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Abstract
In this paper, we theoretically show that interior-
point methods based on self-concordant barri-
ers possess favorable global complexity beyond
their standard application area of convex op-
timization. To do that we propose first- and
second-order methods for non-convex optimiza-
tion problems with general convex set constraints
and linear constraints. Our methods attain a
suitably defined class of approximate first- or
second-order KKT points with the worst-case it-
eration complexity similar to unconstrained prob-
lems, namely O(ε−2) (first-order) and O(ε−3/2)
(second-order), respectively.

1. Introduction
Interior-point methods are a universal and very powerful tool
for convex optimization (Nesterov & Nemirovskii, 1994;
Boyd & Vandenberghe, 2004) that allows one to obtain fa-
vorable global complexity guarantees for a variety of prob-
lems with many applications. Much less is known about the
complexity guarantees for such methods in the non-convex
world, especially important in machine learning applications
such as training neural networks. This paper aims to fill this
gap in the theoretical analysis of interior-point methods in
application to optimization with non-convex objectives.

Let E be a finite-dimensional vector space with inner prod-
uct ⟨·, ·⟩ and Euclidean norm ∥·∥. Our goal is to solve
constrained optimization problems of the form

min
x

f(x) s.t.: Ax = b, x ∈ K̄. (Opt)

Our main assumption is as follows:

Assumption 1.1. 1. K̄ ⊂ E is a closed convex set with
nonempty relative interior K;
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2. A : E → Rm is a linear operator assigning each
element x ∈ E to a vector in Rm and having full
rank, i.e., im(A) = Rm, b ∈ Rm (all the rows of A
are linearly independent and there are no redundant,
linearly dependent constraints);

3. The feasible set X̄ = K̄∩L with L = {x ∈ E|Ax = b}
has nonempty relative interior denoted by X = K ∩ L;

4. f : E → R is possibly non-convex, continuous on X̄
and continuously differentiable on X;

5. Problem (Opt) admits a global solution. We let
fmin(X) = min{f(x)|x ∈ X̄}.

As a main tool for developing our algorithms, we use a self-
concordant barrier (SCB) h(x) for the set K̄, see (Nesterov
& Nemirovski, 1994) and Definition 1.2. Using the barrier h,
our algorithms are designed to reduce the potential function

Fµ(x) = f(x) + µh(x), (1)

where µ > 0 is a (typically) small penalty parameter.

This approach has the following advantages compared to
other approaches to solving (Opt).

1. Unlike proximal- or projection-based approaches
(Ghadimi & Lan, 2016; Bogolubsky et al., 2016; Cartis
et al., 2019; 2012a; Curtis et al., 2017; Cartis et al.,
2012b; Dvurechensky, 2017; Birgin & Martı́nez, 2018;
Cartis et al., 2018; 2019), our approach does not re-
quire evaluation of a costly projection onto the feasible
set X̄ = K̄ ∩ L.

2. Unlike splitting methods or augmented Lagrangian al-
gorithms (Birgin & Martı́nez, 2020; Grapiglia & Yuan,
2020; Andreani et al., 2019; 2021) our algorithms gen-
erate feasible approximate solutions and have com-
plexity guarantees similar to the optimal complexity
guarantees for unconstraied non-convex optimization.

3. Since our algorithms generate a sequence of relatively
interior points, the objective f does not need to be
differentiable at the relative boundary. A prominent ex-
ample of such applications is the nonlinear regression
problem with sparsity penalty:

min
x≥0

{
f(x) = ℓ(x) + λ∥x∥pp

}
, (2)
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where ℓ(x) is a non-convex loss function, λ > 0, p ∈
(0, 1). Further motivating applications are discussed in
Appendix A.1.

4. Our penalty-based approach provides a flexible frame-
work, since SCBs possess a calculus. Indeed, a sum
hK̄1

+hK̄2
of SCBs for K̄1 and K̄2 is a SCB for K̄1∩K̄2.

Moreover, SCBs can be efficiently constructed for a
large variety of sets encountered in applications (Nes-
terov, 2018). This is important, for example when K̄ is
given as an intersection of 1-norm and Total Variation
balls (Liu et al., 2018; Hansen & Bianchi, 2023).

Related works. Motivated, in particular, by training of
neural networks, non-convex optimization is an active area
of research in optimization and ML communities, see, e.g.,
the review (Danilova et al., 2022) and the references therein.
An important part of this research concerns the global com-
plexity guarantees of the proposed algorithms.

First-order methods. If f has Lipschitz gradient and there
are no constraints, the standard gradient descent achieves
the lower iteration complexity bound O(ε−2) to find a first-
order ε-stationary point x̂ such that ∥∇f(x̂)∥ ⩽ ε (Nes-
terov, 2018; Carmon et al., 2019b;a). In the composite
optimization setting, which includes problems with simple,
projection-friendly constraints, a similar iteration complex-
ity is achieved by the mirror descent algorithm (Lan, 2020;
Ghadimi et al., 2016; Bogolubsky et al., 2016). Various ac-
celeration strategies of mirror and gradient descent methods
have been derived in the literature, attaining the same bound
as of gradient descent in the unconstrained case (Ghadimi
& Lan, 2016; Guminov et al., 2019; Nesterov et al., 2020;
Guminov et al., 2021) or improving upon it under additional
assumptions (Carmon et al., 2017; Agarwal et al., 2017). A
potential drawback of these algorithms is the computation-
ally expensive projection onto the set X̄ = K̄ ∩ L.

Second-order methods. If f has Lipschitz Hessian and
there are no constraints, cubic-regularized Newton method
(Griewank, 1981; Nesterov & Polyak, 2006) and second-
order trust region algorithms (Conn et al., 2000; Cartis
et al., 2012a; Curtis et al., 2017) achieve the lower iteration
complexity bound O(max{ε−3/2

1 , ε
−3/2
2 }) (Carmon et al.,

2019b;a) to find a second-order (ε1, ε2)-stationary point x̂
such that ∥∇f(x̂)∥2 ≤ ε1 and λmin

(
∇2f(x̂)

)
≥ −√

ε2,
where λmin(·) denotes the minimal eigenvalue of a ma-
trix 1. Extensions for problems with simple projection-
friendly constraints also exist (Cartis et al., 2012b; Birgin &
Martı́nez, 2018; Cartis et al., 2018) with the same iteration

1A number of works, e.g. (Cartis et al., 2012a; O’Neill &
Wright, 2020), consider an (ε1, ε2)-stationary point defined as x̂
such that ∥∇f(x̂)∥2 ≤ ε1 and λmin

(
∇2f(x̂)

)
≥ −ε2 and the

corresponding complexity O(max{ε−3/2
1 , ε−3

2 }). Our definition
and complexity bound are the same up to the redefinition of ε2.

complexity bounds, as well as for problems with nonlinear
equality and/or inequality constraints (Curtis et al., 2018;
Hinder & Ye, 2018; Cartis et al., 2019; Birgin & Martı́nez,
2020; Grapiglia & Yuan, 2020; Xie & Wright, 2019), but
these works do not consider general set constraints as in
(Opt) and again may require projections on X̄ = K̄ ∩ L.

Barrier algorithms. Existing barrier methods for non-
convex optimization deal with some particular cases of
(Opt), such as K̄ being the non-negative orthant (Ye, 1992;
Tseng et al., 2011; Bomze et al., 2019; Bian et al., 2015;
Haeser et al., 2019; O’Neill & Wright, 2020), or a symmet-
ric cone (He & Lu, 2022; Dvurechensky & Staudigl, 2024)
and f being a quadratic function (Ye, 1992; Faybusovich &
Lu, 2006; Lu & Yuan, 2007). None of these works covers
the general problem (Opt).

Summarizing, the existing works require at least one of
the following assumptions: a) Lipschitz continuity of the
gradient and/or Hessian on the whole feasible set, b) no
constraints, or simple convex constraints that allow an easy
projection, or constraints that do not involve general fea-
sible sets, e.g., only non-negativity constraints. Moreover,
existing algorithms do not always come with complexity
guarantees. For further discussion of the related literature,
see Appendix A.2.

In this paper we develop a flexible and unifying algorithmic
framework that is able to accommodate first- and second-
order interior-point algorithms for (Opt) with potentially
non-convex and non-smooth at the relative boundary objec-
tive functions, and general set constraints. To the best of
our knowledge, our framework is the first one providing
complexity results for first- and second-order algorithms
to reach points satisfying, respectively, suitably defined
approximate first- and second-order necessary optimality
conditions, under such weak assumptions and for such a
general setting.

Contributions. In this paper, we close the gap in the theo-
retical analysis of barrier algorithms for general non-convex
objectives and general set constraints by constructing first-
and second-order algorithms with complexities O(ε−1) and
O(ε−3/2) respectively. In more detail, our contributions are
as follows:

Optimality conditions. We propose a suitable set of first-
and second-order necessary optimality conditions for (Opt)
that do not require f to be differentiable at the relative
boundary of K̄. This is followed by the definition of approx-
imate stationary points which we call ε-KKT and (ε1, ε2)-
2KKT points respectively (see Section 2 for a precise defi-
nition).

First-order algorithm. We propose a new first-order adap-
tive barrier method (FOABM, Algorithm 1). To find a
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step direction, a linear model for Fµ in (1), regularized by
the squared local norm induced by the Hessian of h, is min-
imized over the tangent space of the linear subspace L. We
prove that our new first-order method enjoys (see Theorem
3.3) the upper iteration complexity bound O(ε−2) for reach-
ing an ε-KKT point when a “descent Lemma” holds relative
to the local norm induced by the Hessian of h (see Assump-
tion 3.1 for precise definition). Our algorithm is adaptive
in the sense that it does not require the knowledge of the
Lipschitz constant of the gradient.

Second-order algorithm. We propose a new second-order
adaptive barrier method (SOABM, Algorithm 2), for
which the step direction is determined by a minimization
subproblem over the same tangent space. But, in this case,
the minimized model is composed of the linear model for Fµ

augmented by second-order term for f and regularized by
the cube of the local norm induced by the Hessian of h. The
regularization parameter is chosen adaptively in the spirit
of (Nesterov & Polyak, 2006; Cartis et al., 2012b). The
resulting minimization subproblem can be formulated as a
non-convex optimization problem over a linear subspace,
which can be solved as in the unconstrained case originally
studied in (Nesterov & Polyak, 2006). We establish (see
Theorem 4.4) the worst-case bound O(max{ε−3/2

1 , ε
−3/2
2 })

on the number of iterations to reach an (ε1, ε2)-2KKT point
under a weaker version of assumption that the Hessian of
f is Lipschitz relative to the local norm induced by the
Hessian of h (see Assumption 4.1).

We do not perform numerical experiments for two reasons.
1) Our main goal is theoretical and we show that barrier
algorithms possess favorable complexity beyond convex-
ity. 2) We are not aware of any baseline algorithms with
similar complexity that can accommodate with general set
constraints, and produce feasible iterates without involving
a projection step.

Notation. E denotes a finite-dimensional real vector space,
and E∗ the dual space, which is formed by all linear func-
tions on E. The value of s ∈ E∗ at x ∈ E is denoted
by ⟨s, x⟩. The gradient and Hessian of a (twice) differ-
entiable function f : E → R at x ∈ E are denoted as
∇f(x) ∈ E∗ and ∇2f(x) respectively. The directional
derivative of function f : E → R is defined in the usual
way: Df(x)[v] = limε→0+

1
ε [f(x+εv)−f(x)]. More gen-

erally, for v1, . . . , vp ∈ E, we define Dpf(x)[v1, . . . , vp]
the p-th directional derivative at x along directions vi ∈
E. In that way we define the gradient ∇f(x) ∈ E∗ by
Df(x)[u] = ⟨∇f(x), u⟩ and the Hessian ∇2f(x) : E →
E∗ by ⟨∇2f(x)u, v⟩ = D2f(x)[u, v]. For an operator
H : E → E∗, we denote by H∗ : E → E∗ its adjoint oper-
ator, defined by the identity (∀u, v ∈ E) : ⟨Hu, v⟩ =
⟨u,H∗v⟩. An operator H : E → E∗ is positive semi-definite
if ⟨Hu, u⟩ ≥ 0 for all u ∈ E, denoted as H ⪰ 0. If the

inequality is always strict for non-zero u, then H is called
positive definite, and we write H ≻ 0. The standard Eu-
clidean norm of a vector x ∈ E is denoted by ∥x∥. We
denote by L0 ≜ {v ∈ E|Av = 0} ≜ ker(A) the tangent
space of the affine subspace L = {x|Ax = b}.

Self-concordant barriers. By our assumptions K̄ ⊂ E
has a self-concordant barrier h(x) with finite parameter
value ν (Nesterov & Nemirovski, 1994).

Definition 1.2. A function h : K̄ → (−∞,∞] with
domh = K is called a ν-self-concordant barrier (ν-SCB)
for the set K̄ if for all x ∈ K and u ∈ E

|D3h(x)[u, u, u]| ≤ 2D2h(x)[u, u]3/2, and

sup
u∈E

|2Dh(x)[u]−D2h(x)[u, u]| ≤ ν.

We denote the set of ν-self-concordant barriers by Hν(K).

Note that ν ≥ 1 and the Hessian H(x) ≜ ∇2h(x) :
E → E∗ is a positive definite linear operator that defines
the local norm ∥u∥x ≜ ⟨H(x)u, u⟩1/2. The correspond-
ing dual local norm on E∗ is then defined as ∥s∥∗x ≜
⟨[H(x)]−1s, s⟩1/2.

The Dikin ellipsoid with center x ∈ K and radius r > 0 is
defined as W(x; r) ≜ {u ∈ E| ∥u− x∥x < r}. This object
allows us to guarantee the feasibility of the iterates in each
iteration of our algorithms.

Lemma 1.3 (Theorem 5.1.5 (Nesterov, 2018)). For all x ∈
K we have W(x; 1) ⊆ K.

The following upper bound for the barrier h is used to es-
tablish per-iteration decrease of the potential Fµ.

Proposition 1.4 (Theorem 5.1.9 (Nesterov, 2018)). Let
h ∈ Hν(K), x ∈ domh, and a fixed direction d ∈ E. For
all t ∈ [0, 1

∥d∥x
), with the convention that 1

∥d∥x
= +∞ if

∥d∥x = 0, we have:

h(x+ td) ≤ h(x) + t⟨∇h(x), d⟩+ t2∥d∥2xω(t∥d∥x), (3)

where ω(t) = −t−ln(1−t)
t2 .

We will also use the following inequality for the function
ω(t) (Nesterov, 2018, Lemma 5.1.5):

ω(t) ≤ 1

2(1− t)
, t ∈ [0, 1). (4)

Appendix B contains some more technical properties of
SCBs which are relevant for the proofs.

2. Approximate Optimality Conditions
Following (Burachik et al., 1997), for a given ε > 0, we
define the ε-approximate normal cone for the set K̄ at x ∈ K̄
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as the set

NCε
K̄(x) ≜

{
s ∈ E∗|⟨s, y − x⟩ ≤ ε ∀ y ∈ K̄

}
. (5)

Clearly, we have NC0
K̄(x) = NCK̄(x), where the latter de-

notes the normal cone for K̄ at x.

The following result gives a necessary optimality condition
for (Opt). Importantly, this result holds even if x∗ is at the
boundary of K̄ and f is not differentiable at x∗.

Theorem 2.1. Let the assumptions described above hold
for problem (Opt) and x∗ ∈ K̄ be a local solution to this
problem. Then, there exists a sequence of approximate
solutions xk ∈ E and sequences of approximate Lagrange
multipliers yk ∈ Rm, sk ∈ E∗ s.t.:

1. xk ∈ K, Axk = b for all k and xk → x∗,

2. ∇f(xk)−A∗yk − sk → 0,

3. −sk ∈ NCσk

K̄
(xk), where σk → 0.

If in addition f is twice differentiable on K, then there exist
θk, δk ∈ (0,∞) such that θk, δk → 0 and

⟨(∇2f(xk) + θkH(xk) + δkI)d, d⟩ ≥ 0 (6)

for all d ∈ L0, I = IE being the identity operator.

The proof is based on interior-penalty arguments sketched
below, and fully detailed in Appendix C. Namely, there
exists a sequence xk → x∗ that solves the sequence of
penalized problems

min
x

f(x) +
1

4
∥x− x∗∥4 + µkh(x) s.t.: Ax = b, (7)

where µk > 0, µk → 0. The first- and second-order op-
timality conditions for the latter problem imply then the
statement of the Theorem.

The most interesting part of the above result for us is the
second-order condition (6) since it allows us to certify
second-order stationary points using the Hessian H(x) of
the barrier. At the same time, the first-order conditions
may be strengthened compared to the ones in Theorem
2.1. Indeed, if x∗ is a local solution of the optimization
problem (Opt) at which the objective function f is contin-
uously differentiable, then there exists y∗ ∈ Rm such that
∇f(x∗)−A∗y∗ ∈ −NCK̄(x

∗), or, equivalently,

⟨∇f(x∗)−A∗y∗, x− x∗⟩ ≥ 0 ∀x ∈ K̄. (8)

The standard way to construct an approximate first-order
optimality condition is to add an ε-perturbation in the r.h.s.
of (8):

⟨∇f(x̄)−A∗ȳ, x− x̄⟩ ≥ −ε ∀x ∈ K̄. (9)

which is equivalent to −(∇f(x̄)−A∗ȳ) ∈ NCε
K̄(x̄).

Motivated by the above, we introduce the following notion
of an approximate first-order KKT point for problem (Opt).

Definition 2.2. Given ε ≥ 0, a point x̄ ∈ E is an ε-KKT
point for problem (Opt) if there exists ȳ ∈ Rm such that

Ax̄ = b, x̄ ∈ K, (10)
⟨∇f(x̄)−A∗ȳ, x− x̄⟩ ≥ −ε ∀x ∈ K̄. (11)

We underline that when εk → 0, every convergent subse-
quence (xkj )j≥1 of a sequence (xk)k≥1 of εk-KKT points
converges to a stationary point in the sense of Theorem
2.1. Indeed, clearly, such subsequence satisfies item 1. Af-
ter defining skj = ∇f(xkj ) − A∗ykj , we see that item 2
trivially holds as equality ∇f(xkj ) − A∗ykj − skj = 0.
Finally, the definition of skj , (11), (5), and the condition
εk → 0 imply item 3 with σkj

= εkj
. Thus, the limit of the

subsequence xkj satisfies the first three items of Theorem
2.1, and thus is a first-order stationary point according to
this theorem.

Based on the second-order condition (6) in Theorem 2.1,
we can augment Definition 2.2 with an approximate second-
order condition. This leads us to the following notion of an
approximate second-order KKT point for problem (Opt).

Definition 2.3. Given ε1, ε2 ≥ 0, a point x̄ ∈ E is an
(ε1, ε2)-2KKT point for problem (Opt) if there exists ȳ ∈
Rm such that

Ax̄ = b, x̄ ∈ K, (12)
⟨∇f(x̄)−A∗ȳ, x− x̄⟩ ≥ −ε1 ∀x ∈ K̄, (13)

∇2f(x̄) +
√
ε2H(x̄) ⪰ 0 on L0= {v ∈ E|Av = 0}.

(14)

Note that our definition of an approximate second-order
KKT point is motivated by the notion of weak second-order
approximate stationary conditions for non-convex optimiza-
tion using barrier algorithms (Haeser et al., 2019; O’Neill
& Wright, 2020; He & Lu, 2022). Just as for Definition 2.2,
we can prove that every accumulation point of a sequence of
(ε1,k, ε2,k)-2KKT points satisfies items 1, 2, 3 of Theorem
2.1. Setting θkj

=
√
ε2,kj

and δk = 0, we see that the
condition (6) also holds. Thus, the limit of the subsequence
xkj satisfies all the four items of Theorem 2.1, and thus is a
second-order stationary point according to this theorem. An
important advantage of the above definitions is that x̄ lies
in the relative interior of the feasible set. Thus, f may be
non-differentiable at the relative boundary of the feasible set,
see, e.g., problem (2). Moreover, we can use the Hessian of
the barrier H(x̄) in the second-order condition since x̄ is in
the interior of K̄.
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3. First-Order Barrier Algorithm
In this section we introduce our first-order potential reduc-
tion method for solving (Opt) that uses a barrier h ∈ Hν(K)
and potential function (1).

3.1. Smoothness Assumption

Given x ∈ X, define the set of feasible directions as Fx ≜
{v ∈ E|x+ v ∈ X}. Lemma 1.3 implies that

Tx ≜ {v ∈ E|Av = 0, ∥v∥x < 1} ⊆ Fx. (15)

Upon defining d = [H(x)]1/2v for v ∈ Tx, we obtain a
direction d satisfying A[H(x)]−1/2d = 0 and ∥d∥ = ∥v∥x.
Hence, for x ∈ K, we can equivalently characterize the set
Tx as Tx = {[H(x)]−1/2d|A[H(x)]−1/2d = 0, ∥d∥ < 1}.
For the analysis of the first-order algorithm we use the fol-
lowing first-order smoothness condition.

Assumption 3.1 (Local smoothness). f : E → R ∪ {+∞}
is continuously differentiable on X and there exists a con-
stant M > 0 such that for all x ∈ X and v ∈ Tx, where Tx
is defined in (15), we have

f(x+ v)− f(x)− ⟨∇f(x), v⟩ ≤ M

2
∥v∥2x. (16)

Remark 3.2. If the set X̄ is bounded, we have
λmin(H(x)) ≥ σ for some σ > 0. In this case, assum-
ing f has an M -Lipschitz continuous gradient, the classical
descent lemma (Nesterov, 2018) implies Assumption 3.1.
Indeed,

f(x+ v)− f(x)− ⟨∇f(x), v⟩ ≤ M

2
∥v∥2 ≤ M

2σ
∥v∥2x. ♢

Considering x ∈ X, v ∈ Tx and combining eq. (16) with eq.
(3) (with d = v and t = 1 < 1

∥v∥x
) gives us the following

upper bound that holds for all x ∈ X, v ∈ Tx and L ≥ M

Fµ(x+ v) ≤Fµ(x) + ⟨∇Fµ(x), v⟩+
L

2
∥v∥2x

+ µ∥v∥2xω(∥v∥x). (17)

3.2. Algorithm and Its Complexity

We assume that our algorithm starts from a ν-analytic center,
i.e. a point x0 ∈ X such that

h(x) ≥ h(x0)− ν ∀x ∈ X. (18)

Obtaining such a point requires solving a convex optimiza-
tion problem minx∈X h(x) up to a very loose accuracy
ν ≥ 1. We denote ∆f

0 ≜ f(x0)− fmin(X).

Defining the search direction. Let x ∈ X be given. Our
first-order method uses a quadratic model

Q(1)
µ (x, v) ≜ Fµ(x) + ⟨∇Fµ(x), v⟩+

1

2
∥v∥2x

to compute a search direction vµ(x), given by

vµ(x) ≜ argmin
v∈E:Av=0

Q(1)
µ (x, v). (19)

This search direction is determined by the following system
of optimality conditions involving the dual variable yµ(x) ∈
Rm:

∇Fµ(x) +H(x)vµ(x)−A∗yµ(x) = 0, (20)
Avµ(x) = 0. (21)

Since H(x) ≻ 0 for x ∈ X, any standard solution method
(Nocedal & Wright, 2000) can be applied for the above
linear system. Since H(x) ≻ 0 for x ∈ X, and A has full
row rank, the optimality conditions have a unique solution.

Defining the step-size. Consider a point x ∈ X and a
point x+(t) ≜ x + tvµ(x), where t ≥ 0 is the step-size.
Our aim is to choose t to ensure the feasibility of iterates
and decrease of the potential. By Lemma 1.3 and (21), we
know that x+(t) ∈ X for all t ∈ Ix,µ ≜ [0, 1

∥vµ(x)∥x
).

Multiplying (20) by vµ(x) and using (21), we obtain
⟨∇Fµ(x), vµ(x)⟩ = −∥vµ(x)∥2x. Choosing t ∈ Ix,µ, we
have

t2∥vµ(x)∥2xω(t∥vµ(x)∥x)
(4)
≤ t2∥vµ(x)∥2x

2(1− t∥vµ(x)∥x)
.

Therefore, if t∥vµ(x)∥x ≤ 1/2, we get from (17) that

Fµ(x
+(t))− Fµ(x)

≤ −t∥vµ(x)∥2x +
t2M

2
∥vµ(x)∥2x + µt2∥vµ(x)∥2x

= −t∥vµ(x)∥2x
(
1− M + 2µ

2
t

)
≜ −ηx(t). (22)

The function ηx(t) is strictly concave with the unique maxi-
mum at 1

M+2µ . Thus, maximizing the per-iteration decrease
ηx(t) under the restriction 0 ≤ t ≤ 1

2∥vµ(x)∥x
, we choose

the step-size

tµ,M (x) ≜ min

{
1

M + 2µ
,

1

2∥vµ(x)∥x

}
.

Adaptivity to the Lipschitz constant. To get rid of the
explicit dependence of the step size on the Lipschitz pa-
rameter M , we propose a backtracking/adaptive procedure
in the spirit of (Nesterov & Polyak, 2006). This proce-
dure generates a sequence of positive numbers (Lk)k≥0
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Algorithm 1: First-Order Adaptive Barrier
Method - FOABM(µ, ε, L0, x

0)

Data: h ∈ Hν(K), µ > 0, ε > 0, L0 > 0, x0 ∈ X.
Result: (xk, yk, sk, Lk) ∈ X× Rm × E∗ × R+,

where sk = ∇f(xk)−A∗yk, and Lk is
the last estimate of the Lipschitz constant.

Set k = 0;
repeat

Set ik = 0. Find vk ≜ vµ(x
k) and the

corresponding dual variable yk ≜ yµ(x
k) as

the solution to

min
v∈E:Av=0

{Fµ(x
k)+⟨∇Fµ(x

k), v⟩+1

2
∥v∥2xk}.

(23)
repeat

αk ≜ min

{
1

2ikLk + 2µ
,

1

2∥vk∥xk

}
(24)

Set zk = xk + αkv
k, ik = ik + 1;

until

f(zk) ≤ f(xk)+⟨∇f(xk), zk−xk⟩+2ik−1Lk∥zk−xk∥2xk .
(25)

;
Set Lk+1 = 2ik−1Lk, xk+1 = zk, k = k + 1;

until ∥vk∥xk < ε
3ν ;

for which the local Lipschitz smoothness condition (16)
holds. More specifically, let xk be the current position of
the algorithm with the corresponding initial local Lipschitz
estimate Lk and vk = vµ(x

k) is the corresponding search
direction. To determine the next iterate xk+1, we iteratively
try step-sizes αk of the form tµ,2ikLk

(xk) for ik ≥ 0 until
the local smoothness condition (16) holds with x = xk,
v = αkv

k and local Lipschitz estimate M = 2ikLk, see
(25). This process must terminate in finitely many steps
since when 2ikLk ≥ M , inequality (16) with M changed
to 2ikLk, i.e., (25), follows from Assumption 3.1. Setting
Lk+1 = 2ik−1Lk allows Lk to adaptively decrease so that
in the areas where f is more smooth the algorithm uses
larger step-sizes.

Combining the definition of the search direction (19) with
the above backtracking strategy, yields a First-Order Adap-
tive Barrier Method (FOABM, Algorithm 1).

Complexity bound. Our main result on the iteration com-
plexity of Algorithm 1 is the following Theorem.

Theorem 3.3. Let Assumptions 1.1 and 3.1 hold. Fix
the error tolerance ε > 0, the regularization parameter
µ = ε

ν , and some initial guess L0 > 0 for the Lipschitz

constant in (16). Let (xk)k≥0 be the trajectory generated
by FOABM(µ, ε, L0, x

0), where x0 is a ν-analytic center
satisfying (18). Then the algorithm stops in no more than

KI(ε, x
0) =

⌈
36(∆f

0 + ε)
ν2(max{M,L0}+ ε/ν)

ε2

⌉
(26)

outer iterations, and the number of inner iterations is no
more than 2(KI(ε, x

0)+1)+max{log2(M/L0), 0}. More-
over, the last iterate obtained from FOABM(µ, ε, L0, x

0)
constitutes a 2ε-KKT point for problem (Opt) in the sense
of Definition 2.2.
Remark 3.4. Since ν ≥ 1, ∆f

0 is expected to be larger than
ε, and the constant M is potentially large, we see that the

main term in the complexity bound (26) is O
(

Mν2∆f
0

ε2

)
=

O
(

1
ε2

)
, i.e., has the same dependence on ε as the standard

complexity bounds (Carmon et al., 2019b;a; Lan, 2020)
of first-order methods for non-convex problems under the
standard Lipschitz-gradient assumption, which on bounded
sets is subsumed by our Assumption 3.1. Further, if the
function f is linear, Assumption 3.1 holds with M = 0 and
we can take L0 = 0. In this case, the complexity bound (26)

improves to O
(

ν∆f
0

ε

)
. ♢

Remark 3.5. A potential drawback of Algorithm 1 may be
that it requires to fix the parameter ε before start. This
may be easily resolved by a restart procedure with warm
starts. Namely, we run Algorithm 1 in epochs numbered by
i ≥ 0. For each restart, we choose x0 as the output of the
previous restart and set ε = εi = 2−iε0. Such an algorithm
may be run infinitely. To reach any desired accuray ε, it
is sufficient to make I = I(ε) = O(log2(ε0/ε)) restarts.
Then, the total number of inner iterations is of the order∑I−1

i=0
C
ε2i

=
∑I−1

i=0
C2i

ε20
= O(ε−2), i.e., the complexity is

the same. ♢

Sketch of the proof of Theorem 3.3. The proof is orga-
nized in three steps. First, we prove the correctness of the
algorithm, i.e., that it generates a sequence of points in X,
and, thus, is indeed an interior-point method. This follows
from the construction of the algorithm by an induction argu-
ment. Next, we show that the line-search process of finding
appropriate Lk in each iteration is finite, and estimate the
total number of trials in this process. Then we enter the core
of our analysis where we prove that, if the stopping criterion
does not hold at iteration k, i.e., ∥vk∥xk ≥ ε

3ν , then the
objective f is decreased by a quantity O(ε2), which follows
from (22). Since the objective is globally lower bounded, we
conclude that the method stops in at most O(ε−2) iterations.
Finally, we show that when the stopping criterion holds,
i.e., ∥vk∥xk < ε

3ν , the method has generated an ε-KKT
point. On a high level, the result follows from the optimality
condition (20) which implies by the stopping condition

∇f(xk)−A∗yk = −H(xk)vk −µ∇h(xk) = O(ε+µν).
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The full proof is deferred to Appendix D.

4. Second-Order Barrier Algorithm
In this section, we present a second-order method that uses
also the Hessian of f and the following assumption.

Assumption 4.1 (Local second-order smoothness). f :
E → R ∪ {+∞} is twice continuously differentiable on X
and there exists a constant M > 0 such that, for all x ∈ X
and v ∈ Tx, where Tx is defined in (15), we have

∥∇f(x+ v)−∇f(x)−∇2f(x)v∥∗x ≤ M

2
∥v∥2x. (27)

By integration, it is easy to show that a sufficient condition
for (27) is the following local counterpart of the global
Lipschitz condition on ∇2f (Nesterov, 2018):

∥∇2f(x+ u)−∇2f(x+ v)∥op,x ≤ M∥u− v∥x, (28)

where ∥B∥op,x ≜ supu:∥u∥x≤1

{
∥Bu∥∗

x

∥u∥x

}
is the induced

operator norm for a linear operator B : E → E∗. Further,
again by integration (27) implies

f(x+ v)−
[
f(x) + ⟨∇f(x), v⟩+ 1

2
⟨∇2f(x)v, v⟩

]
≤ M

6
∥v∥3x. (29)

Remark 4.2. Assumption 4.1 subsumes, if X̄ is bounded,
the standard Lipschitz-Hessian setting. If the Hessian of f
is M -Lipschitz w.r.t. the standard Euclidean norm, we have
by (Nesterov, 2018), Lemma 1.2.4, that

∥∇f(x+ v)−∇f(x)−∇2f(x)v∥ ≤ M

2
∥v∥2.

Since X̄ is bounded, one can observe that
λmax([H(x)]−1)−1 = λmin(H(x)) ≥ σ for
some σ > 0, and (27) holds. Indeed, denoting
g = ∇f(x+ v)−∇f(x)−∇2f(x)v, we obtain

(∥g∥∗x)2 ≤ λmax([H(x)]−1)∥g∥2 ≤ M2

4λmin(H(x))
∥v∥4

≤ M2

4σ3
∥v∥4x. ♢

Assumption 4.1 also implies, via (29) and (3) (with d = v
and t = 1 < 1

∥v∥x
), the following upper bound for Fµ that

holds for all x ∈ X, v ∈ Tx and L ≥ M :

Fµ(x+ v) ≤Fµ(x) + ⟨∇Fµ(x), v⟩+
1

2
⟨∇2f(x)v, v⟩

+
L

6
∥v∥3x + µ∥v∥2xω(∥v∥x). (30)

4.1. Algorithm and Its Complexity

Defining the search direction. Let x ∈ X be given. In
order to find a search direction, we choose a parameter
L > 0, construct a cubic-regularized model of the potential
Fµ (1)

Q
(2)
µ,L(x, v) ≜Fµ(x) + ⟨∇Fµ(x), v⟩+

1

2
⟨∇2f(x)v, v⟩

+
L

6
∥v∥3x, (31)

and minimize it on the linear subspace L0:

vµ,L(x) ∈ Argmin
v∈E:Av=0

Q
(2)
µ,L(x, v), (32)

where by Argmin we denote the set of global minimizers.
The model consists of three parts: linear approximation of
h, quadratic approximation of f , and a cubic regularizer
with penalty parameter L > 0. Since this model and our
algorithm use the second derivative of f , we call it a second-
order method. Our further derivations rely on the first-order
optimality conditions for the problem (32), which say that
there exists yµ,L(x) ∈ Rm such that vµ,L(x) satisfies

∇Fµ(x) +∇2f(x)vµ,L(x)

+
L

2
∥vµ,L(x)∥xH(x)vµ,L(x)−A∗yµ,L(x) = 0, (33)

−Avµ,L(x) = 0. (34)

We also use the following extension of (Nesterov & Polyak,
2006), Prop. 1, with the local norm induced by H(x).
Proposition 4.3. For all x ∈ X it holds

∇2f(x) +
L

2
∥vµ,L(x)∥xH(x) ⪰ 0 on L0. (35)

Defining the step-size. To define the step-size, we act in
the same fashion as in Section 3 by considering x+(t) ≜ x+
tvµ,L(x), where t ≥ 0 is a step-size. Using the optimality
conditions (33), (34), (35), we estimate (the full derivation
is given in Appendix E) the progress parameterized by t:

Fµ(x
+(t))− Fµ(x)

≤ −Lt2∥vµ,L(x)∥3x
12

(3− 2t) + µt2∥vµ,L(x)∥2x

= −∥vµ,L(x)∥3x
Lt2

12

(
3− 2t− 12µ

L∥vµ,L(x)∥x

)
≜ −ηx(t).

(36)

The above inequality holds for all t ≥ 0 s.t. t∥vµ,L(x)∥x ≤
1/2. To respect these constraints and guarantee that the
decrease is positive, we choose the following step-size rule

tµ,L(x) ≜ min

{
1,

1

2∥vµ,L(x)∥x

}
. (37)

Note that tµ,L(x) ≤ 1 and tµ,L(x)∥vµ,L(x)∥x ≤ 1/2.
Thus, this choice of the step-size is feasible to derive (36).
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Adaptivity to the Lipschitz constant. Just like Algorithm
1, our second-order method employs a line-search proce-
dure to estimate the Lipschitz constant M in (27), (29) in
the spirit of (Nesterov & Polyak, 2006; Cartis et al., 2012b).
More specifically, suppose that xk ∈ X is the current po-
sition of the algorithm with the corresponding initial local
Lipschitz estimate Mk. To determine the next iterate xk+1,
we solve problem (32) with L = Lk = 2ikMk starting
with ik = 0, find the corresponding search direction vk =
vµ,Lk

(xk) and the new point xk+1 = xk + tµ,Lk
(xk)vk.

Then, we check whether the inequalities (27) and (29) hold
with M = Lk, x = xk, v = tµ,Lk

(xk)vk, see (41) and
(40). If they hold, we make a step to xk+1. Otherwise, we
increase ik by 1 and repeat the procedure. Obviously, when
Lk = 2ikMk ≥ M , both inequalities (27) and (29) with
M changed to Lk, i.e., (41) and (40), are satisfied and the
line-search procedure ends. For the next iteration we set
Mk+1 = max{2ik−1Mk, L} = max{Lk/2, L}, so that the
estimate for the local Lipschitz constant on the one hand can
decrease allowing larger step-sizes, and on the other hand is
bounded from below.

Algorithm. Combining the definition of the search di-
rection in (32) with the just outlined backtracking strategy,
yields a Second-Order Adaptive Barrier Method (SOABM,
Algorithm 2).

Complexity bound. Our main result on the iteration com-
plexity of Algorithm 2 is the following Theorem. The proof
follows similar steps as the proof of Theorem 3.3 and is
given in Appendix E.2.

Theorem 4.4. Let Assumptions 1.1 and 4.1 hold. Fix the
error tolerance ε > 0, the regularization parameter µ =
ε
4ν , and some initial guess M0 > 144ε for the Lipschitz
constant in (27). Let (xk)k≥0 be the trajectory generated by
SOABM(µ, ε,M0, x

0), where x0 is a 4ν-analytic center
satisfying (18). Then the algorithm stops in no more than

KII(ε, x
0) =

⌈
576ν3/2

√
6max{M,M0}(∆f

0 + ε)

ε3/2

⌉
(42)

outer iterations, and the number of inner iterations is no
more than 2(KII(ε, x

0) + 1) + 2max{log2(2M/M0), 1}.
Moreover, the output of SOABM(µ, ε,M0, x

0) constitutes
an (ε, max{M,M0}ε

24ν )-2KKT point for problem (Opt) in the
sense of Definition 2.3.

Note that Algorithm 2 can be made anytime convergent by
the same restarting procedure explained in Remark 3.5.
Remark 4.5. Since ∆f

0 is expected to be larger than
ε, and the constant M is potentially large, we see
that the main term in the complexity bound (42) is

O
(

ν3/2
√
M∆f

0

ε3/2

)
= O(ε−3/2). Note that the complexity

Algorithm 2: Second-Order Adaptive Barrier
Method - SOABM(µ, ε,M0, x

0)

Data: h ∈ Hν(K),
µ > 0, ε > 0,M0 ≥ 144ε, x0 ∈ X.

Result: (xk, yk−1, sk,Mk) ∈ X×Rm ×K∗ ×R+,
where sk = ∇f(xk)−A∗yk−1, and Mk is
the last estimate of the Lipschitz constant.

Set L ≜ 144ε, k = 0;
repeat

Set ik = 0.
repeat

Set Lk = 2ikMk. Find vk ≜ vµ,Lk
(xk) and

yk ≜ yµ,Lk
(xk) as a global solution to

min
v:Av=0

Q
(2)
µ,Lk

(xk, v), where Q
(2)
µ,L(x, v) as in (31).

(38)

Set αk ≜ min
{
1, 1/(2∥vk∥xk)

}
. (39)

Set zk = xk + αkv
k, ik = ik + 1;

until

f(zk) ≤ f(xk) + ⟨∇f(xk), zk − xk⟩

+
1

2
⟨∇2f(xk)(zk − xk), zk − xk⟩+ Lk

6
∥zk − xk∥3xk ,

(40)

and ∥∇f(zk)−∇f(xk)−∇2f(xk)(zk − xk)∥∗xk

≤ Lk

2
∥zk − xk∥2xk . (41)

;
Set Mk+1 = max{Lk

2 , L}, xk+1 = zk,
k = k + 1

until ∥vk−1∥xk−1 < ∆k−1 ≜
√

ε
12Lk−1ν

and

∥vk∥xk < ∆k ≜
√

ε
12Lkν

;

result O(max{ε−3/2
1 , ε

−3/2
2 }) reported in (Carmon et al.,

2019b;a) to find an (ε1, ε2)-2KKT point for arbitrary
ε1, ε2 > 0, is known to be optimal for unconstrained smooth
non-convex optimization by second-order methods under
the standard Lipschitz-Hessian assumption, subsumed on
bounded sets by our Assumption 4.1. A similar dependence
on arbitrary ε1, ε2 > 0 can be easily obtained from our
theorem by setting ε = min{ε1, ε2}. ♢

Remark 4.6. An interesting observation is that our algo-
rithm can be interpreted as a damped version of a cubic-
regularized Newton’s method. We have that the stepsize
αk satisfies αk = min

{
1, 1

2∥vk∥
xk

}
. At the initial phase,

when the algorithm is far from an (ε1, ε2)-2KKT point, we
have ∥vk∥xk > 1/2 and αk = 1

2∥vk∥
xk

< 1. When the
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algorithm is getting closer to (ε1, ε2)-2KKT point, ∥vk∥xk

becomes smaller and the algorithm automatically switches
to full steps αk = 1.

At the same time our algorithm is completely different from
cubic-regularized Newton’s method (Nesterov & Polyak,
2006) applied to minimize the potential Fµ. Indeed, we
regularize by the cube of the local norm, rather than the
cube of the standard Euclidean norm, and we do not form
a second-order Taylor expansion of Fµ. These adjustments
are needed to align the search direction subproblem with
the local geometry of the feasible set. Moreover, for our
algorithm, the analysis of the cubic-regularized Newton’s
method is not directly applicable since it relies on stepsize
1, which may lead to infeasible iterates in our case. ♢

5. Conclusion
In this paper, we propose first- and second-order algorithms
for non-convex problems with linear and general set con-
straints. We develop also necessary optimality conditions
for such problems and define their suitable approximate
counterparts. Further, we show that our algorithms achieve
approximate stationary points with ”optimal” worst-case
iteration complexity. Unlike previously known results on
interior-point methods for non-convex optimization, our ap-
proach allows one to solve a much wider class of problems.

So far the interior point methods in the sense of the book
(Nesterov & Nemirovskii, 1994) are classical and powerful
for convex setting where they are universal, there are a lot
of standard solvers based on these methods, and there are
human-language solvers like CVX (Boyd & Vandenberghe,
2004), etc. For non-convex setting the study of these ideas
are on a case by case basis with many works for many
particular cases. We extend the universality property to
non-convex setting in the most generality known so far.

Future works include extensions of our algorithms for the
setting of inexact solution of search direction finding prob-
lems. With that respect we believe that it is possible to
construct a Newton-conjugate-gradient counterpart of our
second-order method. Further, we plan to use the pro-
posed methods in machine learning applications such as
constrained non-linear regression and training Input Convex
Neural Networks (Amos et al., 2017). Further potential
extensions include adding non-linear functional constraints
to the problem.
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Carderera, A., Besançon, M., and Pokutta, S. Simple
steps are all you need: Frank-wolfe and generalized
self-concordant functions. In Ranzato, M., Beygelz-
imer, A., Dauphin, Y., Liang, P., and Vaughan, J. W.
(eds.), Advances in Neural Information Processing
Systems, volume 34, pp. 5390–5401. Curran Asso-
ciates, Inc., 2021. URL https://proceedings.
neurips.cc/paper/2021/file/
2b323d6eb28422cef49b266557dd31ad-Paper.
pdf.

Carmon, Y., Duchi, J. C., Hinder, O., and Sidford, A. Con-
vex until proven guilty: Dimension-free acceleration of
gradient descent on non-convex functions. pp. 654–663.
JMLR. org, 2017.

Carmon, Y., Duchi, J. C., Hinder, O., and Sidford,
A. Lower bounds for finding stationary points i.
Mathematical Programming, 2019a. doi: 10.1007/
s10107-019-01406-y. URL https://doi.org/10.
1007/s10107-019-01406-y.

Carmon, Y., Duchi, J. C., Hinder, O., and Sidford, A.
Lower bounds for finding stationary points ii: first-order
methods. Mathematical Programming, 2019b. doi:
10.1007/s10107-019-01431-x. URL https://doi.
org/10.1007/s10107-019-01431-x.

Cartis, C., Gould, N. I. M., and Toint, P. L. Adaptive cu-
bic regularisation methods for unconstrained optimiza-
tion. part i: motivation, convergence and numerical
results. Mathematical Programming, 127(2):245–295,
2011. doi: 10.1007/s10107-009-0286-5. URL https:
//doi.org/10.1007/s10107-009-0286-5.

Cartis, C., Gould, N., and Toint, P. Complexity bounds
for second-order optimality in unconstrained optimiza-
tion. Journal of Complexity, 28(1):93–108, 2012a. ISSN
0885-064X. doi: https://doi.org/10.1016/j.jco.2011.06.
001. URL https://www.sciencedirect.com/
science/article/pii/S0885064X11000537.

Cartis, C., Gould, N. I., and Toint, P. L. An adaptive cubic
regularization algorithm for nonconvex optimization with
convex constraints and its function-evaluation complexity.
IMA Journal of Numerical Analysis, 32(4):1662–1695,
2012b.

Cartis, C., Gould, N. I. M., and Toint, P. L. Second-
order optimality and beyond: Characterization and
evaluation complexity in convexly constrained non-
linear optimization. Foundations of Computational
Mathematics, 18(5):1073–1107, 2018. doi: 10.1007/
s10208-017-9363-y. URL https://doi.org/10.
1007/s10208-017-9363-y.

Cartis, C., Gould, N. I. M., and Toint, P. L. Optimality of
orders one to three and beyond: characterization and eval-
uation complexity in constrained nonconvex optimization.
Journal of Complexity, 53:68–94, 2019.

Conn, A., Gould, N., and Toint, P. Trust Region Methods.
Society for Industrial and Applied Mathematics, 2000.

Curtis, F. E., Robinson, D. P., and Samadi, M. A trust
region algorithm with a worst-case iteration complexity
of O(ϵ−3/2) for nonconvex optimization. Mathematical
Programming, 162(1-2):1–32, 2017.

Curtis, F. E., Robinson, D. P., and Samadi, M. Complex-
ity analysis of a trust funnel algorithm for equality con-
strained optimization. SIAM Journal on Optimization, 28
(2):1533–1563, 2018. doi: 10.1137/16M1108650. URL
https://doi.org/10.1137/16M1108650.

Danilova, M., Dvurechensky, P., Gasnikov, A., Gorbunov,
E., Guminov, S., Kamzolov, D., and Shibaev, I. Re-
cent Theoretical Advances in Non-Convex Optimiza-
tion, pp. 79–163. Springer International Publishing,

10

https://doi.org/10.1137/17M1127107
https://doi.org/10.1080/10556788.2020.1746962
https://doi.org/10.1080/10556788.2020.1746962
https://www.cambridge.org/core/books/convex-optimization/17D2FAA54F641A2F62C7CCD01DFA97C4
https://www.cambridge.org/core/books/convex-optimization/17D2FAA54F641A2F62C7CCD01DFA97C4
https://www.cambridge.org/core/books/convex-optimization/17D2FAA54F641A2F62C7CCD01DFA97C4
https://proceedings.neurips.cc/paper/2021/file/2b323d6eb28422cef49b266557dd31ad-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/2b323d6eb28422cef49b266557dd31ad-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/2b323d6eb28422cef49b266557dd31ad-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/2b323d6eb28422cef49b266557dd31ad-Paper.pdf
https://doi.org/10.1007/s10107-019-01406-y
https://doi.org/10.1007/s10107-019-01406-y
https://doi.org/10.1007/s10107-019-01431-x
https://doi.org/10.1007/s10107-019-01431-x
https://doi.org/10.1007/s10107-009-0286-5
https://doi.org/10.1007/s10107-009-0286-5
https://www.sciencedirect.com/science/article/pii/S0885064X11000537
https://www.sciencedirect.com/science/article/pii/S0885064X11000537
https://doi.org/10.1007/s10208-017-9363-y
https://doi.org/10.1007/s10208-017-9363-y
https://doi.org/10.1137/16M1108650


Barrier Algorithms for Constrained Non-Convex Optimization

Cham, 2022. ISBN 978-3-031-00832-0. doi: 10.1007/
978-3-031-00832-0 3. URL https://doi.org/10.
1007/978-3-031-00832-0_3.

Dvurechensky, P. Gradient method with inexact oracle for
composite non-convex optimization. arXiv:1703.09180,
2017.

Dvurechensky, P. and Staudigl, M. Hessian bar-
rier algorithms for non-convex conic optimization.
Mathematical Programming, 2024. doi: 10.1007/
s10107-024-02062-7. URL https://doi.org/10.
1007/s10107-024-02062-7. arXiv:2111.00100.

Dvurechensky, P., Ostroukhov, P., Safin, K., Shtern, S., and
Staudigl, M. Self-concordant analysis of Frank-Wolfe al-
gorithms. In III, H. D. and Singh, A. (eds.), Proceedings
of the 37th International Conference on Machine Learn-
ing, volume 119 of Proceedings of Machine Learning Re-
search, pp. 2814–2824, Virtual, 13–18 Jul 2020. PMLR.
URL http://proceedings.mlr.press/v119/
dvurechensky20a.html. arXiv:2002.04320.

Dvurechensky, P., Safin, K., Shtern, S., and Staudigl,
M. Generalized self-concordant analysis of Frank–
Wolfe algorithms. Mathematical Programming, 198:
255–323, 2023. ISSN 1436-4646. doi: 10.1007/
s10107-022-01771-1. URL https://doi.org/10.
1007/s10107-022-01771-1. arXiv:2010.01009.

Faybusovich, L. and Lu, Y. Jordan-algebraic aspects of
nonconvex optimization over symmetric cones. Applied
Mathematics and Optimization, 53(1):67–77, 2006. ISSN
1432-0606. URL https://doi.org/10.1007/
s00245-005-0835-0.

Fiacco, A. V. and McCormick, G. P. Nonlinear Pro-
gramming: Sequential Unconstrained Minimization Tech-
niques. John Wiley & Sons, New York, NY, USA, 1968.
Reprinted by SIAM Publications in 1990.

Ge, D., Wang, H., Xiong, Z., and Ye, Y. Interior-
point methods strike back: Solving the wasserstein
barycenter problem. In Wallach, H., Larochelle,
H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., and
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A. Discussion
In this section, we provide additional details to motivate our work and give concluding remarks. The following sections
contain technical details of the proofs.

A.1. Motivating Applications

Consider a linear inverse problem with forward operator Φ. Our aim is to learn a parameter u ∈ U = Rnu
+ so that the

approximate equality
Φu ≈ z

holds true. The matrix Φ has rows Φ1, . . . ,Φd and we assume that Φi ∈ Rnu
+ . Furthermore, z ∈ Rm

+ and
∑p

j=1 Φij = ϕj >
0 for all j = 1, . . . ,m. In Poisson linear inverse problems (Harmany et al., 2011), under additional structural assumptions,
the penalized maximum likelihood approach for recovering the parameter u leads to minimization of the function

m∑
i=1

{(Φu)i − zi log((Φu)i)}+ αr(u)

where r(u) is a, potentially non-convex, regularizer. An important concrete example is the non-convex sparsity-inducing
ℓp regularizer r(u) =

∑
i|ui|p = ∥u∥pp, with p ∈ (0, 1), an example frequently used in computational statistics (Loh &

Wainwright, 2017). We assume that r is continuously differentiable on int(U) and note that ∥u∥pp is non-differentiable
at u = 0. This problem can be written in our optimization template by performing the variable substitution v = Φu and
imposing the linear constraint

Φu− v = [Φ;−I]

(
u
v

)
= 0.

Therefore, defining the linear operator A = [Φ;−I], we obtain a matrix of rank m. We set x = (u, v) and

f(x) =

m∑
i=1

{vi − zi log(vi)}+ αr(u)

so that our inverse problem of Poisson image recovery reads as

min
x=(u,v)

f(x) s.t. Ax = 0, x ∈ K̄ = Rn
+,

where n = nu +m. This problem admits the efficient self-concordant barrier

h(x) = −
∑
i

log(xi) ∀x ∈ K = Rn
++.

By assumption, the function f is twice continuously differentiable on Rn
++. We compute the gradient and the Hessian as

∇f(x) =

(
α∇r(u)

1m − V −1z

)
, and ∇2f(x) =

(
α∇2r(u) 0

0 V −2z

)
,

where V = diag{v1, . . . , vn}. The Hessian matrix of the barrier function decomposes as

H(x) = ∇2h(x) =

(
U−2 0
0 V −2

)
.

Thanks to the block structure of the involved matrices, the subproblems involved in the search direction finding routines of
our two algorithms can be efficiently handled with efficient numerical linear algebra solvers.

In a similar fashion, we can consider non-linear inverse problems where the loss is given by a squared misfit between the
data z and non-linear prediction function Φ(x) given, e.g., by a neural network. In this case, we have

f(x) = ∥Φ(x)− z∥2 + αr(x).
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The non-negativity constraints in this case may be motivated by the training of Input Convex Neural Networks (Amos et al.,
2017). A related problem of sparse non-linear regression may be reformulated as

min
x∈Rn

∥Φ(x)− z∥2 s.t. ∥x∥1 ≤ λ.

This problem clearly fits our problem template with f(x) = ∥Φ(x) − z∥2, K = {x ∈ Rn : ∥x∥1 ≤ λ} and trivial linear
constraint satisfied by all the points in the space E where A is a zero row and b is zero.

We now argue why the local Lipschitz continuity assumptions are not unlikely to hold automatically in the above and other
machine learning applications. First, loss functions in machine learning are usually coercive, which leads to an implicit
compactness of the feasible set. Second, the coercivity of f and the existence of a global solution imply that a solution to
the minimization problem is finite and lies in the interior of some ball of some (possibly large) radius. Adding this ball to
the set of constraints does not change the solution to the problem and simultaneously leads to the setting of Remark 3.2
since the feasible set is made compact. Third, the coercivity of f implies that the potential function Fµ is also coercive.
Hence, it has bounded (and, hence, compact) level sets. From (51), (69) we see that our algorithms are monotone w.r.t. the
potential Fµ, i.e., the potential is decreasing during the optimization process. Hence, algorithms stay on the level set of the
potential defined by the starting point. Since this level set is compact and the smoothness assumption is essentially needed
on the trajectory of the algorithm which stays on this compact level set, we conclude that Remarks 3.2, 4.2 hold.

A.2. Additional Comments on Related Literature

Interior-point methods (Ge et al., 2019) and optimization involving self-concordant functions (Bach, 2010; Zhang & Lin,
2015; Tran-Dinh et al., 2019; Marteau-Ferey et al., 2019; Dvurechensky et al., 2020; 2023; Carderera et al., 2021) remains
an active area of research in the Machine Learning community. Yet, the main focus of this research stays on solving convex
problems. However, the optimization community was recently quite successful in extending interior-point methods from the
classical convex world (Nesterov & Nemirovskii, 1994) to non-convex world (Ye, 1992; Tseng et al., 2011; Bomze et al.,
2019; Tseng et al., 2011; Bian et al., 2015; Haeser et al., 2019; O’Neill & Wright, 2020; He & Lu, 2022; Dvurechensky &
Staudigl, 2024; Ye, 1992; Faybusovich & Lu, 2006; Lu & Yuan, 2007). The benefit of interior-point methods is that when
the feasible set is given as an intersection of several sets, these methods allow decomposing the feasible set into separate
building blocks. This allows one to avoid expensive projections onto the intersection. Further, such methods guarantee the
feasibility of the iterates. At the same time, constrained optimization in the spirit of (Curtis et al., 2018; Hinder & Ye, 2018;
Cartis et al., 2019; Birgin & Martı́nez, 2020; Grapiglia & Yuan, 2020; Xie & Wright, 2019) has recently attracted attention
of ML community (Hong et al., 2023) motivated by constrained deep neural networks, physical informed neural networks,
PDE-constrained optimization, optimal control, and constrained model estimations.

With this paper, we further narrow the gap between the advances of optimization methods for non-convex problems with
complicated constraints and Machine Learning applications. Moreover, our algorithms apply to more general problems
than the ones available in the literature on interior-point methods for non-convex optimization, which we describe next
and which influenced our work. In a sense, we generalize in this paper this line of works to a much more general class of
problems. The authors of (Haeser et al., 2019) propose first- and second-order algorithms with ”optimal” 2 complexity
guarantees for problems with linear equality constraints and non-negativity constraints, i.e., K̄ = Rn

+. Their algorithms are
based on the Trust Region idea, unlike our algorithms that use quadratic and cubic regularization. The authors of (O’Neill &
Wright, 2020) consider a similar problem, but without equality constraints. They develop a Newton-conjugate-gradient
method with ”optimal” complexity to reach a second-order approximate stationary point. The authors of (He & Lu, 2022;
Dvurechensky & Staudigl, 2024) consider a more general setting where K̄ is a symmetric cone. (Dvurechensky & Staudigl,
2024) propose first- and second-order methods with ”optimal” complexity guarantees, and (He & Lu, 2022) propose
a Newton-conjugate-gradient method with ”optimal” complexity to reach a second-order approximate stationary point.
Importantly, all these papers allow the objective to be non-differentiable at the relative boundary of the feasible set, unlike
methods that use projections.

Compared to the optimization template (Opt), all these papers consider a narrower class of problems with K̄ being a cone.
Moreover, all the results in these papers heavily rely on the conic structure of the constraints (non-negativity constraints or

2Here and below we refer to the complexity bound O(ε−2) for first-order and O(max{ε−3/2
1 , ε

−3/2
2 }) for second-order methods as

”optimal” for two reasons. First, the respective optimal algorithms for unconstrained problems have a similar dependence on the accuracy
in the complexity bounds. Second, we are not aware of lower complexity bounds for problems with constraints that we consider. But, it is
natural to expect that such problems are no easier than unconstrained problems.
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general conic constraints). In particular, the conic structure allows one to easily introduce approximate optimality conditions
since conic duality can be used. Further, they use a narrow subclass of logarithmic or more generally logarithmically
homogeneous self-concordant barriers that satisfy additionally

h(tx) = h(x)− ν ln(t) ∀x ∈ int(K), t > 0,

and that are specific for cones and possess additional properties that can be used to derive optimality conditions and
complexity results for algorithms. Specifically, (He & Lu, 2022) rely on the structural properties of logarithmically
homogeneous barriers to derive optimality conditions and complexity results for their algorithm. The conic feasible set
allows them to formulate optimality conditions and their approximate counterparts in terms of the dual cone, which is
impossible in our setting. Their optimality conditions are based also on the notion of limiting inverse of the Hessian of
the barrier function, an object whose existence again heavily relies on the logarithmic homogeneity of the barrier. This
construction is impossible in our setting since in our setting the feasible set is not conic and is not assumed to admit a
logarithmically homogeneous barrier. Finally, the proof that their algorithm returns an approximate stationary point also
relies on the logarithmic homogeneity property of the barrier. To sum up, each element of their approach is not applicable
to our setting since the feasible set is not a cone and thus does not have a logarithmically homogeneous barrier. Our
assumptions on the barrier are weaker, since we consider just self-concordant barriers without the additional logarithmic
homogeneity property (which essentially forces the domain to be a pointed cone). This simultaneously allows us to solve
much more general problems where K̄ is a closed convex set, but not necessarily a cone. The latter in particular is justified
by the existence of universal barriers for convex sets (Nesterov & Nemirovski, 1994). We summarize the comparison with
related literature in Table A.2.

During the rebuttal phase an anonymous reviewer pointed us to the preprint (Nouiehed et al., 2018) where a general
NP-hardness result is proven for checking whether a given point is a (ε1, ε2)-second order stationary point. They establish
this result by using a specific criticality measure which explicitly requires bounding the curvature of the objective function
in directions d so that the affine translate x + d remains feasible. We (and other related works) claim that the proposed
algorithm produces a point that is approximately stationary. Thus, no checking approximate stationarity is involved in our
problem. Moreover, our point is not arbitrary since it is obtained by a concrete algorithm. Furthermore, our definition of
an approximate second-order stationary point is a weak second-order condition which only measures curvature relative to
the null space L0 and the operator H(x̄). Hence, our second-order stationary points have a different nature than the ones
involved in the NP-hardness result of (Nouiehed et al., 2018). We also draw the reader’s attention that the previous literature
on barrier methods for non-convex problems (Haeser et al., 2019; O’Neill & Wright, 2020; He & Lu, 2022) also uses weak
second-order conditions.

A.3. On the Optimality of Our Bounds

Revisiting (Carmon et al., 2019a) we can propose a reduction of lower bounds in our setting to lower bounds obtained in
that paper. The construction is as follows.

Class of problems: Minimizing functions satisfying our Assumption 3.1 on a convex set X̄.

A particular worst-case problem in this class: Minimizing the same worst-case objective as in (Carmon et al., 2019a)
with additional constraint by a very large ball so that unconstrained stationary point lies in the interior of this ball. No linear
constraints.

By our Remark 3.2 this is a consistent situation since their function has Lipschitz gradient and, hence, belongs to our class
since the feasible set is compact.

Class of algorithms: The same as in (Carmon et al., 2019a).

Then, by the result of (Carmon et al., 2019a) we have that for any algorithm from their rather general class it holds that
∥∇f(xk)∥ > ε if k ≤ T = Θ(ε−2). Since our feasible set X̄ is a sufficiently large ball, we have that x = xk− ∇f(xk)

∥∇f(xk)∥ ∈ X̄.
Hence ⟨∇f(xk), x− xk⟩ = −∥∇f(xk)∥ < −ε. Thus, (11) in our paper does not hold and we have that xk is not an ε-KKT
point at least while k ≤ T = Θ(ε−2). The argument for second-order methods follows the same lines.

Based on this reduction argument, we can conjecture that our bounds are optimal. A formal detailed proof is left for future
works.
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Approach Constraint
”Optimal”
complexity

No
proj.

Feasible
iterates Objective Non-diff.

(Ghadimi et al., 2016)
(Bogolubsky et al., 2016)

(Cartis et al., 2012b)
(Birgin & Martı́nez, 2018)

(Cartis et al., 2018)

Proximal Simple
√

×
√

General ×

(Andreani et al., 2019)
(Andreani et al., 2021)

Augm.
Lagrang. Only cones ×

√
× General ×

(Lu & Yuan, 2007) IP Only cones ×
√ √

Quadratic ×
(Bian et al., 2015) IP Box

√ √ √
Structured

√

(Tseng et al., 2011)
(Bomze et al., 2019) IP Only Rn

+ ?
√ √

Quadratic ×

(Haeser et al., 2019)
(O’Neill & Wright, 2020) IP Only Rn

+

√ √ √
General

√

(Dvurechensky & Staudigl, 2024)
(He & Lu, 2022) IP Only cones

√ √ √
General

√

This paper IP General!
√ √ √

General
√

Table 1. Summary of literature. IP stands for Interior-point. ”No proj.” means that the algorithm does not need to project onto X̄.
”Non-diff.” means that the objective may be non-differentiable at the relative boundary of the feasible set.

B. Auxiliary Facts on SCBs
The following properties are taken from (Nesterov, 2018), Lemma 5.4.3, Theorem 5.3.7.

Proposition B.1. Let h ∈ Hν(K), x ∈ K, t > 0 and H(x) = ∇2h(x). Then,

⟨∇h(x), [H(x)]−1∇h(x)⟩ ≤ ν. (43)
⟨∇h(x), y − x⟩ < ν ∀y ∈ K. (44)

Note that (44) means that ∇h(x) ∈ NCν
K̄(x). The following fact may be derived from (44) and is its appriximate counterpart.

Proposition B.2 (Proposition 2.7 (Monteiro et al., 2015)). Let h ∈ Hν(K), x ∈ K, and s ∈ E satisfy ∥s−∇h(x)∥∗x ≤ ξ < 1.
Then, for all y ∈ K̄,

⟨s, y − x⟩ ≤ ν +

√
ν + ξ

1− ξ
ξ. (45)

C. Proof of Theorem 2.1
Let x∗ be a local solution for problem (Opt). We consider the following perturbed version of problem (Opt), for which x∗ is
the unique global solution when δ > 0 sufficiently small,

min
x

f(x) +
1

4
∥x− x∗∥4 s.t.: Ax = b, x ∈ K̄, ∥x− x∗∥2 ≤ δ. (46)

Next, using the barrier h for K, we change the constraint x ∈ K to the penalty µkh(x), where µk > 0, µk → 0 is a given
sequence. This leads us to the following parametric sequence of problems for k ≥ 0

minx fk(x) ≜ f(x) + 1
4∥x− x∗∥4 + µkh(x)

s.t.: Ax = b, x ∈ int(K), ∥x− x∗∥2 ≤ δ.
(47)

From the classical theory of interior penalty methods (Fiacco & McCormick, 1968), it is known that a global solution
xk exists for this problem for all k and that cluster points of xk are global solutions of (46). Clearly, Axk = b and
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xk ∈ K = int(K) = int(K̄). Since ∥xk − x∗∥2 ≤ δ, the sequence xk is bounded and, thus, xk → x∗. This finishes the
proof of item 1 of Theorem 2.1.

Since xk → x∗, for large enough k, xk is a local solution to the problem

min
x

f(x) +
1

4
∥x− x∗∥4 + µkh(x) s.t.: Ax = b (48)

and xk ∈ K. By Assumption 1.1, the system of constraints Ax = b has full rank. Hence, we can write necessary optimality
conditions for problem (48) which say that there exists a Lagrange multiplier yk ∈ Rm such that

0 = ∇f(xk) + ∥xk − x∗∥2(xk − x∗)−Ayk + µk∇h(xk). (49)

Let us choose the vector sk = −µk∇h(xk). Then, item 2 of Theorem 2.1 follows from (49) since ∥xk−x∗∥2(xk−x∗) → 0.
Further, by (44) with x = xk, we have for any y ∈ K̄

⟨∇h(xk), y − xk⟩ ≤ ν ⇔ ⟨−sk/µk, y − xk⟩ ≤ ν ⇔ ⟨−sk, y − xk⟩ ≤ µkν.

Taking σk = µkν → 0, we see that −sk ∈ NCσk

K̄
(xk). This proves item 3 of Theorem 2.1.

The second-order differentiability assumption and the full rank condition give the following second-order necessary
optimality condition for (48). For all d ∈ E such that Ad = 0, it holds that

⟨(∇2f(xk) + µkH(xk) + Σk)d, d⟩ ≥ 0, (50)

where Σk = 2(xk − x∗)(xk − x∗)⊤ + ∥xk − x∗∥2I, I being the identity operator. Setting θk = µk and δk as the largest
eigenvalue of the positive semi-definite matrix Σk, we conclude that θk → 0 and δk → 0 as k → ∞. This finishes the proof
of eq. (6) and Theorem 2.1.

D. Missing Proofs from Section 3
D.1. Proof of Theorem 3.3

Our proof proceeds in four steps. First, we show that FOABM(µ, ε, L0, x
0) produces points in X, and, thus, is indeed an

interior-point method. Then, we proceed to show that the line-search process of finding appropriate Lk’s in each iteration
is finite, and estimate the total number of attempts in this process. After that, we prove that if the stopping criterion does
not hold at iteration k, i.e., ∥vk∥xk ≥ ε

3ν , then the objective f is decreased by a quantity O(ε2). From the global lower
boundedness of the objective, we derive that the method stops in at most O(ε−2) iterations. Finally, we show the opposite,
i.e., that when the stopping criterion holds, the method has generated an ε-KKT point according to Definition 2.2.

D.1.1. INTERIOR-POINT PROPERTY OF THE ITERATES

We start the induction argument by observing that x0 ∈ X by construction. Further, let xk ∈ X = K∩ L be the k-th iterate of
the algorithm with the corresponding step direction vk ≜ vµ(x

k). By eq. (24), the step-size αk satisfies αk ≤ 1
2∥vk∥

xk
, and,

hence, αk∥vk∥xk ≤ 1/2 for all k ≥ 0. Thus, by Lemma 1.3, we have xk+1 = xk + αkv
k ∈ K. Since, by (23), Avk = 0,

we have that xk+1 ∈ L. Thus, xk+1 ∈ K ∩ L = X. By induction, we conclude that (xk)k≥0 ⊂ X.

D.1.2. BOUNDING THE NUMBER OF BACKTRACKING STEPS

Consider iteration k. The sequence 2ikLk is increasing as ik is increasing. Hence, by Assumption 3.1, we know that when
2ikLk ≥ max{M,Lk}, the line-search process for sure stops since inequality (25) holds. Thus, 2ikLk ≤ 2max{M,Lk}
must be the case, and, consequently, Lk+1 = 2ik−1Lk ≤ max{M,Lk}, which, by induction, gives Lk+1 ≤ M̄ ≜

max{M,L0}. At the same time, log2
(

Lk+1

Lk

)
= ik−1, ∀k ≥ 0. Let N(k) denote the number of inner line-search iterations

up to the k−th iteration of FOABM(µ, ε, L0, x
0). Then, using that Lk+1 ≤ M̄ = max{M,L0}, we obtain

N(k) =

k∑
j=0

(ij + 1) =

k∑
j=0

(log2(Lj+1/Lj) + 2) ≤ 2(k + 1) + max{log2(M/L0), 0}.

As we see, on average the inner loop ends after two trials.
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D.1.3. BOUND FOR THE NUMBER OF OUTER ITERATIONS

Our goal now is to establish per-iteration decrease of the potential Fµ if the stopping condition does not yet hold, i.e.,
∥vk∥xk ≥ ε

3ν , and derive from that a global iteration complexity bound for FOABM. Let us fix iteration counter k. Since

Lk+1 = 2ik−1Lk, the step-size (24) is equivalent to αk = min
{

1
2Lk+1+2µ ,

1
2∥vk∥

xk

}
. Hence, αk∥vk∥xk ≤ 1/2, and (22)

with the substitution t = αk = tµ,2Lk+1
(xk), M = 2Lk+1, x = xk, vµ(xk) ≜ vk gives:

Fµ(x
k+1)− Fµ(x

k) ≤ −αk∥vk∥2xk (1− (Lk+1 + µ)αk) ≤ −
αk∥vk∥2xk

2
, (51)

where the last inequality is since αk ≤ 1
2(Lk+1+µ) . Substituting into (51) the two possible values of the step-size αk in (24)

gives

Fµ(x
k+1)− Fµ(x

k) ≤

 − ∥vk∥2

xk

4(Lk+1+µ) ifαk = 1
2(Lk+1+µ) ,

−∥vk∥
xk

4 if αk = 1
2∥vk∥

xk
.

(52)

As we proved in Section D.1.2, Lk+1 ≤ M̄ . Thus, we obtain that

Fµ(x
k+1)− Fµ(x

k) ≤ −∥vk∥xk

4
min

{
1,

∥vk∥xk

M̄ + µ

}
≜ −δk. (53)

Rearranging and summing these inequalities for k from 0 to K − 1 gives

K min
k=0...,K−1

δk ≤
K−1∑
k=0

δk ≤ Fµ(x
0)− Fµ(x

K)

(1)
= f(x0)− f(xK) + µ(h(x0)− h(xK)) ≤ f(x0)− fmin(X) + ε, (54)

where in the last inequality we used that, by the assumptions of Theorem 3.3, x0 is a ν-analytic center defined in (18) and
µ = ε/ν, implying that h(x0) − h(xK) ≤ ν = ε/µ. Thus, up to passing to a subsequence, δk → 0, and consequently
∥vk∥xk → 0 as k → ∞. Hence, the stopping criterion in Algorithm 1 is achievable and the algorithm is correctly defined in
this respect.

Let us now assume that the stopping criterion ∥vk∥xk < ε
3ν does not hold for K iterations of FOABM. Then, for all

k = 0, . . . ,K − 1, we have δk ≥ min
{

ε
12ν ,

ε2

36ν2(M̄+µ)

}
. Using that we set µ = ε

ν , it follows from (54) that

K
ε2

36ν2(M̄ + ε/ν)
= Kmin

{
ε

12ν
,

ε2

36ν2(M̄ + ε/ν)

}
≤ f(x0)− fmin(X) + ε.

Hence, recalling that M̄ = max{M,L0}, we obtain

K ≤ 36(f(x0)− fmin(X) + ε) · ν
2(max{M,L0}+ ε/ν)

ε2
.

Thus, we obtain the bound on the number of iterations on which the stopping criterion is not satisfied. This, combined with
the bound for the number of inner steps in Section D.1.2, proves the complexity bound statement of Theorem 3.3.

D.1.4. GENERATING ε-KKT POINT

To finish the proof of Theorem 3.3, we now show that when Algorithm 1 stops for the first time, it returns a 2ε-KKT point of
(Opt) according to Definition 2.2.

Clearly, (10) in Definition 2.2 holds by the construction of the algorithm. Thus, we focus on showing (11). Let the stopping
criterion hold at iteration k, i.e., ∥vk∥xk < ε

3ν . Using the optimality condition (20) at iteration k and the definition of the
potential (1), we get

∇f(xk)−A∗yk + µ∇h(xk) = −H(xk)vk ⇔ [H(xk)]−1
(
∇f(xk)−A∗yk + µ∇h(xk)

)
= −vk. (55)
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Multiplying both equations, taking the square root, and using the stopping criterion ∥vk∥xk < ε
3ν we obtain

∥∇f(xk)−A∗yk + µ∇h(xk)∥∗xk = ∥vk∥xk <
ε

3ν
, (56)

whence, dividing by µ

∥− 1

µ
(∇f(xk)−A∗yk)−∇h(xk)∥∗xk <

ε

3µν
=

1

3
. (57)

Applying (45) with s = − 1
µ (∇f(xk)−A∗yk) and ξ = ε

3µν = 1
3 , we obtain

⟨− 1

µ
(∇f(xk)−A∗yk), x− xk⟩ < ν +

√
ν + ξ

1− ξ
ξ = ν +

√
ν + 1/3

2
∀x ∈ K̄, (58)

whence,

⟨∇f(xk)−A∗yk, x− xk⟩ > −µν − µ

√
ν + 1/3

2
> −2ε ∀x ∈ K̄, (59)

where we used that µ = ε
ν and that ν ≥ 1. Thus, we obtain that (11) holds, which finishes the proof of Theorem 3.3.

E. Missing Proofs from Section 4
E.1. Proofs of Preliminary Results

Proof of the implication (28) ⇒ (27). We have

∥∇f(x+ v)−∇f(x)−∇2f(x)v∥∗x = ∥
∫ 1

0

(∇2f(x+ tv)−∇2f(x))v dt∥∗x

≤
∫ 1

0

∥∇2f(x+ tv)−∇2f(x)∥op,x · ∥v∥x dt ≤ M

2
∥v∥2x.

Proof of (29). To obtain (29), observe that for all x ∈ X and v ∈ Tx, we have

|f(x+ v)− f(x)− ⟨∇f(x), v⟩ − 1

2
⟨∇2f(x)v, v⟩| = |

∫ 1

0

⟨∇f(x+ tv)−∇f(x)− 1

2
∇2f(x)v, v⟩ dt|

≤
∫ 1

0

∥∇f(x+ tv)−∇f(x)− 1

2
∇2f(x)v∥∗x dt · ∥v∥x ≤ M

6
∥v∥3x.

Proof of Proposition 4.3. The high-level idea is that after a transition to the basis induced by the affine subspace L0,
the subproblem (32) becomes an unconstrained minimization problem similar to the Cubic Newton step in (Nesterov &
Polyak, 2006). To that end, let {z1, . . . , zp} be an orthonormal basis of L0 and the linear operator Z : Rp → L0 be defined
by Zw =

∑p
i=1 ziw

i for all w = [w1; . . . ;wp]⊤ ∈ Rp. Based on this linear map, we define the projected data

g ≜ Z∗∇Fµ(x), J ≜ Z∗∇2f(x)Z, H ≜ Z∗H(x)Z ≻ 0 (60)

and apply it, together with the change of variables v = Zu, to reformulate the search-direction finding problem (32) as an
unconstrained cubic-regularized subproblem of finding uL ∈ Rp s.t.

uL ∈ Argmin
u∈Rp

{⟨g, u⟩+ 1

2
⟨Ju, u⟩+ L

6
∥u∥3H}, (61)

where ∥·∥H is the norm induced by the operator H. From (Nesterov & Polyak, 2006), Thm. 10 we deduce

J+
L∥uL∥H

2
H ⪰ 0.

Denoting vµ,L(x) = ZuL, we see

∥uL∥H = ⟨Z∗H(x)ZuL, uL⟩1/2 = ⟨H(x)(ZuL),ZuL⟩1/2 = ∥vµ,L(x)∥x, and

Z∗
(
∇2f(x) +

L

2
∥vµ,L(x)∥xH(x)

)
Z ⪰ 0,
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which implies ∇2f(x) + L
2 ∥vµ,L(x)∥xH(x) ⪰ 0 over the nullspace L0 = {v ∈ E : Av = 0}.

The above derivations give us a hint on possible approaches to numerically solve problem (32) in practice. Before the start
of the algorithm, as a preprocessing step, we once calculate matrix Z and use it during the whole algorithm execution. At
each iteration, we calculate the new data using (60) and get a standard unconstrained cubic subproblem (61). (Nesterov
& Polyak, 2006) show how such problems can be transformed to a convex problem to which fast convex programming
methods could in principle be applied. However, we can also solve it via recent efficient methods based on Lanczos’ method
(Cartis et al., 2011; Jia et al., 2022). In any case, we can recover our step direction vµ,L(x) by the matrix vector product
ZuL, where uL is the solution obtained from this subroutine.

Derivation of the step-size of Algorithm 2 and derivation of (36). Our goal now is to construct an admissible step-size
policy, given the step direction vµ,L(x). We act in a similar fashion as in the analysis of the first-order algorithm by applying
optimality conditions and estimating the per-iteration decrease of the potential depending on the step-size. Let x ∈ X be
the current position of the algorithm. Define x+(t) ≜ x+ tvµ,L(x), where t ≥ 0 is a step-size. By Lemma 1.3 and since
vµ,L(x) ∈ L0 by (34), we know that x+(t) is in X provided that t ∈ Ix,µ,L ≜ [0, 1

∥vµ,L(x)∥x
). For all such t, by (30), we get

Fµ(x
+(t)) ≤ Fµ(x) + t⟨∇Fµ(x), vµ,L(x)⟩+

t2

2
⟨∇2f(x)vµ,L(x), vµ,L(x)⟩

+
Mt3

6
∥vµ,L(x)∥3x + µt2∥vµ,L(x)∥2xω(t∥vµ,L(x)∥x).

(62)

Since vµ,L(x) ∈ L0 = {v ∈ E|Av = 0}, multiplying (35) with vµ,L(x) from the left and the right, and multiplying (33) by
vµ,L(x) and combining with (34), we obtain

⟨∇2f(x)vµ,L(x), vµ,L(x)⟩ ≥ −L

2
∥vµ,L(x)∥3x, (63)

⟨∇Fµ(x), vµ,L(x)⟩+ ⟨∇2f(x)vµ,L(x), vµ,L(x)⟩+
L

2
∥vµ,L(x)∥3x = 0. (64)

Under the additional assumption that t ≤ 2 and L ≥ M , we obtain

t⟨∇Fµ(x), vµ,L(x)⟩+
t2

2
⟨∇2f(x)vµ,L(x), vµ,L(x)⟩+

Mt3

6
∥vµ,L(x)∥3x

(64)
= −t

(
⟨∇2f(x)vµ,L(x), vµ,L(x)⟩+

L

2
∥vµ,L(x)∥3x

)
+

t2

2
⟨∇2f(x)vµ,L(x), vµ,L(x)⟩+

Mt3

6
∥vµ,L(x)∥3x

=

(
t2

2
− t

)
⟨∇2f(x)vµ,L(x), vµ,L(x)⟩ −

Lt

2
∥vµ,L(x)∥3x +

Mt3

6
∥vµ,L(x)∥3x

(63),t≤2

≤
(
t2

2
− t

)(
−L

2
∥vµ,L(x)∥3x

)
− Lt

2
∥vµ,L(x)∥3x +

Mt3

6
∥vµ,L(x)∥3x

= −∥vµ,L(x)∥3x
(
Lt2

4
− Mt3

6

)
L≥M

≤ −∥vµ,L(x)∥3x
Lt2

12
(3− 2t) .

Substituting this into (62), we arrive at

Fµ(x
+(t)) ≤ Fµ(x)− ∥vµ,L(x)∥3x

Lt2

12
(3− 2t) + µt2∥vµ,L(x)∥2xω(t∥vµ,L(x)∥x)

(4)
≤ Fµ(x)− ∥vµ,L(x)∥3x

Lt2

12
(3− 2t) + µ

t2∥vµ,L(x)∥2x
2(1− t∥vµ,L(x)∥x)

.

for all t ∈ Ix,µ,L. Therefore, if t∥vµ,L(x)∥x ≤ 1/2, we finally obtain

Fµ(x
+(t))− Fµ(x) ≤ −Lt2∥vµ,L(x)∥3x

12
(3− 2t) + µt2∥vµ,L(x)∥2x

= −∥vµ,L(x)∥3x
Lt2

12

(
3− 2t− 12µ

L∥vµ,L(x)∥x

)
≜ −ηx(t). (65)
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This is exactly the bound (36). Unfortunately, finding and using the explicit maximizer of ηx(t) is quite challenging. But, as
we will see, the following step-size is a good and simple alternative:

tµ,L(x) ≜
1

max{1, 2∥vµ,L(x)∥x}
= min

{
1,

1

2∥vµ,L(x)∥x

}
. (66)

Note that tµ,L(x) ≤ 1 and tµ,L(x)∥vµ,L(x)∥x ≤ 1/2. Thus, this choice of the step-size is feasible to derive (65).

E.2. Proof of Theorem 4.4

The main steps of the proof are similar to the analysis of Algorithm 1. We start by showing the feasibility of the iterates and
the correctness of the backtracking line-search process, i.e., that this process is finite. We also estimate the total number of
attempts in this process. After that, we analyze the per-iteration decrease of Fµ and show that if the stopping criterion does
not hold at iteration k, then the objective function is decreased by the value O(ε3/2). This, by the global lower boundedness
of the objective, allows us to conclude that the algorithm stops in O(ε−3/2) iterations. Finally, we show the opposite, i.e.,
that when the stopping criterion holds, the method has generated an approximate second-order KKT point in the sense of
Definition 2.3.

E.2.1. INTERIOR-POINT PROPERTY OF THE ITERATES

We start the induction argument by observing that x0 ∈ X by construction. Further, let xk ∈ X = K ∩ L be the k-th iterate
of the algorithm with the corresponding step direction vk ≜ vµ,L(x

k). By (39), the step-size αk satisfies αk ≤ 1
2∥vk∥

xk
.

Consequently, αk∥vk∥xk ≤ 1/2 for all k ≥ 0, and using Lemma 1.3 as well as equality Avk = 0 by (38), we have that
xk+1 = xk + αkv

k ∈ K ∩ L = X. By induction, it follows that xk ∈ X for all k ≥ 0.

E.2.2. BOUNDING THE NUMBER OF BACKTRACKING STEPS

To bound the number of cycles involved in the line-search process for finding appropriate constants Lk, we proceed as
in Section D.1.2. Let us fix an iteration k. The sequence Lk = 2ikMk is increasing as ik is increasing, and Assumption
4.1 holds. This implies (29), and thus when Lk = 2ikMk ≥ max{M,Mk}, the line-search process for sure stops since
inequalities (40) and (41) hold. Hence, Lk = 2ikMk ≤ 2max{M,Mk} must be the case, and, consequently, Mk+1 =
max{Lk/2, L} ≤ max{max{M,Mk}, L} = max{M,Mk}, which, by induction, gives Mk ≤ M̄ ≜ max{M,M0}
and Lk ≤ 2M̄ . At the same time, by construction, Mk+1 = max{2ik−1Mk, L} = max{Lk/2, L} ≥ Lk/2. Hence,
Lk+1 = 2ik+1Mk+1 ≥ 2ik+1−1Lk and therefore log2

(
Lk+1

Lk

)
≥ ik+1 − 1, ∀k ≥ 0. At the same time, at iteration 0 we

have L0 = 2i0M0 ≤ 2M̄ , whence, i0 ≤ log2

(
2M̄
M0

)
. Let N(k) denote the number of inner line-search iterations up to

iteration k of SOABM. Then,

N(k) =

k∑
j=0

(ij + 1) ≤ i0 + 1 +

k∑
j=1

(
log2

(
Lj

Lj−1

)
+ 2

)
≤ 2(k + 1) + 2 log2

(
2M̄

M0

)
,

since Lk ≤ 2M̄ = 2max{M,M0} in the last step. Thus, on average, the inner loop ends after two trials.

E.2.3. BOUND FOR THE NUMBER OF OUTER ITERATIONS

Our goal now is to establish per-iteration decrease of the potential Fµ if the stopping condition does not yet hold, and derive
from that a global iteration complexity bound for SOABM. Let us fix iteration counter k. As said, the main assumption
of this subsection is that the stopping criterion is not satisfied, i.e., either ∥vk∥xk ≥ ∆k or ∥vk−1∥xk−1 ≥ ∆k−1. Without
loss of generality, we assume that the first inequality holds, i.e., ∥vk∥xk ≥ ∆k, and consider iteration k. Otherwise, if the
second inequality holds, the same derivations can be made considering the iteration k − 1 and using the second inequality
∥vk−1∥xk−1 ≥ ∆k−1. Thus, at the end of the k-th iteration

∥vk∥xk ≥ ∆k =

√
ε

12Lkν
. (67)

Since the step-size αk = min{1, 1
2∥vk∥

xk
} = tµ,Lk

(xk) in (39) satisfies αk ≤ 1 and αk∥vk∥xk ≤ 1/2 (see (66) and a
remark after it), we can repeat the derivations of (65), changing (29) to (40). In this way we obtain the following counterpart
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of (65) with t = αk, L = Lk, x = xk, vµ,Lk
(xk) ≜ vk:

Fµ(x
k+1)− Fµ(x

k) ≤ −∥vk∥3xk

Lkα
2
k

12

(
3− 2αk − 12µ

Lk∥vk∥xk

)
≤ −∥vk∥3xk

Lkα
2
k

12

(
1− 12µ

Lk∥vk∥xk

)
, (68)

where in the last inequality we used that αk ≤ 1 by construction. Substituting µ = ε
4ν , and using (67), we obtain

1− 12µ

Lk∥vk∥xk

= 1− 12ε

4νLk∥vk∥xk

(67)
≥ 1− 3ε

νLk

√
ε

12Lkν

= 1− 6
√
ε√

3νLk

≥ 1− 6
√
ε√

3 · 144νε
≥ 1

2
,

using that, by construction, Lk = 2ikMk ≥ L = 144ε and that ν ≥ 1. Hence, from (68),

Fµ(x
k+1)− Fµ(x

k) ≤ −∥vk∥3xk

Lkα
2
k

24
. (69)

Substituting into (69) the two possible values of the step-size αk in (39) gives

Fµ(x
k+1)− Fµ(x

k) ≤


−∥vk∥3xk

Lk

24 , if αk = 1,

−∥vk∥xk
Lk

96 , if αk = 1
2∥vk∥

xk
.

(70)

This implies

Fµ(x
k+1)− Fµ(x

k) ≤ −Lk∥vk∥xk

96
min

{
1, 4∥vk∥2xk

}
≜ −δk. (71)

Rearranging and summing these inequalities for k from 0 to K − 1, and using that Lk ≥ L, we obtain

K min
k=0,...,K−1

L∥vk∥xk

96
min

{
1, 4∥vk∥2xk

}
≤

K−1∑
k=0

δk ≤ Fµ(x
0)− Fµ(x

K)

(1)
= f(x0)− f(xK) + µ(h(x0)− h(xK)) ≤ f(x0)− fmin(X) + ε, (72)

where we used that, by the assumptions of Theorem 4.4, x0 is a 4ν-analytic center defined in (18) and µ = ε
4ν , implying

that h(x0)− h(xK) ≤ 4ν = ε/µ. Thus, up to passing to a subsequence, we have ∥vk∥xk → 0 as k → ∞, which makes the
stopping criterion in Algorithm 2 achievable.

Assume now that the stopping criterion does not hold for K iterations of SOABM. Then, for all k = 0, . . . ,K − 1, it
holds that

δk =
Lk

96
min

{
∥vk∥xk , 4∥vk∥3xk

} (67)
≥ Lk

96
min

{√
ε

12Lkν
,

4ε3/2

123/2L
3/2
k ν3/2

}
Lk≤2M̄,ν≥1

≥ 1

96
min

{
Lk

√
ε√

24M̄ν3/2
,

ε3/2

2 · 33/2L1/2
k ν3/2

}
Lk≤2M̄,Lk≥144ε

≥ 1

96
min

{
(144ε) ·

√
ε√

24M̄ν3/2
,

ε3/2

6
√
6M̄ν3/2

}
=

ε3/2

576ν3/2
√
6M̄

. (73)

Thus, from (72)

K
ε3/2

576ν3/2
√
6M̄

≤ f(x0)− fmin(X) + ε.

Hence, recalling that M̄ = max{M0,M}, we obtain K ≤ 576ν3/2
√

6max{M0,M}(f(x0)−fmin(X)+ε)

ε3/2
. Thus, we obtain the

bound on the number of iterations on which the stopping criterion is not satisfied. This, combined with the bound for the
number of inner steps in Section E.2.2, proves the complexity bound statement of Theorem 4.4.
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E.2.4. GENERATING (ε1, ε2)-2KKT POINT

To finish the proof of Theorem 4.4, we show that if the stopping criterion in Algorithm 2 holds, i.e., ∥vk−1∥xk−1 < ∆k−1

and ∥vk∥xk < ∆k, then the algorithm has generated an (ε1, ε2)-2KKT point of (Opt) according to Definition 2.3, with
ε1 = ε and ε2 = max{M0,M}ε

24ν .

Clearly, (12) in Definition 2.3 holds by the construction of the algorithm. Thus, we focus on showing (13) and (14).

Let the stopping criterion hold at iteration k. First, we focus on showing (13). Using the first-order optimality condition (33)
for the subproblem (38) solved at iteration k − 1, there exists a Lagrange multiplier yk−1 ∈ Rm such that (33) holds. Now,
expanding the definition of the potential (1) and adding ∇f(xk) to both sides, we obtain from (33)

∇f(xk)−A∗yk−1 + µ∇h(xk−1)

= ∇f(xk)−∇f(xk−1)−∇2f(xk−1)vk−1 − Lk−1

2
∥vk−1∥xk−1H(xk−1)vk−1.

Setting sk ≜ ∇f(xk)−A∗yk−1 ∈ E∗ and gk−1 ≜ −µ∇h(xk−1), after multiplication by [H(xk−1)]−1, this is equivalent
to

[H(xk−1)]−1
(
sk − gk−1

)
= [H(xk−1)]−1

(
∇f(xk)−∇f(xk−1)−∇2f(xk−1)vk−1 − Lk−1

2
∥vk−1∥xk−1H(xk−1)vk−1

)
.

Multiplying both of the above equalities, we arrive at

(
∥sk − gk−1∥∗xk−1

)2
=

(∥∥∥∥∇f(xk)−∇f(xk−1)−∇2f(xk−1)vk−1 − Lk−1

2
∥vk−1∥xk−1H(xk−1)vk−1

∥∥∥∥∗
xk−1

)2

.

Taking the square root and applying the triangle inequality, we obtain

∥sk − gk−1∥∗xk−1 ≤ ∥∇f(xk)−∇f(xk−1)−∇2f(xk−1)vk−1∥∗xk−1 +
Lk−1

2
∥vk−1∥2xk−1

(41)
≤ Lk−1

2
∥αk−1v

k−1∥2xk−1
+

Lk−1

2
∥vk−1∥2xk−1 . (74)

Since the stopping criterion holds, at iteration k − 1 we have

∥vk−1∥xk−1 < ∆k−1 =

√
ε

12Lk−1ν
≤

√
ε

12 · 144εν
<

1

2
, (75)

where we used that, by construction, Lk−1 ≥ L = 144ε and that ν ≥ 1. Hence, by (39), we have that αk−1 = 1 and
xk = xk−1 + vk−1. This, in turn, implies that

∥sk − gk−1∥∗xk−1

(74)
≤ Lk−1∥vk−1∥2xk−1 ≤ Lk−1∆

2
k−1 =

ε

12ν
, (76)

where we used the stopping criterion

∥vk−1∥xk−1 < ∆k−1 =

√
ε

12Lk−1ν

Recalling that sk ≜ ∇f(xk)−A∗yk−1 ∈ E∗ and gk−1 ≜ −µ∇h(xk−1), we obtain from (76)

∥− 1

µ
(∇f(xk)−A∗yk−1)−∇h(xk−1)∥∗xk−1 ≤ ε

12µν
=

1

3
, (77)

where the last equality uses that µ = ε
4ν . Applying (45) with s = − 1

µ (∇f(xk)−A∗yk−1) and ξ = ε
12µν = 1

3 , we obtain

⟨− 1

µ
(∇f(xk)−A∗yk−1), x− xk⟩ < ν +

√
ν + ξ

1− ξ
ξ = ν +

√
ν + 1/3

2
∀x ∈ K̄, (78)
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whence,

⟨∇f(xk)−A∗yk−1, x− xk⟩ > −µν − µ

√
ν + 1/3

2
> −ε ∀x ∈ K̄, (79)

where we used that µ = ε
4ν and that ν ≥ 1. Thus, we obtain that (13) holds.

Finally, we show the second-order condition (14). By inequality (35) for subproblem (38) solved at iteration k, we obtain on
L0

∇2f(xk) ⪰ −Lk∥vk∥xk

2
H(xk) ⪰ −Lk∆k

2
H(xk)

= −Lk

2

√
ε

12Lkν
H(xk) = −

√
Lkε

(48ν)1/2
H(xk) ⪰ −

√
2M̄ε

(48ν)1/2
H(xk) = −

√
M̄ε

(24ν)1/2
H(xk), (80)

where we used the second part of the stopping criterion, i.e., ∥vk∥xk < ∆k and that Lk ≤ 2M̄ = 2max{M,M0} (see
Section E.2.2). Thus, (14) holds with ε2 = max{M,M0}ε

24ν , which finishes the proof of Theorem 4.4.
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