
Ai-Sampler: Adversarial Learning of Markov kernels with involutive maps

Evgenii Egorov * 1 Riccardo Valperga * 2 Efstratios Gavves 2

Abstract
Markov chain Monte Carlo methods have become
popular in statistics as versatile techniques to sam-
ple from complicated probability distributions. In
this work, we propose a method to parameter-
ize and train transition kernels of Markov chains
to achieve efficient sampling and good mixing.
This training procedure minimizes the total vari-
ation distance between the stationary distribu-
tion of the chain and the empirical distribution
of the data. Our approach leverages involutive
Metropolis-Hastings kernels constructed from re-
versible neural networks that ensure detailed bal-
ance by construction. We find that reversibility
also implies C2-equivariance of the discriminator
function which can be used to restrict its function
space.

1. Introduction
Markov Chain Monte Carlo (MCMC) is a key approach in
statistics and machine learning when it comes to sampling
from complex unnormalized distributions. MCMC gener-
ates samples by setting up a Markov chain that has the target
distribution as its stationary distribution. Once converged,
samples can be obtained by recording states from the chain.
Not only have MCMC methods transformed Bayesian in-
ference, allowing to sample from the untractable posterior
distributions of complex probabilistic models, but they are
also widely used for integral estimation, time-series analy-
sis and many other problems in statistics and probabilistic
modelling (Robert et al., 2004). Together with Variational
Inference (Blei et al., 2017), they are the two primary proba-
bilistic inference methods in machine learning and statistics.
Compared to Variational Inference, MCMC methods are
often less efficient because of their iterative nature, but more
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applicable in general and, most importantly, they are asymp-
totically unbiased (Roberts & Rosenthal, 2004). In the
recent years, the evolution of deep neural networks has no-
tably propelled the field of Variational Inference (Rezende &
Mohamed, 2015; Kingma & Welling, 2014; Rezende et al.,
2014; Kingma et al., 2016) whilst MCMC methods have
not benefited much from these advances. Using neural net-
works inside MCMC algorithms would not only result in
more powerful and flexible inference methods, capable of
handling complex, high-dimensional problems more effec-
tively, but also exploit the tremendous advancements in effi-
ciency of hardware specifically designed for neural network
computations, such as GPUs and TPUs. We argue that this
stagnation in developing MCMC algorithms that make use
of neural networks is partly due to the well-known difficulty
of measuring sample quality (see for example Gorham &
Mackey (2015); Brooks et al. (2011)), meaning that system-
atically establishing the convergence of a chain to its target
distribution, or defining a quality measure for samples from
a Markov chain is challenging. This makes it intrinsically
hard to define an objective function that can be optimized
with stochastic gradient descent to improve the performance
of the Markov chain. In general, the design of a suitable ob-
jective function poses a challenge as one must balance two
competing goals: encouraging both high-quality samples
and good exploration of the whole space (Levy et al., 2018).
In light of this, we attempt to answer the simple question:
how can we learn to sample from a given unnormalized dis-
tribution, using neural network-based MCMC methods? To
answer, we propose a novel MCMC method that makes use
of time-reversible neural networks for the transition kernel
and derive an upper bound to the total variation distance
between the stationary distribution of the resulting Markov
chain and the target distribution. Our contribution can be
summarized as follows: we first derive an MCMC method
based on reversible neural networks that is trained as an im-
plicit generative model using a novel adversarial objective
from a given empirical data distribution. The proposed ob-
jective makes use of a discriminator. We prove the optimal
discriminator to be equivariant with respect to the cyclic
group of order 2 and propose a class of C2-equivariant func-
tions that can be used to parameterise it. Finally, we use a
bootstrap process to learn to sample from a given analytic
density and show, on various synthetic, and real-world ex-
amples, that the Markov chain resulting from the learned
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transition kernel produces samples from the target density
much more effectively and efficiently than other existing
methods.

2. Related Work
We highlight works that are close to ours in that they make
use of neural networks to define MCMC methods. For
general MCMC techniques, the reader is referred to com-
prehensive surveys such as Roberts & Rosenthal (2004);
Brooks et al. (2011); Luengo et al. (2020). To address the
challenge in the design of an objective for MCMC meth-
ods, previous works (Titsias & Dellaportas, 2019; Hirt et al.,
2021; Roberts & Rosenthal, 2009) propose a specific type of
deterministic proposal that targets a particular acceptance ra-
tio while promoting mixing with entropy-like regularization.
However, this approach imposes restrictions on the type of
proposal used and introduces a hyperparameter, that is either
the target acceptance rate or the weight of the regularization.
Pasarica & Gelman (2010) develop an adaptive MCMC
method that selects the parametric kernel that maximizes
the expected squared jump. Another solution proposed by
Levy et al. (2018) involves optimizing the difference be-
tween the average Euclidean distance after one step and its
inverse. An interesting method that mixes Variational Infer-
ence with Hamiltonian Monte Carlo is the work of Hoffman
et al. (2019) where autoregressive flows are used to correct
unfavorable geometry of a posterior distribution. Samsonov
et al. (2022) propose a method that uses both local and
global samplers in which local steps are enclosed between
global updates from an independent proposal. Similarly,
(Gabrié et al., 2022) also propose an adaptive MCMC which
augments sampling with non-local transition kernels pa-
rameterized with normalizing flows. A notable method for
learning to sample, that is also the closest to our approach,
is the work of Song et al. (2017) where a method for training
Markov kernels parameterized using neural networks with
an autoencoder architecture is proposed. It consists of a
GAN-like objective justified by the assumption that GANs
attempt to minimize the Jensen-Shannon divergence. De-
spite the empirical success, theoretical guarantees on GANs
are hard to derive and most results assume optimality of the
discriminator which in practice never holds (Goodfellow
et al., 2020; Arjovsky et al., 2017). Furthermore, there is
empirical evidence that GANs do not actually sample from
a target distribution (Arora & Zhang, 2017). Similar to our
approach, their method involves a bootstrap process where
the quality of the Markov chain kernel increases over time.
One key difference is that, to achieve reversibility, Song et al.
(2017) make use of an additional random variable, whereas
our parameterized deterministic proposals are reversible by
construction.

3. Parametrizing Kernels with Involutions
MCMC algorithms are defined by a transition kernel t(x′|x)
that maps probability density functions 1 pt(x) to other prob-
ability density functions: pt+1(x

′) =
∫
X t(x

′|x)pt(x)dx.
The probability density p(x) is stationary for the Markov
kernel t(x′|x) if∫

X
t(x′|x)p(x)dx = p(x′). (1)

Reversible kernels, namely kernels for which the detailed
balance condition holds:

t(x′|x)p(x) = t(x|x′)p(x′),∀x, x′ ∈ X × X , (2)

have p as stationary probability distribution. Metropolis-
Hastings kernels is a popular class of such kernels based
on a proposal mechanism and a density ratio acceptance
function. Throughout the rest of the paper we consider the
following transition kernel that satisfies detailed balance
with respect to a given probability distribution p:

Definition 3.1. (Neklyudov et al., 2020)
Given a distribution p(x), x ∈ X and a deterministic map
M : X → X , such that M ◦ M = idX , the involutive
Metropolis-Hastings kernel is

t(x′|x) :=δ(x′ −Mx)min

(
1,
p(Mx)

p(x)
JM
x

)
+

+ δ(x′ − x)

(
1−min

(
1,
p(Mx)

p(x)
JM
x

))
,

(3)
where JM

x is the absolute value of the determinant of the
Jacobian of M at point x.

As specified in the definition, for this transition kernel to
satisfy the fixed point equation (1) the deterministic map
M must be involutive. Given that the kernel is determin-
istic, this condition would obviously restrict our chain to
transition between x and x′ = Mx. In order to cover the
whole support of p(x) we introduce auxiliary variables
v ∈ V . Then, instead of sampling from p(x) we sample
from p(x, v) = p(x)p(v|x), with p(v|x) being any proba-
bility distribution we can efficiently sample from.

It can be shown (Neklyudov et al., 2020) that the transition
kernel of the Markov chain from such algorithm satisfies
detailed balance (2) with respect to p(x, v) and fixed-point
equation (1) with respect to p(x).

The involutive MCMC framework formulates MCMC algo-
rithms in terms of two degrees of freedom: the involution
M : X × V −→ X × V , and the conditional distribution

1Throughout the paper we use the words density and distribu-
tion interchangeably, since we assume every distribution is abs.
continuous w.r.t. the Lebesgue measure.

2



Adversarial Learning of Markov kernels with involutive maps

p(v|x). Since we want to train a sampler that samples opti-
mally, we can define a family of parameterized involutions
Mθ for θ ∈ Θ, and we would like to optimize for θ to ob-
tain a Markov chain that efficiently and effectively samples
from a target density. In determining what is efficient and
effective sampling, defining what is a natural objective is
harder than it sounds. On one hand, the acceptance ratio of
new proposals quantifies efficiency, on the other hand, the
mixing of the chain that quantifies effectiveness is just as
important yet hard to define. Finding a good compromise
between the two sub-objectives is difficult. To address this,
we design an adversarial game between the mapping Mθ

and a discriminator.

4. Parameterizing Involutions
Before delving into the details of training an involutive
transition kernel, in this section, we discuss the parameteri-
zation of the deterministic involution Mθ. As pointed out in
Song et al. (2017) it is difficult to parameterize determinis-
tic involutions: if the proposal is deterministic, then for all
(x, v) ∈ X × V we should have Mθ(Mθ(x, v)) = (x, v),
which is not straightforward to impose non trivially as a
constraint in the parameterization. As a solution they intro-
duce a third auxiliary random variable u sampled from a
uniform distribution U(0, 1) and either use the forward or
the inverse of Mθ, depending on the value of u, to obtain
the proposal. Recognizing that time-reversibility of deter-
ministic dynamical systems and detailed balance of Markov
chains are related, we propose as an alternative to use a
class of neural networks known as time-reversible neural
networks.

4.1. Time-reversible neural networks

In the context of physics-informed learning and forecasting
of Hamiltonian systems, Valperga et al. (2022) introduced
time-reversible neural networks. These architectures are
good candidates for parameterizing involutions. To motivate
this, we first review how (time) reversing symmetries relate
to Markov Chains and detailed balance, especially in the
context of flow maps in Hamiltonian Monte Carlo. We
then describe how we can further decompose uniquely the
time-reversible map and parameterize it with a universal
approximators like neural networks.

Reversing symmetries in Hamiltonian MC kernels. We
say that an invertible smooth map R : X ×V → X ×V is a
reversing symmetry for an invertible function L : X ×V →
X × V if

R ◦ L ◦R = L−1. (4)

In particular, we call time-reversing symmetry the linear
map

R : (x, v) 7→ (x,−v). (5)

If R is a reversing symmetry of a function we call the func-
tion R-reversible. Time-reversing symmetry is a typical
property of autonomous Hamiltonian systems. It is particu-
larly important when constructing Markov chain samplers
out of Hamiltonian systems in Hybrid Monte Carlo algo-
rithms (HMC), where the function L is the deterministic
flow of a Hamiltonian system, defined using the target den-
sity (Duane et al., 1987; Neal, 2011). In HMC the deter-
ministic proposal is obtained by negating the momenta after
applying the deterministic flow. From Eq. 4, it follows
that the resulting map R ◦ L is indeed an involution, since
(R◦L)◦(R◦L) = (L−1 ◦R−1)◦(R◦L) = idX×V , which
ensures that detailed balance is satisfied with respect to the
target density.

Decomposing and parameterizing reversibile maps.
Valperga et al. (2022) provide a method for defining para-
metric functions that, by construction, are reversible with
respect to any linear reversing symmetry. In particular, the
following theorem holds

Theorem 4.1. (Valperga et al., 2022) Let L : RD → RD

be an R-reversible diffeomorphism2, with R being a linear
involution. Then, there exists a unique diffeomorphism g :
RD → RD, such that L = R◦g−1◦R◦g. If L is symplectic,
then g can be chosen symplectic.

This theorem ensures that any R-reversible, or in general
R-reversible and symplectic map L, can be decomposed as
L = R ◦ g−1 ◦ R ◦ g. This shifts the problem from that
of approximating L to that of approximating the unique g
of its decomposition. At this point, g can be approximated
using any universal approximator with the only constraint
that we need the analytic form of the inverse g−1. Suitable
candidates are, for example, compositions of real NVP bi-
jective layers (Dinh et al., 2017), or, as done in Valperga
et al. (2022), compositions of Hénon maps (see Appendix
A).

Involutive MCMC kernels by construction. Using the
above result together with definition 3.1 for the involutive
Metropolis-Hastings kernels, we can construct the paramet-
ric family of deterministic proposalsMθ : X ×V → X ×V

Mθ = R ◦ Lθ, with Lθ = R ◦ g−1
θ ◦R ◦ gθ, (6)

where R is is the time-reversing symmetry of Eq. (5), so
that Mθ(Mθ(x, v)) = (x, v) for all (x, v) ∈ X × V .

5. Adversarial Training for Involutive Kernel
Having defined a parameterization for an involutive map
Mθ, we are now interested in how to train Mθ using the

2It must be smoothly isotopic to the identity, a mild condition
for sufficiently well-behaved target functions.

3



Adversarial Learning of Markov kernels with involutive maps

q

p

x

L(x)

R ◦ L(x)

L ◦R ◦ L(x)

R ◦ L ◦R ◦ L(x)

Figure 1. Schematic representation of an involution constructed
from a time-reversible diffeomorphism L. For an R-reversible
diffeomorphism L, with R : (q, p) 7→ (q,−p), the composition
R ◦ L ◦R ◦ L is the identity.

transition kernel in equation (3). The core idea is to train the
parametric transition kernel as a generative model that sam-
ples from the target distribution. Therefore, the objective
that we derive in this section allows for unbiased estimation
with samples from the target distribution. To retrieve sam-
ples from the target distribution we make use of a bootstrap
process.

5.1. Bootstrap

An unbiased estimator of the objective derived in this sec-
tion can be computed as a Monte Carlo sum over samples
drawn from the target distribution. Similarly to Song et al.
(2017), to get samples from the target distribution and train
our transition kernel we propose a bootstrap process that
gradually increases the quality of samples over time. We
first obtain samples from p(x) using a possibly inefficient
and slow-mixing kernel that nonetheless has p(x) as its sta-
tionary distribution. We then use these samples to train our
kernel and get new samples of higher quality. By repeating
this process the quality of samples increases, which in turns
leads to a better transition kernel. The bootstrap process is
outlined in Algorithm 1.

5.2. The adversarsial MH kernel

Let us assume that we are given samples from the target
distribution obtained with the bootstrap process as just de-
scribed. Given samples and the target density ratio, sim-
ply training Mθ to maximize the expected acceptance rate
would lead to poor exploration. For example, Mθ = idX×V

would be a trivially optimal solution for which the sampler
maximizes the acceptance rate by simply remaining in the
same location. As done in Levy et al. (2018) we could also
minimize the lag-one autocorrelation, which is equivalent to

maximizing expected squared transition distance. However,
balancing between expected acceptance rate and expected
distance is hard.

To train the transition kernelMθ, rather than using the target
distribution directly to accept or reject a proposed sample,
we delegate the acceptance and rejection of proposed sam-
ples to a learnable discriminator network that is trained to
optimally accept samples. In place of the true density ratio
p(x′)
p(x) we introduce a discriminator D(x) as an approxima-

tion. We then define an adversarial objective between two
terms. The first term is about training the parametric pro-
posal R ◦ Lθ that proposes novel x′. The second term is
about optimizing the parametric discriminatorD to correctly
tell apart the proposed novel samples from those that have
been drawn from p(x) .

The overall objective is adversarial. On one hand, we want
to optimize the proposal mapping to return novel proposals
that fool the discriminator to believe they are samples from
the true density. On the other hand, we want to optimize the
discriminator to not be fooled and recognize novel proposals.
By optimizing this adversarial objective successfully, we
obtain a Markov transition kernel that effectively samples
from the target distribution.

From now on we identify S = X×V with R2n and consider
the auxiliary noise to be included in x ∈ S.

Definition 5.1. Let R ◦ Lθ : S → S be a deterministic
involutive map, and D : S → R+ be a positive valued
deterministic function. For a generic test function r : R+ →
[0, 1], such that x · r( 1x ) = r(x), and r′(x) ≥ 0, we define
the Adversarial Metropolis-Hastings transition kernel as:

tD(x′|x) = δ(x′9RLθ(x))r [D(x)]+δ(x′9x)(19r [D(x)]).
(7)

An example of a test function is r(x) = min(1, x). We
use the Barker test: rB(x) =

(
1 + 1

x

)−1
during training

proposal and common min(1, x) during sampling from
trained proposal. In order to sample from the target distribu-
tion, we need to satisfy detailed balance, tD(x′|x)p(x) =
tD(x|x′)p(x′), with respect to the target distribution. We
propose to ensure this by minimising the distance between
the target distribution p(x) and the distribution obtained
after one step of the chain starting from the target, that is
tD ◦ p(x). As done in Neklyudov et al. (2019), we consider
the total variation (TV) distance:

TV [p, tD ◦ p(x)] := 1

2

∫
S
|p(x)− tD ◦ p(x)|dx. (8)

For any kernel tD as in Def. 5.1 we have
TV [p(x′), tD ◦ p(x)] = 0 if logD(x) =

log p(R◦Lθ(x))
p(x) JR◦Lθ:

x . Given that R ◦ Lθ is an invo-
lution, we can show that the optimal log-discriminator
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function has a simple symmetry under the action of R ◦ Lθ.
We describe next the symmetry and how to include it to
derive our final objective.

5.3. Equivariance of the discriminator under R ◦ Lθ

Let3 R◦Lθ be an involutive map withR volume and density-
preserving, i.e., such that p(RLθ(x)) = p(x). It’s immedi-
ate to verify that the density ratio λ(x) = p(RLθ(x))

p(x) JRLθ
x

has the following symmetry:

λ(RLθ(x)) =
p(RLθ ◦RLθ(x))

p(I ◦RLθ(x))
JRLθ

RLθ(x)
=

=
p(x)

p(RLθ(x))

(
JRLθ
x

)−1
= (λ(x))

−1
,

log λ(RLθ(x)) = − log λ(x).

(9)

where we used 1 = JRLθ

RLθ(x)
JRLθ
x , and (RLθ)

−1 = RLθ.
Therefore, under the action of RLθ, we would like the para-
metric discriminators D to transform, by construction, simi-
lar to the density ratio λ.

We enforce the above constraint using C2−equivariant func-
tions. Let us consider the cyclic group C2 = ⟨g, g2 = e⟩.
Note that the action of the generally non-linear involution
RLθ is linear if we consider its action on the lifted space:
x⊕

(
R ◦ Lθ(x)

) ∼= R2n ⊕ R2n. In this space, RLθ is the
representation ρ2n of the C2 group:

ρ2n : C2 → GL(R2n ⊕ R2n), ρ2n(g) =

[
0 I2n
I2n 0

]
.

(10)
We also consider another representation of C2 given by sign
flip:

ξ1 : C2 → GL(R), ξ1(g) = −1. (11)

Next we describe parameterizations for the discriminator
using C2-equivariant functions.

5.4. Discriminator parametrization

To enforce the desired transformation property we parame-
terize the logarithm of the discriminator with a neural net-
work dϕ(x) = logDϕ(x). The goal is to approximate the
log-density ratio: dϕ(x) ≈ λ(x), subject to equivariance
constraints. We propose two possible parameterizations: a
simple product parameterization, and a more general com-
position of linear maps and non-linear activations.

Discriminator with product parameterization. A spe-
cial construction of C2-equivariant discriminator is with
functions f : R2n ⊕ R2n → R that are equivariant under
ρ2n and ξ1, namely such that

f(ρ2nx) = ξ1f(x). (12)

3from now on, where needed for compactness, we omit the
composition sign ’◦’ and simply use juxtaposition.

Any equivariant function d : R2n ⊕ R2n → R can be
decomposed into an equivariant and an invariant part 4. We
can then write the equivariant part as the difference of any
function η : R2n → R computed at x and RLθ(x). The
invariant part can be any function ψ : R2n → R of the sum
x+RLθ(x):

dϕ(x) = ψ(x+RLθ(x))[η(RLθ(x)) 9 η(x)]. (13)

Equivariance follows from symmetry of function construc-
tion:

dϕ(RLθ(x)) = ψ(RLθ(x) + x)[η(x) 9 η(RLθ(x)] =

= −dϕ(x).
(14)

This constructions is a special case of composition lifting
layer with specific fixed linear layer. Below we consider
general case.

C2-equivariant composition of linear maps and non-
linear activatons. The more general construction for aC2-
equivariant discriminator is with functions h : R2n⊕R2n →
R⊕ R, which are equivariant under ρ2n and ρ1:

h(ρ2nx) = ρ1h(x). (15)

Let d̂ϕ be a two-channel neural network that we use to
approximate the logarithm of the density ratio at both the
pre-image and image of RLθ:

d̂ϕ(x) ≈

[
log p(RLθ(x))

p(x) JRLθ
x

− log p(RLθ(x))
p(x) JRLθ

x

]
. (16)

Then, let us consider a linear map
[
A B
C D

]
: R2n⊕R2n →

R2s ⊕ R2s, for some s ≤ n. To obtain functions that are
equivariant with respect to ρ2n and ρ2s from compositions
of such linear maps they must satisfy the following con-
straint for all x:[
A B
C D

] [
0 I2n
I2n 0

] [
RL(x)
x

]
=

[
0 I2s
I2s 0

] [
A B
C D

] [
RL(x)
x

]
.

(17)
which is equivalent to setting A = D, B = C. We can then
compose linear layers of this form with element-wise non-
linearities. The function dϕ(x), that we use to approximate
the log-density ratio can then just be the first, or the second,
coordinate of the two-dimensional output of d̂ϕ.

At this point it is important to notice that in both the pro-
posed parameterizations, the discriminator D depends not
only on the parameters ϕ, but also on θ through the proposal
map RLθ.

4This is trivial since any scalar equivariant function remains
equivariant if multiplied by an invariant function.
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5.5. Detailed-Balance Loss

In order to simplify equations, and for readability, we will
consider the case of volume-preserving maps RLθ. For
the general case, the derivations are the same, but with the
difference that the Jacobians of RLθ are absorbed by the
density ratio.

As anticipated in the previous sections, we need to minimise
TV [p, tD ◦ p]. Let tD be the transition kernel of the type
(5.1) with discriminator D = exp(d). Given the target
density p(x) the total variation distance between p and tD◦p
is5

TV [p; tD◦p] = |p(RLθ(x))r [D(RLθ(x))] 9 p(x)r [D(x)]|1
(18)

We consider an upper bound on this quantity which is suit-
able for optimisation and has the same optimum points.

Upper Bound on TV with Pinsker Inequality We use
the famous Pinsker Inequality (Pinsker, 1964) to upper-
bound the TV distance with a more malleable KL diver-
gence. Given two densities p and q we have

TV [p; q]2 ≤ KL[p; q]. (19)

Since Pinsker Inequality is defined for probability densities,
we take an intermediate step and normalize the functions:

TV [p; tD ◦ p] = A · TV [p∞; p∞R◦Lθ
], (20)

where

A =

∫
S
p(x)r [D(x)] dx,A ∈ [0; 1],

p∞ = A−1p(x)r [D(x)] ,

p∞RLθ
= A−1p(RL(x))r [D(RL(x))] .

(21)

These equations link the detailed balance condition to rejec-
tion sampling since p∞ is the density induced by rejection
sampling with proposal distribution p(x) and acceptance
function r [D(x)]. Now we can apply Pinsker inequality:

TV 2[p∞; p∞RL] ≤ A2 ·KL[p∞; p∞RL],

A2KL[p∞; p∞RL] =

A · Ep(x)

(
r [D(x)]

(
log

p(x)

p(RL(x))
+ log r [D(x)]

))
,

TV 2[p; tD ◦ p] ≤

A · Ep(x)

(
r [D(x)]

(
log

p(x)

p(RL(x))
+ log r [D(x)]

))
≤

A ·
(
KL[p(x); p(RL(x))] + Ep(x) (r [D(x)] log r [D(x)])

)
.

(22)
5We use | · |1 for

∫
S | · |dx

Considering the final bound, we have the following adver-
sarial optimization problem over the parameters θ of RLθ

and the parameters ϕ of Dϕ,RLθ
:

max
θ
Aθ = max

θ
Ep(x) (r [Dϕ,RLθ

(x)]) ,with fixed ϕ

min
ϕ

Ep(x) (r [Dϕ,RLθ
(x)] log r [Dϕ,RLθ

(x)]) ,with fixed θ.

(23)
As already mentioned, due to the equivariance constraints,
D(x) is a function of both θ, through RLθ, and ϕ. For any
fixed RLθ the solution of the minimisation problem is the
log-density ratio:

D∗(x) =

= argmin

∫
p(x)r [Dϕ,RLθ

(x)] log r [Dϕ,RLθ
(x)] dx

= log
p(RLθ)

p(x)
JRLθ(x)
x .

(24)
For such a discriminator TV 2[p; tD∗ ◦ p] = 0 since de-
tailed balance with respect to p is satisfied. However, in
the beginning the discriminator is not optimal. Instead, we
start optimizing from a randomly initialised discriminator
and iteratively improve Dϕ and R ◦ Lθ in alternating steps:
optimising over θ makes the problem harder for the discrim-
inator and vice versa (see Section 6.1).

It is worth noting from Eq. (22) that the tightness of our
bound depends on KL[p(x); p(R◦Lθ(x))]. However, ifR◦
Lθ is close to being density preserving, this term vanishes.

5.6. Optimization algorithms

The objectives (23) are defined as expectations over the

given empirical distribution p(x) = 1
N

N∑
n=1

δ(x − xn).

Therefore, they allow for unbiased gradient estimates:

∇θEp(x) (r [Dϕ,R◦Lθ
(x)]) = Ep(x)∇θ (r [Dϕ,R◦Lθ

(x)])

≈ 1

B

B∑
b=1

∇θ (r [Dϕ,R◦Lθ
(xb)]) , {xb}Bb=1, xb ∼ p(x),

(25)
and similarly for the gradient with respect to ϕ. With the
unbiased gradient estimates, we use standard Adam opti-
mizer with default hyperparameters and constant learning
rate. With adversarial optimization it is often important to
appropriately choose the learning schedule for the number
of gradient descent steps taken for ϕ and θ. We found that
the discriminator requires more gradient descent steps, e.g.,
a 1:3 or 1:2 ratio.

6. Experiments
We provide code for reproducing the experiments at https:
//github.com/ricvalp/aisampler. Following
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Algorithm 1 Ai-sampler.

Input: target p(x), initial kernel and discriminator
Tθ, dϕ, initial X = {xj}Nj=1, xj ∼ p0(x), DiscSteps,
KernelSteps.
repeat
X = MH(Tθ, p,X , N) # MH is the Metropolis-
Hastings algorithm.
for X ∈ X do

for i = 1 to KernelSteps do
θ → θ + ϵ∇LA(X, θ, ϕ) # Eq. (23), first line

end for
for i = 1 to DiscSteps do
ϕ → ϕ + ϵ∇Ladv(X, θ, ϕ) # Eq. (23), second
line

end for
end for

until convergence
Return: Tθ

Song et al. (2017), we test our method with the following
experiments. The first experiment is with four 2D densities.
They highlight specific challenges, such as good mixing in
the presence of multiple modes separated by low density
regions. The second experiment is with high-dimensional
complex densities from real-world scenarios. In particular,
we sample from the posterior of a logistic regression model
trained with three different datasets with varying number
of covariates. For both experiments we benchmark running
time and efficiency of sampling of our method.

Baselines. For all the experiments we compare with
Hamiltonian Monte Carlo (HMC) (Duane et al., 1987; Neal,
2011) and the method by Song et al. (2017), given its con-
ceptual similarities with ours. For HMC we follow Song
et al. (2017) and fix the number of leapfrog integration steps
to 40 and tune the step-size to achieve the best performance.
A more detailed description of the experiments, including
the analytic expression of the densities can be found in the
Appendix A and B.

Evaluation criteria. To compare the performances we
use the effective sample size (ESS). Practically, the ESS is
an estimate of the number of samples required to achieve
the same level of precision that a set of uncorrelated random
samples would achieve (for details see Appendix C). We
report the lowest ESS among all covariates averaged over
several trials. Since MCMC methods can be very costly
to run, another often reported performance measure is the
effective sample size per second (ESS/s). This is simply the
ESS obtained per unit of time. We report this measure to
evaluate efficiency. Despite being a common performance
metric, a chain can achieve good ESS without generating
good samples from the posterior. To make sure that this is

Figure 2. Synthetic 2D densities used in the experiments. From
left to right: mog2, mog6, ring, and ring5. Top row: true density.
Bottom row: KDE with samples from our Ai-sampler.

not the case, for the Bayesian logistic regression experiment
we split each dataset into train and test subsets and compute
the average log posterior using samples obtained with the
train subset (see Appendix B). Furthermore, we compare
the mean estimates with the ground truth ones.

6.1. 2-dimensional densities

For a fair comparison with Song et al. (2017) we choose
to use the same four 2D densities they used. Two mixtures
of Gaussians with two and six modes, mog2 and mog6, a
ring-shaped distribution, ring, and one made of five con-
centric rings, ring5. The densities are depicted in Fig. 2.
We ran a single chain for 1000 burn-in steps and compute
ESS and ESS/s for the following 1000 steps. Despite being
2D, these densities pose some challenges. In particular, the
mixtures of Gaussians, and the concentric rings are mul-
timodal distributions with high-density regions separated
by high-energy (low-density) barriers. This characteristic
represents a significant hurdle for Hamiltonian Monte Carlo,
as Hamiltonian dynamics are unlikely to overcome these
high-energy barriers, potentially leading to inefficient explo-
ration of the state space and convergence issues. Figure 3
shows the very different behaviour of our method compared
to HMC highlighting the fast mixing of our method com-
pared in the presence of high energy barriers. Results are
reported in Table 1.

Unbalanced modes. As as an additional qualitative exper-
iments we follow (Samsonov et al., 2022) and investigate
how our method performs on multimodal distributions with
unbalanced modes. In particular we use a 3-component
mixture of 2-dimensional isotropic Gaussians, with modes
centered at the vertices of an equilateral triangle. We find
that our model can effectively sample from unbalanced mix-
tures and give quantitatively estimate the weights of the
modes. See Fig 8 in the Appendix.
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Figure 3. Single MCMC trajectory with the learned kernel (top)
on the mog2 and mog6 synthetic 2D densities, compared to HMC
(bottom). The low density regions make it unlikely for HMC to
get from one mode to another.

Table 1. Effective sample size for synthetic 2D energy functions.

Density ESS
HMC A-NICE-MC Ai-sampler (ours)

mog2 0.8 355.4 1000.0
mog6 2.4 320.0 1000.0
ring 981.3 1000.0 378.0
ring5 256.6 155.57 396.5

The role of the discriminator. We can investigate how
the discriminator is ”guiding” the parametric proposal by
looking the value of dϕ(x) after training. In particular, we
artificially turn d into a function of two points. For example,
for the product parameterization we look at

dϕ(x, y) = ψ(x+ y)[η(y) 9 η(x)], (26)

for a fixed x and different values of y. Figure 4 shows a
discriminator, trained with mog6 for three different values
of x. Note that, for the discriminator to be effective it only
needs to be consistent with the ground truth density ratio
where the deterministic proposal is likely to propose the
new sample from the current state of the chain.

6.2. Multi-dimensional densities

Bayesian logistic regression To compare with Song et al.
(2017) we use the same posterior distribution they used,
resulting from a Bayesian probabilistic logistic regression
model on three famous datasets: heart (14 covariates, 532

Figure 4. Discriminator as a function of two inputs as in Eq. (26),
for three different values of x: one far from the six modes and two
at the center of one mode.

Table 2. Averaged predictive posterior and l2 norm of the differ-
ence between ground truth mean posterior and estimates from the
chain.

Dataset Log-Predictive posterior Mean matching
HMC Ours HMC Ours

Heart −0.479 −0.458 5.4× 10−5 1.2× 10−4

German −0.484 −0.484 1.3× 10−5 8.2× 10−6

Australian −0.375 −0.375 1.2× 10−5 5.6× 10−5

data points), australian (15 covariates, 690 data points), and
german (25 covariates, 1000 data points). For all exper-
iments we ran a single chain for 1000 burn-in steps and
compute ESS and ESS per second. for the following 5000
steps. Table 3 reports the results and we report average log
posterior at Table 2.

Table 3. Effective sample size for Bayesian logistic regression.

Dataset ESS
HMC A-NICE-MC Ai-sampler (ours)

Heart 5000.0 1251.2 5000.0
German 5000.0 926.49 5000.0
Australian 1113.4 1015.8 1746.5

6.3. Benchmarking running time

The advantage of learning to sample with a transition kernel
parameterized by a neural network also lies in the hardware
being optimized to perform multiple operations in parallel.
Our method consists of a deterministic proposal parameter-
ized by a neural network and, as opposed to HMC, does not
require the gradient of the target density function. In HMC,
proposals are obtained by integrating Hamiltonian dynam-
ics which requires multiple calls to the gradient function of
the density. For complex distributions, such as Bayesian
logistic regression posteriors with large datasets, calls to the
gradient are costly. We implement both our Ai-sampler and
HMC in JAX (Bradbury et al., 2018) and Flax (Heek et al.,
2023), making use of the built-in autodifferentiation tools,
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vectorization, and just-in-time (JIT) compilation. We note
that, in a certain range, running time remains approximately
constant as the number of parallel chains increases. Past that
range, running time increases approximately linearly. We
measure running time within the constant range. For both
HMC and the Ai-sampler we run Gelman’s R̂ diagnostic
(Brooks & Gelman, 1998) and find values that suggest good
convergence (≤ 1.004), and close-to-zero cross-correlation
between chains. We can then assume that the ESS of par-
allel chains is the sum of the ESS of the single chains. For
this reason, for a better comparison, we decided to report
the ESS per second per chain. It is worth noting that, as
reported in Fig. 5, we found that the Ai-sampler, given the
relatively simple architecture, can sustain many more par-
allel chains than HMC, which would result in much larger
overall ESS. For further details see the Appendix D.

Table 4. Effective sample size per second per chain for the 2-
dimensional densities.

Density ESS/s
HMC Ai-sampler (ours)

mog2 0.4 1052.6
mog6 0.98 1041.7
ring 2725.8 402.1
ring5 333.2 434.7

Table 5. Effective sample size per second per chain for Bayesian
logistic regression.

Density ESS/s
HMC Ai-sampler (ours)

Heart 989.0 1736.0
German 672.0 1618.0
Australian 171.95 1724.0

7. Conclusions
We propose the Ai-sampler: an MCMC method with invo-
lutive Metropolis-Hastings kernels parameterized by time-
reversible neural networks to ensure detailed balance. We
derive equivariance conditions for the discriminator and
a novel simple objective to train the parameterized ker-
nel. The proposed objective is an upper-bound on the total
variation distance between the target distribution and the
stationary distribution of the Markov chain. We use the
C2-equivariance of the optimal discriminator to restrict the
hypothesisis space of the parametric discriminators. We
learn to sample with a bootstrap process that alternates
between generating samples from the target density and
improving the quality of the kernel with the adversarial
objective. We demonstrate good mixing properties of the
resulting Markov chain on some synthetic distributions and

Figure 5. Time vs. number of parallel chains for a single RTX3090
GPU, sampling from the Bayesian logistic regression posterior
with German dataset. Every chain consists of 100 steps. For
more more than 104 parallel chains, the jitting time becomes pro-
hibitively long and therefore not worthy.

Bayesian inference with real-wold datasets. In the future,
we plan to further explore the potential of our approach as
a generative model, given that the adversarial objective is
computed from an empirical distribution. In this regard, we
would like to point out the similarity of our work with Nor-
malizing Flows. In the generative model setting NFs have
shown good results and our approach can be applied there
two. We expect promising results, as instead of learning a
global transformation from a simple probability distribution
to a more complex one, e.g., transforming Gaussian noise
into good-looking images, our approach consists of learning
local transition kernels that map points (e.g., images) to
other points in the target distribution.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Architectures
All experiments are performed using compositions of parametric Hénon maps. Hénon maps are symplectic transformations
on Rn × Rn, (x, y) 7→ (x̄, ȳ), defined by {

x̄ = y + η
ȳ = −x+ V (y),

(27)

with V : Rn → Rn, and η a constant. The reason why we use Hénon maps, other than their approximation properties (see
Valperga et al. (2022)), is because they are invertible analytically: for given V and η the inverse is simply{

x = −ȳ + V (x̄− η)
y = x̄− η.

(28)

For experiments with 2D distributions we use Hénon maps with the function V being a two-layer MLP with hidden
dimension 32 and compose 5 of such layers to construct the function gθ from Eq. (6). To sample from the Bayesian logistic
regression posterior we set the hidden dimension of the two-layer MLP is 64.

For the discriminator we use the product parameterization using two three-layer MLP with hidden dimensions 32 for the
experiments with the 2D distribution, and 128 for the Bayesian posterior.

The models have been trained on one NVIDIA A100. Training times are around 2 to 3 minutes for the simple distributions
and about 5 to 10 minutes for the Bayesian posterior.

B. Analytic form of the densities
Following Song et al. (2017), for all experiments p(v|x) is a Gaussian centered at zero with identity covariance. Now with
f(x|µ, σ) denoting the log density of the Gaussian N (µ, σ2), the 2D log densities U(x) = log p(x) used in the experiments
are

mog2:
U(x) = f(x|µ1, σ1) + f(x|µ2, σ2)− log 2

where µ1 = [5, 0], µ2 = [−5, 0], σ1 = σ2 = [0.5, 0.5].

mog6

U(x) =

6∑
i=1

f(x|µi, σi)− log 6

where µi =

[
5 sin

(
iπ
3

)
5 cos

(
iπ
3

)] and σi = [0.5, 0.5].

ring

U(x) =

(√
x21 + x22 − 2

0.32

)2

ring5
U(x) = min(u1, u2, u3, u4, u5)

where ui =
(√

x21 + x22 − i
)2
/0.04.

For the Bayesian logistic regression, we define the likelihood and prior as

p(y|X,β) =
n∏

i=1

[
σ(xT

i β)
]yi
[
1− σ(xT

i β)
]1−yi (29)

where σ(z) = 1
1+e−z
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Then the unnormalized density of the posterior distribution for a dataset D = {X,y} is

p(β|y,X,µ,Σ) ∝ p(y|X,β) · p(β|µ,Σ) (30)

where the Gaussian prior is p(β|µ,Σ) = N (β|µ,Σ) is a Gaussian with diagonal covariance.

We use three datasets: german (25 covariates, 1000 data points), heart (14 covariates, 532 data points) and australian (15
covariates, 690 data points). When computing the average log posterior we compute

1

|Dtest|
∑

x,y∈Dtest

log
1

|C|
∑
θ∈C

p(y|x, θ),

where C is a chain obtained with Dtrain.

C. Effective sample size
Following Song et al. (2017) given a chain {xi}Ni=1 we compute the ESS as:

ESS
(
{xi}Ni=1

)
=

N

1 + 2
∑N−1

s=1

(
1− s

N

)
ρs

(31)

where ρs is the autocorrelation of x at lag s. We use the empirical estimate ρ̂s of ρs:

ρ̂s =
1

σ̂2(N − s)

N∑
n=s+1

(xn − µ̂)(xn−s − µ̂) (32)

where µ̂ and σ̂ are the empirical mean and variance obtained by an independent sampler.

Following Song et al. (2017), we also truncate the sum over the autocorrelations when the autocorrelation goes below 0.05
to due to noise for large lags s.

D. Benchmarking time
We report in figure 6 the time it takes to perform one forward pass of the parametric proposal in the Ai-sampler compared to
a single call to the gradient function of the Bayesian logistic regression posterior obtained with JAX autodifferentiation. We

Figure 6. Time taken for a single call of the gradient function and neural network proposal vs. batch size.

do not compare running time with Song et al. (2017) as their implementation uses TensorFlow 1 which is not as efficient as
JAX, which XLA to compile and run code on accelerators. We stress that time benchmark is to highlight the cost of multiple
calls to the density gradient functions, especially in the case of complex Bayesian posterior distributions.
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Figure 7. Adversarial objective and acceptance rate during training. Sample quality increasing during training.

E. Additional figures
In Fig. 7 we show an example of training curve, with the acceptance rate, during training.

F. Unbalanced Mixture of Gaussians
For unbalanced mixture of Gaussians with weights (1/6, 1/6, 2/3) we provide total variation distance between ground truth
and KDE estimation from chain samples. In order to asses mode capturing, we estimate mode weights from chain samples
and provide KL difference between them and ground truth.

Figure 8. Unbalanced mixture of Gaussians.
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