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Abstract
Maximizing monotone submodular functions un-
der cardinality constraints is a classic optimiza-
tion task with several applications in data mining
and machine learning. In this paper we study this
problem in a dynamic environment with consis-
tency constraints: elements arrive in a streaming
fashion and the goal is maintaining a constant ap-
proximation to the optimal solution while having
a stable solution (i.e., the number of changes be-
tween two consecutive solutions is bounded). We
provide algorithms in this setting with different
trade-offs between consistency and approxima-
tion quality. We also complement our theoretical
results with an experimental analysis showing the
effectiveness of our algorithms in real-world in-
stances.

1. Introduction
Submodular optimization is a powerful framework for mod-
eling and solving problems that exhibit the widespread di-
minishing returns property. Thanks to its effectiveness, it
has been applied across diverse domains, including video
analysis (Zheng et al., 2014), data summarization (Lin
& Bilmes, 2011; Bairi et al., 2015), sparse reconstruc-
tion (Bach, 2010; Das & Kempe, 2011), and active learn-
ing (Golovin & Krause, 2011; Amanatidis et al., 2022).

In this paper, we focus on submodular maximization un-
der cardinality constraints: given a submodular function f ,
a universe of elements V , and a cardinality constraint k,
the goal is to find a set S of at most k elements that maxi-
mizes f(S). Submodular maximization under cardinality
constraints is NP-hard, nevertheless efficient approximation
algorithms exist for this task in both the centralized and the
streaming setting (Nemhauser et al., 1978; Badanidiyuru
et al., 2014; Kazemi et al., 2019).
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One aspect of efficient approximation algorithms for sub-
modular maximization that has received little attention so
far, is the stability of the solution. In fact, for some of
the known algorithms, even adding a single element to the
universe of elements V may completely change the final
output (see Appendix A for some examples). Unfortunately,
this is problematic in many real-world applications where
consistency is a fundamental system requirement. Indeed, a
flurry of recent work has started to explore various optimiza-
tion problems under stability and consistency constraints
such as clustering (Lattanzi & Vassilvitskii, 2017; Cohen-
Addad et al., 2022; Fichtenberger et al., 2021; Guo et al.,
2021; Łacki et al., 2024), facility location (Cohen-Addad
et al., 2019; Bhattacharya et al., 2022), and online learning
(Jaghargh et al., 2019).

Having solutions that evolve smoothly is central in many
practical application of submodular optimization. Consider,
for example, the data summarization task in an evolving
setting where elements are added to the universe V . In this
setting, having a stable summary that changes as little as
possible from step to step is very important both for serving
the summary to a user or for using it in a machine learning
model. In fact, in both settings a drastic change of the solu-
tion may have negative impact on system usability, it could
harm user attention, and adversely effect the performance
of the machine learning model.

For these reasons, in this paper we initiate the study of
submodular maximization under consistency constraints,
where we allow the solutions to change only slightly after
each element insertion. More formally, consider a stream V
of exactly n elements, chosen by an adversary. Denote by
Vt = {e1, . . . , et} ⊆ V the set of all elements inserted up
to the t-th stream operation, and let OPTt be an optimum
feasible solution for Vt. Our goal is to design an algorithm
with two key properties. On the one hand, we want the
algorithm to maintain, at the end of each operation t, a
solution St ⊆ Vt, with |St| ≤ k, of high value f(St). In
particular, we say that an algorithm is an α-approximation
of the best solution if αf(St) ≥ f(OPTt), for all t =
1, . . . , n. On the other hand, we want the dynamic solution
to not change much after consecutive insertions: we say
that an algorithm is C-consistent if |St \ St−1| ≤ C for
all t = 2, . . . , n. In general, we say that an algorithm is
consistent, without specifying C, when C is constant.
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It is interesting to note that the SWAPPING algorithm by
Chakrabarti & Kale (2015) already conjugates constant ap-
proximation with constant consistency∗. SWAPPING main-
tains a dynamic feasible solution and each new arriving
element is added to the solution if either it fits into the car-
dinality constraint or it is possible to swap it with some low-
value element. It is well known that SWAPPING achieves
a 4-approximation, and from the previous description it is
also clear that it is 1-consistent.†

Putting consistency aside, it is NP-hard to get an approxima-
tion guarantee better than e/(e−1) (Feige, 1998), which can
be achieved by recomputing a greedy solution (Nemhauser
et al., 1978) from scratch after every insertion. However,
such approach is not consistent (see Appendix A).

A line of work that is related to our model is that of fully-
dynamic submodular maximization (e.g., Lattanzi et al.,
2020; Monemizadeh, 2020; Dütting et al., 2023; Bani-
hashem et al., 2024). There, the algorithm is given an ar-
bitrary stream of insertions and deletions, and the goal is
to maintain a good dynamic solution with low amortized
running time. While the constraint on running time nat-
urally induces algorithms characterized by solutions that
do not change often, known algorithms for fully dynamic
submodular maximization are not consistent, as they all con-
template the possibility of recomputing the solution from
scratch from time to time.

Our Contribution. Given these considerations, it is natu-
ral to ask if it is possible to obtain a better trade-off between
quality and consistency. We answer this question positively:

• We first provide a (3.147 + O(1/k))-approximation
algorithm that is 1-consistent, improving on the guar-
antees of the SWAPPING algorithm.

• We then provide a (2.619 + ε)-approximation‡ algo-
rithm that is Õ(1/ε)-consistent, where the Õ notation
hides poly-logarithmic factors in 1/ε.

We complement our positive results with a lower bound
showing that for any constant C, no deterministic algo-
rithm can be C-consistent and return a better than 2 approx-
imation. Since both our algorithms are deterministic, the
∗Following e.g., Dütting et al. (2022; 2023), we call SWAPPING

the instantiation of the general framework by Chakrabarti & Kale
(2015) for the special case of matroid constraints. We refer to
Appendix B for the pseudocode.
†It is possible to show that the 4 is tight for the approximation

factor. For an example please refer to Appendix B.
‡As is common in the submodular maximization literature, the

parameter ε is intended to be a small constant that the algorithm
designer can tune according to the application at hand: it is possible
to attain an approximation arbitrarily close to 2.619, at the cost of
a worse consistency.

lower bound shows that our algorithms obtain a near-optimal
quality-consistency tradeoff. We leave the resolution of the
remaining gaps, and the study of randomized algorithms as
exciting directions for future work.

We also present extensive experiments with real-world data
sets and a synthetic data set (Section 6 and Appendices B
and C). The experiments show that our algorithms achieve
comparable value as SWAPPING and the non-consistent
SIEVE-STREAMING (Badanidiyuru et al., 2014) on real-
world data sets; while achieving significant savings in the
total number of changes. Furthermore, the synthetic data set
– constructed using a hard instance for SWAPPING presented
in Appendix B – confirms the improvements in the worst-
case approximation guarantees relative to SWAPPING from
our theoretical analysis, showing that there too the gains can
be significant (in the order of the 21.325% and 34.525%
improvements that we show in our analysis).

Our Techniques. Our first algorithm, ENCOMPASSING-
SET, maintains a benchmark set Bt that is used to decide
whether to add or discard any new element. More precisely,
any arriving element et is added to Bt−1 if, upon arrival,the
marginal contribution of et to Bt−1, that is f(et | Bt−1),
is at least β/k · f(Bt−1). Here β is a judiciously chosen
constant that is larger than 1, namely β = 1.14. At any
given time t, the solution St maintained by the algorithm
consists of the last k elements added to Bt.

This algorithm is 1-consistent by construction, while the
approximation guarantee descends from the following two
properties of this algorithm. First, the (potentially infeasible)
benchmark set Bt achieves a (1 + β)-approximation to
f(OPTt) (where 1+β = 2.14 by the choice of β). Second,
due to the exponential nature of the condition by which
elements are added to the benchmark set, the elements in
Bt that are not part of St only account for a small fraction
of the value of Bt; namely, f(Bt) ≥ (1 + β/k)kf(Bt \ St).
Intuitively, the second property shows that St captures a
significant fraction of f(Bt), while the first property shows
that f(Bt) is a good approximation to f(OPTt). A careful
analysis shows that the two properties lead to the claimed
factor of 3.147 +O(1/k).

Our second algorithm, CHASING-LOCAL-OPT, provides
a better approximation guarantee at the cost of possibly
performing more than one swap per step (but still at most
constantly many). Rather than maintaining a benchmark
set, this algorithm only maintains a solution St, and updates
it via local improvements. It applies a similar swapping
condition as ENCOMPASSING-SET, by requiring that the
marginal value of an arriving element et to St−1 should
be at least φ/k · f(St−1), where φ ≈ 1.61 is the golden ra-
tio. Other than ENCOMPASSING-SET, however, rather than
swapping out the oldest element that was added, it swaps
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out an element r whose marginal contribution f(r | S − r)§
to the current solution S is less than a 1/k-fraction of the
current solution’s value f(S).

Moreover, after the arrival of each element et and its possi-
ble addition to St, it performs up to N = Õ(1/ε) additional
swaps. For this it considers all elements that have arrived
so far, which we denote by Vt, and it tries to add them one-
by-one by the same condition and procedure that is used
for newly arriving elements. The purpose of these extra
swaps is to drive the maintained solution St closer to a local
optimum: a solution S ⊆ Vt such that there is no element
x ∈ Vt such that f(x | S) ≥ φ/k · f(S). The improved
approximation guarantee then stems from the fact that either
the algorithm was at a local optimum in the not too distant
past, or it performed many swaps since.

2. Preliminaries
We consider a set function f : 2V → R≥0 on a ground
set V of cardinality n. Given two sets X,Y ⊆ V , the
marginal gain ofX with respect to Y , f (X | Y ), quantifies
the change in value of adding X to Y and is defined as

f (X | Y ) = f(X ∪ Y )− f(Y ).

When X consists of a singleton x, we use the shorthand
f(x | Y ) instead of f({x} | Y ). Function f is called
monotone if f (e | X) ≥ 0 for each set X ⊆ V and element
e ∈ V , and submodular if for any two sets X ⊆ Y ⊆ V
and any element e ∈ V \Y we have f (e | X) ≥ f (e | Y ) .

Throughout the paper, we assume that f is monotone and
that it is normalized, i.e., f(∅) = 0. We model access to
the submodular function f via a value oracle that computes
f(S) for given S ⊆ V . The problem of maximizing a
function f under a cardinality constraint k is defined as
selecting a set S ⊆ V with |S| ≤ k that maximizes f(S).

3. Impossibility Result
Putting computational efficiency aside, it may be possible to
design a consistent algorithm which maintains the optimal
solution, or an arbitrarily good approximation. We prove
that this is not the case: no deterministic algorithm with con-
stant consistency enjoys an approximation guarantee better
than 2. We remark that this is an information-theoretical
bound, and concerns the streaming nature of the problem.

Theorem 3.1. Fix any constant C and precision parame-
ter ε ∈ (0, 1). No C-consistent (deterministic) algorithm
provides a (2− ε)-approximation.

Proof. Fix any constantC, precision parameter ε > 0, and a
deterministic algorithmA that is C-consistent, we construct

§We use S−r instead of S\{r} and S+x instead of S∪{x}.

Algorithm 1 ENCOMPASSING-SET

1: Environment: Stream V , function f , cardinality k
2: Threshold parameter β ← 1.14
3: B0 ← ∅, S0 ← ∅, and t← 1
4: for et new element arriving do
5: if f(et | Bt−1) ≥ β

k f(Bt−1) then
6: Bt ← Bt−1 + et
7: St ← St−1 + et
8: if |St| = k + 1 then
9: remove from St the element es with smallest s

10: t← t+ 1

a covering instance such that A does not maintain a (2− ε)
approximation. Let G = {g1, . . . , gn} be a ground set
and V be a family of subsets of G such that V contains
all the subsets of G of cardinality 1 and k, with k = n/2.
The covering function f is naturally defined on V , and we
consider the task of maximizing f with cardinality k.

Observe the behaviour of A on the sequence {g1}, . . . {gn}.
At the end of this partial sequence A maintains a certain
solution S = {{gi1}, . . . , {gi`}}, with ` ≤ k. Now suppose
the next element to arrive is {gi1 , . . . , gi` , gi`+1

, . . . , gik},
where gi`+1

, . . . , gik are some arbitrary elements not cov-
ered by S. The value of the optimal solution after this
insertion is 2k − 1 (just take the last subset and k − 1 non
overlapping singletons). The value of S is ` ≤ k and, even
if A adds to S the subset {gi1 , . . . , gi` , gi`+1

, . . . , gik} and
C−1 other singletons, it cannot get a solution of value more
than k + C. The theorem follows by choosing appropriate
values for k: k ≥ 3C/ε.

4. ENCOMPASSING-SET

In this section, we present the ENCOMPASSING-SET al-
gorithm, which achieves an approximation guarantee of
3.146 +O(1/k) and 1-consistency (changes at most one ele-
ment for each insertion). ENCOMPASSING-SET maintains
a benchmark set Bt to which it adds all the elements that,
upon arrival, exhibit a marginal contribution to Bt that is
at least β/k · f(Bt). At any given stream operation t, the
solution St is given by the last k elements added to Bt. We
refer to the pseudocode for further details. We prepare the
analysis of the properties of ENCOMPASSING-SET with two
Lemmata. We start relating the value of the optimal solution
with that of the benchmark.

Lemma 4.1. After each insertion et, the following holds:

f(OPTt) ≤ (1 + β) · f(Bt).

Proof. Consider any element that belongs to OPTt but not
to the benchmark set Bt after the computation following the
insertion of et, i.e., es ∈ OPTt \Bt, with s ≤ t. Element
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es has not been included to Bs (because it does not belong
to Bt ⊇ Bs) upon its insertion, so the following holds:

f(es | Bt) ≤ f(es | Bs−1) (by submodularity)

≤ β
k f(Bs−1) (since es /∈ Bs)

≤ β
k f(Bt). (by monotonicity)

So, for any element es ∈ OPTt \Bt, it holds that

f(es | Bt) ≤ β
k f(Bt). (1)

The above inequality is the crucial ingredient of the proof:

f(OPTt) ≤ f(OPTt ∪Bt) (by monotonicity)

≤ f(Bt) +
∑

es∈OPTt \Bt

f(es | Bt)

≤ f(Bt) + |OPTt | · βk f(Bt) (by Ineq. 1)
≤ (1 + β)f(Bt). (because |OPTt | ≤ k)

Note, the second inequality comes from submodularity.

As a second preliminary step, we argue that the elements
in Bt that are not included to the current solution St only
account for a small fraction of f(Bt).
Lemma 4.2. After each insertion et, the following inequal-
ity holds:

f(Bt) ≥
(
1 +

β

k

)k
f(Bt \ St).

Proof. The elements in the current solution are naturally
sorted according to the order in which they are inserted
in the stream and then added to the solution: St =
{st1 , st2 , . . . st`}. Element st` is the last one added and,
clearly, ` ≤ k and t` ≤ t. Each one of these eti elements
has been added to the solution because it passed the value
test: f(sti | Bti−1) ≥

β
k f(Bti−1).

Now, set Bti−1 can be rewritten in terms of the current
benchmark set Bt and the elements in the solution St:
Bti−1 = Bt \ {sti , . . . , st`}, so the previous inequality
can be rewritten as

f(sti | Bt \ {sti , . . . , st`}) ≥
β
k f(Bt \ {sti , . . . , st`}).

If we add to both sides of the above inequality the term
f(Bt \ {sti , . . . , st`}), we get that

f(Bt\{sti+1, . . . , st`}) ≥
(
1 +

β

k

)
f(Bt\{sti , . . . , st`}).

Iterating the above argument we get the desired bound:

f(Bt) ≥
(
1 + β

k

)
f(Bt \ {st`})

≥
(
1 + β

k

)2
f(Bt \ {st`−1

, st`})

≥ · · · ≥
(
1 + β

k

)`
f(Bt \ St).

The Lemma follows by recalling that ` ≤ k.

We now have all the ingredients to analyze ENCOMPASSING-
SET.

Theorem 4.3. ENCOMPASSING-SET is 1-consistent and
maintains a 3.147 +O(1/k) approximation.

Proof. First observe that the algorithm is indeed 1-
consistent: every time the solution St changes, exactly one
element is inserted and exactly one is removed from it.

We move our attention to the approximation guarantee. We
start by noting that

f(Bt) +
(
1 + β

k

)k
f(St)

≥
(
1 + β

k

)k
[f(St) + f(Bt \ St)] (Lemma 4.2)

≥
(
1 + β

k

)k
f(Bt). (by submodularity)

By rearranging terms and applying Lemma 4.1 we get:

f(St) ≥

(
1 + β

k

)k
− 1(

1 + β
k

)k f(Bt)

≥

(
1 + β

k

)k
− 1(

1 + β
k

)k
(1 + β)

f(OPTt). (2)

We conclude the proof by providing a general lower bound
for the multiplier of the right-hand side of the last inequality.
We know that the following simple chain of inequality holds:(

1 +
β

k

)k
≤ eβ ≤

(
1 +

β

k

)k (
1− β2

k

)−1
Plugging the above inequality into the multiplier in Equa-
tion (2), we have(

1 + β
k

)k
− 1(

1 + β
k

)k
(1 + β)

≥ eβ − 1

eβ(1 + β)
− β2

k(1 + β)

≥ 0.3178− 1

k
. (β = 1.14)

Taking the inverse yields the desired factor.

5. CHASING-LOCAL-OPT

In this section we present and analyze the CHASING-
LOCAL-OPT algorithm, which exhibits a better approxima-
tion factor than both SWAPPING and ENCOMPASSING-SET.
We refer to the pseudocode for further details. There are
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Algorithm 2 MIN-SWAP(S, x)

1: Input: Set S and element x
2: Environment: Function f and cardinality k
3: if |S| < k, then return S + x
4: Let r ∈ S be any element s.t. f(r | S − r) ≤ f(S)/k
5: return S − r + x

Algorithm 3 CHASING-LOCAL-OPT

1: Input: Precision parameter ε
2: Environment: Stream V , function f , cardinality k
3: φ←

√
5+1
2 , N ← d 1ε logφ

12
ε e

4: S0 ← ∅ and t← 1
5: for et new element arriving do
6: if f(et | St−1) ≥ φ

k f(St−1) then
7: St ← MIN-SWAP(St−1, et)
8: for i = 1, . . . , N do
9: if ∃x ∈ Vt such that f(x | St) ≥ φ

k f(St) then
10: St ← MIN-SWAP(St, x)
11: t← t+ 1

two differences with respect to ENCOMPASSING-SET. First,
the way in which elements in the solution are swapped out:
it is not the “oldest” element to be removed, but one with
small enough value. This is formalized in the routine MIN-
SWAP, which takes as input a set S and an element x, and
is responsible for inserting x into S; if S already contains
k elements, then x is swapped with an element r in S with
marginal value not larger than the average value of S (so
to maintain the cardinality of S bounded by k). Note, such
an element r always exists by submodularity and a simple
averaging argument:

f(S) ≥
∑
x∈S

f(x | S − x) ≥ k ·min
x∈S

f(x | S − x) .

The second difference is that after the arrival of each element
and possibly its addition to the current solution, the algo-
rithm performs up to N ∈ Õ(1/ε) additional swaps from Vt
into the solution, using the same rule and subroutine as for
newly arriving elements. The additional swaps performed
by CHASING-LOCAL-OPT drive the maintained solution
closer to a local optimum defined as follows.

Definition 5.1. We say that a dynamic solution St is a
local optimum if there exists no element x in Vt such that
f(x | St) ≥ φ

k f(St).

The improved approximation guarantee stems from the fact
that at any point in time, either the solution maintained by
the algorithm was a local optimum not too far in the past, or
many swaps were performed since.

Theorem 5.2. CHASING-LOCAL-OPT is Õ(1/ε)-consistent
and maintains a (φ + 1 + 9ε)-approximation, where φ ≈
1.619 is the golden ratio.

Before proving the theorem, we introduce a notational con-
vention. During the execution of the algorithm, elements
may be added and removed multiple times from the dynamic
solution. Rather than thinking of such an element as one and
the same element, it is convenient to think of this happening
to multiple distinct copies of the same element so that each
element is added and removed at most once. This allows us
to work with sets instead of multi-sets in the analysis.

Proof of Theorem 5.2. The bound on the consistency is im-
mediate, as for each insertion there are at most N + 1 =
d1/ε logφ 12/εe + 1 = Õ(1/ε) changes in the solution. The
rest of the proof is devoted to the analysis of the approxima-
tion guarantee, which we prove by induction on the number
of insertions. For the first element e1 of the stream there is
nothing to prove, as S1 = V1 = {e1}. We analyze now the
generic insertion et, with t > 1, assuming that the desired
approximation holds for any previous insertion s < t. Let
t′ be the last insertion index before t in which the solution
St′ was a local optimum (see Definition 5.1), and denote
with τ the maximum between t′ and (t − dεke). We re-
mark that t′ is at least 1, so τ is well defined. We have that
OPTt is the optimum after insertion et, and OPTτ is the
optimum after insertion eτ . Sets Vt and Vτ , Vt and Vτ are
defined in a similar way. Consider how the solution changed
between Sτ and St: some elements in Sτ were removed,
some were added and remained in St, while others were
added and later removed, possibly multiple times. To ease
the analysis, we sort these inserted elements s1, s2, . . . , sL
according to the order in which they were added (recall that
multiple “copies” of the same element may appear in this
sequence); this induces a natural sorting on the removed
elements: we call r` the element that was swapped out to
make room for s` (to avoid confusion, if no element was
swapped out, we let r` be a dummy element with no value).
We now define an auxiliary sequence of sets A` that interpo-
lates between the solution at insertion τ and that at insertion
t: A` = Sτ ∪ {s1, . . . , s`} \ {r1, . . . , r`}.

It holds that Sτ = A0, while St = AL. Moreover, the
definition of the auxiliary sets motivates this relation:

A`−1 + s` = A` + r`. (3)

By a telescopic argument, the above relation and the design
of CHASING-LOCAL-OPT we have the following claim.

Claim 5.3. The following inequality holds true:

f(St) ≥ f(Sτ ) + (φ− 1)

L∑
`=1

f(s` | A`−1 − r`).

Proof of Claim 5.3. The change in value between two con-
secutive auxiliary sets can be decomposed as follows ex-
ploiting the relation in Equation (3):

f(A`)− f(A`−1) = f(s` | A`−1)− f(r` | A`). (4)
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Now, the marginal value of s` with respect to A`−1 is at
least φ/k · f(A`−1), by the swapping conditions in lines
6 and 9 of CHASING-LOCAL-OPT. Furthermore, by the
design of MIN-SWAP, we know that the element r` that is
removed to make room for s` has small value. In formula,

f(s` | A`−1) ≥ φ
k f(A`−1) ≥ φf(r` | A`−1 − r`) (5)

We can now prove directly the inequality in the statement:

f(St)− f(Sτ )

=

L∑
`=1

f(A`)− f(A`−1) (telescopic argument)

=

L∑
`=1

f(s` | A`−1)− f(r` | A`) (by Eqn. 4)

≥
L∑
`=1

f(s` | A`−1)− f(r` | A`−1 − r`)

≥ (φ− 1)

L∑
`=1

f(r` | A`−1 − r`). (by Eqn. 5)

Note, the second to last inequality follows by submodularity
and the fact that A`−1 − r` = A` − s` ⊆ A`, due to the
relation in Equation (3).

Denote now with I the set of elements that were inserted
between eτ and et : I = Vt \ Vτ , and with A the set of
all the elements that were, at some point, in the solution
between time τ and t: A = ∪t`=τA`. It is possible to relate
the value of St with that of the elements in I and A:

Claim 5.4. The following inequality holds true:

f(I ∪A) ≤ (1 + 4ε)f(St) +

L∑
`=1

f(r` | A`−1 − r`).

Proof of Claim 5.4. Consider any element g in I ∪ A. We
have three cases: either element g belongs to St, g was
added to the solution but was later swapped out, or it failed
the swapping condition in line 6 upon insertion. Now, sort
these elements according to the order in which they were
discarded by the algorithm: (I ∪ A) \ St = {g1, . . . , gJ}
(g ∈ I\A is discarded upon insertion, while g ∈ A\(I∪St)
is discarded when gets swapped out by the solution). For
simplicity, denote with Gj the set of the first j − 1 such
elements, we have the following two facts: (i) if gj ∈ I \A,
then it means that gj = et′ for some t′ ∈ {τ, . . . , t}, and
the solution St′ ⊆ St ∪Gj ; (ii) if gj ∈ A \ (I ∪ St), then it
means that gj = r` for some ` ∈ {1, . . . , L}, and it holds
that A` − r` ⊆ St ∪Gj .

Exploiting these two facts and submodularity, we have the
following chain of inequalities:

f(I ∪A)− f(St)

=

J∑
j=1

f(gj | St ∪Gj)

≤
∑

et′∈I\(St∪A)

f(et′ | St′−1) +
L∑
`=1

f(r` | A`−1 − r`)

≤ φ

k

∑
et′∈I\(St∪A)

f(St′−1) +

L∑
`=1

f(r` | A`−1 − r`)

≤ 4εf(St) +

L∑
`=1

f(r` | A`−1 − r`).

Note, the second inequality holds by the fact that ej failed
the swapping condition in line 6 upon insertion; while the
third inequality follows by observing that the sequence of
f(St′) is non-decreasing, there are at most 2εk elements in
I \ (St ∪A), and φ ∈ (1, 2).

Another useful property of the auxiliary setsA` is to provide
a clean way to formalize that adding new elements to the
solution multiplicatively improves the value of the solution.

Claim 5.5. The following inequality holds true:

f(St) ≥
(
1 +

φ− 1

k

)L
f(Sτ ).

Proof of Claim 5.5. Consider the generic subsequent terms
` − 1 and `, for ` = 1, . . . , L. Starting from rearranging
Equation (4), we have the following:

f(A`) = f(s` | A`−1)− f(r` | A`) + f(A`−1)

≥ f(s` | A`−1)− f(r` | A`−1 − r`) + f(A`−1)

≥ φ− 1

φ
f(s` | A`−1) + f(A`−1) (by Eqn. 5)

≥
(
1 +

φ− 1

k

)
f(A`−1),

where the first inequality follows by submodularity and the
relation in Equation (3), while the last one by the design of
MIN-SWAP: an element is added to the solution only if its
marginal contribution is at least a φ/k fraction of f(A`−1).
Applying iteratively the above argument from St = AL to
Sτ = A0 yields the desired result.

We now have all the ingredients to directly address the crux
of the proof. We have two cases we analyze separately:
either Sτ is a local optimum, or it is not.

6
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Sτ is a local optimum. If Sτ is a local optimum, then
all the elements in OPTt that arrived before eτ , i.e.,
OPTt ∩Vτ have low marginal contribution with respect
to Sτ . Formally, we have the following result.

Claim 5.6. If Sτ is a local optimum, then

(1+4ε)f(St)+

L∑
`=1

f(r` | A`−1−r`) ≥ f(OPTt)−φf(Sτ ).

Proof of Claim 5.6. To prove this result, it suffices to argue
that the right-hand side of the inequality in the statement
is at most f(I ∪ A), as it is then possible to conclude the
argument by combining it with Claim 5.4. We have the
following:

f(OPTt)− f(I ∪A)
≤ f(OPTt | I ∪A) (by monotonicity)
= f(OPTt ∩Vτ | I ∪A) (since I = Vt \ Vτ )

≤
∑

e∈OPTt ∩Vτ

f(e | Sτ )

≤ φf(Aτ ). (Aτ local optimum)

Note, the second inequality holds by submodularity as Sτ
is contained into A. Reordering the terms of the inequality
we get the desired lower bound on f(I ∪A).

Summing the inequality in Claim 5.6 with φ times the in-
equality in Claim 5.3 yields the desired bound, thus con-
cluding the argument for the first case:

(1+φ+ 4ε)f(St)

≥ f(OPTt) + [φ(φ− 1)− 1]

L∑
`=1

f(r` | A`−1 − r`)

= f(OPTt).

In the previous inequality we crucially used the definition
of the golden ratio as the solution of φ2 − φ− 1 = 0.

Sτ is not a local optimum. If Sτ is not a local optimum,
then it means that L, the total number of swaps between
insertion eτ and et, is at least ε · k ·N , where N is defined
in the pseudocode as d1/ε · logφ 12/εe. If we complement
this with Claim 5.5 we get:

f(St) ≥ f(Sτ ) ·
(
1 +

φ− 1

k

)k logφ 12/ε

≥ 12

ε
f(Sτ ) (because (1 + x

n )
n ≥ 1 + x)

≥ 12

(1 + φ+ 9ε)ε
f(OPTτ ),

where in the last inequality we crucially used the inductive
assumption. By rearranging and using that ε ∈ (0, 1) and
φ ∈ (1, 2), we get the following simple relation, which
proves that the value of the elements arrived up to time τ
can be safely ignored:

f(OPTτ ) ≤ εf(St). (6)

We have all the ingredient to deal with the last case:

f(OPTt) ≤ f(OPTt ∩Vτ ) + f(I) (by submodularity)
≤ f(OPTτ ) + f(I) (by optimality of OPTτ )
≤ εf(St) + f(I) (by Equation 6)
≤ εf(St) + f(I ∪A) (by monotonicity)

≤ (1 + 5ε)f(St) +

L∑
`=1

f(r` | A`−1 − r`)

(by Claim 5.4)

≤
(
1 +

1

φ− 1
+ 9ε

)
f(St) (by Claim 5.3)

= (1 + φ+ 9ε)f(St),

where in the last equality we used the definition of φ as the
golden ratio. This last case concludes the proof.

6. Experiments
In this section we evaluate the performance of our two algo-
rithms on real-world data sets¶. We report here three case
studies, while we defer to Appendix C other (qualitatively
analogous) results, as well as further implementation details.
We present additional experimental results that illustrate the
gains in worst-case approximation guarantee in Appendix B.
As benchmarks we consider the SWAPPING algorithm which
provides a 4-approximation and is 1-consistent and the
SIEVE-STREAMING algorithm, a (2 + ε)-approximation
that is not consistent (see Appendix A for further details on
the instability of the algorithm).

Influence Maximization. For our first case study we con-
sider the problem of influence maximization on a social
network graph (e.g., Norouzi-Fard et al., 2018; Halabi et al.,
2020), where the goal is to maintain a subset of the nodes
to “influence” the rest of the graph. In such application,
consistency is crucial as changing nodes may entail costs
relative to terminating and issuing new contracts. We use the
Facebook dataset from McAuley & Leskovec (2012) that
consists of 4039 nodes V and 88234 edges E and, as mea-
sure of influence we consider the monotone and submodular
dominating function:

f(S) = |{v ∈ V : ∃s ∈ S and (s, v) ∈ E}|.
¶The code of the experiments is available at https://

github.com/fedefusco/Consistent-Submodular.
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(a) Influence Maximization on Facebook
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(b) k-medoid Clustering on RunInRome
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(c) LogDet Maximization on RunInRome
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(d) Influence Maximization on Facebook
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(e) k-medoid Clustering on RunInRome

0 2000 4000 6000 8000
Stream

0

50

100

150

200

250

Co
ns

ist
en

cy Sieve
Swapping
Chasing
Encompassing

(f) LogDet Maximization on RunInRome

Figure 1: Experimental Results. The first row reports the objective values, the second one the cumulative consistency.

Summarizing Geolocation Data. Our second and third
case study concern the problem of maintaining a stable
and representative summary from a sequence of geograph-
ical coordinates (e.g., Mirzasoleiman et al., 2017; Dütting
et al., 2022). We use the RunInRome dataset (Fusco, 2022),
that contains 8425 positions recorded by running activity in
Rome, Italy. We consider two different objective functions
used in geographical data summarization: the k-medoid
and the kernel log-det. Consider the k-medoid function
on the metric set (V, d) L(S) = 1

|V |
∑
v∈V mine∈S d(e, v).

By introducing an auxiliary point e0 ∈ V we can turn L
into a monotone submodular function (Mirzasoleiman et al.,
2013):

f(S) = L(e0)− L(S + e0).

In our experiment we set e0 to be the first point of each
dataset. For the second objective, consider a kernel matrix
K that depends on the pair-wise distances of the points, i.e.
Ki,j = exp{−d(i,j)

2

h2 } where d(i, j) denotes the distance
between the ith and the jth point in the dataset and h is
some constant. Following Krause & Golovin (2014), an-
other common monotone submodular objective is f(S) =
log det(I + αKS,S), where I is the |S|−dimensional iden-
tity matrix, KS,S is the principal sub-matrix corresponding
to the entries in S, and α is a regularization parameter (that
we set to 10 in the experiments).

Experimental Results. In Figure 1, we present the per-
formance of our algorithms and the benchmarks. The first

row (Figures 1a to 1c) features the objective value of the
dynamic solution maintained by the algorithms, while the
second row (Figures 1d to 1f) reports the cumulative num-
ber of changes in the solutions. The experiments show
that our algorithms, ENCOMPASSING-SET and CHASING-
LOCAL-OPT, achieve comparable value as SWAPPING and
SIEVE-STREAMING; while achieving notable savings in
the total number of changes. For instance, in the setting
of Figure 1d, SWAPPING is significantly less consistent on
aggregate than our algorithms (around a factor 25), while
SIEVE-STREAMING changes the solution about 3− 4 times
more often. The superior cumulative consistency of our
algorithms is also clear in the other experiments; in the
settings of Figure 1e and Figure 1f SIEVE-STREAMING
performs order of magnitudes more changes than either of
our algorithms (about 500x and 10x), while SWAPPING per-
forms between 50% and 100% more. The strict “insertion
rules” implemented by our two algorithms seem to guaran-
tee that only the crucial elements of the dataset are added
to the solution. This phenomenon empirically induces a de-
sirable global stability over the entire stream – which goes
beyond the theoretical per-round guarantees – at the cost of
possibly discarding moderately good elements.

7. Conclusion
In this paper, we initiate the study of consistency in sub-
modular maximization. Consistency is a natural measure of
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stability of the online solution maintained by an algorithm,
and has been extensively studied for clustering, facility lo-
cation and online learning. We present two consistent algo-
rithms, ENCOMPASSING-SET and CHASING-LOCAL-OPT,
that exhibit a different approximation-consistency trade off
(3.147 + O(1/k) and 1-consistent vs. 2.619 + O(ε) and
O(1/ε)-consistent). They both substantially improve on the
state of the art (a consistent 4-approximation), moving the
approximability boundary closer to the optimal approxi-
mation factor, as evidenced by the information-theoretical
lower bound of 2 that we prove to hold for any consistent de-
terministic algorithm. Besides closing the remaining gap in
the approximation factor, our work raises many natural and
compelling questions. First, the investigation of randomized
algorithms may lead to better results, even beyond the lower
bound of 2. Second, while some known algorithms already
exhibit consistency, the explicit study of consistent algo-
rithms for possibly non-monotone submodular functions
and more general constraints (e.g., matroids and knapsack)
may lead to improved results.

Impact Statement
The work is theoretical in nature and does not have any
significant ethical implications.
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A. Instability of known algorithms
We propose here two instances that highlight the instability of known algorithms. The instance in Example A.1 is such that
both the optimal solution and the output of the greedy algorithm (Nemhauser et al., 1978) change entirely after every insertion.
We then briefly discuss, in Example A.2, a simple instance that forces the SIEVE-STREAMING algorithm (Badanidiyuru
et al., 2014) and its modified version SIEVE-STREAMING++ (Kazemi et al., 2019) to behave in a non-consistent way.
Example A.1. Let δ ∈ (0, 1) be a small parameter used to break ties, and consider the following weighted covering instance,
parameterized by an integer i and cardinality constraint k. The base setE is given by the pairs {(a, b), for a, b ∈ {0, . . . , i}}.
We refer to each pair (a, b) as an item. The weights of the items are as follows: all items have unitary weight, but the
following: 

w(0,0) = 0

w(a,0) = δ · (2a+ 1) for a 6= 0

w(0,b) = δ · 2b for b 6= 0

The weighted covering function is monotone submodular and is defined as follows:

f(S) =
∑

(a,b):∃s∈S,(a,b)∈s

w(a,b).

Note, f is defined over subsets of E, not on items. The subsets of E we consider in our instance are the rows and columns
of E: Ra is defined as {(a, 0), . . . , (a, i)}, while Cb is defined as {(0, b), . . . , (i, b)}. The stream is constructed as follows:
C1, R1, C2, R2, . . . , C`, R`, . . . , Ci, Ri. Consider now what happens after 2k insertions. The optimal solution (which is the
same output by running greedy on the elements arrived so far) is as follows: if the last arrived element is a row, then the
optimal solution is given by the last k arrived rows; conversely, if the last arrived element is a column, then the optimal
solution is given by the last k arrived columns. This means that the k elements in the dynamic solution change after each
insertion! Note, the elements in the first row and first column are only there for tie-breaking.
Example A.2. The SIEVE-STREAMING algorithms lazily maintains a set of geometrically increasing active thresholds O (of
the type τ = (1+ ε)j , for some j ∈ Z and input parameter ε) and a candidate solution for each one of them; then outputs the
best of these candidates. In particular, when a new element et arrives, with value way larger than all the previous ones, a new
threshold is activated and the corresponding candidate solution Sτ is initiated (Sτ = {et}). It is then clear that any instance
characterized by elements with dramatically increasing values would force the algorithm to continuously change its solution.
For instance, consider an additive function with f(et) = 2t: after each insertion, the solution output by SIEVE-STREAMING
would be the singleton {et}. Playing with similar arguments, it is not hard to construct an instance that completely change
solution every k insertions (e.g., f(et) = kdt/ke).

B. The analysis of SWAPPING is tight
The SWAPPING algorithm is known to provide a 4-approximation to the optimum (Chakrabarti & Kale, 2015). In this Section
we first report the pseudocode for completeness, and then prove that the analysis is tight, meaning that for any ε ∈ (0, 1),
there exists an instance of the problem where the solution computed by SWAPPING is at least a (4− ε) factor away from the
optimal one (Example B.1). Finally, in Figure 2 we report the empirical performances of SWAPPING, SIEVE-STREAMING,
and our algorithms on such hard instance.
Example B.1. Fix any ε ∈ (0, 1), and consider the following weighted covering instance, parameterized by an integer i that
we set later and the cardinality constraint k = 2i. The set of items is E = {ej` | j ∈ {0, . . . , i}, ` ∈ {1, . . . , k}}. Consider
the partition of E into i+1 bundles of items E0, E1, . . . , Ei, where each bundle has k items Ej = {ej1, . . . , e

j
k}. Let δ > 0

be a small positive constant, which we will set later. The weight of the generic element ej` in E is wj` = 2j if j 6= i and
wi` = 2i − δ otherwise. Now that we have the auxiliary set E, we can define the stream π of subsets of E as follows. For
0 ≤ j < i, let πj be the subsequence {ej1}, . . . , {e

j
k}, Ej . Let πi be the subsequence {ei1}, . . . , {eik} (without bundle Ei at

the end). Then π is given by the concatenation of π0, π1, . . . , πi.

Now, the behaviour of SWAPPING on π is clear: it maintains in the solution the last k singletons that arrived up to bundle
Ei−1 and ignores the elements in Ei (because of the small δ). In particular, at the end of the stream outputs the solution
S = {{ei−11 }, . . . , {ei−1k }}, for a value of

f(S) =

k∑
`=1

wi−1` = k · 2i−1.
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Algorithm 4 SWAPPING

1: Environment: stream π of elements, function f , cardinality k
2: S ← ∅
3: for each new arriving element e from π do
4: w(e)← f(e | S)
5: if |S| < k then
6: S ← S + e
7: else
8: se ← argmin{w(y) | y ∈ S}
9: if 2 · w(se) ≤ w(e) then

10: S ← S − se + e
11: Return S
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Figure 2: Experimental results on the weighted covering instance of Example B.1, for δ = 0.01, i = 7, and ε = 0.1.

Consider now the optimal solution S? given by the i bundles E0, . . . , Ei−1 and k − i singletons from the last bundle, e.g.,
{ei1}, . . . , {eik−i}, for a value of

f(S?) =

i∑
j=0

k∑
`=1

wj` −
k∑

`=k−i+1

wi` ≥ k · (2i+1 − 1)− kδ − i · 2i.

Note, S? is indeed the optimal solution because of our choice of k = 2i: the total weight of the elements in E0 is k, while a
singleton from Ei has weight 2i − δ. We can now focus on the approximation factor, we have:

f(S?)

f(S)
≥ 4− 2

2i
(δ + 1 + i).

Now, the negative terms go to zero when i goes to infinity (and δ is small enough), thus for any fixed precision ε it is possible
to set i and δ so that f(S?)/f(S) ≥ 4− ε.

C. Further Experimental Results
In our experiments, we set ε = 0.1 in SIEVE-STREAMING and CHASING-LOCAL-OPT, while the cardinality constraint k
is consistently set to 20. The order of the stream of elements is the one intrinsic in the dataset we consider. In Figure 3,
we report three extra experimental case studies. Besides studying the k-medoid and logdet objective on a random sample
(10332 points) from the Uber pickups dataset (Kaggle, 2020) (see the last two columns of Figure 3 for the results), we
present results for Personalized Movie Recommendation (first column of Figure 3).
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(b) k-medoid Clustering on Uber Dataset
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(c) LogDet Maximization on Uber Dataset
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(d) MovieLens Dataset
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(e) k-medoid Clustering on Uber Dataset
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(f) LogDet Maximization on Uber Dataset

Figure 3: Further Experimental Results. The first row reports the objective values, the second one the cumulative consistency.

Personalized Movie Recommendation. Movie recommendation systems are one of the common experiments in the
context of submodular maximization (e.g., Amanatidis et al., 2021; Dütting et al., 2022; Halabi et al., 2023). In this
experiment, we have a large collection M of movies that arrive online and we want to design a recommendation system
that proposes movies to users. For example, the summary may be a carousel of ‘recommended movies’ presented to a
downstream user, and we would like the selection to be fairly stable. We use the MovieLens 1M database (Harper & Konstan,
2016), that contains 1000209 ratings for 3900 movies by 6040 users. Based on the ratings, it is possible to associate to each
movie m, respectively user u, a feature vector vm, respectively vu. More specifically, we complete the users-movies rating
matrix and then extract the feature vectors using a singular value decomposition and retaining the first 30 singular values
(Troyanskaya et al., 2001). Following the literature (e.g., Mitrovic et al., 2017), we measure the quality of a set of movies S
with respect to user u (identified by her feature vector vu), using the following monotone submodular objective function:

fu(S) = (1− α)
∑
s∈S
〈vu, vs〉+ + α ·

∑
m∈M

max
s∈S
〈vm, vs〉,

where 〈a, b〉+ denotes the positive part of the scalar product. The first term is linear and sum the predicted scores of
user u (that is chosen as a random point in [0, 1]30 in our experiments) for the movies in S, while the second term has a
facility-location structure and is a proxy for how well S covers all the movies. Finally, parameter α balances the trade off
between the two terms; in our experiments it is set to 0.95.
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