777 0.0364 0.0240
PatchTST 0.9496 0.6657 0.1074 0.0968
TimesNet 4.0906 0.4303 0.1264 0.1883
Autoformer 0.5511 0.1293 0.0466 0.0413
Informer 0.5794 0.0399 0.0187 0.0183
FEDformer 0.5378 0.0543 0.0315 0.0218

L
j
tri =

∑N
i=1

∑T
t=1

(
(1− α) · (li,t,jinst + l

i,t,j
temp) + α · li,t,jfreq

)
(5)

4.6.2. ENCODER SELECTION

We first replace the encoder in MF-CLR by MLPs, RNN and
Transformer (Vaswani et al., 2017) with similar parameter
scale and results are summarized in Table 5.

Next, we show that our parameter chosen for the TCN en-
coder is reasonable. Figure 3 illustrates the relationship
between the parameter scale and the MSE on the ETTm2
with three different OT frequencies. It shows that the pa-
rameter scale we choose balances between efficiency and
performance.

20k 61k 79k 103k 128k 342k 441k 510k 609k 905k
parameter scale

0.10

0.15

0.20

0.25

0.30

av
er

ag
e 

M
SE quarterly OT

hourly OT
daily OT

Figure 3. Relationship between the parameter scale and the MSE
on ETTm2 for the forecasting task. The red cross represents the
parameter scale corresponding to our chosen encoder. The per-
formance drops significantly when the model capacity is lowered,
while a deeper encoder brings little improvement in performance.

Table 5. Analysis on ETTm2 with hourly OT for forecasting.

Model Variants MSE MAE

full MF-CLR 0.110 0.252

Ablation
w/o Dual Twister + 0.080 + 0.049
w/o cross-frequency contrast + 0.107 + 0.077
w/o low-frequency projector + 0.095 + 0.036
w/o hierarchical contrast

→ in QH-D setting + 0.011 + 0.015
→ in Q-HD setting + 0.056 + 0.037

Encoder Selection
MLPs + 0.077 + 0.063
LSTM + 0.081 + 0.054
Transformer + 0.014 + 0.008

Temporal Consistency
w/ temporal contrast + 0.102 + 0.152

4.6.3. VISUALIZATION

This section gives the visualized explanation of MF-CLR’s
effectiveness. Figure 5a visualizes representation of ER-
ing from UEA using t-SNE (Van der Maaten & Hinton,
2008). It illustrates clear boundaries among clusters and
few wrongly allocated points. Figure 5b shows the daily
OT of ETTm1 and the learned representations, which have
various frequencies and sharp change points correspond-
ing to the daily OT. In Figure 4c, we select E-7 from the
SMAP dataset and visualize its telemetry value, and the top
64 representation dimensions with the largest variances. It
shows the learned representations on disturbance demon-
strate significantly different patterns, indicating MF-CLR’s
effectiveness in the downstream anomaly detection task.
Figure 4d corresponds to the weather dataset for imputation.
We can see the missing values in the representations are
filled, demonstrating MF-CLR’s ability in extracting local
information and depicting the adjacent relationship.

4.6.4. TRANSFER LEARNING

One of the advantages of self-supervised learning is the
consistent performance delivered by a pre-trained model on
small datasets based on the idea of transfer learning. Here
we dive into the imputation tasks to show MF-CLR’s perfor-
mance under this setting. For ETTm1→ ETTm2 (ETTm2
→ ETTm1), MF-CLR is pre-trained on ETTm1 (ETTm2)
and fine-tuned on ETTm2 (ETTm1). These two datasets
share similar semantic meanings, so they are suitable for the
transfer learning experiment. To evaluate the performance
on different target dataset scales, we also reduce the size of
target datasets to 75%, 50%, 37.5% and 25% of the original
scale, respectively.

Figure 5 illustrates that MF-CLR can deliver a much more
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Table 6. Results of two real-world problems. We use MAPE (%), a well-accepted metric in financial domain, to measure the performance.

Experimental Scenarios MF-CLR T-Loss TS-TCC TNC CPC TS2Vec CoST TF-C DeepAR TCN

st
oc

k
pr

ic
e

US stable market 11.71 24.39 13.25 25.41 15.76 13.78 12.63 16.43 12.10 11.75
volatile market 16.44 29.66 17.02 26.18 24.30 17.08 20.11 19.76 20.32 27.24

CN stable market 14.50 19.91 18.22 22.03 19.56 16.49 16.37 25.48 13.17 21.16
volatile market 16.27 40.01 15.08 17.77 18.05 14.60 17.99 20.90 15.22 20.55

ne
ti

nc
om

e

US stable market 28.71 48.55 35.82 38.19 40.28 39.41 35.77 41.87 38.91 36.80
volatile market 49.32 80.22 59.00 79.07 77.34 60.75 56.61 61.89 74.39 76.85

CN stable market 21.64 35.13 24.36 36.21 34.05 22.74 25.50 33.22 30.63 20.21
volatile market 33.85 51.22 40.11 47.05 46.83 33.94 39.76 42.88 56.80 43.14
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(d) Imputation.

Figure 4. Visualization of various downstream tasks.

stable performance across different target dataset scales
compared with the top-performanced supervised methods.
Besides, the performance of TS2Vec and FEDformer drops
significantly after the target datasets are cut below 37.5%.
This finding supports the idea that MF-CLR requires less
data volume for downstream tasks compared with super-
vised methods.

4.7. Real-world Case Studies

Finally, we demonstrate the effectiveness of MF-CLR in
practice by implementing two real-world case studies. The
first one is stock price forecasting, aiming to forecast the
close price of the next month’s trading days. The second one
is net income forecasting, aiming to forecast the net income
of the next report period. These two tasks can demonstrate
the performance of forecasting both high-frequency target
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(a) ETTm1 → ETTm2.
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(b) ETTm2 → ETTm1.

Figure 5. Transfer learning for the imputation task.

(stock price) and low-frequency target (net income). For
comprehensiveness, we randomly pick 25 stocks listed in
the US market and 25 stocks listed in the Chinese market,
and the tests are made on both periods of stable market and
volatile market. Details about the test data can be found in
Appendix D. For all the self-supervised methods, we follow
Section 4.4 to get the forecast results.

Results are summarized in Table 6. Of all the 8 subtasks,
MF-CLR achieves the top two performance in 7. In terms
of the average performance on stock price forecasting, MF-
CLR outperforms the second best method (TS-TCC) for
1.06% w.r.t. US market and achieves second by underper-
forming DeepAR for 1.19% w.r.t. Chinese market. For
the average performance on net income forecasting, MF-
CLR outperforms the second best method (CoST) for 7.18%
w.r.t. US market and outperforms the second best method
(TS2Vec) for 0.60% w.r.t. Chinese market.

5. Conclusion and Future Work
This paper presents MF-CLR, a self-supervised represen-
tation learning method designed for multi-frequency time
series. The work shows our specifically designed data aug-
mentation, cross-frequency consistency as well as hierarchi-
cal contrastive block contribute to MF-CLR’s performance
enhancement compared with previous works. Extensive
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experiments w.r.t. five downstream tasks and two real-world
case studies show that MF-CLR can deliver a leading yet
consistent performance in the multi-frequency scenario.

Next, we will follow the idea of TimeGPT and pre-train
MF-CLR on the largest collection of real-world time series
datasets. Unlike TimeGPT which treats the multi-frequency
training data as uni-frequency-sampled time series, our pro-
posed data augmentation, cross-frequency consistency and
contrastive loss function enable MF-CLR to better process
multi-frequency time series. Considering that different real-
world datasets may be resampled in different frequencies,
MF-CLR is more suitable for forming a general pre-trained
model. We think this future work will contribute more to
the time series domain.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Data Augmentation
A.1. Summary of the Most Used Methods

Data augmentation is an essential process in contrastive learning where two views are generated from the input data. A
good data augmentation strategy should introduce noise to separate the two views while maintaining the essential invariance
between the two. Methods most used by previous works are summarized as follows:

• scaling: scale (multiply) the whole time series by a random scaler value.

• shifting: shift (add) the whole time series by a random scalar value.

• jittering: add noise, e.g., i.i.d. Gaussian noise, to each time step.

• permutation: cut the whole time series into several subseries and permute them in random orders.

• random cropping: crop two overlapping subseries to create a left and a right view.

• random masking: randomly mask some time steps.

Visualized examples of the above methods on a synthetic input data are shown in Figure 6.

Original Input Dual Twister Scaling Shifting

Jittering Permutation Random Cropping Random Mask

Figure 6. Visualization of our proposed Dual Twister and the data augmentations most used by previous works.

A.2. Dual Twister

Our proposed augmentation strategy can be used to augment the given original subsequence with arbitrary lengths and
ensure that the deviation of the generated augmentation sequence from the original sequence is within a controllable range.
In a sense, Dual Twister can be seen as an inverse process of DTW. DTW finds the path first using dynamic programming
before calculating the distance along this path, whereas Dual Twister generates the alignment policy first before assigning
the total deviation to get the augmented subsequence. However, DTW has a complexity of O(N2) while Dual Twister’s is
O(N) for finding the path (alignment policy).

First, determine the subsequence that requires data augmentation, and at this point, the length of the augmentation
subsequence is also uniquely determined. Then, the probabilistic alignment policy between the original subsequence and the
augmented subsequence is generated strictly in chronological order to determine the matching relationship between the
augmentation of each time step and the original subsequence. The probability of each alignment choice is calculated based
on the Equation (6),

dist(i, j) = (i− j)2

∆dist(i, j) = ((i+∆i)− (j +∆j))2

Prob(∆i,∆j) = exp (−dist(i,j)
10 ×∆dist(i, j))/

∑
k,l(exp (−

dist(k,l)
10 )×∆dist(k, l))

s.t. (∆i,∆j) ∈ (1, 0), (0, 1), (1, 1)

(6)
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, where i is the index of the original subsequence, j is the index of the augmented subsequence and dist(i, j) represents the
current lateral offset. Prob(∆i,∆j) is used to determine the next alignment choice, which is based on the following policy.

If the current lateral offset is small, the next step is inclined to select the direction that increases the lateral shift, otherwise,
the next step is inclined to decrease the shift.

In doing so, the generated augmentation subsequence can simultaneously satisfy randomness and ensure the similarity of
data distribution.

After the alignment is generated, we then set the overall offset value to constrain the deviation between the augmented and
the original subsequence. The overall offset should be randomly allocated for each matching pair according to the determined
alignment policy. If there is a one-to-many match between the augmented subsequence and the original subsequence at a
specific time step, it is necessary to ensure that the deviation is assigned on a pro-rata basis.

A.3. Proof of Proposition 3.1

Denote t as the temporal horizon, T as the current time step, D as the overall deviation we set, Di as the accumulated total
deviation (calculated by DTW) until ith time step, and di as the deviation between the matching pair in ith time step.

Given the original and the augmented time series, when the time step T = 1, it is obvious that the given total deviation value
D is the upper bound of the distance between them.

Assume when T = t− 1, we have
DT = Dt−1 ≤ D − dt (7)

Next, when T = t, the accumulated deviation satisfies

DT = Dt = Dt−1 + dt ≤ D − dt + dt = D (8)

Thus, Proposition 3.1 is proven.

B. Public Datasets Preprocessing
B.1. Anomaly Detection

The original SMAP dataset has 55 channels with 25 dimensions for each and the original MSL dataset has 27 channels with
55 dimensions for each. Both of them are sampled every 1 minute, and only the telemetry value is continuous while other
dimensions are either 1 or 0, representing whether the commands have been successfully sent. In our experiments, we keep
the telemetry value in its original frequency and resample other dimensions into quarterly and hourly. For SMAP, d2 to d13
are resampled into quarterly and d14 to d25 are resampled into daily. For MSL, d2 to d28 are resampled into quarterly and
d29 to d55 are resampled into daily.

The original SMD dataset is also sampled every 1 minute, and it contains 28 entities with each of them having 38 dimensions
of data. The original SWaT dataset is sampled every 1 second and the dimension is 51. For SMD, we keep d1 to d13 in their
original frequency, and the d14 to d26 and d27 to d38 are resampled into quarterly and hourly, respectively. For SWaT, we
keep d1 to d25 in their original frequency, and the d26 to d34 and d35 to d51 are resampled every minute and every quarter,
respectively.

B.2. Forecasting and Imputation

The original traffic dataset has 862 features including the forecast target, i.e., OT and 17544 timesteps sampled hourly. We
retain the former 400 features unchanged and resample the latter 461 features to daily, i.e., sum up every 24 values. Besides,
the OT is also processed in two settings, retaining hourly or resampling into daily.

Both ETTm1 and ETTm2 originally have 7 features including OT and 69680 timesteps sampled quarterly. We resample the
features into three granularities. The HUFL and HULL are retained as quarterly observations. The MUFL and MULL are
resampled hourly while LUFL and LULL are resampled daily. Also, the OT is resampled in all three frequencies.

The original weather dataset has 21 features including OT and 52696 timesteps sampled every 10 minutes. The dataset is
resampled into four granularities. For p, T, Tpot and Tdew, we retain the original frequency. For rh, VPmax, VPact, VPdef,
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sh, H2OC and rho, we resample them hourly by picking a value every six observations. The daily resampled data contains
wv, max. wv and wd. Finally, we resample the rest features, i.e., rain, raining SWDR, PAR, max. PAR and Tlog, into weekly
observations. The OT is resampled in all four different frequencies as well.

The number of features, timesteps and granularity of both the original and the processed datasets are summarized in Table 7.

Table 7. Summary of the resampling on traffic, ETTm1, ETTm2 and weather.

original after preprocessing

features timesteps granularity features timesteps granularity

traffic 862 17544 1 hour 862 17544 1 hour, 1 day
ETTm1 7 69680 15 min 7 69680 15 min, 1 hour, 1 day
ETTm2 7 69680 15 min 7 69680 15 min, 1 hour, 1 day
weather 21 52696 10 min 21 52696 10 min, 1 hour, 1 day, 1 week

B.3. Classification

The UEA is an integrated dataset consisting of 30 time series classification problems of various domains. In the preprocessing
stage, we do our best to dig into the details of each dataset carefully in order to resample the features into the multi-frequency
setting while maintaining physical meanings. For example, the “BasicMotion” dataset is generated from students performing
four different activities, which are walking, resting, running, and playing badminton. The 6 features are collected by two
sensors, a 3D accelerometer and a 3D gyroscope, with each of them providing values in the x-, y- and z-axis. The original
data is sampled at 10Hz lasting for 10 seconds, which in total provides 100 timestamps of observations. When resampling,
we keep the 3 dimensions of accelerometer data to be original and resample the 3 dimensions of gyroscope data every two
timestamps. As a result, we generate a multi-frequency dataset in which the accelerations are sampled at 10Hz while the
angular velocities are sampled at 5Hz.

The resampling strategies for all the 30 UEA datasets are summarized in Table 8. The notation di in the table represents the
i-th feature (starting from 1).

C. Experimental Details
C.1. Parameter Setting

For all the downstream tasks, we set the batch size to be 32, the initial learning rate to be 1E-3 with 70% decay every 10
steps, and α to be 1E-5.

The encoder of MF-CLR contains 4 hidden dilated convolutional layers with feed-forward connections between consecutive
blocks. The dilation is set to be 2i for the i-th layer with the hidden channel size of 64 and the kernel size of 3. Also, a 10%
dropout is added to enhance robustness.

The low-frequency projector is a two-layer-MLPs, where the input channel size is the dimension of the low-frequency
subseries, the hidden dimension is 16 and the output dimension is 32.

The datasets are divided into training (70%), validation (10%) and test (20%) unless the given dataset has already been
divided. The MF-CLR is trained on both the training set and the validation set, while the downstream model, e.g., ridge
regressor for forecasting and SVM for classification, is trained only on the training set. Hyper parameters of the downstream
model are optimized by grid searching on the validation set. The encoding length of the input data is set to be 128 if it
contains more than 2048 time steps, otherwise the encoding length is set to be the length of the input data.

C.2. Ablation

C.2.1. W/O DUAL TWISTER

For each frequency level, the ẑji is no longer augmented from zji by our proposed Dual Twister. In order to make the
contrastive learning work successfully, we augment zji by jittering. At each time step, Gaussian noise εt ∼ N(0, 0.5) is
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added to zji,t.

C.2.2. W/O CROSS-FREQUENCY CONTRAST

Instead of training the model based on Equation (3), we only use the instance-wise contrastive loss by setting the hyper-
parameter α to be 0.

C.2.3. W/O LOW-FREQUENCY PROJECTOR

When generating each block’s output, hj is concatenated with xj+1 directly.

C.2.4. W/O HIERARCHICAL CONTRAST

The resampled ETTm2 dataset contains three different frequencies, i.e., quarterly, hourly and daily. Instead of contrasting
hierarchically with each block processing two subseries with consecutive frequencies, we divide the feature dimension into
two frequency levels and only contrast one time. In the QH-D setting, the quarterly and hourly subseries are treated as
low-frequency ones while the daily subseries are treated as high-frequency ones. In the Q-HD setting, the quarterly subseries
are treated as low-frequency ones while the hourly and the daily subseries are treated as high-frequency ones.

D. Details about Real-world Case Studies
D.1. US Stock Data

We randomly choose 25 stocks which are listed publicly in the US stock market to form our dataset. The temporal horizon
of the data we collected is from 2003-05-26 to 2023-05-25. For anyone who is listed after 2003-05-26, we fill the empty
value by zero.

The features included are listed as follows.

(1) individual stock data: open price, close price, the intra-day highest price, the intra-day lowest price, quantity, volume,
amplitude, change, percentage change, turnover.

(2) financial report: cash, account receivable, inventory, total current asset, long-term investment, PP&E (property, plant &
equipment),equity investment, total fixed asset, total asset, account payable, current liability, long-term debt, fixed liability,
total liability, total equity, revenue, COGS (cost of goods sold), R&D (research & development),operating expense, other
income, net income, OCI(other comprehensive income), net CFO(cash flows from operating activities), net CFI(cash flows
from investing activities), net CFF(cash flows from financing activities).

(3) global macro index: BDI (Baltic dry index), SOX (PHLX semiconductor sector).

(4) US macro index: GDP, core CPI, PMI, unemployment rate, industrial production, durable goods orders, factory orders,
business inventory, NAHB house market index, FHFA house price index, new house starts, new house sales, personal
spendings, retail sales index.

For stable market period, we forecast the 21 timesteps ahead (approximately one month of trading day) from 2019-10-15
w.r.t. stock price prediction, and 1 observation ahead from 2019-12-02 w.r.t. net income prediction.

For volatile market period, we forecast the 21 timesteps ahead from 2023-04-20 w.r.t. stock price prediction, and 1
observation ahead from 2022-12-01 w.r.t. net income prediction.

D.2. Chinese Stock Data

For stocks listed in Chinese stock exchange, we also randomly choose 25 stocks to form our dataset. The temporal horizon
of the data we collected is from 2003-05-26 to 2023-05-25. For anyone who is listed after 2003-05-26, we fill the empty
value by zero.

The features included are listed as follows.

(1) individual stock data: open price, close price, the intra-day highest price, the intra-day lowest price, quantity, volume,
amplitude, change, percentage change, turnover.
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(2) financial report: net fixed income, construction in progress, inventory, account receivable, total equity, hold-to-maturity
investment, current liability, total current asset, total liability, cash, total asset, long-term equity investment, fixed liability,
total fixed asset, operational revenue, OCI, operational return, operational cost, net return, net CFO, net CFI, net CFF.

(3) global macro index: BDI, SOX.

(4) Chinese macro index: currency rate, GDP, CPI, PPI, industry PMI, service PMI, interest rate (using LPR rate with terms
of less than one year, one year, five years and above five years, respectively), FDI (foreign direct investment), total retail
sales of consumer goods, total social financing, total import, total export, value added of industries, M2 growth, consumer
confidence, residential leverage ratio, governmental leverage ratio, non-financial department leverage ratio, enterprise
booming index.

For stable market period, we forecast the 21 timesteps ahead (approximately one month of trading day) from 2019-10-15
w.r.t. stock price prediction, and 1 observation ahead from 2019-12-02 w.r.t. net income prediction.

For volatile market period, we forecast the 21 timesteps ahead from 2023-04-20 w.r.t. stock price prediction, and 1
observation ahead from 2022-12-01 w.r.t. net income prediction.

E. Baselines
E.1. Self-supervised Methods

T-Loss: This is one of the pioneers in time series contrastive representation learning. It is enlightened by the succeed of
Word2Vec in NLP domains and the contrasting is constructed using similar ideas of Word2Vec. The model uses subseries
consistency to build up positive and negative sample pairs and use triplet loss to train the backbone encoder. We use the
open source code from https://github.com/White-Link/UnsupervisedScalableRepresentationLearningTimeSeries in our
experiments.

TS-TCC: This method implements two data augmentations, i.e., a weak one and a strong one, to create two correlated views
on the same subseries. Then, the cross-view prediction is implemented, using the past of one view to forecast the future of
another. Further, the contextual contrasting maximizes the similarity among different contexts of the same sample while
minimizing the similarity of different samples. We use the open source code from https://github.com/emadeldeen24/TS-TCC
in our experiments.

TNC: The method assuming windows within a neighbourhood possess similar properties. The neighbourhood boundaries are
determined automatically using the properties of the signal and statistical testing. Incorporating concepts from Positive Unla-
belled Learning, the signals outside of this neighbourhood as unlabelled samples, are weight-adjusted using the ω parameters
to account for positive samples. We use the open source code from https://github.com/ziyuanzhao2000/TNC TS baseline in
our experiments.

TS2Vec: The method firstly creates two views, i.e., a left one and a right one, on the overlapping subseries before encoding.
In the latent space, the loss is calculated hierarchically from the finest granularity to the instance level w.r.t. both temporal con-
trastive loss and instance-wise contrastive loss. This mechanism enables TS2Vec to learn both coarse-grained and fine-grained
representation to solve different downsteam tasks. We use the open source code from https://github.com/yuezhihan/ts2vec in
our experiments.

CPC: Different from other methods listed in this section, CPC is not exclusively designed for time series data. On the
contrary, this method can handle different forms of sequential input data, such as voice, video and time series. It implements
a forecasting based pretext task in the latent space by using the representation of the past to forecast the future latent vectors.
We use the open source code from https://github.com/Spijkervet/contrastive-predictive-coding in our experiments.

CoST: In order to capture the trend and seasonality explicitly, CoST contrasts in both time domain and frequency domain
to learn their respective representation. It uses a trend feature disentangler, which is composed of a group of causal
convolutional block and an average pooling layer, to learn a good trend representation. And the seasonal representation is
learned on Fourier transformed sequences w.r.t. both amplitude and phase by the seasonal feature disentangler. We use the
open source code from https://github.com/salesforce/CoST in our experiments.

TF-C: The method argues contrasting only in time domain is not enough, since a great amount of information is easier to
capture in the frequency domain. It implements data augmentation, positive and negative pair selection in both domains.
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The contrast is made in time space, frequency space and a time-frequency space, and the model is trained based on the
contrastive loss in these three spaces. We use the open source code from https://github.com/mims-harvard/TFC-pretraining
in our experiments.

E.2. Supervised Methods

DeepAR: The method builds a globally auto-regressive RNN on a large number of related time series and then performs
probabilistic sampling based on the assumed probabilistic distribution, which can handle widely-varying scales through
rescaling and velocity-based sampling and produce calibrated probabilistic forecasts. We use the open source code from
https://github.com/husnejahan/DeepAR-pytorch in our experiments.

TCN: To achieve the fact that the network produces an output of the same length as the input, the method uses a 1D
fully-convolutional network architecture where each hidden layer is the same length as the input layer. To accomplish the
fact that there can be no leakage from the future into the past, the method uses causal convolutions where an output at time t
is convolved only with elements from time t and earlier in the previous layer. In our experiments, we use the open source
code from https://github.com/rajatsen91/deepglo, where the TCN is used for regularization.

DLinear: DLinear questions the effectiveness of emerging favored transformer-based solutions for the long term time series
forecasting problem, which first decompose a time series into trend and remainder, and then only use a simple one-layer
linear model for forecasting. DLinear is better than existing transformer-based LTSF solutions in terms of efficiency and
effectiveness. In our experiments, we use the open source code from https://github.com/thuml/Time-Series-Library/, where
the reproduction of DLinear can be found.

PatchTST: PatchTST is a patch-based algorithm for time series forecasting, which reduces the time and space complexity
of the original Transformer by applying a patching technique,PatchTST also has the capability of learning from longer
look-back windows and the capability of representation learning. Besides, Channel-independence is first used in transformer-
based TSF area. In our experiments, we use the open source code from https://github.com/thuml/Time-Series-Library/,
where the reproduction of PatchTST can be found.

TimesNet: Based on the multi-periodicity of time series, the TimesNet with a modular architecture is proposed to capture
the temporal patterns derived from different periods. For each period, to capture the corresponding intraperiod- and
interperiod-variations, a TimesBlock is designed within the TimesNet, which can transform the 1D time series into 2D space
and simultaneously model the two types of variations by a parameter-efficient inception block. In our experiments, we
use the open source code from https://github.com/thuml/Time-Series-Library/, where the reproduction of TimesNet can be
found.

Autoformer: Autoformer is a decomposition architecture for time series forecasting. It consists of an Auto-Correlation
mechanism and an inner decomposition block. The Auto-Correlation mechanism discovers dependencies and aggregates
information at the series level, while the inner decomposition block decomposes the time series into multiple components. In
our experiments, we use the open source code from https://github.com/thuml/Time-Series-Library/, where the reproduction
of Autoformer can be found.

Informer: Informer is proposed to enhance the prediction capacity in the LSTF problem using a transformer-like model.
The ProbSparse self-attention mechanism efficiently replaces the canonical self-attention, reducing time and memory usage.
The self-attention distilling operation privilege dominant attention scores, reducing space complexity. The generative
style decoder enables long sequence output with cumulative error. In our experiments, we use the open source code from
https://github.com/thuml/Time-Series-Library/, where the reproduction of Informer can be found.

FEDformer: A frequency enhanced decomposed Transformer architecture with mixture of experts for seasonal-trend
decomposition is proposed in order to better capture global properties of time series. By randomly selecting a fixed number
of Fourier components, the proposed model achieves linear computational complexity and memory cost. In our experiments,
we use the open source code from https://github.com/thuml/Time-Series-Library/, where the reproduction of FEDformer can
be found.
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F. Full Experimental Results
F.1. Forecasting

Table 9 summarizes the average performance across four datasets w.r.t. short-term forecasting and long-term forecasting
using MSE as the metric in comparison with the supervised SOTAs.

To strengthen the results in Section 4.6.4, we also conduct transfer learning on both the short-term and the long-term
forecasting tasks. The two transfer learning settings are the same with what in Section 4.6.4, i.e., ETTm1→ ETTm2 and
ETTm2→ ETTm1.For each case, two supervised methods with the lowest MSE are picked and the target dataset scale is
decreased from 100% to 40%. We can conclude from Figure 7 that MF-CLR can deliver a much stable performance on both
tasks and the it achieves the best performance after the target dataset scale is cut to 80% and below.
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(a) STF, ETTm1 → ETTm2.

100% 80% 70% 60% 50% 40%
target dataset scale

0.1

0.2

0.3

0.4

0.5

0.6

av
er

ag
e 

M
SE MF-CLR

PatchTST
TimesNet

(b) STF, ETTm2 → ETTm1.

100% 80% 70% 60% 50% 40%
target dataset scale

0.5

1.0

1.5

2.0

2.5

3.0

av
er

ag
e 

M
SE MF-CLR

PatchTST
DLinear

(c) LTF, ETTm1 → ETTm2.
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(d) LTF, ETTm2 → ETTm1.

Figure 7. Transfer learning for short-term forecasting the long-term forecasting. The STF and LTF refer to short-term forecasting and
long-term forecasting, respectively.

Full results of the forecasting task compared with self-supervised baselines are summarized in Table 10. Note that the table
contains results of both short-term forecasting and long-term forecasting.

Full results of the forecasting task compared with supervised baselines are summarized in Table 11. Note that the table
contains results of both short-term forecasting and long-term forecasting.

F.2. Anomaly Detection

Full results of the anomaly detection task are summarized in Table 12.

F.3. Imputation

Full results of the imputation task are summarized in Table 13.
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Table 8. Details about the preprocessing on 30 UEA datasets.

datasets resample strategy

ArticularyWordRecognition d1-d3: keep original; d4-d6: resample every 2 timestamps; d7-d9: resample every 3
timestamps.

AtrialFibrillation d1: keep original; d2: resample every 2 timestamps.

BasicMotions d1-d3: keep original; d4-d6: resample every 2 timestamps.

CharacterTrajectories d1-d2: keep original; d3: resample every 2 timestamps.

Cricket d1-d3: keep original; d4-d6: resample every 3 timestamps.

DuckDuckGeese d1-d500: keep original; d501-d1000: resample every 2 timestamps; d1001-d1345: resample
every 3 timestamps.

EigenWorms d1-d3: keep original; d4-d6: resample every 4 timestamps.

Epilepsy d1-d2: keep original; d3: resample every 2 timestamps.

EthanolConcentration d1-d2: keep original; d3: resample every 17 timestamps.

ERing d1-d2: keep original; d3-d4: resample every 5 timestamps.

FaceDetection d1-d72: keep original; d73-d144: resample every 2 timestamps.

FingerMovements d1-d19: keep original d20-d28: resample every 2 timestamps

HandMovementDirection d1-d5: keep original d6-d8: resample every 2 timestamps d9-d10: resample every 4
timestamps

Handwriting d1-d2: keep original d3: resample every 2 timestamps

Heartbeat d1-d21: keep original d22-d41: resample every 3 timestamps d42-d61: resample every 5
timestamps

InsectWingbeat d1-d100: keep original d101-d200: resample every 2 timestamps

JapaneseVowels d1-d6: keep original d7-d12: resample every 2 timestamps

Libras d1: keep original d2: resample every 3 timestamps

LSST d1-d2: keep original d3-d4: resample every 2 timestamps d5-d6: resample every 3
timestamps

MotorImagery d1-d16: keep original d17-d32: resample every 2 timestamps d33-d48: resample every 3
timestamps d49-d64: resample every 10 timestampss

NATOPS d1-d12: keep original d13-d24: resample every 3 timestamps

PenDigits d1: keep original d2: resample every 2 timestamps

PEMS-SF d1-d321: keep original d322-d642: resample every 2 timestamps d643-d963: resample
every 3 timestamps

Phoneme d1-d6: keep original d7-d11: resample every 7 timestamps

RacketSports d1-d3: keep original d4-d6: resample every 2 timestamps

SelfRegulationSCP1 d1-d2: keep original d3-d6: resample every 4 timestamps

SelfRegulationSCP2 d1-d2: keep original d3-d7: resample every 4 timestamps

SpokenArabicDigits d1-d6: keep original d7-d13: resample every 3 timestamps

StandWalkJump d1-d2: keep original d3-d4: resample every 5 timestamps

UWaveGestureLibrary d1: keep original d2: resample every 3 timestamps d3: resample every 5 timestamps
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Table 9. Performance for short-term and long-term forecasting compared with supervised methods.

Methods traffic ETTm1 ETTm2 weather

short-term forecasting

MF-CLR 0.7033 0.0479 0.1227 0.1635
DLinear 1.0600 0.0435 1.1231 0.5421
PatchTST 1.0227 0.0340 0.0752 0.7513
TimesNet 1.1451 0.0413 0.1761 0.5686
Autoformer 0.6410 0.0429 0.2932 0.2380
Informer 1.5604 0.3700 0.2891 0.1010
FEDformer 1.4966 0.1028 0.1325 0.4733

long-term forecasting

MF-CLR 0.7466 0.0495 0.2060 0.5496
DLinear 1.0839 0.0422 0.3235 0.4866
PatchTST 0.7687 0.0754 0.1653 0.4523
TimesNet 1.0426 0.0835 0.4500 0.4167
Autoformer 1.0107 0.1239 0.4170 2.3023
Informer 3.2487 0.2685 0.7075 1.0272
FEDformer 0.8020 0.1005 0.5235 2.6785

Table 10. Full results of the forecasting task compared with self-supervised baselines.
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metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

tr
af

fic

h
168 0.1932 0.3181 0.1419 0.2698 0.2468 0.3619 1.5407 1.0837 0.4418 0.5556 0.2373 0.3825 0.1701 0.3161 0.9642 0.8212
336 0.2711 0.3280 0.4138 0.4435 0.3954 0.4306 2.1240 1.2441 1.7449 1.1176 0.6018 0.5495 0.3573 0.4070 1.7345 1.1081
ave. 0.2322 0.3231 0.2779 0.3567 0.3211 0.3963 1.8324 1.1639 1.0934 0.8366 0.4196 0.4660 0.2637 0.3616 1.3494 0.9647

d
7 1.2134 0.8500 1.2938 0.9198 0.9944 0.9100 1.8577 1.0749 1.5475 0.8956 1.5226 0.9992 1.7506 1.0821 0.8794 0.8302
14 1.2221 0.8950 1.4953 0.9937 1.9519 1.2322 2.0024 1.1857 1.6280 1.0268 1.0380 0.8411 1.6199 1.0655 2.6145 1.4415

ave. 1.2178 0.8725 1.3946 0.9568 1.4732 1.0711 1.9301 1.1303 1.5878 0.9612 1.2803 0.9202 1.6853 1.0738 1.7470 1.1359

E
TT

m
1

q
48 0.0402 0.1940 0.0135 0.1174 0.0160 0.1198 0.0493 0.1807 0.0385 0.1797 0.0078 0.0707 0.0061 0.0697 0.0634 0.1880

672 0.0837 0.2240 0.0922 0.2433 0.0894 0.2430 0.2310 0.4594 0.1038 0.2427 0.1374 0.2697 0.1894 0.3284 0.4238 0.5996
ave. 0.0620 0.2090 0.0529 0.1804 0.0527 0.1814 0.1402 0.3201 0.0712 0.2112 0.0726 0.1702 0.0978 0.1991 0.2436 0.3938

h
24 0.0146 0.1111 0.0161 0.0759 0.0463 0.1823 0.0103 0.0748 0.0230 0.1210 0.0131 0.0991 0.0059 0.0590 0.2174 0.4015

336 0.0602 0.1767 0.0701 0.2189 0.0645 0.1942 0.1139 0.2765 0.1104 0.2587 0.0748 0.2071 0.0717 0.2317 0.2583 0.4442
ave. 0.0374 0.1439 0.0431 0.1474 0.0554 0.1883 0.0621 0.1757 0.0667 0.1899 0.0440 0.1531 0.0388 0.1454 0.2379 0.4229

d
7 0.0530 0.1774 0.0731 0.2056 0.0779 0.2319 0.0979 0.2540 0.0281 0.1401 0.0821 0.2394 0.0782 0.2045 0.0611 0.2059
30 0.0388 0.1631 0.0723 0.2422 0.0362 0.1616 0.0736 0.2176 0.1014 0.2514 0.1397 0.3440 0.0579 0.2342 0.7701 0.7076

ave. 0.0459 0.1703 0.0727 0.2239 0.0570 0.1968 0.0858 0.2358 0.0647 0.1958 0.1109 0.2917 0.0681 0.2194 0.4156 0.4568

E
TT

m
2

q
48 0.0480 0.2136 0.0274 0.1686 0.0277 0.1598 0.0507 0.1944 0.3273 0.5626 0.0453 0.1884 0.0335 0.1735 0.0684 0.1839

672 0.2610 0.3967 0.2898 0.4929 0.2817 0.4655 0.3376 0.4915 0.8082 0.7526 0.2951 0.4595 0.3192 0.4719 0.2859 0.4317
ave. 0.1545 0.3052 0.1586 0.3308 0.1547 0.3127 0.1942 0.3430 0.5678 0.6576 0.1702 0.3240 0.1764 0.3227 0.1772 0.3078

h
24 0.0477 0.1843 0.0490 0.1747 0.0869 0.2464 0.0911 0.1523 0.1934 0.4080 0.0551 0.1907 0.0743 0.1495 0.1294 0.2726

336 0.1715 0.3191 0.2144 0.3397 0.2059 0.3626 0.1947 0.3954 0.5982 0.6454 0.3359 0.4890 0.1758 0.3158 1.3143 1.0300
ave. 0.1096 0.2517 0.1317 0.2572 0.1464 0.3045 0.1429 0.2739 0.3958 0.5267 0.1955 0.3399 0.1251 0.2327 0.7219 0.6513

d
7 0.1340 0.2877 0.1578 0.2921 0.1360 0.2883 0.1866 0.3438 0.1323 0.2716 0.1102 0.2750 0.1472 0.2989 0.1197 0.2998
30 0.2405 0.4209 0.2181 0.3903 0.6455 0.7516 0.9561 0.9289 0.3847 0.5654 0.3835 0.5554 0.2480 0.4413 0.3356 0.5102

ave. 0.1873 0.3543 0.1880 0.3412 0.3908 0.5200 0.5714 0.6364 0.2585 0.4185 0.2469 0.4152 0.1976 0.3701 0.2277 0.4050

w
ea

th
er

m
144 0.0689 0.1405 0.7762 0.4533 0.0030 0.0337 0.0873 0.1555 0.0002 0.0100 0.0008 0.0249 0.2777 0.2662 0.0151 0.0710
432 0.0779 0.0941 0.4273 0.2008 0.0024 0.0278 0.0896 0.1634 0.0004 0.0171 0.0006 0.0200 0.7536 0.2655 0.1525 0.1216
ave. 0.0734 0.1173 0.6018 0.3271 0.0027 0.0308 0.0885 0.1595 0.0003 0.0136 0.0007 0.0225 0.5157 0.2659 0.0838 0.0963

h
168 0.0198 0.0625 0.0341 0.0747 0.0120 0.0494 1.6593 0.4411 0.0015 0.0307 0.5264 0.3074 0.0529 0.0872 0.4379 0.2618
720 0.2613 0.1102 0.8786 0.1770 0.0270 0.0661 0.0739 0.0878 0.0024 0.0379 0.5854 0.1381 0.6133 0.1696 0.0512 0.0710
ave. 0.1406 0.0864 0.4564 0.1259 0.0195 0.0578 0.8666 0.2645 0.0020 0.0343 0.5559 0.2228 0.3331 0.1284 0.2446 0.1664

d
7 0.4875 0.5602 0.3998 0.5771 0.5081 0.7011 0.6205 0.7672 0.7475 0.7618 0.3405 0.5069 0.3489 0.5601 0.5682 0.7404
30 1.6040 0.8114 1.7850 0.8500 1.5844 0.8458 1.8956 0.9635 1.6989 0.9596 1.9746 0.9571 1.9500 0.9298 1.8244 0.9629

ave. 1.0458 0.6858 1.0924 0.7136 1.0463 0.7735 1.2581 0.8654 1.2232 0.8607 1.1576 0.7320 1.1495 0.7450 1.1963 0.8517

w
4 0.0071 0.0744 0.0107 0.0839 0.1084 0.2994 0.1019 0.2892 0.1215 0.3187 0.0150 0.1155 0.0187 0.1144 0.1251 0.3155

13 0.3260 0.5061 0.1851 0.3217 0.7609 0.7816 1.9951 1.2794 0.1016 0.2531 0.4874 0.5903 0.6097 0.5651 2.0257 1.2959
ave. 0.1666 0.2903 0.0979 0.2028 0.4347 0.5405 1.0485 0.7843 0.1116 0.2859 0.2512 0.3529 0.3142 0.3398 1.0754 0.8057
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Table 11. Full results of the forecasting task compared with supervised baselines.

MF-CLR DeepAR TCN DLinear PatchTST TimesNet Autoformer Informer FEDdformer

metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

tr
af

fic

h
168 0.1932 0.3181 0.1997 0.3390 1.3671 1.0029 0.1850 0.3490 0.3551 0.4765 0.5622 0.5973 0.3941 0.5528 1.7281 1.1002 0.4293 0.5762
336 0.2711 0.3280 0.4411 0.5004 1.9195 1.1746 0.3160 0.3985 0.2689 0.3374 0.2817 0.3294 0.4334 0.4625 2.7394 1.3238 0.4983 0.5277
ave. 0.2322 0.3231 0.3204 0.4197 1.6433 1.0887 0.2505 0.3737 0.3120 0.4069 0.4220 0.4633 0.4138 0.5077 2.2337 1.2120 0.4638 0.5519

d
7 1.2134 0.8500 2.1155 1.0901 1.0333 0.7930 1.9349 0.9666 1.6902 0.9830 1.7279 0.9804 0.8879 0.6407 1.3927 1.1436 2.5639 1.4042
14 1.2221 0.8950 1.5371 0.9898 1.3637 0.9652 1.8518 1.0948 1.2684 0.9047 1.8035 1.0621 1.5879 1.0408 3.7579 1.6398 1.1056 0.9204

ave. 1.2178 0.8725 1.8263 1.0400 1.1985 0.8791 1.8934 1.0307 1.4793 0.9439 1.7657 1.0213 1.2379 0.8408 2.5753 1.3917 1.8348 1.1623

E
TT

m
1

q
48 0.0402 0.1940 0.0057 0.0703 0.3931 0.6127 0.0065 0.0708 0.0101 0.0951 0.0084 0.0743 0.0056 0.0540 0.0148 0.1047 0.0404 0.1962

672 0.0837 0.2240 0.5883 0.7196 0.6595 0.7877 0.0434 0.1420 0.0824 0.2336 0.1101 0.2623 0.0462 0.1689 0.2116 0.3640 0.0803 0.2257
ave. 0.0620 0.2090 0.2970 0.3950 0.5263 0.7002 0.0250 0.1064 0.0462 0.1644 0.0593 0.1683 0.0259 0.1115 0.1132 0.2344 0.0604 0.2109

h
24 0.0146 0.1111 0.0147 0.0988 0.7024 0.8292 0.0151 0.1064 0.0137 0.1038 0.0037 0.0513 0.0371 0.1719 0.0221 0.1274 0.0638 0.2177

336 0.0602 0.1767 0.1733 0.3523 0.4443 0.6048 0.0409 0.1385 0.0687 0.1861 0.0955 0.2502 0.1962 0.3582 0.1593 0.3498 0.0698 0.1995
ave. 0.0374 0.1439 0.0940 0.2256 0.5733 0.7170 0.0280 0.1225 0.0412 0.1450 0.0496 0.1507 0.1166 0.2650 0.0907 0.2386 0.0668 0.2086

d
7 0.0530 0.1774 0.2745 0.4731 0.3626 0.5481 0.1091 0.3058 0.0297 0.1337 0.0429 0.1527 0.0825 0.2403 1.2313 1.0706 0.2266 0.4184
30 0.0388 0.1631 0.7248 0.7666 0.0532 0.1730 0.0434 0.1635 0.0821 0.2379 0.0715 0.2049 0.0515 0.1908 0.3776 0.5294 0.1312 0.2976

ave. 0.0459 0.1703 0.4996 0.6198 0.2079 0.3605 0.0763 0.2346 0.0559 0.1858 0.0572 0.1788 0.0670 0.2156 0.8045 0.8000 0.1789 0.3580

E
TT

m
2

q
48 0.0480 0.2136 0.0552 0.1564 0.0421 0.1755 0.0138 0.0875 0.0203 0.1082 0.0160 0.1085 0.0513 0.2122 0.1161 0.3289 0.0188 0.1255

672 0.2610 0.3967 0.3868 0.4899 0.2565 0.4101 0.1882 0.3341 0.1001 0.2426 0.3990 0.4994 0.1972 0.3360 0.6187 0.7086 0.2092 0.3705
ave. 0.1545 0.3052 0.2210 0.3231 0.1493 0.2928 0.1010 0.2108 0.0602 0.1754 0.2075 0.3040 0.1242 0.2741 0.3674 0.5187 0.1140 0.2480

h
24 0.0477 0.1843 0.0084 0.0573 0.0720 0.2222 0.1324 0.2600 0.1204 0.2447 0.1531 0.2770 0.2097 0.3309 0.1910 0.3544 0.1622 0.3043

336 0.1715 0.3191 0.2444 0.4226 0.7422 0.7165 0.1850 0.3471 0.2280 0.3790 0.3381 0.4949 0.3706 0.4974 1.1425 0.9668 0.2664 0.4342
ave. 0.1096 0.2517 0.1264 0.2399 0.4071 0.4693 0.1587 0.3036 0.1742 0.3119 0.2456 0.3860 0.2902 0.4142 0.6668 0.6606 0.2143 0.3693

d
7 0.1340 0.2877 0.1109 0.2743 0.1483 0.3312 0.1579 0.2898 0.0598 0.1932 0.1363 0.2925 0.7144 0.7353 0.2307 0.3968 0.1399 0.2905
30 0.2405 0.4209 0.2913 0.4788 0.2419 0.3917 0.4619 0.6041 0.1025 0.2600 0.5618 0.6908 0.4634 0.5676 0.2725 0.4272 0.7805 0.8318

ave. 0.1873 0.3543 0.2011 0.3766 0.1951 0.3615 0.3099 0.4470 0.0812 0.2266 0.3491 0.4917 0.5889 0.6515 0.2516 0.4120 0.4602 0.5612

w
ea

th
er

m
144 0.0689 0.1405 0.0104 0.0375 0.3275 0.5325 0.0021 0.0451 0.0002 0.0079 0.0001 0.0077 0.3557 0.4485 0.0096 0.0862 0.0079 0.0757
432 0.0779 0.0941 0.0526 0.2008 0.2813 0.2114 0.0024 0.0479 0.0002 0.0109 0.0003 0.0113 0.0265 0.1283 0.0012 0.0305 0.0036 0.0492
ave. 0.0734 0.1173 0.0315 0.1192 0.3044 0.3720 0.0023 0.0465 0.0002 0.0094 0.0002 0.0095 0.1911 0.2884 0.0054 0.0584 0.0058 0.0625

h
168 0.0198 0.0625 0.0053 0.0632 0.5266 0.6766 0.0032 0.0505 0.0025 0.0479 0.0024 0.0473 0.1313 0.2658 0.0733 0.1946 0.0238 0.1327
720 0.2613 0.1102 0.1046 0.2949 0.6991 0.8098 0.0119 0.1026 0.0048 0.0557 0.0022 0.0342 0.0569 0.1898 0.0184 0.1118 0.0109 0.0847
ave. 0.1406 0.0864 0.0550 0.1791 0.6128 0.74322 0.0075 0.0766 0.0037 0.0518 0.0023 0.0408 0.0941 0.2278 0.0458 0.1532 0.0173 0.1087

d
7 0.4875 0.5602 0.5353 0.7140 0.4889 0.6876 2.1605 1.3557 3.0023 1.6231 2.2715 1.4023 0.4385 0.6330 0.3198 0.4270 1.8579 1.2431
30 1.6040 0.8114 1.7550 0.9405 1.7375 0.9118 1.6071 0.8738 1.5758 0.9744 1.4263 0.8551 2.0147 1.0465 2.3069 1.0952 1.5587 0.8874

ave. 1.0458 0.6858 1.1451 0.8273 1.1132 0.7997 1.8838 1.1147 2.2890 1.2987 1.8489 1.1287 1.2266 0.8397 1.3133 0.7611 1.7083 1.0653

w
4 0.0071 0.0744 0.3902 0.6022 0.1663 0.3788 0.1708 0.3859 0.0343 0.1536 0.1847 0.3945 3.1155 1.9798 1.4644 0.9952 5.9462 2.3537

13 0.3260 0.5061 0.1794 0.3859 0.1116 0.2787 0.1565 0.3241 0.1942 0.3146 0.0537 0.2160 4.0219 2.0210 0.3192 0.4976 3.1982 1.5834
ave. 0.1666 0.2903 0.2848 0.4940 0.1390 0.3288 0.1637 0.3550 0.1143 0.2341 0.1192 0.3053 3.5687 2.0004 0.8918 0.7464 4.5722 1.9686

Table 12. Full results of the anomaly detection task.

SMAP MSL SMD SWaT

metrics Acc. P R F1 Acc. P R F1 Acc. P R F1 Acc. P R F1

MF-CLR 0.9805 0.6018 0.7068 0.6403 0.9428 0.4769 0.7685 0.5721 0.9689 0.4772 0.8003 0.5751 0.9833 0.9251 0.9387 0.9318

self-supervised

T-Loss 0.8780 0.1201 0.1218 0.1209 0.9669 0.4851 0.5112 0.4854 0.9732 0.4960 0.6508 0.5443 0.9809 0.8677 0.9946 0.9268
TS-TCC 0.9786 0.5692 0.6069 0.5800 0.9497 0.5109 0.7541 0.5928 0.9404 0.3579 0.8624 0.4734 0.9803 0.9754 0.8593 0.9137
TNC 0.9786 0.5726 0.6618 0.6065 0.9501 0.4935 0.7096 0.5759 0.9400 0.3533 0.8548 0.4667 0.9817 0.9075 0.9459 0.9263
CPC 0.8487 0.1357 0.1647 0.1444 0.9386 0.2651 0.3461 0.2926 0.9288 0.3178 0.8165 0.4251 0.9876 0.8073 0.9470 0.8716
TS2vec 0.9818 0.6273 0.7780 0.6819 0.9393 0.4620 0.7594 0.5592 0.9282 0.3139 0.8920 0.4408 0.9872 0.9275 0.9703 0.9484
CoST 0.9788 0.5649 0.6676 0.6028 0.9354 0.4516 0.6696 0.5274 0.9307 0.3204 0.8916 0.4454 0.9879 0.9279 0.9763 0.9515
TF-C 0.9789 0.5854 0.6901 0.6235 0.9449 0.4813 0.7537 0.5705 0.9378 0.3554 0.8741 0.4688 0.9831 0.9741 0.8844 0.9271

parametric

SPOT 0.7340 0.2263 0.5575 0.2572 0.8309 0.0936 0.1985 0.1021 0.7128 0.1059 0.5475 0.1565 0.9395 0.7648 0.7258 0.7448
DSPOT 0.7454 0.2736 0.6614 0.3218 0.7948 0.1318 0.2242 0.1354 0.4343 0.0531 0.6801 0.0919 0.8355 0.4034 0.7357 0.5211
Luminol 0.8743 0.2581 0.4383 0.2934 0.8174 0.1808 0.4707 0.2445 0.6669 0.0992 0.7024 0.1617 0.8932 0.5394 0.8356 0.6500

supervised

DLinear 0.9312 0.3701 0.3418 0.3500 0.9408 0.2888 0.2123 0.2381 0.9846 0.7434 0.7223 0.7113 0.9816 0.9816 0.9816 0.9816
PatchTST 0.9407 0.4449 0.4089 0.4194 0.9378 0.2710 0.2113 0.2290 0.9856 0.7311 0.7248 0.7040 0.9809 0.9222 0.9210 0.9216
TimesNet 0.9292 0.3655 0.3400 0.3484 0.9362 0.2536 0.1917 0.2111 0.9835 0.7227 0.6973 0.6831 0.9807 0.9175 0.9246 0.9211
Autoformer 0.9287 0.3668 0.3246 0.3339 0.9362 0.2125 0.1673 0.1836 0.9858 0.7562 0.7205 0.7126 0.9582 1.0000 0.6562 0.7924
Informer 0.9239 0.2921 0.2634 0.2697 0.9366 0.2546 0.1966 0.2191 0.9858 0.7568 0.7205 0.7128 0.9581 1.0000 0.6555 0.7919
FEDformer 0.9239 0.3509 0.3139 0.3198 0.9362 0.2100 0.1671 0.1824 0.9859 0.7568 0.7237 0.7156 0.9581 1.0000 0.6555 0.7919
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Table 13. Full results of the imputation task.

dataset mask ratio metric MF-CLR T-loss TS-TCC TNC CPC TS2Vec CoST TF-C DLinear PatchTST TimesNet Autoformer Informer FEDformer

tr
af

fic

12.5% MSE 0.4366 0.4189 0.3733 0.3921 0.6650 0.3307 0.3413 0.4271 0.1486 0.9904 12.1985 0.5206 0.5383 0.5384
MAE 0.4146 0.4180 0.3939 0.4121 0.5336 0.3735 0.3753 0.4326 0.2118 0.7172 1.4739 0.4425 0.4329 0.4552

25.0% MSE 0.4712 0.4243 0.4503 0.4106 0.6628 0.3798 0.3768 0.4824 0.2324 0.9357 2.2654 0.5422 0.5599 0.5300
MAE 0.4364 0.4297 0.4339 0.4243 0.5438 0.3900 0.3974 0.4630 0.2705 0.6890 0.7923 0.4500 0.4366 0.4405

37.5% MSE 0.4884 0.4805 0.4875 0.4882 0.7488 0.4121 0.4281 0.5124 0.2661 0.9367 1.1240 0.5563 0.5961 0.5296
MAE 0.4562 0.4628 0.4611 0.4526 0.5916 0.4172 0.4250 0.4755 0.3094 0.6898 0.6874 0.4602 0.4500 0.4369

50.0% MSE 0.5412 0.5289 0.5287 0.4877 0.7745 0.4874 0.4825 0.5745 0.3303 0.9356 0.7744 0.5853 0.6232 0.5530
MAE 0.4878 0.4897 0.4850 0.4623 0.6056 0.4546 0.4571 0.5184 0.3525 0.6905 0.5622 0.4715 0.4526 0.4467

E
TT

m
1

12.5% MSE 0.0629 0.1120 0.1102 0.1052 0.1001 0.0760 0.0883 0.1008 0.0492 0.7300 0.5694 0.0529 0.0344 0.0322
MAE 0.1548 0.2243 0.2233 0.2164 0.2275 0.1887 0.2010 0.2144 0.1428 0.6066 0.4885 0.1602 0.1094 0.1146

25.0% MSE 0.0750 0.0985 0.1138 0.1049 0.1118 0.0746 0.0860 0.1045 0.0627 0.6493 0.3794 0.1165 0.0364 0.0431
MAE 0.1717 0.2098 0.2218 0.2158 0.2369 0.1875 0.1934 0.2130 0.1667 0.5165 0.4194 0.2528 0.1137 0.1338

37.5% MSE 0.0895 0.1252 0.1311 0.1240 0.1481 0.0912 0.0999 0.1297 0.0859 0.6460 0.3699 0.1615 0.0412 0.0550
MAE 0.1967 0.2375 0.2457 0.2378 0.2703 0.2086 0.2121 0.2420 0.1944 0.4986 0.4074 0.3000 0.1231 0.1584

50.0% MSE 0.1132 0.1574 0.1846 0.1644 0.1948 0.1037 0.1132 0.1695 0.1128 0.6373 0.4023 0.1863 0.0476 0.0870
MAE 0.2194 0.2713 0.2886 0.2756 0.3146 0.2251 0.2326 0.2800 0.2222 0.4910 0.4183 0.3121 0.1347 0.2104

E
TT

m
2

12.5% MSE 0.0289 0.0386 0.0439 0.0502 0.0411 0.0360 0.0349 0.0472 0.0241 0.1759 0.2477 0.0502 0.0150 0.0180
MAE 0.1127 0.1404 0.1454 0.1524 0.1435 0.1353 0.1313 0.1472 0.1060 0.3060 0.3117 0.1512 0.0822 0.0929

25.0% MSE 0.0341 0.0442 0.0568 0.0547 0.0495 0.0405 0.0390 0.0529 0.0319 0.0931 0.0877 0.0350 0.0168 0.0222
MAE 0.1270 0.1538 0.1650 0.1631 0.1621 0.1469 0.1387 0.1580 0.1246 0.2185 0.2062 0.1298 0.0861 0.1030

37.5% MSE 0.0429 0.0517 0.0736 0.0715 0.0720 0.0539 0.0479 0.0645 0.0408 0.0811 0.0763 0.0350 0.0190 0.0312
MAE 0.1433 0.1689 0.1899 0.1865 0.1951 0.1717 0.1542 0.1779 0.1418 0.1984 0.1926 0.1313 0.0915 0.1253

50.0% MSE 0.0542 0.0596 0.1005 0.0944 0.1017 0.0628 0.0477 0.0938 0.0486 0.0796 0.0937 0.0663 0.0239 0.0545
MAE 0.1602 0.1779 0.2196 0.2121 0.2318 0.1903 0.1603 0.2126 0.1553 0.1942 0.2150 0.1812 0.1058 0.1684

w
ea

th
er

12.5% MSE 0.0071 0.0216 0.0282 0.0267 0.0502 0.0253 0.0170 0.0319 0.0123 0.1973 0.4185 0.0879 0.0128 0.0085
MAE 0.0545 0.0989 0.1103 0.1091 0.1690 0.1061 0.0875 0.1180 0.0700 0.3230 0.4272 0.2096 0.0764 0.0595

25.0% MSE 0.0121 0.0265 0.0399 0.0463 0.0859 0.0344 0.0247 0.0430 0.0203 0.0839 0.1295 0.0183 0.0191 0.0143
MAE 0.0726 0.1103 0.1392 0.1434 0.2152 0.1303 0.1049 0.1377 0.0943 0.1931 0.2398 0.0895 0.0930 0.0752

37.5% MSE 0.0156 0.0354 0.0625 0.0595 0.1150 0.0388 0.0338 0.0609 0.0279 0.0545 0.1172 0.0228 0.0208 0.0214
MAE 0.0902 0.1249 0.1734 0.1675 0.2563 0.1365 0.1240 0.1675 0.1101 0.1336 0.2253 0.0932 0.0967 0.0936

50.0% MSE 0.0286 0.0458 0.0918 0.0968 0.1339 0.0467 0.0341 0.0985 0.0355 0.0516 0.0879 0.0360 0.0205 0.0430
MAE 0.1180 0.1431 0.2093 0.2179 0.2767 0.1570 0.1302 0.2170 0.1267 0.1273 0.2018 0.1232 0.0951 0.1434
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