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Abstract
We derive a novel, provably robust, and closed-
form Bayesian update rule for online filtering in
state-space models in the presence of outliers and
misspecified measurement models. Our method
combines generalised Bayesian inference with
filtering methods such as the extended and en-
semble Kalman filter. We use the former to show
robustness and the latter to ensure computational
efficiency in the case of nonlinear models. Our
method matches or outperforms other robust fil-
tering methods (such as those based on varia-
tional Bayes) at a much lower computational cost.
We show this empirically on a range of filtering
problems with outlier measurements, such as ob-
ject tracking, state estimation in high-dimensional
chaotic systems, and online learning of neural
networks.

1. Introduction
Probabilistic state-space models (SSMs) are widely used to
address problems in time-series forecasting, online learning,
tracking problems, and signal processing. A key challenge
in SSMs is to perform online (sequential) posterior infer-
ence, also known as Bayesian filtering. If the model is linear
and the and the dynamics are known, then the Kalman fil-
ter (KF) algorithm is the optimal filter in terms of minimal
mean squared error (Morris, 1976). If the model is not lin-
ear, approximate inference methods must be used. Although
there are a number of techniques available, in this paper
we focus on the extended Kalman filter (EKF) (see e.g.,
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Figure 1. First state component of the SSM (20). The grey dots
are measurements sampled from (20) and the red crosses are mea-
surements sampled from an outlier measurement process. The
dotted blue line shows the KF posterior mean estimate and the
solid orange line shows our proposed WoLF posterior mean esti-
mate. The regions around the posterior mean cover two standard
deviations. For comparison, the dashed black line shows the true
sampled state process.

Sarkka & Svensson, 2023) and the ensemble Kalman filter
(EnKF) (see e.g., Roth et al., 2017a), because they both
admit closed-form Bayesian updates to Gaussian posterior
approximations and scale to high dimensions.

In a Bayesian setting, the KF and KF-like methods typi-
cally use a Gaussian measurement model for computational
convenience. However, a weakness of this assumption is
that extreme observations, such as outliers, are not well
modelled by Gaussians, leading to model misspecification
(Grubbs, 1969; Hampel et al., 2011). Moreover, in practice,
the true dynamics are often different from the one assumed
by the filter. This could be because the measurements are
corrupted, or because the user does not have access to the
measurement function. For example, in tracking problems,
sensor measurement errors record the wrong position of an
object; similarly, in economics and finance, there are in-
stances of data providers sending time series with erroneous
values (see e.g. Liu, 2020, for a survey).

There is a large literature that studies the filtering problem in
the presence of outliers and misspecified measurement mod-
els1. Some approaches extend the state space by introducing

1Alternatively, a measurement model can be referred to as an
observation model.
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hierarchical priors on the measurement model. Since closed-
form estimation of the state is not generally feasible, a fac-
torised variational Bayes (VB) approach can be employed to
obtain a fixed-point solution (see e.g., Ting et al., 2007; Aga-
mennoni et al., 2012; Huang et al., 2016; Nurminen et al.,
2015; Wang et al., 2018; Piché et al., 2012). Alternatively,
Huberised (E)KF-type methods are optimisation-based ap-
proaches to filtering, which minimise the Huber loss; see
Boncelet & Dickinson (1983); Karlgaard (2015); Das (2023)
and the references therein. Recently, Boustati et al. (2020)
proposed a particle filter (PF) approach that uses gener-
alised Bayes (GB) to handle model misspecification from
outliers; this builds on work showing that GB updates are
theoretically sound and robust to outliers and model mis-
specification (see, e.g., Bissiri et al., 2016; Jewson et al.,
2018; Knoblauch et al., 2022; Fong et al., 2021; Jewson &
Rossell, 2022; Husain & Knoblauch, 2022; Matsubara et al.,
2023; 2022). However, these approaches can be slow, due to
the need to perform iterative optimisation per step (for VB)
(Knoblauch et al., 2018), or the need to use a large number
of samples (for PF) (Boustati et al., 2020). See Appendix A
for an overview of a number of these methods.

In this paper, we propose a novel approach that tackles the
filtering problem in the presence of outliers and measure-
ment model misspecification. Our method is based on the
GB approach where one replaces the log-likelihood of the
measurement process with a loss function. We call our
method the weighted observation likelihood filter (WoLF)
because it uses a weighted log-likelihood as loss. A key
advantage of this choice is that we can have closed-form
(conjugate) update equations that compute an approximate
Gaussian posterior. We derive WoLF variants for the KF,
the EKF, and the ensemble Kalman Filter (EnKF).

Our approach has several key advantages over prior work:
(i) it is fast and has similar computational cost to the KF
thanks to closed-form updates, (ii) it is flexible to the form
of misspecification, (iii) it is provably robust to outliers, and
(iv) it is easy to implement and straightforward to apply
to other filtering methods. See Figure 1 for an illustrative
example.

The remainder of the paper proceeds as follows: in Section
2 we introduce the filtering problem and some common
algorithms to approximate a Gaussian posterior. In Sec-
tion 3 we present our method and derive WoLF variants to
the KF, the EKF, and the EnKF. Next, in Section 3.4 we
show that for certain choices of weighting functions, our
method is provably robust. Finally, in Section 4, we show
empirically that our method matches and in some cases
outperforms previous robust filtering methods at a lower
running time. We consider a variety of filtering problems,
including 2d-tracking, state estimation in high-dimensional
chaotic systems, and online learning of neural networks. Our

code can be found at https://github.com/gerdm/
weighted-likelihood-filter.

2. Background: Filtering in SSMs
We briefly review Kalman filtering and the main extensions
we consider in this work. In what follows, m, d ∈ N are
the dimensions of the state and measurement processes, and
p(·) is used for densities. Given an initial state θ0 ∈ Rm, a
Markovian state-space model (SSM) is defined as

θt = ft(θt−1) + ϕt, (1)
yt = ht(θt) +φt, (2)

for t ∈ {1, . . . , T}. Here, θt ∈ Rm is the (latent) state
vector, yt ∈ Rd is the (observed) measurement vector, ft :
Rm → Rm is the dynamics function, ht : Rm → Rd is
the measurement function,2 ϕt is a zero-mean Gaussian-
distributed random vector with known covariance matrix
Qt, and φt is any zero-mean random vector representing
the measurement noise. The meaning of the state depends
on the application; for example, it can be the position of
an object, the state of the atmosphere, or the weights of a
neural network, as we will see in the results section.

The filtering of an SSM consists of two steps: the predict
step and the update step. Given the result of a previous
update step (i.e., the iterative posterior) p(θt−1|y1:t−1), the
predict step estimates the prior predictive distribution

p(θt|y1:t−1) =

∫
p(θt|θt−1)p(θt−1|y1:t−1)dθt−1, (3)

and the update step estimates the new posterior distribution

p(θt|y1:t) ∝ p(yt|θt)p(θt|y1:t−1). (4)

where ∝ indicates equality up to a multiplicative normalisa-
tion constant.

2.1. The Kalman filter

Suppose the SSM is linear and Gaussian, that is,

θt = Ft θt−1 + ϕt,

yt = Ht θt +φt,
(5)

with φt a zero-mean Gaussian with known covariance ma-
trix Rt, Ft ∈ Rm×m, and Ht ∈ Rd×m. Then, given
the initial condition p(θ0) = N (θ0 |µ0, Σ0) — a Gaus-
sian density with known mean µ0 ∈ Rm and covariance
Σ0 ∈ Rm×m — the exact Bayesian predict and update steps
are given by

p(θt|y1:t−1) = N (θt |µt|t−1, Σt|t−1), (6)
p(θt|y1:t) = N (θt |µt, Σt), (7)

2In many applications, the function ht is modulated by an
exogenous feature vector xt. See e.g., Section 4.2.
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with prior predictive mean and covariance given by

µt|t−1 = Ft µt−1,

Σt|t−1 = Ft Σt−1 F
⊺
t +Qt,

(8)

and posterior mean and covariance given by

Σ−1
t = Σ−1

t|t−1 +H⊺
t R

−1
t Ht,

Kt = Σt H
⊺
t R

−1
t ,

µt = µt|t−1 +Kt (yt − ŷt),

(9)

where ŷt = Ht µt|t−1 is the predicted observation and Kt

is the Kalman gain matrix used to map the error (residual)
vector in observation space to an update in latent state space.

2.2. The Extended Kalman filter

When the state and measurement functions are non-linear,
a common approach is to introduce a Gaussian posterior
density q(θt|y1:t) = N (θt |µt, Σt) that approximates the
posterior density p(θt|y1:t) through a Kullback-Leibler pro-
jection. This is done using Gaussian approximations of the
joint densities q(θt,θt−1|y1:t−1) and q(θt,yt|y1:t−1) and
then performing a closed-form Bayesian update; see Section
8.4 in Sarkka & Svensson (2023) for details.

The EKF is a special case of the above in which one lin-
earises ft in (1) and ht in (2), and assumes a Gaussian
measurement noise φt. As a consequence, the predict and
update equations resemble those of the standard KF. More
precisely, the EKF replaces the mean of the state transition
density p(θt|θt−1) in (1) with

E[θt|θt−1] ≈ Ft(θt−1 − µt−1) + ft(µt−1) =: µ̄t|t−1,
(10)

and the measurement mean of p(yt|θt) in (2) with

E[yt|θt] ≈ Ht(θt − µt|t−1) + ht(µt|t−1) =: ȳt, (11)

where µt|t−1 = E[µ̄t|t−1|µt−1] = ft(µt−1), Ft is the
Jacobian of ft evaluated at µt−1, Ht is the Jacobian of ht

evaluated at µt|t−1, and ŷt = E[ȳt] = ht(µt|t−1). The
linearisation of the transition and measurement around the
respective previous means allows the resulting predict and
update equations to closely resemble (8) and (9). Therefore,
the algorithm remains relatively scalable and more efficient
low-rank extensions can also be derived (see e.g. Chang
et al., 2023; Lambert et al., 2023; Cartea et al., 2023).

2.3. The ensemble Kalman filter

The ensemble Kalman filter (EnKF) was developed as an al-
ternative to the extended Kalman filter for high-dimensional
and highly non-linear state dynamics (see e.g., Evensen,
1994; Burgers et al., 1998; Roth et al., 2017a). This method
avoids the need to compute Jacobians and the storage of

an explicit m×m posterior covariance matrix, by instead
representing the belief state with an ensemble of N ∈ N
particles θ̂(i)

t ∈ Rm for i = 1, . . . , N evolved through time.
This enables the method to scale to high-dimensional state
spaces with complex nonlinear dynamics, such as those fre-
quently arising in data assimilation for weather forecasting
(Evensen, 2009). In the EnKF, the predict step samples (1)
to obtain θ̂

(i)
t|t−1. Then, the update step samples predictions

ŷ
(i)
t|t−1 ∈ Rd, for each particle, according to

ŷ
(i)
t|t−1 ∼ N

(
ht

(
θ̂
(i)
t|t−1

)
,Rt

)
. (12)

The particles are then updated according to

θ̂
(i)
t = θ̂

(i)
t|t−1 + K̄t

(
yt − ŷ

(i)
t|t−1

)
, (13)

with gain matrix K̄t calculated from the ensemble. See
Appendix D.3 for details.

3. The weighted observation likelihood filter
Our method is based on the GB approach where one modi-
fies the update step in (4) to use a loss function ℓt : Rm → R
in place of the negative log-likelihood of the measurement
process. This gives the generalised posterior

q(θt|y1:t) ∝ exp(−ℓt(θt))q(θt|y1:t−1). (14)

We propose to gain robustness to outliers in observation
space by taking the loss function to be the model’s negative
log-likelihood scaled by a data-dependent weighting term

ℓt(θt) = −W 2(yt, ŷt) log q(yt|θt), (15)

with W : Rd×Rd → R the weighting function and q(yt|θt)
the modelled measurement process. We call our method the
weighted observation likelihood filter (WoLF). To specify
an instance of our method, ones needs to define the likeli-
hood q(yt|θt) and the weighting function W . In the next
subsections, we show the flexibility of WoLF and derive
weighted-likelihood-based KF, EKF, and EnKF algorithms.
Setting W (yt, ȳt) = 1 trivially recovers existing methods,
but we will instead use non-constant weighting functions
inspired by the work of (Barp et al., 2019; Matsubara et al.,
2022; Altamirano et al., 2023a;b).

3.1. Linear weighted observation likelihood filter

The following proposition gives a closed-form solution for
the update step of WoLF under a linear measurement func-
tion and a Gaussian likelihood (see Appendix C.1 for the
proof).
Proposition 3.1. Consider the linear-Gaussian SSM (5)
with weighting function W : Rd × Rd → R. Then, the
update step of WoLF with loss function (15) is given by (9)
with R−1

t replaced by R̄−1
t = W 2(yt, ŷt)R

−1
t .
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The resulting predict and update steps for WoLF under lin-
ear dynamics and zero-mean Gaussians for the state and
measurement process are shown in Algorithm 1.

Algorithm 1 WoLF predict and update step
Require: Ft, Qt // predict step

µt|t−1 ← Ft µt−1

Σt|t−1 ← Ft Σt−1 F
⊺
t +Qt

Require: yt, Ht, Rt // update step
ŷt ← Ht µt|t−1

wt ←W (yt, ŷt)
Σ−1

t ← Σ−1
t|t−1 + w2

t H
⊺
t R

−1
t Ht

Kt ← w2
t Σt H

⊺
t R

−1
t

µt ← µt|t−1 +Kt (yt − ŷt)

The computational complexity of WoLF under linear dy-
namics matches that of the KF, i.e., O(m3). Alternative
robust filtering algorithms require multiple iterations per
measurement to achieve robustness and stability, making
them significantly slower; see Table 1 for the computational
complexity for the methods we consider, and Table 2 and
Figure 5 for empirical comparisons.

3.2. Nonlinear weighted observation likelihood filter

Our method readily extends to other nonlinear filtering algo-
rithms. For example, a WoLF version of the EKF is obtained
by introducing a weighting function to (11) yielding the ap-
proximate log-likelihood

log q(yt|θt) = W 2(yt, ŷt) logN (yt | ȳt, Rt). (16)

Similarly, we can derive a weighted ensemble Kalman filter
by weighting error terms in the update step (13); see Ap-
pendix D.3 for details. Finally, our method can be easily
extended to handle measurement processes modelled as an
exponential family, such as in classification; see Appendix
D.1 for details.

3.3. The choice of weighting function

Weighted likelihoods have a well-established history in
Bayesian inference and have demonstrated their efficacy in
improving robustness (Grünwald, 2012; Holmes & Walker,
2017; Grünwald & van Ommen, 2017; Miller & Dun-
son, 2018; Bhattacharya et al., 2019; Alquier & Ridgway,
2020; Dewaskar et al., 2023). In this context, the corre-
sponding posteriors are often referred to as fractional, tem-
pered, or power posteriors. In most existing work, the
determination of weights relies on heuristics and the as-
signed weights remain constant across all data points so that
W (yt, ŷt) = w ∈ R for all t. In contrast, we dynamically
incorporate information from the most recent observations
without incurring additional computational costs by defining

the weight as a function of the current observation yt and
its prediction ŷt = ht(µt|t−1), which is based on all of the
past observations.

To define the weighting function, we take inspiration from
previous work for dealing with outliers. In particular, Wang
et al. (2018) proposed classifying robust filtering algorithms
into two main types: compensation-based algorithms, which
incorporate information from tail events into the model in a
robust way (see, e.g., Huang et al., 2016; Agamennoni et al.,
2012), and detect-and-reject algorithms, which assume that
outlier observations bear no useful information and thus are
ignored (see, e.g., Wang et al., 2018; Mu & Yuen, 2015).
Below we show how both of these strategies can be imple-
mented using our WoLF method by merely changing the
weighting function.

Inverse multi-quadratic weighting function: As an ex-
ample of a compensation-based method, we follow Altami-
rano et al. (2023b) and use the Inverse Multi-Quadratic
(IMQ) weighting, which in our SSM setting is

W (yt, ŷt) =

(
1 +
||yt − ŷt||22

c2

)−1/2

, (17)

where c > 0 is the soft threshold and ∥ · ∥ denotes the l2
norm. We call WoLF with IMQ weighting “WoLF-IMQ”.

Mahalanobis-based weighting function: The l2 norm
in the IMQ can be modified to account for the covariance
structure of the measurement process by replacing it with
the Mahalanobis distance between yt and ŷt:

W (yt, ŷt) =

(
1 +
∥R−1/2

t (yt − ŷt)∥22
c2

)−1/2

. (18)

We call WoLF with this weighting function the WoLF-MD
method. This type of weighted IMQ function has been used
extensively in the kernel literature (see e.g. Chen et al., 2019;
Detommaso et al., 2018; Riabiz et al., 2022).

Threshold Mahalanobis-based weighting function: As
an example of a detect-and-reject method, we consider

W (yt, ŷt) =

{
1 if ∥R−1/2

t (yt − ŷt)∥22 ≤ c

0 otherwise
(19)

with c > 0 the fixed threshold. The weighting function
(19) corresponds to ignoring information from estimated
measurements whose Mahalanobis distance to the true mea-
surement is larger than some predefined threshold c. In
the linear setting, this weighting function is related to the
benchmark method employed in Ting et al. (2007). We refer
to WoLF with this weighting function as “WoLF-TMD”.

4



Outlier-robust Kalman Filtering through Generalised Bayes

For yt ∈ Rd with d = m ≫ 1 and diagonal measurement
covariance Rt = diag (rt,1, . . . , rt,d), the WoLF-TMD
function can be modified to weight individual observations
so that W : Rd×Rd → Rd. See Section 4.3 for an example
and Appendix D.2 for a discussion.

The proposed weighting functions — the IMQ, the MD, and
the TMD — are defined such that W : Rd×Rd → [0, 1] and
therefore can only down-weight observations. This means
that our updates are always conservative, i.e., our posteriors
will be wider in the presence of outliers (see Figure 1 for an
example).

3.4. Theoretical properties

In this section, we prove the outlier-robustness for WoLF-
type methods. We use the classical framework of Huber
(1981). Consider measurements y1:t. We measure the in-
fluence of a contamination yc

t by examining the divergence
between the posterior with the original observation yt and
the posterior with the contamination yc

t , which is allowed to
be arbitrarily large. As a function of yc

t , this divergence is
called the posterior influence function (PIF) and was studied
in Ghosh et al. (2016); Matsubara et al. (2022); Altamirano
et al. (2023a;b). Following Altamirano et al. (2023b), we
consider the Kullback-Leibler (KL) divergence, which al-
lows us to obtain closed-form expressions for Gaussians.
The PIF is given by

PIF(yc
t ,y1:t) = KL (p(θt|yc

t ,y1:t−1)∥p(θt|yt,y1:t−1)) .

If supyc
t∈Rd |PIF(yc

t ,y1:t)| < ∞, then the posterior is
called outlier-robust, which indicates that as ∥yt − yc

t∥2 →
∞, the contamination’s effect on the posterior is bounded.
This is the Bayesian equivalent to bias-robustness in fre-
quentist statistics.

Theorem 3.2. Consider the linear Gaussian SSM (5) or
its linearised (EKF) approximation. The standard (E)KF
posterior has an unbounded PIF and is not outlier robust.

In contrast, the generalised posterior presented in Proposi-
tion 3.1 has bounded PIF and is, therefore, outlier robust for
any weighting function W such that supyt∈Rd W (yt, ŷt) <
∞ and supyt∈Rd W (yt, ŷt)

2 ∥yt∥2 <∞.

The proof is in Appendix C.2. In particular, the conditions
are satisfied when W is (17), (18), or (19), which are the
focus of our paper. Figure 2 shows an empirical validation
of this proposition for the 2D tracking problem detailed in
Section 4.1. Here, it is clear that the PIF for the standard KF
is unbounded, whereas our methods exhibit a bounded influ-
ence. In Appendix C.3 we show a version of the theorem
above for the EnKF.

Figure 2. PIF for the 2d tracking problem of Section 4.1. The last
measurement yt is replaced with yc

t = yt+ϵ, where ϵ ∈ [−5, 5]×
[−5, 5]. We observe that the PIF is asymetric for the weighted
methods; this is because the weighting term is a function of the
prior predictive and the measurement at time t. See Appendix E.1
for a more detailed explanation.

4. Experiments
In this section, we study the performance of the WoLF meth-
ods in multiple filtering settings. Each experiment employs
a dataset (or samples data from an SSM), a collection of
benchmark methods, and a metric to compare the methods.

For our robust baselines, we make use of three methods
that are representative of recent state-of-the-art approaches
to robust filtering: the Bernoulli KF of Wang et al. (2018)
(KF-B), which is an example of a detect-and-reject strat-
egy; the inverse-Wishart filter of Agamennoni et al. (2012)
(KF-IW), which is an example of a compensation-based
strategy; and the Huberised EnKF of Roh et al. (2013)
(Hub-EnKF), which is an example of a Huberised algo-
rithm. The KF-B and KF-IW are deterministic and opti-
mise a VB objective to compute a Gaussian approximation
to the state posterior (see Appendix A for details). We do
not compare against sophisticated hierarchical methods nor
methods based on particle filtering, because these do not
scale well to high-dimensional state spaces. For the neural
network fitting problem, we also consider a variant of on-
line gradient descent (OGD) based on Adam (Kingma & Ba,
2017), which uses multiple inner iterations per step (mea-
surement). This method does scale to high-dimensional
state spaces, but sadly only gives a maximum a posteriori
(MAP) estimate and is not as sample efficient as a robust
Bayesian filter.

For experiments where KF or EKF is used as the baseline,
we consider the following WoLF variants: (i) the WoLF
version with inverse multi-quadratic weighting function
(WoLF-IMQ), (ii) the thresholded WoLF with Mahalanobis-
based weighting function (WoLF-TMD). When using the
EKF variants, we linearise the state mean (10) and measure-
ment mean (11). For experiments where the ensemble KF
(EnKF) is taken as the baseline algorithm, we benchmark
the performance of the weighted likelihood EnKF with (i)
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weighting with averaged-particles (AP-EnKF) and (ii) the
per-particle weightings (PP-EnKF). See Appendix D.3 for
a detailed description of the robust EnKF methods.

Method Cost #HP Ref

KF O(m3) 0 Kalman
KF-B O(I m3) 3 Wang et al.
KF-IW O(I m3) 2 Agamennoni et al.
OGD O(I m2) 2 Bencomo et al.
WoLF-IMQ O(m3) 1 (Ours)
WoLF-TMD O(m3) 1 (Ours)

Table 1. Computational complexity of the update step, assuming
d ≤ m and assuming linear dynamics. Here, I is the number of
inner iterations, #HP refers to the number of hyperparameters we
tune, and ”Cost” refers to the computational complexity.

In each experiment, and unless otherwise specified, we run
100 trials to evaluate each method. The hyperparameters of
each method are chosen on the first trial using the Bayesian
optimisation (BO) package of Nogueira (2014). BO is a
popular derivative-free approach to function maximisation
(see e.g. Frazier, 2018). Specifically, we optimise the hy-
perparameters that minimise the chosen metric on the first
run of each experiment. Where a multi-output metric is
specified, the minimisation is taken over the maximum of
the output. The hyperparameters for KF/EKF-like methods
are: the noise scaling and number of inner iterations for the
KF-IW, the two shape parameters and the number of inner
iterations for the KF-B, the learning rate and number of
inner iterations for the OGD, the thresholding value for the
WoLF-TMD, and the soft threshold hyperparameter for the
WoLF-IMQ. See Table 1 for a summary.

The results we obtain can be summarised as follows: WoLF-
based methods either outperform or match the performance
of their counterparts in the metrics we specify below, but
typically at a much lower running time.

4.1. Robust KF for tracking a 2D object

We consider the classical problem of estimating the position
of an object moving in 2D with constant velocity, which
is commonly used to benchmark tracking problems (see
e.g., Example 8.2.1.1 in Murphy (2023) or Example 4.5 in
Sarkka & Svensson (2023)). The SSM takes the form

p(θt|θt−1) = N (θt |Ftθt−1, Qt),

p(yt|θt) = N (yt |Htθt, Rt),
(20)

where Qt = q I4, Rt = r I2, (θ0,t,θ1,t) is the position,
(θ2,t,θ3,t) is the velocity,

Ft =

1 0 ∆ 0
0 1 0 ∆
0 0 1 0
0 0 0 1

 , Ht =

(
1 0 0 0
0 1 0 0

)
,

∆ = 0.1 is the sampling rate, q = 0.10 is the system noise,
r = 10 is the measurement noise, and IK is a K × K
identity matrix. We simulate 500 trials, each with 1,000
steps. For each method, we compute the scaled RMSE

metric JT,i =
√∑T

t=1(θt,i − µt,i)2 for i ∈ {0, 1, 2, 3} as
well as the total running time (relative to the KF).

In our experiments, the true data generating process is one
of two variants of (20). The first variant (which we call
Student observations) corresponds to a system whose mea-
surement process comes from the Student-t likelihood:

p(yt|θt) = St(yt |Htθt, Rt, νt)

=

∫ ∞

0

N
(
yt |Htθt,

Rt

τ

)
Gam

(
τ |νt

2
,
νt
2

)
dτ,

(21)
with Gam(·|a, b) the density of a Gamma distribution with
shape a and rate b, and νt = 2.01. The second variant
(which we call mixture observations) corresponds to a
system where the mean of the observations changes sporadi-
cally. Instances of this variant can occur as a form of human
error or a software bug in a data-entry program. To emu-
late this scenario, we modify (20) by using the following
mixture model for the observation process:

p(yt|θt) = N (yt |mt, Rt),

mt =

{
Ht θt w.p. 1− pϵ,

2Ht θt w.p. pϵ,

(22)

where pϵ = 0.05.

Figure 3. The left panel shows a sample path using the Student
variant and the right panel shows a sample path using the mixture
variant. The top left figure on each panel shows the true underlying
state in black, and the measurements as grey dots.

Results Figure 3 shows a sample of each variant along
with the filtered state for each method. For the Student
variant (left panel), the WoLF-IMQ and the WoLF-TMD
estimate the true state more closely than the competing
methods. Both the KF-IW and the KF-B look comparable
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to the KF, which are not robust to outliers. For the mix-
ture variant (right panel),3 we see that the WoLF-IMQ, the
WoLF-TMD, and the KF-B filter the true state correctly. In
contrast, the KF-IW and the KF are not robust to outliers.4

Figure 4. Distribution (across 500 2d tracking trials) of RMSE
for first component of the state vector, JT,0. Left panel: Student
observation model. Right panel: Mixture observation model.

The results in Figure 3 hold for multiple trials as shown in
Figure 4, which plots the distribution of the errors in the
first component of the state vector. The heavy tail of the
WoLF-TMD on the mixture observations variant, and the
distribution of JT,k for all k are studied in Appendix E.2.1.

Method Student Mixture

KF-B 2.0x 3.7x
KF-IW 1.2x 5.3x

WoLF-IMQ (ours) 1.0x 1.0x
WoLF-TMD (ours) 1.0x 1.0x

Table 2. Mean slowdown rate over KF.

Table 2 shows the median slowdown (in running time) to
process the measurements relative to the KF. The slowdown
for method X is obtained diving the running time of method
X over the running time of the KF. Under the Student vari-
ant, the WoLF-IMQ, the WoLF-TMD, and the KF-IW have
similar running time to the KF. In contrast, the KF-B takes
twice the amount of time. Under the mixture variant, the
KF-B and the KF-IW are almost four times and five times
slower than the KF respectively. The changes in slowdown

3The top left figure in the right panel is cropped, see Figure 13
for the uncropped version.

4KF-B removes outliers that bear no information according to
some criterion, but in the Student-t case, it fails. KF-IW, on the
other hand, estimates a measurement covariance rather than the
dispersion of such a measurement covariance. In this sense, it is
misspecified in both cases.

rate are due the number of inner iterations that were chosen
during the first trial.

4.2. Robust EKF for online MLP regression (UCI)

In this section, we benchmark the methods using a corrupted
version of the tabular UCI regression datasets.5 Similar
to other papers that deal with non-linear online learning
(see, e.g. Chang et al., 2023), we consider a single-hidden-
layer multi-layered perceptron (MLP) with twenty hidden
units and a real-valued output unit. In this experiment,
the state dimension (number of parameters in the MLP) is
m = (nin×20+20)+(20×1+1), where nin is the dimen-
sion of the feature xt.6 One of the main advantages of using
a Bayesian filtering method for fitting neural networks (com-
pared to using OGD) is the ability to handle non-stationary
distributions (see e.g. Chang et al., 2023). Below, we take a
static state (see e.g. Lambert et al., 2021), so that the prior
predictive mean is µt|t−1 = µt−1. In Appendix E.3 we
study online learning with non-stationary environments.

Each trial is carried out as follows: first, we randomly shuf-
fle the rows in the dataset; second, we divide the dataset
into a warmup dataset (10% of rows) and a corrupted
dataset (remaining 90% of rows); third, we normalise the
corrupted dataset using min-max normalisation from the
warmup dataset; fourth, with probability pϵ = 0.1, we re-
place a measurement yt ∈ R with a corrupted data point
ut ∼ U [−50, 50]; and fifth, we run each method on the
corrupted dataset.

For each dataset and for each method, we evaluate the prior

predictive RMedSE =
√

median{(yt − ht(µt|t−1))2}Tt=1,
which is the squared root of the median squared error
between the measurement yt and the prior predictive
ht(µt|t−1) = h(µt|t−1,xt).7 Here, h is the MLP. We also
evaluate the average time step of each method, i.e., we run
each method and divide the total running time by the number
of samples in the corrupted dataset.

Results Figure 5 shows the percentage change of the
RMedSE and the percentage change of running time with
respect to those of the OGD for all corrupted UCI datsets.
Given the computational complexity of the remaining meth-
ods, ideally, a robust Bayesian alternative to the OGD should
be as much to the left as possible on the x-axis (rel. time
step) and as low as possible on the y-axis (rel. RMedSE).
We observe that the WoLF-IMQ and the WoLF-TMD have
both of these traits. In particular, we observe that the only
two points in the third quadrant are those of the WoLF-IMQ

5The dataset is available at https://github.com/
yaringal/DropoutUncertaintyExps.

6See Table 3 for the values that nin takes for each dataset.
7We use median instead of mean because we have outliers in

measurement space.
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Figure 5. RMedSE versus time per step (relative to the OGD minus
1) across the corrupted UCI datasets.

and the WoLF-TMD. Note that the EKF-IW and the EKF-B
have much higher relative running time and the EKF has
much higher relative RMedSE.

4.3. Robust EnKF for Lorenz96 model

We consider a modified version of the Lorenz96 model
that is commonly used to simulate the atmosphere (see e.g.
Lorenz, 2006; Arnold et al., 2013)

For a fixed ∆ > 0, the SSM is given by

θt+∆,i − θt,i
∆

=
(
θt,i+1 − θt,i−2

)
θt,i−1 − θt,i + ϕt,i,

yt,i =

{
θt,i +φt,i w.p. 1− pϵ,

100 w.p. pϵ.
(23)

Here, θt,k is the value of the state component k at step t,
ϕt,i ∼ N (8, 1), φt,i ∼ N (0, 1), pϵ = 0.001, i = 1, . . . , d,
t = 1, . . . , T , with T ≫ 1 the number of steps, and we use
the convention θt,d+k = θt,k, θt,−k = θt,d−k. Similar to
Roth et al. (2017a), we integrate the state process in (23) to
match the formulation in (1) using the Runge-Kutta-4 (RK4)
procedure with discretisation step ∆ = 0.05, integrated
over T = 103 steps, N = 1, 000 number of particles, and
d = m = 100. A run of the state process is shown in Figure
6. Note that the probability of an outlier happening on any
state component at any timestep is pϵ × d = 0.1.

In this experiment, EnKF is the baseline. As in Roth et al.

(2017b), we use the metric Lt =
√

1
d (θt − µt)⊺(θt − µt)

to measure the in-state RMSE.

Results An evaluation of Lt for the EnKF, the AP-EnKF,
the PP-EnKF, and the Hub-EnKF is shown in the top row
of Figure 7. The grey vertical lines denote timesteps where
an outlier event happened, i.e., at least one entry of yt is 100.

Figure 6. Sample of the Lorenz process with d = 40. Here, the
“waves” move westward. The red dots represent where measure-
ment outliers occur. We take pϵ = 0.01 and ∆ = 0.05 integrated
over T = 60 steps.

The top plot shows that the Hub-EnKF and AP-EnKF have
an almost-identical behaviour. However, the bottom row of
Figure 7 shows that the AP-EnKF and the PP-EnKF are
more robust to the choice of threshold c compared to the
Hub-EnKF. This is because the Hub-EnKFmakes updates
with outlier observations clipped at c, whereas WoLF-like
methods disregard error measurements above c. We present
the results of the EnKF when the number of particles is less
than the number of state components in Appendix E.2.3. In
the experiment, we modify the algorithms to make use of the
covariance inflation correction first proposed by Anderson
(1999). The conclusions from this section extend to the
covariance inflation case.

5. Conclusion
We introduced a provably robust filtering algorithm based on
generalised Bayes which we call the weighted observation
likelihood filter or WoLF. Our algorithm is as fast as the KF,
has closed-form update equations, and is straightforward
to apply to various filtering methods. The superior perfor-
mance of the WoLF is shown on a wide range of filtering
problems. In contrast, alternative robust methods either have
higher computational complexity than the WoLF, or similar
computational complexity but not higher performance.

Future work will investigate how to overcome the limita-
tions of our approach. For example, (i) not being robust to
outliers in the state-process, (ii) the assumption of a known
covariance Rt, (iii) the assumption of known dynamics for
the covariance Qt, and (iv) the assumption of a unimodal
posterior.
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Figure 7. The top row shows a sample run of the EnKF, the
AP-EnKF, the PP-EnKF, and the Hub-EnKF; outlier events are
shown in grey vertical bars. The bottom row shows the bootstrap
estimate of LT over 20 runs and 500 bootstrapped samples as a
function of the c hyperparameter.
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Supplementary Materials

The Appendix is structured as follows. Appendix A provides an overview of outlier-robust filtering methods. Appendix B
derives the WoLF-MD method from a maximum-a-posteriori (MAP) estimate perspective. Appendix C collects proofs;
more precisely, Appendix C.1 proves Proposition 3.1 and Appendix C.2 proves Theorem 3.2. We also show robustness
for the IMQ, MD, and TMD weighting functions. Next, in Appendix D, we discuss the exponential-family, multi-output
weighting function, and EnKF extensions to the WoLF. Finally, in Appendix E, we investigate the 2d tracking problem of
Section 4.1 in more detail; we conduct robustness checks and we introduce an additional experiment for corrupted non-linear
non-stationary learning.

A. Background on existing robust filters and related methods
Robust Bayesian filtering and the minimum variance estimator dates back to Masreliez (1975) and Masreliez & Martin
(1977). These methods propose a modified KF-recursion for the linear SSM written in terms of the score function of the
measurement prior predictive. In these early works, inference relies on Monte Carlo.

West (1981) follows these earlier works and proposes KF-like updates for non-normal measurement models. That paper also
studies whether several popular likelihood functions are robust in the sense of “ignoring outliers” — the analysis includes
the Student-t, power exponential, Huber, logistic, and stable-law likelihoods. For the case of Student-t likelihood with one
degree of freedom (i.e., Cauchy) and linear dynamics, the update equation for the posterior mean derived in West (1981)
is equivalent to ours when using IMQ weights. However, the approach taken in West (1981) cannot recover our TMD
scheme, due to being tied to a given choice of measurement model. Furthermore, West (1981) does not provide a theoretical
foundation to use their approach in non-linear measurement models.

The work in Meyr & Spies (1984) proposes a scheme to eliminate observations that a KF procedure labels as outliers. Their
methodology relies on a “secondary decision system” which checks for discrepancies between the predicted mean and the
observation, eliminating observations with high discrepancies. This scheme is analogous to the TMD scheme, however, it is
not shown to be provably robust.

Another alternative to robustify measurement models against outliers is the work in Agee et al. (1980). Their paper introduces
Gaussian-mixture models for robust filtering and smoothing. Their inference method is based on particle filtering.

To the best of our knowledge, the first work that proposes robust filtering in the context of robust statistics is Calvet et al.
(2015). Their robust filter follows Masreliez & Martin (1977) and is based on a “Huberisation” of the derivative of the
log-measurement density (score function), which then they integrate. See Schick & Mitter (1994) for a comprehensive
review of classical robust-KF methods for linear SSMs. Recently proposed provably-robust methods include the work by
Boustati et al. (2020) and Cao et al. (2022).

Finally, we discuss similarities and differences with the Bayesian learning rule (BLR) line of work by Khan & Rue (2023).
BLR also allows the replacing of the likelihood with a loss function, but that loss depends only on the parameter and the
observation, i.e., BLR uses ℓt(θ) = L(yt, ft(θ)), with L : Rd × Rd a loss function. By contrast, our loss depends on the
weight Wt, which in turn depends on the belief state, via ŷt = ft(µt|t−1), which in turn is a function of all the past data, i.e.,
our loss has the form ℓt(θ) = L(y1:t, ft(θ)). In addition, WoLF is designed for the online inference setting, whereas BLR,
at least in its standard form, is designed for offline inference. Finally, note that the exponential family extension of BLR Lin
et al. (2019) has also been proposed as a way to get robustness by using scale mixture posteriors. However, this induces
robustness in parameter space, whereas we focus on robustness in observation space. In particular, the weighting term for
the BLR mixture model depends on the distance in parameter space, θt − µt, whereas ours depends on the difference in
observation space, yt − ŷt.

A.1. Variational-based methods

In this section, we provide an overview of variational-Bayes (VB) robust filtering methods. As above, θt is the state vector
of interest and Ψt are additional state parameters. Given the SSM (1) and measurement model p(yt|θt,Ψt), VB-based
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methods seek an approximate posterior distribution over the extended state process Φt = (θt,Ψt) that factorises as

q(Φt) =

K∏
k=1

q(Φt,k), (24)

with Φt = (Φt,1, . . . ,Φt,K), and K the number of collections. It can be shown that the log-density q∗ that minimises the
KL divergence between the true posterior distribution and the variational distribution is given by

log q∗(Φt,k) = E¬k [log p(yt,Φt)] + C, (25)

where C is the normalising constant of q∗, and the notation E¬k [·] denotes the conditional expectation given all elements
in Φt except from Φt,k. See Section 10.1.1 in Bishop (2006) for details. Below, we discuss the robust VB-based filtering
variants we use in the paper.

A.2. KF-IW method of Agamennoni et al. (2012)

Agamennoni et al. (2012) extend the state-space to be Ψt = (θt,Rt), where Rt is the measurement covariance. Note that
the classical KF setting, Rt is known. The SSM is of the form

p(θt|θt−1) = N (θt |Ftθt−1, Qt),

p(Rt) =W−1(Rt | νΛ, ν),

p(yt|θt,Rt) = N (yt |Htθt, Rt),

(26)

where W−1(·|P, η) is the density of an inverse Wishart distribution with positive-definite scale matrix P ∈ Rm×m,
η > m − 1 degrees of freedom, and ν > 0 is the noise-scaling hyperparameter. They consider the class of variational
distributions

q(θ̄, R̄) = q(θ0)q(R0)

T∏
t=1

q(θt|θt−1)q(Rt), (27)

with θ̄ = (θ0, . . . ,θT ) and R̄ = (R0, . . . ,RT ). They show that the class of VB posteriors (25), under the model in (26)
and (27), take the form

q(θt|θt−1) = N (θt |µt, Σt), (28)

q(Rt) =W−1(Rt|νtΛt, νt), (29)

with µt, Σt, Λt, and νt specified in Algorithm 2. In this method the hyperparameters are the number of iterations I and the

Algorithm 2 Agamennoni et al. (2012) predict and update step for i.i.d. noise with I ≥ 1 inner iterations.
Require: Ft, Qt, µt−1, Σt−1 // predict step

µt|t−1 ← Ft µt−1

Σt|t−1 ← Ft Σt−1 F
⊺
t +Qt

µt,Σt ← µt|t−1,Σt|t−1

Require: yt, Ht, Rt, ℓ ∈ R+ // update step
for i = 1, . . . , I do
St ← (yt −Ht µt)(yt −Ht µt)

⊺ +H⊺
t Σt Ht

Λt ← (ℓ+ 1)−1(ℓR0 + St)
Kt ← (Ht Σt|t−1Ht +Λt)

−1H⊺
t Σt|t−1

µt ← µt|t−1 +K⊺
t (yt −H⊺

t µt|t−1)
Σt ← K⊺

t Λt Kt + (I−Ht Kt)
⊺ Σt|t−1(I−Ht Kt)

end for

scaling term ℓ. The prior measurement covariance is R0.
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A.3. KF-B method of Wang et al. (2018)

Wang et al. (2018) extend the state-space to be Ψt = (θt, ξt, wt), where wt is an outlier event and ξt is its probability. The
SSM is of the form:

p(θt|θt−1) = N (θt |Ftθt−1, Qt),

p(ξt) = Beta(ξt|α0, β0),

p(ρt|ξt) = Bern(ρt|ξt),

p(yt|θt,Rtρt) =

{
N (yt |ht(θt), Rt) if ρt = 1,

1 if ρt = 0.

(30)

In the above equations, Beta(·|a, b) is the density of a Beta distribution with shape parameters a and b, and Bern(·|π) is the
mass of a Bernoulli random variable with parameter π ∈ [0, 1]. They consider the class of variational distributions

q(θ̄, ρ̄, ξ̄) = q(θ0)q(ρ0)q(ξ0)

T∏
t=1

q(θt|θt−1)q(ρt)q(ξt), (31)

with θ̄ = (θ0, . . . ,θT ), ρ̄ = (ρ0, . . . , ρT ), ξ̄ = (ξ0, . . . , ξT ). We provide the the predict and update equations in Algorithm
3. Here, the hyperparameters are the prior rates α0 and β0, and the number of inner iterations I , Ψ(·) is the digamma

Algorithm 3 Wang et al. (2018) predict and update step with I ≥ 1 inner iterations.
Require: α0, β0, µt−1, Σt−1

Require: Ft, Qt // predict step
µt|t−1 ← Ft µt−1

Σt|t−1 ← Ft Σt−1 F
⊺
t +Qt

µt,Σt ← µt|t−1,Σt|t−1

Require: yt, Ht, Rt, tol.≪ 1 // update step
ρt, α

′, β′ ← 1, α0, β0

for i = 1, . . . , I do
if ρϵ < tol. then
µt ← µt|t−1

Σt ← Σt|−1

else
R̄t ← R/ρt
ŷt ← Ht µt|t−1

Σ−1
t ← Σ−1

t|t−1 + H⊤
t R̄−1

t Ht

Kt ← Σt H
⊺
t R̄

−1
t

µt ← µt|t−1 +Kt (yt − ŷt)
end if
Bt ← Eθ∼N (µt,Σt) [(yt − ht(θ)(yt − ht(θ))

⊺]
log π̄t ← Ψ(α′)−Ψ(α′ + β′ + 1)
log(1− π̄t)← Ψ(β′ + 1)−Ψ(α′ + β′ + 1)

ρt ← exp(log π̄t−Tr(BtR
−1
t )/2)

exp(log π̄t−Tr(BtR
−1
t )/2)+exp(log(1−π̄t))

α′ ← α0 + ρt
β′ ← β0 + 1− ρt

end for

function, and Bt is of closed form after linearising the measurement function.
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A.4. Ting et al. (2007)

Ting et al. (2007) extend the state-space to be Ψt = (θt, wt), where wt is a weighting term for the observation covariance
R. In their method, R is known and fixed. The SSM is of the form:

p(θt|θt−1) = N (θt |Fθt−1, Q),

p(wt) = Gam(wt|aw, bw),
p(yt|θt) = N (yt |Hθt, R/wt),

(32)

for a diagonal dynamics covariance Q, aw, bw > 0, and diagonal observation covariance R. They consider the class of
variational distributions

q(w̄, θ̄) = q(θ0)

T∏
t=1

q(θt|θt−1)q(wt), (33)

with θ̄ = (θ0, . . . ,θT ) and w̄ = (w0, . . . , wT ). They show, for known F, H, Q, and R, that the variational distributions
are of the form

q(θt|θt−1) = N (θt|µt,Σt), (34)
q(wt) = Gam(wt|aw,t, bw,t), (35)

where

aw,t = aw +
1

2
,

bw,t = bw + Eθ∼N (µt,Σt)[(yt −Hθ)⊺R−1(yt −Hθ)],

Σ−1
t = Q−1 + vtH

⊺R−1H,

Kt = ΣtH
⊺R−1,

µt = Fµt−1vt Kt(xt −HFµt−1),

vt =
aw,t +

1
2

bw,t + Eθ∼N (µt,Σt)[(yt −Hθ)⊺R−1(yt −Hθ)]
.

(36)

Their method assumes no prior knowledge of either the measurement matrix H or the projection matrix F. These are
estimated using the EM algorithm. Assuming known H and F — as we do in this paper — allows us to bypass the M-step.
However, this is detrimental to their approach since no information about the posterior covariance is propagated forward.

A.5. Huang et al. (2016)

Huang et al. (2016) extend the state-space to be Ψt = (θt,Rt, νt, wt), where Rt is the measurement covariance, wt is a
weighting term for the measurement covariance, and νt are the degrees of freedom for the weighting term. The SSM takes
the form:

p(θt|θt−1) = N (θt | ft(θt−1), Qt),

p(νt) = Gam(νt | at, bt),
p(wt) = Gam(λt|νt/2, νt/2),
p(Rt) =W−1(Rt |Λt, ut),

p(yt|θt,Rt) = N (yt |ht(θt), Rt/wt),

(37)

with Qt = diag(qt,1, . . . , qt,D). Note that their method combines the SSMs in Ting et al. (2007) and Agamennoni et al.
(2012).

B. WoLF-MD as a MAP estimator
In this section we show how to derive WoLF-MD as a MAP estimator. This is an alternative derivation that circumvents the
use of generalised Bayes.
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B.1. Deriving the Mahalanobis IMQ term

Consider the modified observation model of (32):

p(wt) = Gam(wt|α, β), (38)

p(yt|ŷt) = N (yt|ŷt, w
−1
t Rt), (39)

with ŷt = Htµt|t−1 known at time t, and α, β > 0. The posterior on wt is

p(wt|yt) ∝ wα−1
t e−βwt

∣∣wtR
−1
t

∣∣1/2 exp(−1

2
e⊤t wtR

−1
t et

)
(40)

∝ Gam

(
wt|α+

ny

2
, β +

1

2
∥et∥2R−1

t

)
, (41)

where et = yt − ŷt and ∥v∥A =
∥∥A1/2v

∥∥
2

is the Mahalanobis distance. The maximum-a-posteriori (MAP) estimate for
wt is

Wt = argmax
wt∈R+

p(wt|yt) =
α+

ny

2 − 1

β + 1
2 ∥et∥

2
R−1

t

. (42)

For a given c ∈ R, take the hyperparameters α and β to be

α =
c2 − ny + 2

2
, β =

c2

2
, (43)

where ny is the number of measurements. We obtain

wt =

(
1 +
∥et∥2R−1

t

c2

)−1/2

. (44)

This is the Mahalanobis-based IMQ weighting function (18). Substituting the MAP estimate back into the observation
model yields the weighted loglikelihood approximation

log p (yt|ŷt) ≈ w2
t logN (yt|ŷt,Rt) . (45)

B.2. Prior Uncertainty

In this section, we take the measurement mean to be the output of a predictive model ȳt with unknown parameter θt. We let

p (θt|y1:t−1) = N
(
θt|µt|t−1,Σt|t−1

)
, (46)

p (yt|θt, wt) = N
(
yt|ȳt, w

−1
t Rt

)
, (47)

where ȳt is given by (11). The joint posterior is

p (θt, wt|y1:t) ∝ wα−1
t e−βwt exp

(
−1

2

(
θt − µt|t−1

)⊤
Σ−1

t|t−1

(
θt − µt|t−1

))
×
∣∣wtR

−1
t

∣∣1/2 exp(−1

2
(yt − ȳt)

⊤
wtR

−1
t (yt − ȳt)

)
∝ w

α−1+ny/2
t exp

(
−1

2

∥∥∥∥θt − µt|t−1 −
(
Σ−1

t|t−1 + wtH
⊤
t R

−1
t Ht

)−1

wtH
⊤
t R

−1
t et

∥∥∥∥2
Σ−1

t|t−1
+wtH⊤

t R−1
t Ht

)

× exp

(
−βwt −

1

2
e⊤t
(
w−1

t Rt +HtΣt|t−1H
⊤
t

)−1
et

)
.

where the notation ||x||A means x⊺ A−1 x. Then, the marginal for wt can be written as

p (wt|y1:t) ∝ w
α−1+ny/2
t

∣∣∣Σ−1
t|t−1 + wtH

⊤
t R

−1
t Ht

∣∣∣−1/2

exp

(
−βwt −

1

2
e⊤t
(
w−1

t Rt +HtΣt|t−1H
⊤
t

)−1
et

)
. (48)
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By taking the limit Σt|t−1 → 0, equation (48) becomes

lim
Σt|t−1→0

p (wt|y1:t) ∝ w
α−1+ny/2
t exp

(
−βwt −

1

2
e⊤t R

−1
t etwt

)
, (49)

with maximum at

w∗
t = argmax

wt

lim
Σt|t−1→0

=
α− 1 +

ny

2

β + 1
2e

⊤
t R

−1
t et

, (50)

that matches (42). Therefore in the SSM setting, the Mahalanobis IMQ weighting is the MAP estimate for wt after ignoring
the prior uncertainty Σt|t−1.

C. Proofs of theoretical results
C.1. Proof of Proposition 3.1

Proof. Let w2
t := W 2(yt, ŷt). The loss function takes the form

ℓt(θt) = −w2
t logN (yt |Htθt, Rt)

=
1

2
(yt −Htθt)

⊺
(Rt/w

2
t )

−1 (yt −Htθt)−
w2

t d

2
log π − w2

t

2
log |Rt|

=
1

2
(yt −Htθt)

⊺
R̄−1

t (yt −Htθt) + C,

(51)

with R̄t = Rt/w
2
t , and where C = −w2

t d
2 log π − w2

t

2 log |Rt| is a term that does not depend on θt. The remaining follows
from the standard KF derivation. Note that the loss function does not correspond to the log-likelihood for a homoskedastic
Gaussian model since R̄t may depend on all data, including yt.

Figure 8 shows the weighted log-likelihood (51) for a univariate N (0, 1) Gaussian density as a function of the weighting
term w2

t ∈ (0, 1]. We observe that a weighting log-likelihood resembles a heavy-tailed likelihood for wt < 1.

Figure 8. Weighted likelihood (unnormalised) for a standard Gaussian.

C.2. Proof of Theorem 3.2

Theorem 3.2 comprises several sub-claims, each of which we will prove as a separate lemma in this section. At the end of
the section, we will integrate all the lemmas to prove the main result. The first results are for the linear Gaussian SSM case.

Lemma C.1. Consider the linear Gaussian SSM. The standard KF posterior has an unbounded PIF and is not outlier
robust.
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Proof. Let p(θt|yt,y1:t−1) = N (θt|µt,Σt), and p(θt|yc
t ,y1:t−1) = N (θt|µc

t ,Σ
c
t), the uncontaminated and contaminated

standard Kalman filter posterior. Here

µt = µt|t−1 +Kt (yt − ŷt) , µc
t = µt|t−1 +Kc

t (y
c
t − ŷt) ,

Σ−1
t = Σ−1

t|t−1 +H⊺
tR

−1
t Ht, (Σc

t)
−1 = Σ−1

t|t−1 +H⊺
tR

−1
t Ht.

Here µt|t−1,Kt,Ht,Σ
−1
t|t−1,R

−1
t do not depend on the contamination yc

t . It is clear that Σ−1
t = (Σc

t)
−1, hence Kc

t =

Σc
tH

⊺
tR

−1
t = ΣtH

⊺
tR

−1
t = Kt. Using the fact that given two d-dimensional Gaussians N (µ0,Σ0) and N (µ1,Σ1), the

KL divergence is

KL(N (µ0,Σ0)∥N (µ1,Σ1)) =
1

2

(
Tr
(
Σ−1

1 Σ0

)
−m+ (µ1 − µ0)

⊺
Σ−1

1 (µ1 − µ0) + ln

(
detΣ1

detΣ0

))
,

and given that Tr(Ip) = p, we can derive the PIF as

PIF(yc
t ,y1:t) = KL (p(θt|yc

t ,y1:t−1)∥p(θt|yt,y1:t−1))

=
1

2

(
Tr
(
Σ−1

t Σt

)
−m+ (µt − µc

t)
⊺
Σ−1

t (µt − µc
t) + ln

(
detΣt

detΣt

))

= Tr (Im)−m+
1

2
(µt − µc

t)
⊺
Σ−1

t (µt − µc
t)

=
1

2
(yt − yc

t )
⊺
K⊺

tΣ
−1
t Kt (yt − yc

t ) .

Here, K⊺
tΣ

−1
t Kt is positive definite. To see this, first note that for every invertible matrix B and conformable positive

definite matrix A, B⊺AB is positive definite (Chapter 7.1 Horn & Johnson, 2012). Since Kt is a product of invertible
matrices, it therefore is itself invertible. In fact, let z ∈ Rm be a non-zero vector. We can write z⊺B⊺ABz = z̃⊺Az̃, for
z̃ = Bz. We know that z̃ = Bz ̸= 0, because B is invertible. Then, since A is positive definite and z̃ ∈ Rm, it holds that
z̃⊺Az̃ > 0, proving that B⊺AB is positive definite. Finally, since Σ−1

t is positive definite, it therefore holds that K⊺
tΣ

−1
t Kt

is positive definite, too.

This in turn allows us to lower-bound the PIF by

1

2
λmin(K

⊺
tΣ

−1
t Kt)∥yt − yc

t∥22 ≤
1

2
(yt − yc

t )
⊺
K⊺

tΣ
−1
t Kt (yt − yc

t ) = PIF(yc
t ,y1:t),

where we use the fact that for every positive definite matrix A and vector z, we have λmin(A)∥z∥2 ≤ z⊺Az ≤
λmax(A)∥z∥2, where λmin(A) and λmax(A) are the minimum and maximum eigenvalues of A, respectively (Chapter
5.7 Horn & Johnson, 2012). Moreover, we know that λmin

(
K⊺

tΣ
−1
t Kt

)
> 0, since K⊺

tΣ
−1
t Kt is positive definite, and it

does not depend on yc
t . Therefore, it indeed holds that PIF(yc

t ,y1:t)→ +∞ as ∥yt − yc
t∥22 → +∞.

Lemma C.2. Consider the linear Gaussian SSM. The generalised posterior presented in Proposition 3.1 has
bounded PIF and is, therefore, outlier robust for any weighting function W such that supyt∈Rd W (y1:t) < ∞ and
supyt∈Rd W (y1:t)

2 ∥yt∥2 <∞.

Proof. Let W be a weighting function such that supyt∈Rd W (y1:t) < ∞ and supyt∈Rd W (y1:t)
2∥yt∥2 < ∞. Lets

define wt := W 2(y1:t), and wc
t := W 2(yc

t ,y1:1−t). Let q(θt|yt,y1:t−1) = N (θt|µt,Σt), and q(θt|yc
t ,y1:t−1) =

N (θt|µc
t ,Σ

c
t), where

µt = µt|t−1 + wtKt (yt − ŷt) , µc
t = µt|t−1 + wc

tK
c
t (y

c
t − ŷt) ,

Σ−1
t = Σ−1

t|t−1 + wtH
⊺
tR

−1
t Ht, (Σc

t)
−1 = Σ−1

t|t−1 + wc
tH

⊺
tR

−1
t Ht,

as in Algorithm 1 Then, the PIF has the form

PIF(yt,y1:t−1) =
1

2

(
Tr
(
(Σc

t)
−1Σt

)
− p︸ ︷︷ ︸

(1)

+(µt − µc
t)

⊺
(Σc

t)
−1 (µt − µc

t)︸ ︷︷ ︸
(2)

+ ln

(
detΣc

t

detΣt

)
︸ ︷︷ ︸

(3)

)
.
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Now, we will get a bound for each term in the PIF. The first term can be bounded as

(1) = Tr
(
(Σc

t)
−1Σt

)
−m ≤ Tr

(
(Σc

t)
−1
)
Tr (Σt)−m,

where we use the fact that for two positive semidefinite matrices A, B, it holds that Tr(AB) ≤ Tr(A) Tr(B). Observing
that Σt does not depend on yct , we can now write C1 = Σt, so that by using the arithmetic rules of traces, we obtain

(1) ≤ C1 Tr
(
(Σc

t)
−1
)
−m

= C1 Tr
(
Σ−1

t|t−1 + wc
tH

⊺
tR

−1
t Ht

)
−m

= C1 Tr
(
Σ−1

t|t−1

)
+ C1w

c
t Tr

(
H⊺

tR
−1
t Ht

)
−m.

Here, we use the fact that the trace of a sum is a sum of traces, and the trace of the constant times matrix is equal to the
constant times trace of the matrix. Finally, since supyc

t∈Rd wc
t ≤ C2 < ∞, the entire expression can be bounded by a

constant C3 <∞ that does not depend on the contamination yc
t as

(1) ≤ C1 Tr
(
Σ−1

t|t−1

)
+ C1C2 Tr

(
H⊺

tR
−1
t Ht

)
−m = C3,

where we use the fact that both traces are finite since both matrices are real-valued. Next, we bound the second term by
noting that it is the squared Mahalanobis norm of µt −µc

t with respect to Σc
t , and we write it as ∥µt −µc

t∥Σc
t

(in particular,
it then satisfies all the properties of a norm). Therefore, we apply the triangle inequality to obtain

(2) = (∥µt − µc
t∥Σc

t
)2

= (∥wtKt(yt − ŷt)− wc
tK

c
t(y

c
t − ŷt)∥Σc

t
)2

≤ (∥wtKt(yt − ŷt)∥Σc
t
+ ∥wc

tK
c
t(y

c
t − ŷt)∥Σc

t
)2

≤ 2(∥wtKt(yt − ŷt)∥2Σc
t
+ ∥wc

tK
c
t(y

c
t − ŷt)∥2Σc

t
).

In the last inequality, we use the fact that, for two real numbers a and b, it holds that (a+ b)2 ≤ 2(a2 + b2). Then, we bound
each term separately,

2∥wtKt(yt − ŷt)∥2Σc
t
= 2w2

t (yt − ŷt)
⊺K⊺

t (Σ
c
t)

−1Kt(yt − ŷt)

≤ 2w2
tλmax

(
K⊺

t (Σ
c
t)

−1Kt

)
∥yt − ŷt∥22,

where 2λmax

(
K⊺

t (Σ
c
t)

−1Kt

)
≤ C4 <∞, since K⊺

t (Σ
c
t)

−1Kt is a positive definite matrix, and thus, all eigenvalues are
real-valued. This property arises from the fact that for every invertible matrix B and a positive definite matrix A, B⊺AB is
positive definite. Finally, we must verify that (Σc

t)
−1 is positive definite. Let z ∈ Rm be a non-zero vector. Then,

z⊺
(
Σc

t

)−1
z = z⊺

(
Σ−1

t|t−1 + wc
tH

⊺
tR

−1
t Ht

)
z = z⊺

(
Σ−1

t|t−1

)
z + wc

t

(
z⊺H⊺

tR
−1
t Htz

)
.

We know that Σ−1
t|t−1 is positive definite, hence z⊺

(
Σ−1

t|t−1

)
z > 0. Moreover, z⊺H⊺

tR
−1
t Htz > 0 because H⊺

tR
−1
t Ht

is positive definite. Since wc
t = W 2(yc

t ,y1:1−t) ≥ 0 for all yc
t ∈ Rd, then wc

t

(
z⊺H⊺

tR
−1
t Htz

)
≥ 0. Finally, combining

these inequalities, z⊺
(
Σc

t

)−1
z > 0. Therefore, (Σc

t)
−1 is positive definite. Therefore,

2∥wtKt(yt − ŷt)∥2Σc
t
≤ C4(wt∥yt − ŷt∥2)2 = C5

since (wt∥yt − ŷt∥2)2 does not depend on the contamination. Similarly,

2∥wc
tK

c
t(y

c
t − ŷt)∥2Σc

t
≤ C6(w

c
t∥yc

t − ŷt∥2)2,

where, using the same argument as before, 2λmax

(
(Kc

t)
⊺(Σc

t)
−1Kc

t

)
≤ C6 <∞. Now, since supyc

t∈Rd wc
t∥yc

t∥2 ≤ C7 <
∞, we have:

C6(w
c
t∥yc

t − ŷt∥2)2 ≤ C6(w
c
t∥yc

t∥2 + wc
t∥ŷt∥2)2 ≤ C6(C7 + C2∥ŷt∥2)2 = C8.
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Putting it all together, we find that

(2) ≤ C5 + C8.

Lastly, the third and final term can be rewritten using properties of determinants as

(3) = ln

(
detΣc

t

detΣt

)
= ln

(
1

detΣt

)
+ ln (detΣc

t) = ln

(
1

detΣt

)
+ ln

(
1

det(Σc
t)

−1

)
.

We define C9 = ln
(

1
detΣt

)
since it does not depend on the contamination, and write

(3) = C9 + ln

(
1

det(Σc
t)

−1

)

= C9 + ln

 1

det
(
Σ−1

t|t−1 + wc
tH

⊺
tR

−1
t Ht

)


≤ C9 + ln

 1

det
(
Σ−1

t|t−1

)
+ det

(
wc

tH
⊺
tR

−1
t Ht

)
 ,

where in the last inequality, we use the fact that for two positive semidefinite matrices A, B, it also holds that det(A+B) ≥
det(A) + det(B). Finally,

(3) ≤ C9 + ln

 1

det
(
Σ−1

t|t−1

)
+ det

(
wc

tH
⊺
tR

−1
t Ht

)


≤ C9 + ln

 1

det
(
Σ−1

t|t−1

)
 = C10.

Here, we use the fact that wc
tH

⊺
tR

−1
t Ht is positive semidefinite, as we showed previously. Therefore det

(
wc

tH
⊺
tR

−1
t Ht

)
≥

0. By putting the bounds for (1), (2), and (3) together, we obtain

PIF(yt,y1:t−1) =
1

2

(
Tr
(
(Σc

t)
−1Σt

)
− d︸ ︷︷ ︸

(1)

+(µt − µc
t)

⊺
(Σc

t)
−1 (µt − µc

t)︸ ︷︷ ︸
(2)

+ ln

(
detΣc

t

detΣt

)
︸ ︷︷ ︸

(3)

)
.

≤ C3 + C5 + C8 + C10 <∞.

We now extend the result to the linearised approximation of the SSM case.

Lemma C.3. Consider the linearised approximation of the SSM. The standard EKF posterior has an unbounded PIF and is
not outlier robust.

Proof. We can easily replicate the procedure in Lemma C.1 to the EKF since it can be straightforwardly applied to the
approximate posterior presented in Section 2.2. Specifically, for the standard EKF, we compute:

PIF(yc
t ,y1:t) = KL (p(θt|yc

t ,y1:t−1)∥p(θt|yt,y1:t−1)) (52)
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for p(θt|yt,y1:t−1) = N (θt|µt,Σt), and p(θt|yc
t ,y1:t−1) = N (θt|µc

t ,Σ
c
t), representing the uncontaminated and contam-

inated standard EKF posterior. In particular,

µt = µt|t−1 +Kt(yt − ŷt), µc
t = µt|t−1 +Kc

t(y
c
t − ŷt),

Σ−1
t = Σ−1

t|t−1 +H⊺
tR

−1
t Ht, (Σc

t)
−1 = Σ−1

t|t−1 +H⊺
tR

−1
t Ht.

Here, µt|t−1,Kt,Ht,Σ
−1
t|t−1,R

−1
t do not depend on the contamination yc

t , and µt|t−1 = E[µ̄t|t−1|µt−1] = ft(µt−1),
ŷt = E[ȳt] = ht(µt|t−1), where µ̄t|t−1 and ȳt are defined as Equation (10) and Equation (11) respectively, and Ht is
the Jacobian of ht evaluated at µt|t−1. Since it follows the same structure as the standard Kalman filter, replicating the
procedure in Lemma C.1, we obtain that the standard EKF is not robust.

Lemma C.4. Consider the linearised approximation of the SSM. The generalised posterior presented in Proposition 3.1
has bounded PIF and is, therefore, outlier robust for any weighting function W such that supyt∈Rd W (yt, ŷt) <∞ and
supyt∈Rd W (yt, ŷt)

2 ∥yt∥2 <∞.

Proof. We can easily replicate the procedure in Lemma C.2 since it can be straightforwardly applied to the approximate
posterior presented in Section 3.2. Now consider the weighted EKF. We compute

PIF(yc
t ,y1:t) = KL (q(θt|yc

t ,y1:t−1)∥q(θt|yt,y1:t−1)) . (53)

Let W : Rd×d → R be a weighting function such that supyt∈Rd W (yt, ŷt) < ∞ and supyt∈Rd W (yt, ŷt)
2∥yt∥2 < ∞.

Define wt := W 2(yt, ŷt), and wc
t := W 2(yc

t , ŷt).

Let q(θt|yt,y1:t−1) = N (θt|µt,Σt), and q(θt|yc
t ,y1:t−1) = N (θt|µc

t ,Σ
c
t), where

µt = µt|t−1 + wtKt(yt − ŷt), µc
t = µt|t−1 + wc

tK
c
t(y

c
t − ŷt),

Σ−1
t = Σ−1

t|t−1 + wtH
⊺
tR

−1
t Ht, (Σc

t)
−1 = Σ−1

t|t−1 + wc
tH

⊺
tR

−1
t Ht.

for µt|t−1 and ŷt as before. Then, following the same procedure as in the proof of Lemma C.2, we show that this PIF is
bounded and the method is robust.

Proof of Theorem 3.2 The proof of Theorem 3.2 follows directly from Lemmas C.1 to C.4.

C.3. Ensemble Kalman Filter

Now, we extend Theorem 3.2 to the ensemble Kalman filter case. There are a couple of caveats to proving robustness for
this case. While we know the distribution of the particles in the case where the state-space model is linear and Gaussian,
this is not always the case. Therefore, we propose studying the empirical measures defined by the particles. The problem
with this is that the Kullback-Leibler divergence is not defined for empirical measures with different supports. This is why
we propose using the 2-Wasserstein distance instead since it is unbounded and well-defined for empirical measures. The
2-Wasserstein distance is defined as follows: If P is an empirical measure with samples x1, ..., xn and Q is an empirical
measure with samples y1, ..., yn,

DW2
(P,Q) = inf

π

(
1

n

n∑
i=1

∥∥xi − yπ(i)
∥∥2
2

)1/2

,

where the infimum is over all permutations π of n elements. Therefore, the PIF for the ensemble Kalman filter case has the
form

PIF(yc
t ,y1:t) = DW2 (PN ,Pc

N ) , (54)

where PN is the empirical measure of the (non-contaminated) particles
{
θ̂
(i)
t = θ̂

(i)
t|t−1 + wtK̄t

(
yt − ŷ

(i)
t|t−1

)}N

i=1
, and

Pc
N is the empirical measure of the contaminated particles

{
θ̂
(i)
tc = θ̂

(i)
t|t−1 + wc

tK̄t

(
yc
t − ŷ

(i)
t|t−1

)}N

i=1
. As in the previous

definition, if supyc
t∈Rd |PIF(yc

t ,y1:t)| <∞, then the posterior is called outlier-robust.
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Lemma C.5. The generalised posterior presented in Appendix D.3 has bounded PIF (as defined in Equation (54))
and is, therefore, outlier robust for any weighting function W : Rd×d → R such that supyt∈Rd W (yt, ŷt) < ∞ and
supyt∈Rd W (yt, ŷt)

2 ∥yt∥2 <∞.

Proof. Let W : Rd×d → R be a weighting function such that supyt∈Rd W (yt, ŷt) <∞ and supyt∈Rd W (yt, ŷt)
2∥yt∥2 <

∞. Define wt := W 2(yt, ŷt), and wc
t := W 2(yc

t , ŷt). Then, the PIF

PIF(yc
t ,y1:t) = DW2(PN ,Pc

N ) = inf
π

(
1

N

N∑
i=1

∥∥∥θ̂(i)t − θ̂
(π(i))
tc

∥∥∥2
2

)1/2

,

where the infimum is over all permutations π of N elements, PN is the empirical measure of the parti-

cles
{
θ̂
(i)
t = θ̂

(i)
t|t−1 + wtK̄t

(
yt − ŷ

(i)
t|t−1

)}N

i=1
, and Pc

N is the empirical measure of the contaminated particles{
θ̂
(i)
tc = θ̂

(i)
t|t−1 + wc

tK̄t

(
yc
t − ŷ

(i)
t|t−1

)}N

i=1
. Therefore, we know that the infimum will be smaller than considering only

the identity as permutation,

DW2
(PN ,Pc

N ) ≤

(
1

N

N∑
i=1

∥∥∥θ̂(i)t − θ̂
(i)
tc

∥∥∥2
2

)1/2

.

Now, using the equation of the particles:

DW2
(PN ,Pc

N ) ≤

(
1

N

N∑
i=1

∥∥∥θ̂(i)
t|t−1 + wtK̄t

(
yt − ŷ

(i)
t|t−1

)
− θ̂

(i)
t|t−1 − wc

tK̄t

(
yc
t − ŷ

(i)
t|t−1

)∥∥∥2
2

)1/2

=

(
1

N

N∑
i=1

∥∥∥wtK̄t

(
yt − ŷ

(i)
t|t−1

)
− wc

tK̄t

(
yc
t − ŷ

(i)
t|t−1

)∥∥∥2
2

)1/2

.

We use triangle inequality to obtain:

DW2
(PN ,Pc

N ) ≤

(
1

N

N∑
i=1

(∥∥∥wtK̄t

(
yt − ŷ

(i)
t|t−1

)∥∥∥
2
+
∥∥∥wc

tK̄t

(
yc
t − ŷ

(i)
t|t−1

)∥∥∥
2

)2)1/2

≤

(
2

N

N∑
i=1

∥∥∥wtK̄t

(
yt − ŷ

(i)
t|t−1

)∥∥∥2
2
+
∥∥∥wc

tK̄t

(
yc
t − ŷ

(i)
t|t−1

)∥∥∥2
2

)1/2

.

Lets define C11 =
∑N

i=1 ∥wtK̄t

(
yt − ŷ

(i)
t|t−1

)
∥22, a constant that does not depend on the contamination. Therefore:

DW2
(PN ,Pc

N ) ≤

(
2

N

(
C11 +

N∑
i=1

∥∥∥wc
tK̄t

(
yc
t − ŷ

(i)
t|t−1

)∥∥∥2
2

))1/2

.

First, we observe that
∥∥∥wc

tK̄t

(
yc
t − ŷ

(i)
t|t−1

)∥∥∥2
2
= (wc

t )
2
(
yc
t − ŷ

(i)
t|t−1

)⊺
K̄⊺

t K̄t

(
yc
t − ŷ

(i)
t|t−1

)
. Now we bound this

expression using the fact that for every positive definite matrix A and vector z, we have λmin(A)∥z∥2 ≤ z⊺Az ≤
λmax(A)∥z∥2, where λmin(A) and λmax(A) are the minimum and maximum eigenvalues of A, respectively (Chapter 5.7
Horn & Johnson, 2012): ∥∥∥wc

tK̄t

(
yc
t − ŷ

(i)
t|t−1

)∥∥∥2
2
≤ (wc

t )
2λmax(K̄

⊺
t K̄t)

∥∥∥yc
t − ŷ

(i)
t|t−1

∥∥∥2
2
,

where λmax

(
K̄⊺

t K̄t

)
≤ C12 <∞, since K̄⊺

t K̄t is a positive definite matrix, and thus, all eigenvalues are real-valued. Then,∥∥∥wc
tK̄t

(
yc
t − ŷ

(i)
t|t−1

)∥∥∥2
2
≤ C12

(
wc

t

∥∥∥yc
t − ŷ

(i)
t|t−1

∥∥∥
2

)2
.
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Now, since supyc
t∈Rd wc

t ≤ C13 <∞, and supyc
t∈Rd wc

t∥yc
t∥2 ≤ C14 <∞, we have:

C12

(
wc

t

∥∥∥yc
t − ŷ

(i)
t|t−1

∥∥∥
2

)2
≤ C12

(
wc

t ∥yc
t∥2 + wc

t

∥∥∥ŷ(i)
t|t−1

∥∥∥
2

)2
≤ C12

(
C14 + C13

∥∥∥ŷ(i)
t|t−1

∥∥∥
2

)2
= C15.

Putting it all together, we find that

DW2(PN ,Pc
N ) ≤

(
2

N

(
C11 +

N∑
i=1

C15

))1/2

<∞.

D. Extensions of the weighted likelihood filter
Below, we discuss a number of extension to the WoLF methodology including generalisations to (i) exponential-family
members, (ii) multi-output weighting functions, and (iii) the EnKF.

D.1. Exponential family likelihoods

We extend WoLF for measurements modelled using an element of the exponential family of distributions (as first mentioned
in Section 3.2). Classical examples of exponential families, in addition to the Gaussian distribution, are the Bernoulli
distribution, the Gamma distribution, the Beta distribution, and the Poisson distribution. These distributions can be
considered to tackle filtering problems when the measurements are generated respectively from a binary process, a process
that only takes values in positive real line, a process that takes values in the interval [0, 1], or a counting process.

We take the mass function of a measurement yt ∈ B ⊆ Rd to be of the form

p(yt|θt) = expfam(yt|ηt) = Z−1(ηt) exp
(
η⊺
t T (yt) + b(yt)

)
. (55)

with B the support of the measurement yt, ηt ∈ Rk the natural parameters, A : B → Rk the sufficient statistic function,
b : B → R the base measure, and Z : Rk → R the normalising function. To simplify the notation, let ηt = ht(θt) and
zt = T (yt). We also define the dual (moment) parameters

λt = E [zt|ηt] = ∇ηt
logZ(ηt) (56)

and the conditional variance
Rt = Cov[zt|ηt] = ∇ηt

λt = ∇2
ηt

logZ(ηt), (57)

and we take our predictive model to output the dual parameters:

λt = ht(θt). (58)

For example, for a Gaussian likelihood with fixed observation noise and a linear observation model as in (5), we have that
A(yt) = yt, λt = Htθt, and Rt is constant.

The exponential family EKF algorithm of Ollivier (2018) approximates the likelihood in (55) with a moment-matched
Gaussian,

q(yt|θt) = N (zt|λ̄t,Rt), (59)

where λ̄t = Ht(θt− µ̄t|t−1)+ht(µ̄t|t−1), and µt|t−1 is given by (10). We modify this algorithm by including a weighting
term on the log-likelihood to get

log q(yt|θt) = Wt(yt, ŷt)
2

(
−1

2
λ̄⊤
t R

−1
t λ̄t + λ̄⊤

t R
−1
t T (yt)

)
+ cst, (60)

with cst. a constant term that does not depend on θ. We leave the study of W (yt, ŷt) when modelling a non-Gaussian
exponential family for future work.
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D.2. Dimension-specific weighting

In this section, we provide details about the implementation of a vector-valued weighting function Wt : Rd × Rd → Rd

introduced in Section 3.3. See Section 4.3 for an evaluation of this method. We consider yt ∈ Rd with d > 1.

If the likelihood factorises as p (yt|θt) =
∏d

j=1 p (yt,j |θt), with yt,j the j-th element of the t-th measurement, we define
the weighted log-likelihood as

log q (yt|θt) =
d∑

j=1

w2
t,j log p (yt,j |θt) , (61)

where w2
t,j = W 2(yt, ŷt)j is the j-th entry of the vector-valued weight function.

For a Gaussian likelihood p(yt|θt) = N (yt|ht (θt) ,Rt) we define the weighted likelihood as

q(yt|θt) = N
(
yt|ht (θt) , R̄t

)
, (62)

R̄−1
t = Diag (wt)R

−1
t Diag (wt) , (63)

which is a special case of (61) when Rt is diagonal.8 This expression scales the precision of each yt,j by w2
t,j while

preserving correlations. It can also be written in terms of dimension-specific weighting on the errors:

log q(yt|θt) = −
1

2
Ẽt (θt)

⊺
R−1

t Ẽt (θt) , (64)

Ẽt (θt) = Diag (wt) (yt − ht (θt)) . (65)

The EKF update from the weighted loglikelihood in (62) mirrors the standard EKF update with the true observation precision
R−1

t replaced by R̄−1
t :

Σ−1
t = Σ−1

t|t−1 +H⊤
t R̄

−1
t Ht, (66)

µt = µt|t−1 +Kt(yt − ŷt), (67)

Kt = ΣtH
⊤
t R̄

−1
t . (68)

This generalises the WoLF update with scalar weight given by Proposition 3.1.

Finally, when wt,j = 0 for one or more observation dimensions, (61) and (62) define improper observation distributions
because the marginals on these dimensions are uniform over R and the precision R̄−1

t is singular. Nevertheless, the joint
marginal for the dimensions with positive weights, yt,Jt where Jt = {j : wt,j > 0}, is a proper distribution. This is all that
is needed because the observations yt,j with wt,j = 0 are ignored in the update. This can be seen in (66), (67), and (68),
where as a consequence of (63), the error terms and the Jacobian are both zeroed out on the zero-weighted dimensions.

D.3. Weighted ensembles

In this section, we introduce the weighted EnKF first mentioned in Section 3.2. We begin with a discussion of the EnKF
originally referenced in Section 2.3.

The ensemble Kalman filter: The ensemble Kalman filter (EnKF) (Roth et al., 2017b) uses an ensemble of N ∈ N
particles {θ̂(i)

t|t−1}
N
i=1. For each i = 1, . . . , N , the update step samples predictions ŷ(i)

t|t−1 according to

ŷ
(i)
t|t−1 ∼ N

(
ht

(
θ̂
(i)
t|t−1

)
,Rt

)
. (69)

and then updates each particle according to

θ̂
(i)
t = θ̂

(i)
t|t−1 + K̄t

(
yt − ŷ

(i)
t|t−1

)
, (70)

The EnKF gain K̄t is

K̄t = covi

[
θ̂
(i)
t|t−1, ŷ

(i)
t|t−1

] (
Vi

[
ŷ
(i)
t|t−1

])−1

. (71)

8Diag(v) for v ∈ RK is the K ×K matrix with Diag(v)i,i = vi and Diag(v)i,j = 0 for i ̸= j.
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We write Ei [·] , covi [·, ·] ,Vi [·] to refer to the distribution over particles as indexed by i.

The EnKF converges to standard KF as N →∞ when the likelihood is linear-Gaussian and the prior is also Gaussian,

p (yt|θt) = N (yt|Htθt,Rt) , (72)

θ̂
(i)
t|t−1 ∼ N

(
µt|t−1,Σt|t−1

)
. (73)

Under these conditions the EnKF gain K̄t matches the KF gain Kt, because

covi

[
θ̂
(i)
t|t−1, ŷ

(i)
t|t−1

]
= Σt|t−1H

⊤
t , (74)

Vi

[
ŷ
(i)
t|t−1

]
= HtΣt|t−1H

⊤
t +Rt, (75)

K̄t = Σt|t−1H
⊤
t

(
HtΣt|t−1H

⊤
t +Rt

)−1
(76)

= Kt, (77)

and therefore the statistics of the posterior ensemble also match the KF update

µt = Ei

[
θ̂
(i)
t

]
= µt|t−1 +Kt

(
yt −Htµt|t−1

)
, (78)

Σt = Vi

[
θ̂
(i)
t

]
= Σt|t−1 −KtHtΣt|t−1. (79)

The weighted-likelihood EnKF: We propose a weighted version of EnKF based on our WoLF with dimension-specific
weights and Gaussian likelihood, where (69) is modified to sample particle predictions from the weighted likelihood in (62):

ŷ
(i)
t|t−1 ∼ N

(
ht

(
θ̂
(i)
t|t−1

)
, R̄t

)
. (80)

The weighted EnKF converges to the WoLF as N → ∞, by the same argument for the vanilla EnKF and EKF in (74)
through (79). Specifically, under this limit the sampling scheme in (80) and the update in (70) yield

K̄t = Σt|t−1H
⊤
t

(
HtΣt|t−1H

⊤
t + R̄t

)−1
, (81)

µt = µt|t−1 + K̄t

(
yt −Htµt|t−1

)
, (82)

Σt = Σt|t−1 − K̄tHtΣt|t−1, (83)

which matches the WoLF update in (66), (67), and (68).

For the case of scalar weights with w2
t = W 2(yt, ŷt) ∈ {0, 1} as in (19), the weighted EnKF can be implemented by

unweighted sampling as in (69) followed by a weighted update that replaces (70) with

θ̂
(i)
t = θ̂

(i)
t|t−1 + w2

t K̄t

(
yt − ŷ

(i)
t|t−1

)
. (84)

That is, the update is simply skipped when w2
t = 0, in agreement with Proposition 3.1 and Algorithm 1.

For the case of vector weights wt as in Appendix D.2, when wt ∈ {0, 1}d the weighted EnKF can be implemented by a
generalisation of (84) that ignores only those observation components yt,j for which wt,j = 0. Specifically, we can use the
vanilla EnKF sampling in (69) but sample only the positively weighted dimensions, i.e. ŷ(i)

t|t−1,Jt
where Jt = {j : wt,j > 1}.

Thus ŷ(i)
t|t−1 has size |Jt| and (71) yields K̄t with size m× |Jt|, and the particles can be updated according to

θ̂
(i)
t = θ̂

(i)
t|t−1 + K̄t

(
yt,Jt − ŷ

(i)
t|t−1,Jt

)
. (85)

This agrees with the vanilla EnKF update except that zero-weighted observation dimensions are ignored. It can be shown to
converge to the dimensionally weighted WoLF described in Appendix D.2 as N →∞.9

9The general case of wt ∈ [0, 1]d can be implemented by combining this scheme with weighted sampling of positively weighted
dimensions, i.e. using (80) to sample ŷ

(i)

t|t−1,Jt
.
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For the experiments reported here (Section 4.3), we take the shortcut of sampling predictions for all dimensions and
generalising (84) to vector weights:

θ̂
(i)
t = θ̂

(i)
t|t−1 + K̄tDiag(wt)

(
yt − ŷ

(i)
t|t−1

)
. (86)

This approximates the method of sampling only ŷ
(i)
t|t−1,Jt

and updating with (85). This is more efficient in our Jax (Bradbury
et al., 2018) implementation because all arrays are of constant size. We generalise (19) to define the weight vector as

wt,j =

1 1
N

∑N
i=1

(
yt,j − ŷ

(i)
t|t−1,j

)2
≤ c,

0 otherwise,
(87)

We call this the average-particle EnKF (AP-EnKF).

Alternatively, we propose the update equation

θ̂
(i)
t = θ̂

(i)
t|t−1 + K̄t Diag

(
w

(i)
t

)(
yt − ŷ

(i)
t|t−1

)
, (88)

with

w
(i)
t,j =

1
(
yt,j − ŷ

(i)
t|t−1,j

)2
≤ c,

0 otherwise,
(89)

which we call the per-particle EnKF (PP-EnKF).

The Huberised EnKF: The update equations for the PP-EnKF and AP-EnKF are related to the Huberised EnKF (H-EnKF)
algorithm of Roh et al. (2013) that update particles according to

θ̂
(i)
t = θ̂

(i)
t|t−1 + K̄t ρ

(
yt − ŷ

(i)
t|t−1

)
, (90)

with

ρ(z) =


c if z > c,

−c if z < −c,
z otherwise,

(91)

c > 0 a given threshold, and the function ρ is applied element-wise.

E. Additional numerical experriments
This section provides additional numerical experiments. In particular, in Appendix E.1, we discuss Figure 2 in more detail;
in Appendix E.2, we conduct robustness checks for the numerical experiments presented in Section 4; and in Appendix E.3,
we provide an additional experiment for online learning in a non-stationary environment with outlier measurements.

E.1. Description of the PIF

In this section, we discuss the 2d tracking problem of Section 4.1 in more detail. We generate t = 20 steps from (20) and
the last measurement yt is replaced with yc

t = yt + ϵ, where ϵ ∈ [−5, 5]× [−5, 5] is the outlier noise. Figure 9 (left) shows
the weighting term for the WoLF methods as a function of the outlier noise ϵ. Alternatively, Figure 9 (right) shows the
Mahalanobis distance between the prior predictive ŷt and the outlier measurement yc

t . We observe that the midpoint of the
contours for all methods is not centred at ϵ = (0, 0). This is because the weighting term is a function of the prior predictive
and the measurement at time t. Hence, for the IMQ, the weighting is 1 only if the prior predictive equals the measurement,
i.e., ŷt = Htµt|t−1. This result explains the distored PIF observed in Figure 2.

Figure 10 shows the PIF for the WoLF-IMQ and the WoLF-TMD first shown in Figure 2. We observe that the PIF for the
WoLF-TMD has a hard cutoff that strongly bounds the PIF values at the expense of higher PIF around a region near the
cutoff boundary. In contrast, the WoLF-IMQ bounds the PIF values more softly and has lower maximum PIF than the
WoLF-TMD.
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Figure 9. Weighting term Wt(y1:t) given an the outlier measurement yc
t . The x-axis and y-axis describe the errors ϵ ∈ [−5, 5]× [−5, 5].

Figure 10. PIF of Figure 2 for extended domain of the errors ϵ ∈ [−15, 10]× [−15, 10].

E.2. Robustness

E.2.1. 2D TRACKING

In this section, we present further results from experiment 4.1. Figure 11 shows the distribution over errors over all 4 state
components for both outlier variants of the 2d tracking problem. For the mixture variant, we see elongated tails in the error
distribution for the WoLF-TMD algorithm. To see why, consider the trace of weights over time in Figure 12. We observe
that both WoLF-IMQ and WoLF-TMD set the weighting term close to (or equal) to zero in outlier events. However, the
WoLF-TMD is more prone to have false positives (at a rate of about 7% in this example), in which it fails to update the
posterior state. This explains the elongated tails.

Right panel of Figure 3

2d tracking: hyperparameter choice Here we show the performance of each method for the experiment in Section 4.1 as
we vary the hyperparameters. We do this for both, the Mixture case and the Student-t case.

Figure 14 shows the RMSE for estimating the first state component as we vary the c hyperparameter for the IMQ and the
TDM weighting functions; for KF-IW, we use two inner iterations and we vary the h hyperparameter; for KF-B, we fix
β = 1.0, use four inner iterations and vary the value of α. The definition for the RMSE JT,0 is as in Section 4.1.

Empirical comparison to (Boustati et al., 2020) In this section, we compare the particle-filter-based method of (Boustati
et al., 2020), which we denote the RBPF. Figure 15 extends Figure 4 to include the RBPF. The RBPF performs comparably
to our proposed method; however, it has much higher computational cost and does not have a closed-form solution.
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Figure 11. Distribution of JT,i for all state components. The left panel is for the student variant (21) and the right panel is for the mixture
variant (22).

Figure 12. Trace of the weighting term for WoLF-IMQ and WoLF-MD.

E.2.2. UCI DATASETS

In this section, we give more details on the MLP regression experiments in Section 4.2. The size of the datasets and models
which we use are summarised in Table 3.

Speed vs accuracy Figure 16 (left) shows the time-step and RMedSe for the Kin8nm dataset over multiple trials. Our
methods, the WoLF-IMQ and the WoLF-TMD, strike the best balance between RMedSE and running time among the
competing methods. The EKF-IW and the EKF-B have comparable error rates to the WoLF methods, but their running
time is 6x and 12x slower than the WoLF-IMQ, respectively. The EKF has comparable running time, but 3x higher average
RMedSE than the WoLF-IMQ. Finally, the OGD is 40% faster, but has 2x higher average RMedSE than the WoLF-IMQ.

Sensitivity to outlier rate We evaluate the sensitivity of the methods to the choice of corrosion rate pϵ for the Kin8nm
dataset. Figure 16 (right) shows the RMedSE after 100 trials of each method as a function of pϵ. We set the hyperparameters
using BO with pϵ = 0.1 and evaluate the RMedSE with pϵ ∈ {0.00, 0.05, . . . , 0.45}. We observe that all robust methods
— the WoLF-IMQ, the WoLF-TMD, the EKF-B, and the EKF-IW— have similar RMEdSE for any choice of pϵ and have
similar RMedSE rate of increase. Conversely, the EKF and the OGD are much less stable and their RMedSE error rate
increases at a faster pace.

E.2.3. LORENZ96 MODEL

In this subsection, we evaluate the EnKF methods in the Lorenz96 model presented in subsection 4.3 when we only have
N = 20 particles but d = 100 states. In this scenario, the EnKF is usually modified to incorporate the covariance inflation
proposed in Anderson (1999). We present the results for a single run of the modified methods in the left panel of Figure 17.
In the right panel of Figure 17, we perform a sensitivity analysis to the choice of hyperparameter c. Similar to the results

29



Outlier-robust Kalman Filtering through Generalised Bayes

Figure 13. Sample of the top-left panel in Figure 3

Figure 14. Jt,0 over 100 runs for the methods as a function of their hyperparameter.

presented in the main body of text, we observe that, in the best scenario, the Hub-EnKF and AP-EnKF behave similarly.
However, the Hub-EnKF is more sensitive to the choice of hyperparameters than the AP-EnKF and PP-EnKF.

E.3. Robust EKF for online MLP regression (1d) — suplementary experiment

In this section, we consider an online nonlinear 1d regression, with the training data coming either from an i.i.d. source, or
a correlated source. The latter corresponds to a non-stationary problem (see e.g. Cartea et al., 2023; Arroyo et al., 2024;
Duran-Martin et al., 2022).

We present a stream of observations Dfilter = (y1, x1), . . . (yT , xT ) with yt ∈ R the measurements, xt ∈ R the exogenous
variables, and T = 1500. The measurements and exogenous variables are sequentially sampled from the processes

yt =

{
θ∗
1xt − θ∗

2 cos(θ
∗
3xt π) + θ∗

4x
3
t + Vt w.p. 1− pϵ,

Ut w.p. pϵ,
(92)

where the parameters of the observation model are θ∗ = (0.2,−10, 1.0, 1.0), the inputs are xt ∼ U [−3, 3], and the noise is
Vt ∼ N (0, 3), Ut ∼ U [−40, 40], and pϵ = 0.05.

We consider four configurations of this experiment. In each experiment the data is either sorted by xt value (i.e, the
exogenous variable satisfies xi < xj for all i < j, representing a correlated source) or is unsorted (representing an i.i.d.
source), and the measurement function is either a clean version of the true data generating process (i.e., (92) with pϵ = 0 and
unknown coefficients θ), or a neural network with unknown parameters θ. Specifically, we use a multi-layered perceptron
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Figure 15. Distribution (across 500 2d tracking trials) of RMSE for first component of the state vector, JT,0. Left panel: Student
observation model. Right panel: Mixture observation model. We extend Figure 4 to include the RBPF.

#Examples T #Features d #Parameters m
Dataset

Boston 506 14 321
Concrete 1, 030 9 221
Energy 768 9 221
Kin8nm 8, 192 9 221
Naval 11, 934 18 401
Power 9, 568 5 141
Protein 45, 730 10 241
Wine 1, 599 12 281
Yacht 308 7 181

Table 3. Description of UCI datasets. Number of parameters refers to the size of the one-layer MLP.

(MLP) with two hidden layers and 10 units per layer:

h(θt, xt) = w
(3)
t ϕ

(
w

(2)
t ϕ

(
w

(1)
t xt + b

(1)
t

)
+ b

(2)
t

)
+ b

(3)
t , (93)

with activation function ϕ(u) = max{0, u} applied elementwise. Thus the state vector encodes the parameters:

θt = (w
(1)
t ∈ R10×1,w

(2)
t ∈ R10×10,w

(3)
t ∈ R1×10, b

(1)
t ∈ R10, b

(2)
t ∈ R10, b

(3)
t ∈ R)

and has size so that θ ∈ R141. Note that in this experiment ht(θ) = h(θ, xt). We set Qt = 10−4I, which allows the
parameters to slowly drift over time and provides some reguralisation.

For each method, we evaluate the RMedSE =
√

median{(yt − ht(µt|t−1))2}Tt=1. The EKF-IW and the EKF-B methods
are taken with two inner iterations, which implies that their computational complexity is twice that of the WoLF methods.

MLP measurement model Figure 18 shows results when the data are presented in sorted order of xt. We show the
performance on 100 trials. The left panel shows the mean prior-predictive h(µt|t−1, xt) of each method, and the underlying
true state process, for a single trial. The right panel shows the RMedSE after multiple trials. We observe on the right panel
that the WoLF-IMQ and the EKF-IW have the lowest mean error and lowest standard deviation among the competing
methods. However, the EKF-IW takes twice as long to run the experiment. For all methods, the performance worse on the
left-most side of the plot on the left panel, which is a region with not enough data to determine whether a measurement is an
inlier or an outlier.

Figure 19 shows the results when data are presented in random order of xt. We show results for a single run on the left panel
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Figure 16. Left panel shows the RMedSE (root median squared error) vs running time (per observation) to fit a neural network to the
Kin8nm UCI regression dataset. Each point corresponds to a different trial. Right panel shows the RMedSE (root median squared error)
vs percentage probability of outlier, pϵ when fitting a neural network to the Kin8nm UCI regression dataset. (We show the bootstrp
average over 100 trials and 95% confidence interval) Crucially, the same hyper-parameters are used for all experiments (and are estimated
under pϵ = 0.1).

Figure 17. The left panel shows a run of the EnKF, the AP-EnKF, the PP-EnKF, and the Hub-EnKF; with covariance inflation; outlier
events are shown in grey vertical bars. The right panel shows the bootstrap estimate of LT over 20 runs and 500 bootstrapped samples as
a function of the c hyperparameter.

and the the RMedSE after multiple trials on the right panel. Similar to the sorted configuration, we observe that the EKF-IW
and the WoLF-IMQ are the methods with lowest RMedSE. However, the EKF-IW has longer tails than the WoLF-IMQ.

True measurement model We modify the experiment above by taking the measurement function to be ht(θt) =
h(θt, xt) = θt,1xt − θt,2 cos(θt,3xt π) + θt,4x

3
t , with state θt ∈ R4 and θt,i the i-th entry of the state vector θt. Figure

20 shows a single run of the filtering process when the data is presented unsorted (left panel) and sorted (right panel). We
observe that the behaviour of the WoLF-IMQ, the WoLF-TMD, and the EKF-IW have similar performance. However, the
EKF-IW takes twice the amount of time to run. The OGD and the EKF are not able to correctly filter out outlier measurement
at the tails. Finally, the EKF-B over-penalises inliers and does not capture the curvature of the measurement process.

32



Outlier-robust Kalman Filtering through Generalised Bayes

Figure 18. Results with sorted data. Left panel shows a run of each filter on the 1d regression, with the true underlying data-generating
function in solid black line and the next-step predicted observation as dots. Right panel shows the RMedSE distribution over multiple
trials.

Figure 19. Results with unsorted inputs. The left panel shows a run of each filter with the underlying data-generating function in solid
black line and the next-step predicted observation as dots. The right panel shows the distribution of GT for multiple runs. We remove all
values of GT that have a value larger than 800.
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Figure 20. The figure shows a run of each filter with the underlying data-generating function in solid black line and the evaluation of
h(µt|t−1, xt) in points. The left panel shows the configuration with unsorted xt values and the right panel shows the configuration with
sorted xt values.
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