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Abstract
Creation of nanomaterials with specific morphol-
ogy remains a complex experimental process,
even though there is a growing demand for these
materials in various industry sectors. This study
explores the potential of AI to predict the morphol-
ogy of nanoparticles within the data availability
constraints. For that, we first generated a new
multi-modal dataset that is double the size of anal-
ogous studies. Then, we systematically evaluated
performance of classical machine learning and
large language models in prediction of nanoma-
terial shapes and sizes. Finally, we prototyped
a text-to-image system, discussed the obtained
empirical results, as well as the limitations and
promises of existing approaches.

1. Introduction
Nowadays, nanomaterials are spread across many fields of
science and industry (Zebarjadi et al., 2011; Liu & Lal, 2015;
Kairdolf et al., 2017; Shifrina et al., 2020; Gao et al., 2021;
Takechi-Haraya et al., 2022). In each of those fields, for a
nanomaterial to be fit for purpose, its size, shape, and other
morphological parameters must be precisely controlled, as
they directly influence toxicity, catalytic activity and other
properties of nanomaterials crucial for applications. Alter-
ing these parameters also allows to improve efficiency of
drug delivery systems (Sen Gupta, 2016), catalysts (Shifrina
et al., 2020), energy storage systems (Pomerantseva et al.,
2019), etc.

Typically, creating a nanomaterial with a specific set of
properties requires a significant number of experiments
ranging from a few repetitive syntheses to a dozen of sub-
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stantially different synthesis procedures (Vaidyanathan &
Sendhilnathan, 2008; Sun et al., 2021). Each synthesis is
followed by a specific method of analysis to confirm the
experimental outcome. One of the most prominent meth-
ods for analyzing nanomaterials is the scanning electron
microscopy (SEM) (Smith & Oatley, 1955). With SEM, it
is possible to obtain information about the size and shape
of nanoparticles (NPs), as well as the structure of the sur-
face, surface flaws and contaminants. Currently, the SEM
method is deemed irreplaceable despite being costly and
time-consuming (Singh, 2016). On average, one analysis
with SEM can cost up to a few hundred US dollars, leading
to vast amounts of resources required to run any large-scale
study. While conducting such experiments scientists are
most often guided by their experience and intuition acquired
in past experiments. This is because the problem of de-
termining the morphology of nanomaterials based on the
synthesis parameters currently has no theoretical or compu-
tational solution, in general. At the same time, syntheses
of nanomaterials include too many different interdependent
parameters for a person to be able to account for. There-
fore, there is a high demand (AbdelHamid et al., 2022) for
predictive models capable of characterizing the properties
of nanomaterials bypassing the need of costly experimental
work.

Artificial intelligence (AI) offers the most promising set
of tools to meet this demand. In fact, classical machine
learning (ML) models including artificial neural networks
have already been successfully applied to many tasks related
to nanomaterial science (Serov & Vinogradov, 2022; Chen
et al., 2023; Banaye Yazdipour et al., 2023). With recent
astonishing advances in deep learning (Jumper et al., 2021;
Rombach et al., 2021; Ramesh et al., 2022; OpenAI, 2023;
Touvron et al., 2023; Jiang et al., 2023; Merchant et al.,
2023), the potential of AI in the design of nanomaterials
seems truly immense. However, one has to possess large
volumes of carefully curated data to fully exploit the power
of AI. As discussed earlier, accumulating the data appropri-
ate for the prediction of nanomaterial morphology has been
a major challenge for decades. Within realistic data con-
straints, the boundaries of AI in the design of nanomaterials
are underexplored.
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One of the goals of this work was to showcase possible appli-
cations of the most recent advances in machine learning to
the design of nanomaterials, and bridge the gap between the
experimentalists and the machine learning experts. A huge
number of scientific groups are engaged in optimization of
various parameters of nanomaterials, in particular morphol-
ogy (Shandilya et al., 2022; Jiang et al., 2022; Tu et al.,
2022; Kommula et al., 2024), as it allows new industrial
applications or improves the properties of existing materials.
The importance of this direction of research is also high-
lighted by the recent efforts of the leading AI companies,
such as DeepMind (Merchant et al., 2023).

In this study, we aim to unveil the capabilities and limi-
tations of AI in predicting morphology of nanomaterials.
For that, we first conduct 215 experimental syntheses of
calcium carbonate-based nanomaterials of different shapes
and sizes. We carefully document the synthesis procedures
with the parameters of experimental conditions, take SEM-
images of the resulting nanoparticles, segment and manually
annotate them with expert knowledge. We investigate the
statistical associations in this multimodal dataset and iden-
tify features informative of nanoparticle morphology. We
further use these findings to train classical ML models to
predict sizes and shapes of nanoparticles and achieve 0.77
and 0.80 average accuracy, respectively. For the first time in
the field of nanomaterial synthesis, we explore the potential
of LLMs for prediction tasks. Using few-shot methods, we
utilize state-of-the-art models, such as GPT-4, to predict
the shapes of nanomaterials and achieve an impressive 0.81
average accuracy. Finally, we augment the available data
to prototype a text-to-image system aimed at generating
an image of a nanoparticle based on the description of its
synthesis procedure. In conclusion, we review the obtained
empirical results and discuss the future of AI in the field of
nanomaterial design.

2. Related work
Over the past 10 years, there have been several works pre-
dicting morphological properties of nanoparticles. However,
the majority of them focused on size prediction considering
a single experimental system, where the resulting particles
conform to the same shape and their sizes can be easily
standardized. Some particular examples include size predic-
tion for silver nanoparticles (Chen et al., 2016; Shafaei &
Khayati, 2020), carbon nanotubes (Iakovlev et al., 2019),
agar nanospheres (Zaki et al., 2015), chitosan nanoparti-
cles (Baharifar & Amani, 2017), polymeric nanoparticles
(Shahsavari et al., 2013; Soliman et al., 2014; Youshia et al.,
2017), TiO2 nanoparticles (Pellegrino et al., 2020) and dif-
ferent methacrylates (Kimmig et al., 2021). In our work,
there is no attachment to nanoparticles of a certain shape.
Instead, we generate a dataset containing multiple different

shapes, which greatly expands the generalizability of our
approach and enables future transfer learning applications.
In addition, unlike many previous studies, we provide the
data for benchmarking and the code for reproducibility.

A few published works specialize in predicting the shapes
of nanoparticles (Timoshenko et al., 2017; Chen et al., 2020;
Yao et al., 2022), but they too have certain shortcomings. For
example, Timoshenko et al. created a model that takes ex-
perimental X-ray absorption near-edge structure (XANES)
spectroscopy data as input to predict the 3D structure of
metallic nanoparticles (Timoshenko et al., 2017). Although
circumventing the need for SEM analysis, this approach
still requires actual synthesis and experimental evaluation
of other properties to predict the shape of the nanomate-
rial. This narrows down the list of possible applications
significantly. In contrast, our work explores data-driven
approaches that only use features of the past syntheses to
predict morphology of potentially new nanomaterials.

More advanced deep learning algorithms have also found
applications in the creation of new nanomaterials (Roccapri-
ore et al., 2021; Xu et al., 2023). In the paper by Kim, Han,
and Han, a model based on convolutional neural networks
was proposed capable of determining the morphology of
nanomaterials based on the SEM images (Kim et al., 2020).
Such efforts help to better understand morphological prop-
erties of nanomaterials and simplify data labeling for the
future predictive approaches. However, they do not avoid
tedious experimental work preparing the datasets of SEM
images, by design. Ultimately, our work stands out by pre-
dicting SEM images of nanoparticles of different morpholo-
gies based on the properties of the corresponding syntheses,
which is an inverse problem formulation.

Recent advances in natural language processing (OpenAI
et al., 2023; Jiang et al., 2023; Touvron et al., 2023) have
also been reflected in some areas of chemistry. Recently,
there have been studies that describe the use of LLMs, in
particular using the few-shot method, to predict the char-
acteristics of various chemical objects (Zheng et al., 2023)
and even to generate new chemical structures (Jablonka
et al., 2022). However, the potential application of LLMs to
predict the morphology of nanomaterials has not yet been
investigated.

Various multimodal systems have been proposed recently
in application to nanomaterial science (Kononova et al.,
2019; Lee et al., 2020; Hiszpanski et al., 2020). Since the
emergence of Stable Diffusion (Rombach et al., 2021) and
DALL-E (Ramesh et al., 2022), image generation models
have attracted particularly much public attention. A recent
work in nanofabrication presented an image-to-image sys-
tem capable of predicting the postfabrication appearance
of structures manufactured by focused ion beam milling
(Buchnev et al., 2022). Although a very specialized ap-
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plication, it demonstrates how the field of nanotechnology
already benefits from generative AI. In this work, we proto-
typed a text-to-image solution predicting morphologies of
the previously unseen nanomaterials.

3. Dataset preparation
To obtain the most reliable and standardized dataset, we
performed 215 syntheses of calcium carbonate-based nano-
materials. As mentioned above, usually up to several dozen
experiments are conducted to perform optimization of nano-
material properties. When using machine learning, more
samples are usually needed to build predictive models, but
due to the resource-intensive and time-consuming nature
of synthesizing and analyzing nanomaterials, most of the
morphology prediction works described above are limited
to about a hundred syntheses. In this work, we generated a
dataset that is double that size.

We considered a single chemical system of calcium car-
bonate, because of its rich variety of nanoparticle shapes
and sizes. By making this study design choice, we were
hoping to achieve better generalization of our work to other
nanoparticles, since most of the known shapes are already
represented in our dataset.

For each synthesis, we documented all variable parameters,
such as names of reagents, solvents, etc., their concentra-
tions, temperature and reaction time, as well as other synthe-
sis parameters. Additionally, for each synthesis, one most
representative SEM-image was taken, which clearly shows
nanoparticles with distinguishable sizes and shapes.

We thoroughly analyzed shapes and sizes of the resulting
nanoparticles and identified five different shapes: cubic,
spherical, stick-shaped, flat, and amorphous. For each
shape, except flat and amorphous, we distinguished small-,
medium- and large-sized nanoparticles applying an empir-
ical threshold. In the case of amorphous and flat particles,
the number of samples was too small to consider differenti-
ation. Altogether, we used 5 different shape categories and
9 different categories combining shapes and sizes to label
the dataset.

To train the variational autoencoder in the text-to-image
setup described later, each image from the original dataset
with 215 syntheses was segmented to extract multiple im-
ages of individual nanoparticles using ImageJ (Rueden et al.,
2017). The resulting dataset was further augmented to in-
crease the size of the dataset and decrease the probability of
overfitting. For that, we generated new images by applying
random rotations, different blurring and brightness settings.
In total, the training dataset contained 46,800 images of
individual nanoparticles.

4. Feature selection
Each synthesis in our dataset was described by 10 contin-
uous and 3 categorical variables that might be influencing
the shapes of nanomaterials in different ways. This section
describes statistical evaluation of those features to deter-
mine whether they are indeed informative of the geometry
of nanomaterials, which served as a basis for downstream
AI applications.

4.1. Analysis of continuous variables

Let (X1
1 , X1

2 , . . . , X1
n) denote real values of a parameter of

a synthesis which produces cubic nanoparticles. Let (X2
1 ,

X2
2 , . . . , X2

m) denote the real values of the same parameter
of any synthesis which always results in nanoparticles of
different shapes. We wondered whether the two samples
came from the same population or not. If so, each value of
the first sample would have had an equal chance of being
larger than each value of the second sample. Therefore, the
null hypothesis can be formulated as follows:

H0 : p(X1
i > X2

j ) =
1

2

In fact, this formulation represents the Mann-Whitney U test
(Nachar, 2008). We applied it for each of the real-valued
parameters of synthesis and each type of the nanomaterial
shapes. We found that formation of stick-shaped nanopar-
ticles was dependent on the reaction temperature, synthe-
sis time, and polymer mass and/or concentration. Cubic
shapes of nanoparticles were also associated with certain
temperatures and polymer concentrations, as well as the
molar mass of the polymer. We used the Kruskal-Wallis
H test (Kruskal & Wallis, 1952), which is analogous to
Mann-Whitney U test but applicable to three and more sam-
ple groups, Kolmogorov-Smirnov test (Smirnov, 1939) and
ANOVA (Marsal, 1987) to corroborate these findings. Here-
with, we used the significance level = 0.05 and the Bonfer-
roni correction method to account for multiple hypothesis
testing.

4.2. Analysis of categorical variables

To establish relationships between categorical parameters
of synthesis procedures and the corresponding shapes of
nanomaterials, we composed contingency tables as shown
in Table 1.

According to Fisher, a ∼ Hypergeometric(N,K, n),
where N = a+ b+ c+ d is the population size, K = a+ b
is the number of successes and n = a + c is the number
of draws (Fisher, 1922). Therefore, the probability of this
outcome is given by:
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Table 1. Example contingency table for testing categorical vari-
ables of synthesis procedures.

Compound Compound
in synthesis not in synthesis

NPs of a given shape a b
NPs of other shapes c d

p =

(
a+ b
a

)(
c+ d
c

)
(

n
a+ c

) =

(
a+ b
b

)(
c+ d
d

)
(

n
b+ d

) =

=
(a+ b)!(c+ d)!(a+ c)!(b+ d)!

a!b!c!d!n!

We computed these probabilities for each combination of
nanoparticle shape and polymer/surfactant/solvent involved
in the synthesis. Using the same significance level and
the correction for multiple hypothesis testing as before, we
observed several strong associations: stick-shaped nanopar-
ticles with polyethylene glycol (PEG) and polyethylenimine
(PEI) polymers; flat nanoparticles with presence of PE-
DOT:PSS and polyvinylpyrrolidone (PVP); cubic nanopar-
ticles with presence of polyacrylic acid (PAA) and PE-
DOT:PSS. We also found strong dependencies of nanoparti-
cles’ shapes on the following surfactants: Myristyltrimethy-
lammonium bromide and Sodium dodecylsulfate. In the
case of amorphous nanoparticles, the presence of Propylene
glycol and tert-Butanol solvents was also found significant.
Finally, we applied the Chi-squared test (Magnello, 2005)
to confirm the aforementioned findings. For more infor-
mation on how the statistical tests and the most significant
associations between particular synthesis parameters and
nanomaterial shapes, see Appendix A.1.

Notably, many of the parameters of syntheses had no ef-
fect on the shapes of nanomaterials, e.g., stirring speed,
concentrations of Ca and CO3 ions, presence of Hexade-
cyltrimethylammonium bromide and Triton X-100 surfac-
tants, and 1-Hexanol and Methyl alcohol solvents. For the
downstream machine learning applications, we excluded
those features from the data.

5. Shape and size prediction
Statistical tests proved certain associations between the pa-
rameters of syntheses and the morphologies of the resulting
nanomaterials. Therefore, we attempted to exploit them in
predicting shapes and sizes of nanomaterials using classical
machine learning algorithms.

In some cases, several nanoparticles of different shapes and
sizes were present on the same image, so initial 215 syn-

theses produced 314 training examples of nanoparticles of
different types. Following the logic of the statistical eval-
uation, we formulated a set of binary classification tasks,
one for each type of shape or a combination of shape and
size. In this formulation, we first trained a separate model
to distinguish nanoparticles of each particular shape. Then,
we ran multiple predictions for each sample during the infer-
ence to establish what shapes of nanoparticles were present
on the corresponding image. The same logic applied to
combinations of shapes and sizes. Notably, some synthe-
ses consistently result in nanoparticles of several different
shapes. Our approach allows dealing with such ambiguities
without the need to determine the prevailing nanomaterial
shape or size.

5.1. Classical machine learning

5.1.1. TREE-BASED ENSEMBLE MODELS

We trained the tree-based models, namely Random Forest
(RF) and Gradient Boosted Trees (XGB), to predict 9 cate-
gories representing combinations of shapes and sizes and 5
categories representing shapes only. Therein, we followed
all the good practices in data preprocessing and model selec-
tion. A thorough description of the process of development,
optimization and evaluation of classical machine learning
models is presented in the Appendix A.2.

5.1.2. RESULTS

The accuracy and the F1 scores of the best models evaluated
on the test dataset are presented in Table 2 and Table 3. Each
experiment was performed 5 times at different random states,
and the mean value and standard deviation were calculated.

Table 2. Prediction of shapes. Top average accuracy and F1 scores
achieved by the Random Forest classifiers on the test set.

Shape # samples Accuracy F1 score

Cube 140 0.76 ± 0.02 0.73 ± 0.03
Stick 84 0.78 ± 0.01 0.77 ± 0.01
Sphere 40 0.82 ± 0.06 0.67 ± 0.08
Flat 16 0.82 ± 0.11 0.52 ± 0.09
Amorphous 34 0.80 ± 0.02 0.62 ± 0.04

Average 0.80 ± 0.04 0.66 ± 0.05

Based on our results, the shapes of nanoparticles can be
predicted reasonably well (Table 2). For every nanomaterial
shape, RF performed better than XGB, so only RF metrics
are displayed. The average accuracy and F1 score were 0.80
and 0.66, respectively. Unsurprisingly, the samples of the
least represented categories (namely, flat and amorphous
shapes) produced lower F1 scores, which decreased the
overall metrics.
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Table 3. Prediction of shapes and sizes with tree-based ensemble models. Average accuracy, and F1 scores for Random Forest (RF) and
Gradient Boosting (XGB) classifiers on the test set.

Shape & size # samples Accuracy F1 score

XGB RF XGB RF

Cube small 25 0.85 ± 0.01 0.82 ± 0.04 0.58 ± 0.07 0.57 ± 0.08
Cube medium 49 0.64 ± 0.05 0.64 ± 0.03 0.48 ± 0.05 0.52 ± 0.06
Cube large 66 0.67 ± 0.04 0.70 ± 0.03 0.61 ± 0.02 0.64 ± 0.03

Stick small 30 0.83 ± 0.03 0.82 ± 0.03 0.52 ± 0.04 0.54 ± 0.04
Stick medium 28 0.83 ± 0.06 0.81 ± 0.07 0.61 ± 0.07 0.59 ± 0.09
Stick large 26 0.79 ± 0.04 0.79 ± 0.04 0.64 ± 0.05 0.63 ± 0.05

Sphere small 11 0.70 ± 0.36 0.68 ± 0.34 0.37 ± 0.19 0.37 ± 0.18
Sphere medium 19 0.86 ± 0.04 0.84 ± 0.07 0.55 ± 0.06 0.55 ± 0.10
Sphere large 10 0.72 ± 0.27 0.61 ± 0.28 0.44 ± 0.16 0.40 ± 0.18

Average 0.77 ± 0.10 0.75 ± 0.10 0.53 ± 0.08 0.53 ± 0.09

Extending the number of categories to include the sizes of
nanoparticles as well resulted in superior performance of
XGB in most cases (Table 3). The overall average accuracy
for the task was 0.77, and the average F1 score – 0.53 .
This drop in performance was expected, as the number of
samples per category became smaller, increasing the risk
of overfitting. Underrepresentation becomes even more ap-
parent as well for some classes. Apart from evaluating the
models on the test set, which had never been used during
training, we also explored feature importances as an addi-
tional validation step. In most cases, we observed that the
top 5 most important parameters were well in agreement
with the statistical tests described in the previous section
and presented in Table 6 of the Appendix A.1. An example
of feature importance analysis for the Random Forest model
predicting whether a nanoparticle belongs to a stick shape
is shown on Figure 4 of the Appendix A.2.

Thus, we demonstrated the possibility of predicting shapes
and sizes of NPs with machine learning models, confirmed
by average test accuracy of 0.80 and by feature importance
analysis coherent with the statistical evaluation. The trained
models can already be used to predict morphological prop-
erties of new nanomaterials based on their synthesis pro-
cedures. However, with recent advances in large language
models, we wondered whether similar prediction perfor-
mance can be achieved with state-of-the-art LLMs in a few-
shot scenario. That would allow material scientists to use
natural language for prediction tasks, bypassing the need to
develop and optimize complex machine learning pipelines.
In the following section, we describe applications of LLMs
to nanomaterial shape and size prediction.

5.2. Large language models

5.2.1. TEXTS OF SYNTHESIS PROCEDURES

A dataset of texts describing synthesis procedures was pre-
pared for morphology prediction with LLMs and training
the text-to-image model. For that, we created a dozen of se-
mantic templates with gaps for particular values of synthesis
parameters. We leveraged the publicly available GPT-3.5
(Liu et al., 2023) to generate such templates based on a few
examples taken from the scientific articles. Thanks to GPT’s
strong ability to paraphrase while maintaining the writing
style, we managed to collect texts of synthesis procedures
sufficiently different from each other in semantics but iden-
tical in contents (i.e., the sequence of actions and the list of
relevant parameters). The paraphrasing was applied to make
sure our approach is capable of handling real-world data and
less prone to overfitting. Each template was validated by
the experimental team. Peer review included both checking
that the experiment description was accurate to maintain re-
producibility and that the constructed templates were close
to those commonly found in the scientific publications. We
also did a practical evaluation of the generated templates to
ensure that they contain all the necessary information about
the syntheses. For that, we used BERT to extract features
of the filled templates and predict the original synthesis
parameters with a perceptron. In most cases, we achieved
retrieval accuracy close to 1. We provide two examples of
the generated templates in the Appendix A.3.

5.2.2. FEW-SHOT CLASSIFICATION

It is now known that LLMs can achieve quite high per-
formance in domain-specific regression and classification
tasks, often on par with the other widely accepted methods
(Jablonka et al., 2022). In this study, we investigated appli-
cations of LLMs to nanomaterial morphology prediction.
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For this purpose, we used a few-shot method, in which we
show the model only a few randomly selected samples from
our training set and then prompt it to make a prediction for
a test sample. In all experiments, we used a special prompt
describing the task that the LLM was given. It starts as
follows:

You are an expert in the synthesis of nanomaterials. You
analyze the conditions for obtaining a nanomaterial and pre-
dict what particle shapes will be present in the synthesized
material. There are five particle shapes: ’Cube’, ’Stick’,

’Sphere’, ’Flat’ and ’Amorphous’. A nanomaterial can con-
tain particles of different shapes. If you cannot say exactly
what it is, list the forms that have the highest probability in
those conditions.

We then appended several random examples from the train-
ing set with the corresponding true labels and a single ex-
ample from the test subset to the prompt. While doing so,
we varied the number of random examples N , the sam-
pling method and the data format. We used from N = 2
to N = 10 training examples in the prompt. We experi-
mented with two sampling strategies: i) at least one training
example belongs to the same target class as the test sam-
ple, ii) all training examples belong to the same class as
the test sample. The choice of the sampling strategies was
based on practical considerations around real experiments.
More specifically, strategy i) is targeted at characterization
of previously unknown shapes, while strategy ii) follows the
logic of a confirmation experiment, when a researcher only
needs to confirm the presence of a particular nanomaterial
shape in the synthesis. Finally, we used either of the two
formats: textual (described in subsection 5.2.1) or tabular.
In the tabular format, features of the training examples were
concatenated to a string along with their values separated by
colon, e.g., ”Ca ion, mM: 44; CO3 ion, mM: 159...”. Finally,
the LLM was instructed to produce the list of nanoparticle
shapes corresponding to the test synthesis as an answer. A
more detailed description of prompts is presented in the
Appendix A.3.

Using the above prompt structure, we applied
6 state-of-the-art LLMs, including GPT-4-turbo
(gpt-4-0125-preview), GPT-4 (gpt-4-0613)
and GPT-3.5-turbo (gpt-3.5-turbo-1106) from
OpenAI (OpenAI, 2023), as well as the latest versions of
Mistral Medium, Small and Tiny from Mistral AI (Jiang
et al., 2023), to the same classification tasks described
earlier. To systematically evaluate performance, we
repeated each computational experiment 5 times and
calculated mean and standard deviation for the standard
classification metrics.

5.2.3. RESULTS

Table 4 shows top performance of LLMs predicting shapes
of nanomaterials. Strikingly, GPT-4 achieved an even higher
average accuracy than tree-based ensemble models. Among
the other LLMs, it also demonstrated the smallest standard
deviation, which speaks for better consistency. Interestingly,
the second best model was Mistral-small. Given that its
inference time and pricing are much lower than GPT-4, this
model could be a pragmatic choice for practitioners as a
balanced cost-quality trade-off. A detailed comparison of
the pricing, inference time and rate limits is summarized in
the Table 9 of Appendix A.4. In addition, we observed some
mysterious drops in performance when predicting spherical
shape. More specifically, Mistral-medium and GPT-4-turbo
produced the accuracy of 0.38 and 0.44, respectively, which
dramatically decreased their average scores, while the other
models under identical experimental conditions coped with
the problem reasonably well.

Analyzing the impact of sampling methods and data formats
(Table 5 shows results for one of the GPT-4 experiments),
we came to the following conclusions. First, including more
examples from the training set belonging to the same class
as the test sample definitely benefits the prediction. We
observed improvements in accuracy in all related cases. Sec-
ond, textual and tabular data formats performed similarly.
However, textual format consistently resulted in a 4% in-
crease in average accuracy, which was expected due to the
nature of LLMs.

Finally, the number of training samples in the prompt also
correlated with the performance metrics (Figure 1). For all
shapes except the cube, we observed an increase in accuracy
as more examples from the training set were included for
prediction. However, longer prompts are also known to
trigger hallucination. On top of that, there is a hard limit
on the maximum prompt size for many models. Therefore,
for any particular application, one has to seek another trade-
off between the number of training samples and the total
prompt size. In our case, the performance seemed to reach
a plateau with 8 samples (see Appendix A.4 for more de-
tails). The same configuration demonstrated the overall top
performance (Table 4).

Achieving state-of-the-art performance for nanomaterial
morphology prediction with LLMs is very exciting for sev-
eral reasons. First, it makes it possible for domain experts
and experimentalists to avoid implementing complex data
engineering pipelines and optimizing machine learning mod-
els, and use natural language to obtain the predictions in-
stead. Second, it is obvious from our empirical results (Ta-
ble 4) that an ensemble of LLMs would by far outperform
the best classical ensemble models. Third, based on our
empirical results, LLMs look especially advantageous in
classification of underrepresented classes, or in small data
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Table 4. Top performance achieved by the LLMs in prediction of nanomaterial shapes. Average accuracy corresponds to the following
prompting strategy: only target classes in prompt, syntheses presented in the textual format, number of training examples N = 8. Only
accuracy is given since the corresponding data is balanced.

Mistral-medium Mistral-small Mistral-tiny GPT-3.5-turbo GPT-4 GPT-4-turbo

Cube 0.70±0.11 0.76±0.08 0.76±0.19 0.69±0.18 0.71±0.05 0.60±0.15
Stick 0.71±0.04 0.67±0.11 0.71±0.10 0.62±0.16 0.68±0.05 0.61±0.13
Sphere 0.38±0.12 0.77±0.18 0.62±0.24 0.63±0.15 0.88±0.05 0.44±0.12
Flat 0.89±0.08 0.92±0.07 0.81±0.17 0.90±0.06 0.90±0.10 0.91±0.06
Amorphous 0.70±0.15 0.88±0.08 0.53±0.16 0.80±0.13 0.87±0.12 0.88±0.08

Average 0.68±0.10 0.80±0.10 0.69±0.17 0.73±0.13 0.81±0.07 0.69±0.11accuracy

Figure 1. Average accuracy of GPT-4 for different number of sam-
ples in prompt taken from the training set. Sampling method: only
target classes in prompt. Syntheses presented in the textual format.
Colors correspond to different shapes of nanoparticles.

scenarios. In particular, GPT-4 demonstrated a significant
increase in accuracy when predicting less represented spher-
ical, flat and amorphous nanoparticles (Table 2). Altogether,
our results look very promising for the broader adoption of
LLMs in the nanomaterial science.

5.3. Text-to-image system

Prediction of a nanoparticle shape as a categorical vari-
able based on the selected set of properties describing the
synthesis procedure is inherently subject to information
loss. Intuitively, images are much better representations of
shapes than any handcrafted categories, and the full text of
a nanoparticle synthesis carries more information compared
to a set of numerical features extracted from it. Therefore,
a text-to-image paradigm previously explored in general-
purpose applications (Rombach et al., 2021) and other do-
mains (Khwaja et al., 2022) looks appealing in the context of

Table 5. Average accuracy for different prompting strategies of
GPT-4 with N = 4 training examples: combinations of sampling
methods and data formats. Only accuracy is given since the corre-
sponding data is balanced.

Sampling At least one target Only target
method class in prompt classes in prompt

Data Textual Tabular Textual Tabularformat

Cube 0.52±0.10 0.49±0.13 0.56±0.16 0.67±0.11
Stick 0.54±0.03 0.59±0.05 0.61±0.10 0.61±0.05
Sphere 0.43±0.16 0.43±0.14 0.54±0.08 0.32±0.10
Flat 0.88±0.11 0.86±0.08 0.92±0.05 0.94±0.02
Amorphous 0.57±0.20 0.37±0.15 0.68±0.07 0.59±0.15

Average 0.59±0.12 0.55±0.11 0.66±0.09 0.62±0.09

our problem. In the following, we attempt to prototype such
a system to explore its potential despite the hard constraints
on the sample size.

We break down the text-to-image system into three main
components. The first one is the natural language process-
ing model converting the text of a synthesis procedure to
a vector of numerical features. The second component is
the generative model with an encoder-decoder architecture
designed to learn representations of images of nanoparticles.
Finally, the third component is the “linking” model translat-
ing the text representations into the image representations.
When combined, the three components make a generative
system capable of drawing the morphology of a nanomate-
rial based on the description of its synthesis (Figure 2).

5.3.1. NATURAL LANGUAGE PROCESSING MODEL

The main requirement for the NLP model used for feature
extraction was the ability to retain information about the
qualitative and the quantitative features of a synthesis. In
order to select the NLP model, we formulated several classi-
fication and regression tasks related to the key features of
a synthesis procedure. We used the linear evaluation setup

7



Unveiling the Potential of AI for Nanomaterial Morphology Prediction

Figure 2. A schematic of the text-to-image system prototype. A)
VAE training. The images of nanoparticles are used to train a
variational autoencoder (VAE). B) Final model inference. The
corresponding synthesis procedures are converted into vector rep-
resentations with a pretrained BERT (bottom left). The “linking”
autoencoder is trained to map text and image representations (bot-
tom center). Finally, the decoder of the VAE is used to generate
new images of nanomaterials based on the descriptions of synthe-
ses (bottom right).

with standard metrics (Kolesnikov et al., 2019) to compare
several pretrained transformer-based models. We found that
the classic BERT model (Devlin et al., 2018) achieved per-
fect scores in most tasks and, therefore, used BERT as the
feature extractor in the text-to-image setup (Figure 2). It
also met the requirement of being relatively lightweight,
easy to start up and use.

5.3.2. AUTOENCODER-BASED GENERATIVE MODEL

The most widely spread deep learning model architectures
capable of generating images are generative adversarial net-
works (GANs) (Goodfellow et al., 2014), variational autoen-
coders (VAEs) (Kingma & Welling, 2013), and diffusion
models (Rombach et al., 2021; Ramesh et al., 2022). We
opted for a variational autoencoder as a more stable and a
more suitable solution for small datasets, given the limited
amount of data available for training.

The central idea of autoencoders is to learn a compressed
representation of the input data while solving a data recon-
struction problem. Variational autoencoders also imply a
certain probabilistic distribution in the input data, which
allows it to generate meaningful outputs by sampling the
latent representation after the training is complete (Kingma
& Welling, 2013). In order to plug the VAE into the text-
to-image system, we first trained it on the set of SEM im-
ages and then froze the decoder part (Figure 2). Refer to

Appendix A.5 and A.6 for tested VAE architectures and
evaluation metrics used.

We validated the final VAE model by monitoring training
losses and evaluation metrics (Figure 3), analyzing indi-
vidual examples of reconstructed images and visualizing
the space of learned representations allowing to distinguish
different clusters of nanoparticle shapes (Appendix A.9).

Figure 3. A) PSNR and SSIM metrics of the selected VAE by
epoch. B) Training loss of the selected VAE by epoch.

5.3.3. “LINKING” AUTOENCODER MODEL

The last component of the proposed text-to-image system is
the “linking” neural network learning to map representations
of the two modalities. Considering the data limitations and
the empirical results described earlier, we refrained from
using complex model architectures for this task. Instead,
we developed another set of shallow autoencoder networks
having from 3 to 8 linear layers. Like in the case of VAE,
we optimized hyperparameters for each network, including
the dimensionality of the latent space, to achieve the low-
est reconstruction MSE (see Appendix A.7 for details on
training and generation phases). The best architecture for
the “linking” autoencoder is given in Appendix A.8.

5.3.4. RESULTS

We observed that our prototype of the text-to-image sys-
tem copes best with the generation of cubic nanoparticles,
which was expected since the cubic shape was the most
represented in the training data. For syntheses of this type
of nanomaterials, the generated images were often distinct
and well-shaped. It was also easier to grasp the size of cubic
nanoparticles compared to other types. In general, however,
the size of the dataset was insufficient to generate high qual-
ity images directly from text. Several examples of generated
images are shown on Figure 5 of the Appendix A.8.

Despite the limited applicability of this prototype, we re-
alized that repeated image generation based on the same
synthesis parameters can provide insights into the poly-
dispersity of NPs. Polydispersity is normally defined as
PdI = ( σ

2a )
2, where σ is the standard deviation of the par-
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ticle diameter, and a is the mean hydrodynamic radius. We
performed 50 generations of amorphous NPs with the same
synthesis parameters and observed maximal diameters rang-
ing from 30 to 80 pixels. As polydispersity characterization
is critical for many applications (Clayton et al., 2016), a
generative model, such as the proposed prototype, could be
instrumental in fast in silico screening of NPs by estimating
PdI based on the predicted images.

6. Discussion and conclusion
In this work, we explored the potential of AI in predicting
morphological properties of nanomaterials using the newly
generated multimodal dataset of calcium carbonate nanopar-
ticles. First, we investigated statistical associations between
synthesis procedures and the resulting morphologies. Then,
we trained and optimized tree-based ensemble models to
predict multiple categories of nanomaterial shapes and sizes.
After that, we systematically evaluated capabilities of the
state-of-the-art LLMs in the same prediction tasks. Finally,
we prototyped a text-to-image system to predict images of
nanoparticles directly from the descriptions of syntheses.

Notably, this work stands out by creating a new dataset of
multiple types of nanoparticle shapes, which can be used
for benchmarking in the future. This dataset opens up the
possibility of predicting the shape of nanomaterials as it
represents nanomaterials of multiple shapes within a single
chemical system. Also, to our knowledge, we are the first to
train machine learning models to distinguish between nano-
material shapes based on the synthesis parameters. Despite
these achievements, there are still several unresolved issues
in the field and certain limitations to the proposed models.
A more detailed discussion and a comparison with previous
works are offered in Appendix A.11 and Appendix A.10,
respectively.

While text-to-image applications remain largely infeasible
due to the limited data availability, we identified a huge
potential for future LLM applications. Not only did we
observe on par performance with the classical ensemble
models, we also managed to collect evidence for the su-
perior performance of LLMs, especially in the small data
scenarios. Ensemble methods for LLMs now look as a
promising research direction, as less computationally expen-
sive models like Mistral-small approach the market leader’s
performance in the domain-specific tasks.

7. Data and code availability
All datasets, scripts and results described in this
work are available for reproducibility and possi-
ble transfer learning applications in this repository:
https://github.com/acid-design-lab/
Nanomaterial_Morphology_Prediction.
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A. Appendix
A.1. Details on statistical testing

The Kolmogorov-Smirnov test (Smirnov, 1939). If the null hypothesis is rejected, this test indicates that the two samples are
not drawn from the same distribution, that is, the two samples of a synthesis parameter differ in the presence or absence of a
particular class of nanoparticles. Let (X1

1 , X
1
2 , . . . , X

1
m) be independent, identically distributed real values of a parameter of

a synthesis that produces cubic nanoparticles with the common cumulative distribution function F1,n. Let (X2
1 , X

2
2 , . . . , X

2
m)

be independent, identically distributed real values of the same parameter of a synthesis which always results in nanoparticles
of different shapes with the common cumulative distribution function F2,m. The Kolmogorov–Smirnov statistic in this case
is: Dn,m = supx|F1,n(x

1)− F2,m(x2)|, where sup is the supremum function.

The null hypothesis is that the two samples are from the same continuous distribution. The null hypothesis is rejected at
level α = 0.05 if Dn,m >

√
−ln(α/2) · (1 +m/n)/2m. We applied this test for each of the real-valued parameters of

synthesis and each type of nanomaterial shape and used the Bonferroni correction method similarly to the previous tests.
The results of this test were similar to those of the previous two, except that in the case of stick-shaped nanoparticles, the
dependence was observed on the parameter characterizing the mass of the polymer rather than its concentration, which is
not surprising given the similar nature of these two parameters.

ANOVA (Marsal, 1987) was used to compare distributions of continuous parameters corresponding to different shapes of
nanomaterials. Let (Xi

1, X
i
2, . . . , X

i
n) be independent, identically distributed real values of a parameter of a synthesis that

produces nanoparticles of a specific shape with the common cumulative distribution function Fi,nwith the mean X
i
. The

formula for the one-way ANOVA F-test statistic is: F =
∑K

i=1 ni(X
i−X)2/(K−1)∑K

i=1

∑ni
j=1(X

i
j−X

i
)2/(N−K)

, where X
i

denotes the sample mean

in the i-th group, ni is the number of observations in the i-th group, X denotes the overall mean of the population, and
K denotes the number of groups, where Xi

j is the jth observation in the ith out of K groups and N is the overall sample

size. The null hypothesis can be formulated as follows: X
i
= X

j
, for each two groups i and j. If F-statistic is greater than

critical p-value (at the significance level α = 0.05), then the null hypothesis is rejected and distributions of this synthesis
parameter in the case of at least two different shapes are different. We applied this test for each of the real-valued parameters
of synthesis and each type of nanomaterial shape and used the Bonferroni correction method similarly to the previous tests.
The results of this test were consistent with the results of the first two tests, except that it failed to confirm the relationship
between the shape of nanoparticle and polymer mass, although polymer concentration was still a significant parameter. All
major associations between features of the synthesis and the corresponding shapes of nanoparticles are presented in Table 6.

Table 6. Significant associations between features of the synthesis and the corresponding shapes of nanoparticles. The table shows
the parameters that turned out to be determinant in the synthesis of nanomaterials of one or another shape. For continuous features,
the following tests were used: Mann–Whitney U test, Kruskal–Wallis H test, Kolmogorov–Smirnov test, ANOVA. Fisher exact and
Chi-squared tests was used for categorical features.

Shape Stick-shaped Spherical Flat Cubic Amorphous

Continuous

Temperature, C

Solvent, % vol. -

Polymer, % wt.

-
features

Synthesis time Temperature, C
Polymer, % wt. Polymer Mwt, kDa
Polymer Mwt, kDa

Categorical Myristyltrimethylammonium
features

Sodium dodecylsulfate

bromide

PAA Sodium dodecylsulfate Sodium dodecylsulfate
PEG PSS PAA Isopropyl alcohol
PEI PVP PSS tert-Butanol

Polymer absence Propylene glycol

A.2. Tree-based ensemble models

In order to achieve the best results for each of the Random Forest and Gradient Boosted Trees models, we optimized the
hyperparameters for each of them, and built the models with different splits of the original dataset. The final metrics for
each model were calculated by predicting at 5 different random states, after which the mean value as well as the standard
deviation were calculated. Most of the functions used to prepare the dataset and use the models were implemented using the
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scikit-learn library (Pedregosa et al., 2011).

In case of the Random Forest, optimization of the following parameters was performed: n estimators, max features,
max depth, min samples leaf, max leaf nodes. In case of Gradient Boosted Trees, the optimized parameters
were: gamma, colsample bytree, max depth, n estimators, learning rate. Hyperparameter optimization
was performed using 5-fold cross-validated grid-search. Given that some target classes were underrepresented, we prepared
three test sets in advance for a more thorough assessment of performance. The test sets contained 33%, 20% or 15% of the
total number of samples. A summary Table 7 provides motivation for testing several data splits. In our case, the lowest
mean standard deviation was observed in 33% test split for both, accuracy and F1 score, among all the experiments. Also,
for each model, the optimal threshold was found to solve the problem of class imbalance. This was achieved by balancing
precision and recall metrics.

Table 7. Comparison of different data splits. A representative test set was obtained with 33% of total number of samples.

Validation subset Average Average standard Average Average standard
size of dataset, % accuracy deviation of accuracy F1 score deviation of F1 score

33 0.74 0.11 0.53 0.09
20 0.69 0.13 0.51 0.11
15 0.65 0.18 0.49 0.15

For the best models, we also performed feature importance analysis by constructing SHAP diagrams showing the most
important features in model performance. Figure 4 below shows the 10 most important features for the Random Forest
model with optimal parameters predicting the stick shaped nanomaterials. Among these features, statistical relationship with
the given shape of nanomaterials was confirmed for the following features: ’Temperature, C’, ’Synthesis time’, ’Polymer, %
wt.’, ’Polymer Mwt, kDa’, ’Sodium dodecylsulfate’, ’PEI’. This is an additional validation of our models, as the results of
the analysis of feature importance almost completely correspond to the previously discovered statistical patterns that were
presented in Table 6.

Figure 4. Results of feature importance analysis in the form of SHAP values for the top 10 features for the best Random Forest model for
predicting stick shaped nanoparticles.

A.3. Texts of synthesis procedures and prompts

In order to make predictions of the morphology of nanomaterials based on their synthesis text using LLMs, special templates
were created, which were then used to be filled with parameters for a particular synthesis. From these, the final textual
prompt for LLM was compiled. These templates were similarly used in the development of a generative text-to-image
system. Two examples of such templates are given below.

Template example 1:

“Synthesis was carried out using the co-precipitation technique. Initially, ca conc mkl of 1 M CaCl2 was combined with

16



Unveiling the Potential of AI for Nanomaterial Morphology Prediction

pol vol mkl of pol conc % wt. polymer polymer having a molecular weight of pol mass kDa. Subsequently, solvent volume
mkl of solvent was introduced, and the volume adjusted to 500 mkl using distilled water. Following that, co3 conc mkl of 0.1
M Na2CO3 was mixed with hco3 conc mkl of 0.1 M NaHCO3, along with surf vol mkl of surf conc % wt. surfactant serving
as the surfactant. Another solvent volume mkl of solvent was added, and the volume adjusted to 500 mkl using distilled
water. Two resulting solutions, both heated to r temp C prior to the reaction, were combined under continuous stirring at
stir ratio rpm while maintaining the temperature. The reaction proceeded for r time min, followed by centrifugation.”

Template example 2:

”All materials were synthesized via the co-precipitation technique. In the first step, ca conc mkl of 1 M CaCl2 was combined
with pol vol mkl of pol conc % wt. polymer polymer, characterized by a molecular weight of pol mass kDa. This was
followed by the addition of solvent volume mkl of solvent, and the volume was adjusted to 500 mkl using distilled water. In
the subsequent step, co3 conc mkl of 0.1 M Na2CO3, hco3 conc mkl of 0.1 M NaHCO3, and surf vol mkl of surf conc % wt.
surfactant surfactant were combined. Once more, solvent volume mkl of solvent was added, and the volume was adjusted to
500 mkl using distilled water. Finally, two solutions, both heated to r temp C before the reaction, were mixed under stirring
at stir ratio rpm while maintaining the temperature. The reaction proceeded for r time min, followed by centrifugation.”

Below is also one of the text-based prompts that were given to the model before predicting the morphology of nanomaterials
on the test subset.

”You are an expert in the synthesis of nanomaterials. You analyze the conditions for obtaining a nanomaterial and predict
what particle shapes will be present in the synthesized material. There are five particle shapes: ’Cube’, ’Stick’, ’Sphere’,

’Flat’ and ’Amorphous’. A nanomaterial can contain particles of different shapes. If you cannot say exactly what it is, list
the forms that have the highest probability in those conditions.

CaCO3 nanoparticles were synthesized by the co-precipitation approach according to the following manner. In separate
burettes two solutions were made, 57 mkl of 1 M CaCl2 and 20 mkl of 0.155 % wt. PEI with molecular weight of 25.0
kDa were mixed in 200.0 mkl of 1-Hexanol before dilution with distilled water up to 500 mkl. Similarly, 140 mkl of 0.1 M
Na2CO3 and 200 mkl of 0.1 M of NaHCO3 were combined with 20 mkl of 0.43 % wt. Myristyltrimethylammonium bromide
and 200.0 mkl of 1-Hexanol. Then, the solution was also diluted in 500 mkl of water. Both solutions were heated up to 68 C
right before mixing under stirring at 1000 rpm for 8 min 0 sec min following centrifugation.

Answer: ’Cube, Stick’”

An example is also given for the case of prompts that used tabular data. In this case, only the way the synthesis was presented
differed, but the overall structure of the prompt remained the same.

”You are an expert in the synthesis of nanomaterials. You analyze the conditions for obtaining a nanomaterial and predict
what particle shapes will be present in the synthesized material. There are five particle shapes: ’Cube’, ’Stick’, ’Sphere’,

’Flat’ and ’Amorphous’. A nanomaterial can contain particles of different shapes. If you cannot say exactly what it is, list
the forms that have the highest probability in those conditions.

Ca ion, mM: 148; CO3 ion, mM: 0; HCO3 ion, mM: 100; Polymer Mwt, kDa: 0.0; Polymer, % wt.: 0.0; Surfactant, % wt.:
0.0; Solvent, % vol.: 0.0; Stirring, rpm: 0; Temperature, C: 31; Synthesis time: 129; Hexadecyltrimethylammonium bromide:
0; Myristyltrimethylammonium bromide: 0; No surfactant: 1; Sodium dodecylsulfate: 0; Triton X-100: 0; 1-Hexanol: 0;
Dimethylformamide: 0; Ethylene glycol: 0; Isopropyl alcohol: 0; Methyl alcohol: 0; No solvent: 1; Propylene glycol: 0;
tert-Butanol: 0; No polymer: 1; PAA: 0; PEG: 0; PEI: 0; PSS: 0; PVP: 0

Answer: ’Flat’”

A.4. Few-shot classification

To optimize the number of input examples and the proportion of the test subset, experiments were conducted with the GPT-4
model for the text subset. The table below summarizes these results (Table 8). The low impact of the proportion of the test
subset is obvious, but the number of input examples has a significant impact on the metrics.

A.5. VAE: implementation details

We have experimented with several ResNet architectures but also developed a few custom architectures for the VAE. ResNet
is the classical convolutional neural network originally proposed for the classification tasks (He et al., 2015). It consists
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Table 8. Average accuracy of GPT-4 for different number of input samples in prompt N taken from the training set. Sampling method:
only target classes in prompt. Syntheses presented in textual format.

Input Test Shape Average
samples subset size Cube Stick Sphere Flat Amorphous accuracy

2
0.15 0.29±0.14 0.58±0.15 0.27±0.10 0.92±0.02 0.33±0.12 0.48±0.10
0.2 0.40±0.09 0.56±0.12 0.20±0.10 0.92±0.03 0.38±0.15 0.49±0.10

0.33 0.33±0.12 0.59±0.05 0.25±0.07 0.93±0.02 0.30±0.07 0.48±0.07

4
0.15 0.54±0.15 0.64±0.05 0.38±0.14 0.93±0.01 0.64±0.23 0.63±0.12
0.2 0.59±0.13 0.56±0.06 0.49±0.12 0.89±0.09 0.73±0.12 0.65±0.10

0.33 0.56±0.15 0.62±0.09 0.54±0.09 0.92±0.05 0.68±0.07 0.66±0.09

6
0.15 0.76±0.08 0.65±0.11 0.63±0.14 0.94±0.00 0.79±0.14 0.75±0.09
0.2 0.67±0.08 0.56±0.13 0.68±0.17 0.90±0.08 0.88±0.03 0.74±0.10

0.33 0.71±0.17 0.61±0.11 0.70±0.10 0.93±0.07 0.78±0.14 0.74±0.12

8
0.15 0.84±0.07 0.62±0.11 0.81±0.10 0.96±0.03 0.84±0.08 0.81±0.08
0.2 0.72±0.08 0.67±0.05 0.80±0.10 0.91±0.08 0.87±0.10 0.80±0.08

0.33 0.74±0.11 0.63±0.08 0.80±0.08 0.90±0.13 0.83±0.12 0.78±0.10

10
0.15 0.78±0.06 0.59±0.11 0.84±0.07 0.94±0.03 0.88±0.07 0.81±0.07
0.2 0.71±0.05 0.68±0.05 0.88±0.05 0.90±0.10 0.87±0.12 0.81±0.07

0.33 0.74±0.07 0.66±0.06 0.77±0.07 0.90±0.15 0.84±0.12 0.78±0.09

Table 9. Comparison of computational resources of LLMs: time per one complete experiment (in case of text dataset, an average prompt
was around 3000 tokens), price per 1M tokens in USD, limits for requests per minute and 1000 tokens per minute.

Mistral-medium Mistral-small Mistral-tiny GPT-3.5-turbo GPT-4 GPT-4-turbo

Time per
experiment, s 46 21 19 44 63 53

Input price per
1M tokens, USD 2.7 0.7 0.1526 0.5 30 10

Tokens
limit, 1000/min 2000 2000 2000 60 10 150

Requests
limit, 1/min 120 120 120 500 500 500

of several blocks of convolutional, batch normalization and ReLU layers, and several depth options are available. Jens
Behrmann et al. showed that invertible ResNets can also be used as generative models (Behrmann et al., 2018) and, therefore,
we used the reversed ResNet from PyTorch Lightning Bolts1 as a decoder for the VAE. Additionally, we developed several
shallow networks varying the number of convolutional blocks and the dimensionality of the bottleneck layer as custom VAE
architectures.

We trained all the architectures in the grid search setup optimizing several hyperparameters, such as batch size, learning rate,
Kullback-Leibler (KL) divergence coefficient and image size, to achieve the lowest BCE loss.

Based on the training losses and the evaluation metrics described in Appendix A.6, we selected one of the custom
architectures as the best. We failed to achieve on-par performance with the ResNet backbones, likely due to insufficient
number of training examples. The top-performant VAE architecture had only 4 convolutional blocks for the encoder and
4 upsampling blocks for the decoder with 4096 dimensions in the latent space. The optimal set of hyperparameters was
128×128 for the image size, 64 for the batch size, 0.001 for the learning rate, and 0.01 for the KL divergence coefficient.
The corresponding training curves are depicted on Figure 3.

1https://lightning-bolts.readthedocs.io/en/latest/
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A.6. VAE: metrics

For each combination of hyperparameters, the trained VAEs were evaluated on the test set. Two metrics reflecting the
similarity of the original and the decoded images were used to compare architectures: structural similarity index measure
(SSIM) (Wang et al., 2004) and peak signal-to-noise ratio (PSNR) (Fardo et al., 2016). SSIM is a standardized measure of
the difference between the compressed and the original image, ranging from -1 to 1. It is defined by the following formula:

SSIM(X,Y ) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)

where X , Y are the images, µx, µy are the mean pixel values of the images, σx, σy are the variances of the pixel values, σxy

is the covariance, and c1, c2 are the coefficients stabilizing the division. PSNR is a simpler metric showing the ratio of the
contribution of the maximum value of the original image to the contribution of noise in the compressed image. This metric
is calculated using the following formula:

PSNR(X,Y ) = 20log10(
max(X)√
e(X,Y )

)

where X is the original image of size m×n, Y is the compressed image of the same size, and e(X,Y ) =
1

mn

∑m
j=1

∑n
i=1(xji − yji)

2 is the mean squared deviation between the pixels of two images.

A.7. “Linking” VAE: training and generation phases

The training process was organized into the following key steps. For each training example:

1. Choose a text template of a synthesis procedure randomly and fill in the corresponding experimental parameters.

2. Obtain text representations with a pretrained BERT.

3. Obtain image representations with a pretrained VAE.

4. Perform a forward pass to convert text representations into image representations.

5. Calculate the loss and backpropagate the error.

After the training is done, morphology of a new nanomaterial described in a synthesis procedure can be predicted as follows:

1. Obtain representations of the synthesis procedure text with a pretrained BERT.

2. Apply the “linking” autoencoder to predict the corresponding image representations.

3. Apply the decoder part of the VAE to predict the image of the nanomaterial.

A.8. “Linking” VAE: best architecture

The final architecture of the “linking” VAE is shown on Figure 5A. It consists of 4 linear layers and has 768-dimensional
latent space. The optimal hyperparameters were 8 for the batch size, 0.00001 for the learning rate. Figure 5B shows
individual examples of nanoparticles reconstructed and generated from texts. Three different shapes are given.

A.9. Data visualization

We visualized the space of learned representations of the VAE to validate the model and gain additional insights into
various dependencies between the features and the target classes. For that, we used UMAP to compress the bottleneck
4096 dimensions to 2D (Figure 6). Each dot represents a single representative nanoparticle from one of the 215 syntheses.
We observed five clusters having 2-3 particular shapes as the most prominent. Based on the literature and the statistical
evaluation, we expected to see drastic differences in temperatures for different clusters. However, we could observe a single
bottom-right cluster having lower synthesis temperatures on average.
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A.10. Comparison with previous works

A comparison with the most relevant previous works is given in Table 10.

Table 10. Comparison with other works. *a prototype of the text-to-image system

Prediction Data Number Best Availability Generative Referencetask points of shapes metric design

Size 103 1 MAPE = 0.70% Only dataset No (Shafaei & Khayati, 2020)

Size 98 1 MAPE = 4% - No (Iakovlev et al., 2019)

Size 26 1 MAPE = 9.10% - No (Pellegrino et al., 2020)

Size and shape 215 5 Accuracy = 0.93 Code and dataset Yes* Our work

A.11. Discussion on limitations

Our ML models were trained to predict 5 types of nanomaterial shapes, some of which were underrepresented (Table 2).
This limitation can be mitigated by either adjusting the prediction threshold, or oversampling techniques. Ultimately, this
issue can only be resolved by expanding the dataset for underrepresented classes. In the context of the text-to-image system,
we always refer to a prototype acknowledging its limitations, such as low diversity of generated images and their quality,
caused by the limited training examples available. Therefore, most of the barriers to training a more universal and accurate
model for prediction of nanomaterial morphology are related to insufficient quality and number of existing datasets. There is
currently no unified database with syntheses and properties of different nanoparticles that is well documented and publicly
available. Therefore, applied AI researchers have to resort to small single study datasets or larger datasets of a single
experimental system extensively studied in the past (Table 10). Both approaches impose severe limitations on machine
learning and, even more so, on deep learning applications that typically require a lot more training data. Thus, a collective
effort towards assembling a curated database of nanomaterials with deep characterization of their properties is long overdue.

Additional challenges arise from the data preprocessing steps dealing with SEM. Many syntheses result in numerous
overlaying NPs on a single SEM image, such that it is difficult even for a human eye to distinguish between individual NP
units. Since image segmentation methods have already reached quite an advanced level, we anticipate major breakthroughs
rather on the experimental and the imaging technology side.

A.12. Computing infrastructure

Table 11. Computing infrastructure used for study experiments.

CPU AMD Ryzen 7 3700X 3.60 GHz 8-Core Processor
GPU NVIDIA GeForce RTX 3090 24 GB of GPU memory
RAM 32.0 GB
Operating system Windows 11 Pro N
Python 3.9
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Figure 5. A) The encoder-decoder architecture of the linking neural network. B) Comparison of real images to their VAE reconstructions
and the images generated from the corresponding synthesis texts.
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Figure 6. Representation of the latent space of the variational autoencoder trained on our image dataset. Colors indicate the shapes of the
nanomaterials, and the axes are the UMAP components after dimensionality reduction.
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