
Scalable Pre-training of Large Autoregressive Image Models

Alaaeldin El-Nouby 1 Michal Klein 1 Shuangfei Zhai 1 Miguel Angel Bautista 1 Vaishaal Shankar 1

Alexander Toshev 1 Joshua M Susskind 1 Armand Joulin † 1

https://github.com/apple/ml-aim

0.3119 0.3084 0.3039 0.2989

76

77

78

AIM-0.6B
AIM-1B

AIM-3B

AIM-7B

Pre-training validation loss (IN-1k)

To
p-

1
ac

cu
ra

cy
(1

5
be

nc
hm

ar
ks

)

1M 100M 2B

73

73.5

74

74.5

Number of unique images seen (log scale)
To

p-
1

ac
cu

ra
cy

(1
5

be
nc

hm
ar

ks
)

AIM-0.6B

Figure 1: AIM scaling behavior (Left) As we scale the capacity of AIM, we observe improved performance for the pre-training objective
which directly correlates with stronger downstream performance. (Right) AIM exhibits stronger downstream performance when trained
using larger sets of uncurated web data [Gadre et al., 2023; Fang et al., 2023]. The downstream performance is the average attentive
probe top-1 accuracy over a diverse set of 15 image recognition benchmarks. All models are trained for the same number of updates.

Abstract
This paper introduces AIM, a collection of vi-
sion models pre-trained with an autoregressive
objective. These models are inspired by their tex-
tual counterparts, i.e., Large Language Models
(LLMs), and exhibit similar scaling properties.
Specifically, we highlight two key findings: (1)
the performance of the visual features scale with
both the model capacity and the quantity of data,
(2) the value of the objective function correlates
with the performance of the model on down-
stream tasks. We illustrate the practical implica-
tion of these findings by pre-training a 7 billion
parameter AIM on 2 billion images, that achieves
84.0% on ImageNet-1k with a frozen trunk. In-
terestingly, even at this scale, we observe no
sign of saturation in performance, suggesting
that AIM potentially represents a new frontier
for training large-scale vision models. The pre-
training of AIM is similar to the pre-training of
LLMs, and does not require any image-specific
strategy to stabilize the training at scale.
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1. Introduction
Pre-training task agnostic models has become the stan-
dard in Natural Language Processing with the recent rev-
olution of large language models (LLMs) [Radford et al.,
2019; Brown et al., 2020; Touvron et al., 2023]. These
models can solve complex reasoning tasks from a few ex-
amples [Brown et al., 2020], follow instructions [Ouyang
et al., 2022], and now serve as the engine of widely used
AI assistants such as ChatGPT. A key factor contributing
to their success is the ability to consistently improve as the
capacity (i.e. number of parameters) or the amount of pre-
training data [Radford et al., 2019] increases.

The scaling behavior of these models is remarkable for two
key reasons. First, even though these models are trained
with a simple objective – predicting the next word in a sen-
tence given its past – they can learn intricate patterns over
long contexts. Second, the scalability of this autoregressive
objective is observed when used in conjunction with cer-
tain architectures, and in particular Transformers [Vaswani
et al., 2017], highlighting the potential synergy between au-
toregressive pre-training and this architecture.

These observations raise the question of whether the suc-
cess of scaling Transformers with an autoregressive objec-
tive is exclusive to text. This is particularly significant con-
sidering that none of the aforementioned elements are in-
herently specific to language modeling. Autoregressive ob-
jectives take their roots in the data compression [Shannon,
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1951], and similar approaches have been investigated in au-
dio [Oord et al., 2018] and images [Van den Oord et al.,
2016; Chen et al., 2020a]. The Transformer architecture
has also been successfully used in other domains, in partic-
ular, computer vision with the success of the Vision Trans-
formers (ViT) [Dosovitskiy et al., 2021]. Therefore, as a
first step towards generalizing the findings of LLMs, we
explore if training ViT models with an autoregressive ob-
jective leads to competitive performance, in terms of learn-
ing representations, with the same scaling ability as LLMs.

In this paper, we introduce Autoregressive Image Mod-
els (AIM), an autoregressive approach for large-scale pre-
training for visual features. We revisit prior work in autore-
gressive representation learning such as iGPT [Chen et al.,
2020a] using a modern toolset that includes vision trans-
formers, collections of large-scale web data [Gadre et al.,
2023; Fang et al., 2023], and recent advances in LLM pre-
training [Touvron et al., 2023; Hoffmann et al., 2022]. Ad-
ditionally, we introduce two architectural modifications to
adapt autoregressive pre-training to visual features. First,
instead of restricting the self-attention to be causal as is
typically the case of LLMs, we adopt prefix attention, as
in T5 [Raffel et al., 2020b]. This choice enables moving
to bidirectional attention during downstream tasks. Sec-
ond, we use a heavily parameterized token-level predic-
tion head, inspired by the heads used in contrastive learn-
ing [Chen et al., 2020b]. We observe that this modification
significantly improves the quality of the subsequent fea-
tures. Overall, the training of AIM is similar to the training
of recent LLMs and does not rely on any stability-inducing
techniques [Touvron et al., 2021b; Huang et al., 2016; De-
hghani et al., 2023] that supervised [Touvron et al., 2021b;
Dehghani et al., 2023] or self-supervised [Bao et al., 2022;
Oquab et al., 2023] methods need.

We provide a study of a series of models, ranging from
600M to 7B parameters pre-trained using 2B uncurated im-
ages with permissive licenses. AIM exhibits strong scaling
behavior w.r.t. the model size as shown in Figure 1 where
higher capacity models achieve better downstream perfor-
mance, measured as the average accuracy over 15 image
recognition benchmarks. More importantly, there is a cor-
relation between the value of our objective function on a
validation set and the quality of the subsequent frozen fea-
tures. This observation confirms that the autoregressive
objective is adequate for the training of visual features.
Furthermore, we observe consistent improvement in down-
stream performance as we train on more images, with no
sign of saturation. Overall, these observations are aligned
with the previous studies on scaling large language models.

2. Related Work
Autoregressive models. While most of the literature
on autoregressive models come from language model-

ing [Mikolov et al., 2010; Bengio et al., 2000; Radford
et al., 2019] or speech [Oord et al., 2018; 2016], few
works have explored the potential of this approach for im-
ages [Larochelle & Murray, 2011; Parmar et al., 2018;
Van den Oord et al., 2016; Salimans et al., 2017; Chen
et al., 2020a; Parmar et al., 2018]. Of particular inter-
est, Van den Oord et al. [2016] show that using an archi-
tecture adapted to images, e.g., a convolution network, sig-
nificantly improved over autoregressive models built with
more generic architecture [Van Den Oord et al., 2016], e.g.,
a recurrent network [Elman, 1990]. Parmar et al. [2018]
further improve the quality of autoregressive models by
adopting transformer architecture. More recently, Chen
et al. [2020a] have shown that scaling with more compute
leads to continuous improvements. Our work follows this
line of research, and we benefit from training on signifi-
cantly more data, further improvement in architecture de-
sign [Dosovitskiy et al., 2021], training [Touvron et al.,
2021a; 2023] and understanding of the scaling law [Hoff-
mann et al., 2022]. Concurrent to our work, Bai et al.
[2023] demonstrate the effectiveness of large-scale autore-
gressive vision models for in-context pixel prediction tasks
(e.g., segmentation, depth estimation).
Self-supervised pre-training. Pre-training vision mod-
els on datasets of images without supervision has been a
fruitful area of research in recent years [Doersch et al.,
2015; Misra & Maaten, 2020; Zhang et al., 2016; Bo-
janowski & Joulin, 2017; Gidaris et al., 2018; Zhou et al.,
2022; Dosovitskiy et al., 2014]. Different approaches have
been employed, focusing on various proxy tasks for fea-
ture learning. For example, Noroozi & Favaro [2016] learn
to re-arrange the order of shuffled image patches. Some
other works have relied on clustering [Bautista et al., 2016;
Caron et al., 2018; Yan et al., 2020; Caron et al., 2021].
Another popular approach involves the use of a contrastive
objective, resembling predictive coding, where the objec-
tive is to identify each image [Chen et al., 2020b; He
et al., 2020]. Most recent contrastive approaches include
DINO [Oquab et al., 2023], BYOL [Grill et al., 2020] or
iBot [Zhou et al., 2022]. In a similar vein, some works
have proposed predictive approaches [Assran et al., 2023;
Bardes et al., 2022] or a form of feature whitening [Zbontar
et al., 2021]. Closer to our approach are works inspired by
BERT [Devlin et al., 2018] where patches are masked and
predicted with an autoencoder in either their discrete [Bao
et al., 2022] or pixel [He et al., 2022] form.
Other generative pre-training. Autoregressive modeling
is a form of generative modeling, and few other genera-
tive approaches have been considered to learn visual fea-
tures. The first category leverages some form of autoencod-
ing where the pretext task corresponds to some denoising
task. For instance, the noise can be salt-and-pepper [Vin-
cent et al., 2010] or masking [Pathak et al., 2016; Bao et al.,
2022]. Another line of work leverages Generative Adver-
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Figure 2: AIM pre-training overview.. Input images are
split into non-overlapping patches and embedded linearly follow-
ing Dosovitskiy et al. [2021]. The patch features are fed to a trans-
former in which the self-attention operation is causally masked to
prevent attending to preceding positions. Afterward, a heavily
parameterized MLP processes each of the patch features indepen-
dently and finally projects it to pixel space. The targets corre-
spond to the input sequence shifted one position to the left, re-
quiring the model to predict the next patch in raster order.

sarial Networks (GANs) [Goodfellow et al., 2014]. Most
notably, BigGAN [Brock et al., 2018] trains a large GAN
and re-uses the image discriminator to produce image fea-
tures. More recently, DiffMAE [Wei et al., 2023] used dif-
fusion models to learn image features.

Pre-training at scale. There are numerous works on scal-
ing the pre-training of visual features without supervi-
sion [Oquab et al., 2023; Singh et al., 2023; Tian et al.,
2021; Goyal et al., 2019; 2022; Caron et al., 2019]. The
most salient work in this area is DINOv2 where it pro-
duces the best self-supervised features by scaling the iBot
method [Zhou et al., 2022] on a private dataset of 142M
images. This work concludes that a carefully tuned con-
trastive method scales reasonably well, but they do not ex-
hibit the scaling law that we observe with language mod-
eling. They also rely on an intricate implementation of
contrastive learning to avoid the pitfalls described by Chen
et al. [2021]. In parallel, Singh et al. [2023] study the scal-
ing of Masked Autoencoders [He et al., 2017]. While the
study focuses on a weakly-supervised setup, it does not
showcase strong improvements to the self-supervised pre-
training by scaling the data to billions of images. In con-
trast, we observe a clear benefit of scale on the quality of
our features, even at a scale of a few billions of parameters
and billions of images.

3. Pre-training Dataset
We pre-train our models on the DFN dataset introduced
by Fang et al. [2023]. This dataset is composed of a larger

collection of 12.8B image-text pairs [Gadre et al., 2023]
filtered from Common Crawl. The data has been pre-
processed to remove NSFW content, blur faces, and re-
duce contamination by deduplicating against the evaluation
sets. A data filtering network [Fang et al., 2023] ranks the
samples in the 12.8B collection according to the alignment
score between images and their corresponding caption. A
subset of 2B images, called DFN-2B, has been extracted
from the DataComp 12.8B dataset [Gadre et al., 2023] by
keeping the top 15% samples. Note that, other than the pri-
vacy and safety filters, this process does not include any
additional curation based on the image content. Since our
pre-training does not require text, our method could be pre-
trained using larger image collections that are not paired
with captions or have low image-text alignment such as the
rest of DataComp 12.8B.

Motivated by the common practice in LLM pre-
training [Touvron et al., 2023] of oversampling high-
quality data sources such as Wikipedia and Books, we sam-
ple images from DFN-2B with a probability of p = 0.8
and sample images from ImageNet-1k with a probability
of p = 0.2. We refer to such dataset as DFN-2B+.

4. Approach
4.1. Training Objective

Our training objective follows that of a standard autore-
gressive model applied on a sequence of image patches.
More precisely, an image x is split into a grid of K
non-overlapping patches xk, k ∈ [1,K], which collec-
tively form a sequence of tokens. We assume that the se-
quence order is fixed across all images, and we use a raster
(row-major) ordering by default unless otherwise specified.
Given the above order, the probability of an image can be
factorized as a product of patch conditional probabilities:

P (x) =

K∏
k=1

P (xk | x<k), (1)

where x<k denotes the set of the first k − 1 patches, and
is the context used to predict the kth patch. As opposed to
language modeling, our sequences have a fixed length of K
that fits in memory and hence we do not need to truncate
the context length. The training loss over a set X of images
is then defined as the negative log-likelihood (NLL):∑

x∈X

K∑
k=1

− logP (xk | x<k).

Minimizing this objective over an infinite amount of im-
ages, with no further assumptions, is theoretically equiva-
lent to learning the true underlying image distribution.

Prediction loss Our training objective gives rise to certain
variants of losses, each corresponding to a choice of the dis-
tribution P (xk | x<k). By default, we adopt a normalized
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Downstream
Adaptation

Pre-training
 (e.g. prefix len=3)

Figure 3: Prefix causal attention. During pre-training we uni-
formly sample a prefix length S. The attention for the first S
patches are set to be bidirectional and loss is only computed for
the remaining patches in the image. During adaptation to down-
stream tasks, this allows us to drop the attention causal mask, im-
proving the downstream performance.

Model #Params Hidden size Layers LR #Patches Batch size
AIM-0.6B 0.6B 1536 24 1e−3 0.5T 4096
AIM-1B 1.2B 2048 24 1e−3 1.2T 4096
AIM-3B 2.7B 3072 24 1e−3 1.2T 4096
AIM-7B 6.5B 4096 32 1e−3 1.2T 4096

Table 1: Model specifications. We provide the embedding di-
mension, number of layers, and parameter count for all AIM vari-
ants. We also provide the learning rate and batch size during pre-
training. For AIM with 1B parameters and higher, the pre-training
process involves 1.2M iterations, which corresponds to 1.2 trillion
patches, or 5B images, seen during pre-training.

pixel-level regression loss similar to He et al. [2022]. This
loss corresponds to setting P (xk | x<k) as Gaussian dis-
tributions with a constant variance. Namely, given x̂k(θ)
as the prediction of the kth patch from a network param-
eterized with θ, and xk as its corresponding ground-truth
value, our objective is to minimize the sum ℓ2 squared dis-
tance between the prediction and the ground-truth:

min
θ

1

K

K∑
k=1

∥x̂k(θ)− xk∥22. (2)

We also consider a cross-entropy loss with patches con-
verted to discrete tokens using an offline tokenizer. Our ab-
lation studies show that these designs work, although they
do not produce as strong features as the pixel-wise loss.

4.2. Architecture
As the backbone, we adopt the Vision Transformer archi-
tecture (ViT) [Dosovitskiy et al., 2014]. For scaling in the
model capacity, we follow the common practice in lan-
guage modeling and we prioritize expanding width rather
than depth [Radford et al., 2019; Touvron et al., 2023].
In Table 1, we provide an overview of the design param-
eters of AIM, including its depth and width, as well as the
amount of data and optimization scheme for each model
capacity. The overall model is illustrated in Figure 2.

During pre-training, we apply causal masks to the self-

attention layers to model the probability of a patch given
the preceding patches. More precisely, for a self-attention
layer, the embedding for the ith patch is computed by:

yi =

K∑
k=1

aikvi, (3)

where aik is the attention weight and vk the value embed-
ding. To enforce the desired constraints, we utilize a causal
mask for the attention weights, where aik = 0 for k > i,
and

∑K
k=1 aik = 1. This approach enables us to process

the image with a single forward pass during training, with-
out incurring additional computational overhead.

Prefix Transformer. The autoregressive objective in pre-
training requires a causal mask in the self-attention oper-
ation. However, this differs from the standard usage of
ViT models in downstream tasks, where bidirectional self-
attention is employed. This discrepancy leads to a decrease
in performance, irrespective of whether the causal mask is
retained during downstream adaptation or not (as shown
in the ablations presented in Table 3). To address this is-
sue, we propose to consider the initial patches of the se-
quence, referred to as the prefix, as a context for predicting
the remaining patches following the PrefixLM formulation
of Raffel et al. [2020a]. The prefix patches are excluded
from the autoregressive prediction and therefore are not
constrained to be causal. More precisely, we select a prefix
length of size S ∈ [1,K − 1], and remove the causal mask,
i.e., ai,k > 0 for k < S. This modification helps the model
to work in the absence of causal masking, allowing it to be
removed during downstream adaptation. This approach im-
proves the performance of the model in downstream tasks
and eliminates the need for architectural changes to ViT.
Figure 3 illustrates the difference between causal and pre-
fix attention.

MLP prediction heads. It is a common practice to adopt
certain prediction heads during pre-training, which are dis-
carded when transferring to downstream tasks [Chen et al.,
2020b; 2021; Caron et al., 2020; 2021; Grill et al., 2020].
The purpose of these heads is to prevent the trunk features
from becoming too specialized in the pre-training objec-
tive, thus enhancing their suitability for downstream trans-
fer. We opt for a simple design where we use N blocks of
MLP on top of the final transformer layer, processing each
patch independently. We observed that this design strikes a
good balance between performance and the additional costs
incurred during pre-training.

Straightforward implementation. It is worth noting that
AIM does not require particular optimization stability-
inducing mechanisms such as LayerScale [Touvron et al.,
2021b], stochastic depth [Huang et al., 2016], QK-
Norm [Dehghani et al., 2023], or freezing the patch pro-
jector [Chen et al., 2021]. These mechanisms have been
crucial for the success of other methods, either supervised
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Figure 4: AIM pre-training across model sizes. We observe a clear improvement in the performance of the pre-training objective with
increasing the capacity of AIM. Moreover, the downstream performance (IN-1k top-1) is monotonically improving for higher capacity
models as well as with longer pre-training. We do not observe clear signs of plateauing during pre-training even after training for 500k
iterations, indicating that AIM can benefit from even longer pre-training schedules.

or self-supervised. On the contrary, we observe that AIM
scales using the same set of optimization hyperparameters
across model sizes with no further tuning (see Table 1).

We add sinusoidal positional embeddings [Vaswani et al.,
2017] to the input patches before the transformer and be-
fore the MLP head. We use a standard expansion ratio of 4
for all the MLP blocks in the trunk and the head. We drop
the bias term for simplicity, and unlike the original ViT, we
do not append a classification token to the input. By de-
fault, we use 12 blocks for the MLP head for all model ca-
pacities. The pixel targets are normalized per patch before
the loss computation following He et al. [2022]. We train
our model using bfloat16 precision. We detail the hyper-
parameters used for pre-training and downstream adapta-
tion in Appendix D.

Downstream adaptation. Pre-training large-scale models
is a resource-intensive process, and even fine-tuning them
is demanding. Consequently, we focus on scenarios where
all model weights are fixed for downstream tasks. In this
context, we only train a classification head, which mitigates
the risk of overfitting on small downstream datasets and
significantly reduces the adaptation cost.

Unlike contrastive learning, our loss is computed indepen-
dently for each patch. This means that our pre-training does
not incorporate any notion of global image descriptors, and
hence, we do not have any image level token. While some
methods rely on global average pooling to build a global
feature from the patch features, we find that our approach,
along with other generative approaches like MAE, bene-
fit more from an attention pooling operation [Lee et al.,
2019] placed before the linear classifier. Other works [Yu
et al., 2022; Touvron et al., 2021b; Anonymous, 2023;
Chen et al., 2023] have adopted attention pooling to im-
prove performance with minimal overhead.

Specifically, given a set of patch features P = {pi | 1 ≤
i ≤ K}, we compute a global descriptor p̂ through multi-

head attention pooling over the patch features as:

p̂h =

K∑
i=1

exp(qThW
k
h pi)∑K

j=1 exp(qThW
k
h pj)

W v
hpi, (4)

where for each attention head h = {1, ...,H}, W k
h ,W

v
h ∈

Rdh×d correspond to the key and value weight matrices,
respectively; qh is a learnable query vector. And we ob-
tain the pooled feature as p̂ = [p1, ..., pH ], p̂ ∈ Rd, which
serves as the input to the linear classifier. By default, we
set the number of heads H = d

dh
, which makes the to-

tal number of learnable parameters 2d2 + d, a negligible
cost compared to the main model size. Including this atten-
tion pooling makes the entire operation not strictly linear,
and, therefore we refer to it as “Attentive Probe”. Neverthe-
less, the advantages of linear probing, e.g., low additional
parameter count and a reduced risk of overfitting, are pre-
served with this probe.

5. Results
5.1. Impact of scaling

We measure the impact when scaling our approach in terms
of parameters and training data. In particular, we investi-
gate whether there is a correlation between the pre-training
objective and the downstream performance across bench-
marks. We also look at the effect of scaling on the value
of the loss function. For all of these experiments, we report
the value of our loss function on the validation set of IN-1k.

Loss and performance during training. In Figure 4, we
measure for each model the value of the pre-training loss
and the classification accuracy on the validations set, as
a function of the number of training iterations. We ob-
serve that both probes improve accordingly during the en-
tire training, showing that optimizing our objective directly
results in better downstream performance.

Number of parameters. We observe that the pre-training
loss and the accuracy of the downstream task improve as
we scale the capacity of our models. This is consistent with
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Figure 5: Dataset impact on pre-training performance. On the
one hand, pre-training using IN-1k leads to overfitting, even for
the AIM-0.6B model. On the other hand, pre-training using the
uncurated DFN-2B dataset prevents overfitting but converges to a
similar point due to the distributional shift. Pre-training on DFN-
2B+ leads to the best performance.

the trend observed in LLMs and can be directly attributed
to the optimization of our objective function, which in turn
leads to learning stronger representations.
Number of images. In Figure 5, we show the progression
of the validation loss as we pre-train on either a small cu-
rated dataset of 1M images, i.e., IN-1k, or a larger set of
2B images, i.e. DFN-2B+. It is not surprising that training
on IN-1k leads rapidly to a low validation loss as measured
on the same distribution. However, this loss deteriorates at
the end of the training, indicating an overfitting to the train-
ing data. When training on the uncurated DFN-2B dataset,
the model starts from a higher validation loss but the loss
continues to decrease with no sign of overfitting. When the
same dataset is augmented with a small amount of IN-1k
data, as detailed in § 3, we observe further improvement in
the performance that eventually surpasses pre-training on
IN-1k. We confirm that the resulting model also leads to a
better downstream performance in Table 2.

pre-training dataset IN-1k DFN-2B DFN-2B+

attentive 73.5 74.5 75.6

Table 2: Dataset impact of downstream performance (15
benchmarks). The behavior in Figure 5 is consistent with the
downstream performance where we observe that using a data mix-
ture of DFN-2B and IN-1k results in the best performance.

Compute-optimal pre-training. Since we do not observe
signs of overfitting when we train using the DFN-2B+
dataset, we proceed to examine the impact of extending
the length of our pre-training schedule. In Figure 6, we
study the impact of increasing the length of the pre-training
schedule from 500k to 1.2M iterations, i.e., 2B to 5B im-
ages seen during pre-training. We observe that models pre-
trained with a longer schedule achieve significantly lower
validation loss. This suggests that one can improve the per-
formance of AIM either by increasing the model capacity
or by pre-training for longer schedules. Interestingly, we
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Figure 6: Scaling in FLOPs. That total number of FLOPs dur-
ing training correlates with the final validation loss, suggesting a
compute-driven scaling law similar to Hoffmann et al. [2022].

find that lower-capacity models trained for a longer sched-
ule achieve comparable validation loss to higher-capacity
models trained for a shorter schedule while using a similar
amount of FLOPs. This finding is consistent with Hoff-
mann et al. [2022] and implies that AIM could follow sim-
ilar scaling laws. However, we defer further investigations
in this aspect for future work.

5.2. Architecture and Design

In this section, we investigate the impact of some variations
in our model and training objective. These ablations are
conducted using an AIM-0.6B model, which has been pre-
trained and evaluated on the IN-1k dataset. The results of
these ablations are presented in Table 3.

Targets and objective (a). We explore various potential
representations for the target patches. One approach is to
utilize the raw pixel values, and training the model with
mean squared error (MSE) regression loss. A second op-
tion, proposed by He et al. [2022], involves using per-patch
normalized pixel values instead of the raw signal, with the
same MSE loss. Finally, another option is to use a dis-
cretized representation of the patches, either using k-means
or a discrete VAE [Ramesh et al., 2021; Van Den Oord
et al., 2017]. In this case, the model is trained using a
cross-entropy objective similar to language modeling. Our
experiments show that AIM performs best when using the
MSE objective with normalized pixel values.

Autoregression pattern (b). Autoregressive pre-training
typically follows a specific order of traversal to facilitate
the prediction of the next token. In the case of language,
the traversal pattern is clear, as text is read and written one
word at a time in a sequential manner (e.g. left to right for
English). However, for images, determining the traversal
pattern is less obvious. We explore various deterministic
patterns, including raster, spiraling out, checkerboard, and
randomly pre-sampled patterns. Detailed examples of each
pattern are found in Appendix B. Even though our model
performs reasonably well with each pattern, we observe
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target pixels norm. pixel KMeans dVAE
linear 67.5 70.0 66.6 64.0
attentive 76.2 78.2 75.9 74.5

(a) Targets.

pattern raster spiral checkerboard random
linear 69.5 67.7 68.2 65.8
attentive 77.4 76.3 76.0 75.7

(b) Autoregression Pattern (causal).

crop scale 0.08 0.4 1.0
linear 68.4 70.0 49.6
attentive 77.7 78.2 63.5

(c) Crop Scale.
pre-training attn. causal prefix

inference attn. causal bidirectional causal bidirectional
linear 69.5 30.9 68.4 70.0
attentive 77.4 52.3 76.9 78.2

(d) Attention Structure.

head None MLP Transformer
linear 64.0 70.0 70.5
attentive 75.4 78.2 78.5

(e) Head Design.

architecture deep wide
linear 68.8 70.0
attentive 77.9 78.2

(f) Architecture.

Table 3: Ablations We investigate various design choices of AIM. We use an AIM-0.6B model that is pre-trained and evaluated using
IN-1k. We report the linear and attentive probing results. The default settings for AIM used for the main results are highlighted in gray .

that the raster pattern leads to significantly higher perfor-
mance.

width 512 1024 2048
linear 69.4 69.6 70.0
attentive 77.7 78.1 78.2

(a) MLP width.

depth 6 8 12
linear 65.3 68.1 70.0
attentive 76.2 77.1 78.2

(b) MLP depth.

Table 4: MLP design. We vary the capacity of the MLP head by
changing the number of MLP blocks (i.e. depth) or the embedding
size (i.e. width). Downstream performance improves with more
capacity in either width or depth, but depth has more impact.

autoregressive
masked image modeling

ratio=50% ratio=75%
attentive 78.2 70.3 77.8

Table 5: Autoregressive vs. Masking We evaluate the IN-1k per-
formance of the autoregressive objective, compared to the mask-
ing objective [Devlin et al., 2018; Bao et al., 2022]. We keep all
the other architectural and optimization components fixed. We
observe that, under the same pre-training settings, the perfor-
mance of the autoregressive objective outperforms masking.

To gain deeper insights into this result, we examine the dif-
ficulty of predicting patches along sequences for each pat-
tern. This can be done by measuring the loss value per
patch as we progress along a sequence, as illustrated in
Figure 7. Our observation is that patterns that present a
more uniform distribution of difficulty across patches re-
sult in superior models, as compared to patterns where the
prediction becomes progressively easier as the sequence
unfolds. We attribute this to the difficulty of predicting
patches throughout the sequence that forces the model to
retain more information about the image. This leads to bet-
ter patch features, and consequently, to better image repre-
sentation as a whole.

Cropping scale (c). We explore the impact of the in-
formation content of each patch by adjusting the lower
bound of the cropping scale. On the one hand, opting for
a cropping scale that is too small leads to an easier next-
patch-prediction task as neighboring patches’ similarity in-
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Figure 7: Autoregression patterns We explore a number of pat-
terns for the autoregressive traversal of an image. The set of image
patches is broken into equal-sized chunks and the validation loss
is measured per chunk. We observe that the way the task difficulty
is distributed across chunks varies strongly among patterns.

creases. On the other hand, using a large cropping scale
can lead to severe overfitting unless the dataset size is suf-
ficiently large. Since this study is conducted using IN-1k,
we observe a clear drop in performance due to overfitting.

Causal vs. Prefix Attention (d). We measure the impact
of incorporating prefix attention during pre-training, as op-
posed to using standard causal attention. We observe that
pre-training with causal self-attention produces models that
are effective in downstream transfer tasks only when the
causal mask is preserved. Such models experience a signif-
icant decline in performance when bidirectional attention is
employed. However, pre-training with prefix attention pro-
duces models that operate effectively in causal and bidirec-
tional modes. Notably, the best performance is achieved
when combining prefix attention during pre-training with
bidirectional attention during downstream adaptation.

Head design (e). We consider different types of heads on
top of the backbone to make predictions at the pixel level.
Using no heads (i.e. None) performs reasonably well, but
adding an MLP further improves the quality of the back-
bone. Interestingly, replacing the MLP with a full-fledged
transformer of the same depth and width only yields a
marginal performance improvement but at a significantly
higher computational cost. Therefore, we opt to use an
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DINO ViT-B/8 IN-1k 80.1 66.0 97.8 87.3 89.5 78.4 92.3 89.2 58.5 93.7 90.2 6.1 98.2 57.0 41.1 75.0
iBOT ViT-L/16 IN-21k 83.5 70.5 99.2 93.3 93.5 81.6 92.8 90.8 61.8 94.5 90.0 5.9 98.0 60.3 47.7 77.6
DINOv2 ViT-g/14516 LVD 86.4 84.5 99.6 95.2 96.3 86.3 96.4 95.6 68.2 96.5 90.7 8.0 98.6 66.7 58.8 81.9

BEiT ViT-L/14 IN-21k 62.2 44.4 94.4 78.7 79.0 64.0 80.9 69.5 52.0 92.8 88.2 4.2 97.5 47.7 25.9 65.4

MAE
ViT-H/14 IN-1k 80.9 64.6 97.1 85.8 90.2 78.1 95.0 93.7 58.1 94.2 89.8 5.4 98.1 56.9 42.2 75.3
ViT-2B/14 IG-3B 82.2 70.8 97.5 87.3 93.4 81.2 95.1 94.9 57.8 94.4 90.3 7.3 98.2 60.1 50.2 77.4

AIM-0.6B ViT-H/14

DFN-2B+

78.5 64.0 97.2 86.8 90.1 80.1 93.0 93.0 57.9 94.3 90.0 7.8 98.4 58.3 45.2 75.6
AIM-1B ViT-1B/14 80.6 67.2 98.2 88.3 91.6 81.8 93.4 93.9 58.6 94.5 90.0 9.0 98.6 59.8 47.5 76.9
AIM-3B ViT-3B/14 82.2 69.7 98.4 89.9 92.7 81.9 94.1 93.8 58.8 94.3 90.4 9.7 98.5 60.9 48.9 77.6
AIM-7B ViT-7B/14 82.4 70.9 98.6 90.0 93.1 82.3 93.8 92.1 59.5 93.6 90.7 10.1 98.6 61.7 49.6 77.8

AIM-7B† ViT-7B/14 DFN-2B+ 84.0 75.5 98.9 91.8 94.1 85.6 95.4 95.0 61.4 94.2 90.5 8.4 98.5 63.5 57.7 79.6

Table 6: Downstream evaluation with a frozen trunk. We assess the quality of AIM features by evaluating against a diverse set of 15
image recognition benchmarks. AIM and the baseline methods are evaluated using attentive probing with a frozen trunk. AIM models
exhibit a strong performance across all benchmarks, especially the AIM-7B. AIM outperforms all other methods, using joint-embedding
or generative approaches, except for DINOv2 which utilizes higher-resolution images. †: Extracting features from the 20th layer instead
of the last (32nd), see Table 7 for more details.

MLP head in our approach. We hypothesize that these
heads specialize in capturing the low-level signals neces-
sary for accurate pixel-level prediction. By incorporating
a head, the trunk can learn higher-level features that are
more suitable for downstream transfer. A similar design
was employed for contrastive learning to prevent the back-
bone from specializing in predicting specific image trans-
formations [Chen et al., 2020b].

Deeper vs. Wider architecture (f). We present the de-
sign specifications of AIM in Table 1, outlining its width
and depth. Unlike the original design of ViT [Dosovit-
skiy et al., 2021], where the depth is scaled more rapidly
than the width, we adopt a scaling strategy similar to that
of Llama [Touvron et al., 2023]. This allows us to scale
our model more gracefully while maintaining a reasonable
depth. We validate the effectiveness of a wider architecture
in Table 3f. Our findings indicate that even for the relatively
small-scale AIM-0.6B model, a wider architecture not only
delivers strong performance but also improves training sta-
bility. This observation supports the notion that some of
the insights gained from training LLMs can be similarly
applied to other domains.

Attentive vs. Linear probe. For all ablations we report
the linear and attentive probing results. We observe that,
consistently across all experiments, attentive pooling pro-
vides a significant boost to performance as it allows for a
more nuanced aggregation of local features circumventing
one of the main weaknesses of generative pre-training: the
absence of an image-level global descriptor.

Structure of the MLP. The MLP plays an important role
as ablated in Table 3e. In Table 4, we further investigate the
capacity of the MLP head and how it impacts downstream
performance. We vary the capacity of the head by either

changing the number of MLP blocks or their width. By de-
fault, we use a head of 12 blocks and an embedding dimen-
sion of 2048. First, we observe that increasing the capacity
of the MLP either through depth or width leads to consis-
tent improvement in the downstream performance. Second,
we find that increasing the number of MLP blocks, with a
fixed width, leads to a larger improvement compared to in-
creasing the width for a fixed depth. Interestingly, we could
not find a point where increasing the MLP capacity failed
to yield further improvements. We did not explore higher
capacities beyond those reported in Table 4 as it would lead
to models with disproportionate head and trunk capacity.

5.3. Pre-training objective

Autoregressive vs. Masking We conduct a compari-
son between our architecture trained with an autoregres-
sive objective and the masking objective popularized by
BERT [Devlin et al., 2018] for language, and by BEiT and
MAE for vision. It is important to note that we applied the
masking objective in the same setting as AIM, thereby iso-
lating the impact on the performance of the pre-training ob-
jective from other design choices that differ between AIM
and other approaches. In the masking baseline, we ran-
domly sample masks and replace the masked patches with
learnable mask tokens. In Table 5, we show that AIM per-
forms better with an autoregressive objective than a mask-
ing objective. This is consistent with the results reported
by Chen et al. [2020a], providing evidence that our im-
provements stem from using the autoregressive objective.

5.4. Comparison with other methods

In Table 6, we compare the attentive probing performance
of AIM to other state-of-the-art methods across a set of 15
diverse benchmarks that are detailed in Appendix A.
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Generative methods. AIM provides a strong performance
compared to its generative counterparts. AIM outperforms
BEiT [Bao et al., 2022] with a large margin. Additionally,
AIM-0.6B provides a better performance, averaged across
all benchmarks, compared to MAE-H [He et al., 2022]
which has an equivalent capacity. Moreover, we compare
against the MAE-2B [Singh et al., 2023] model which has
been pre-trained on IG-3B, a private dataset of 3 billion im-
ages from Instagram. We find that both AIM-3B and AIM-
7B outperform MAE-2B, with AIM-7B exhibiting a partic-
ularly large improvement. It is worth noting that, similar
to AIM, two other generative approaches, BEiT and MAE,
benefit from attentive probing, thereby narrowing the gap
between generative and joint embedding methods.

Joint embedding methods. AIM provides a competi-
tive performance with joint embedding methods such as
DINO [Caron et al., 2021], iBOT [Zhou et al., 2022], and
DINOv2 [Oquab et al., 2023]. In terms of average accuracy
across all benchmarks, AIM outperforms DINO and iBOT.
However, it falls behind DINOv2 which achieves its re-
sults by evaluating with higher-resolution inputs. Note that
AIM attains such competitive performance using higher
capacity trunks. Nevertheless, AIM’s pre-training is sig-
nificantly simpler and can be trivially scaled in terms of
parameters and data, yielding consistent improvements.
On the contrary, state-of-the-art joint embedding methods
like DINOv2 heavily rely on a number of tricks, such
as multi-crop augmentation, KoLeo regularization, Layer-
Scale, Stochastic Depth, schedules for teacher momentum
and weight decay, and high-resolution fine-tuning in order
to achieve strong performance.

Extracting stronger features. We observe that higher-
quality features can be extracted from shallower layers
compared to the last layer’s features. This is likely due
to the generative nature of the pre-training objective that
is inherently different than the discriminative downstream
tasks and therefore, the features with the highest semantic
content do not necessarily concentrate around the last layer.
In Table 7, we report the IN-1k top-1 accuracy for features
extracted from the last layer compared to the layer with the
highest performance.

AIM-0.6B AIM-1B AIM-3B AIM-7B
last layer 78.5 80.6 82.2 82.4
best layer 79.4 82.3 83.3 84.0

Table 7: Feature extraction. The highest quality features after
AIM pre-training typically reside in shallower layers than the last.
Extracting features from earlier layers leads to a non-negligible
boost to the recognition performance on IN-1k.

5.5. Low-Rank Adaptation

In addition to frozen-trunk evaluation, we examine Low-
Rank Adaptation (LoRA) [Hu et al., 2021], a popular and
efficient finetuning method. We report the results of LoRA

fintuning of AIM in Table 8. We observe that LoRA is com-
patible with AIM, leading to a large boost in performance
compared to frozen-trunk evaluation. For example, AIM-
7B improves by 3.9% (compared to the last layer’s perfor-
mance) while finetuning only 0.1% percent of the trunk pa-
rameters.

AIM-0.6B AIM-1B AIM-3B AIM-7B
attentive 78.5 80.6 82.2 82.4
LoRA (rank=8) 81.0 83.6 85.5 86.3

Table 8: Low-rank adaptation (IN-1k). AIM is compatible with
LoRA showing large gains compared to frozen-trunk evaluations.

6. Discussion
In this paper, we presented a scalable method for pre-
training vision models without supervision. We employed
a generative autoregressive objective during pre-training
and proposed several technical contributions to better adapt
it for downstream transfer. Consequently, we observed
a number of desirable properties for our Autoregressive
Image Models. First, the capacity of our models can be
effortlessly scaled to 7 billion parameters using a vanilla
transformer implementation, without resorting to stability-
inducing techniques or extensive adjustments of hyperpa-
rameters for each model scale. Second, AIM’s performance
on the pre-training task has a strong correlation with down-
stream performance. Third, AIM achieves strong perfor-
mance across 15 recognition benchmarks, outperforming
prior state-of-the-art methods like MAE and significantly
narrowing the gap between generative and joint embedding
pre-training approaches. Finally, we did not observe any
clear signs of saturation as we scale either in terms of pa-
rameters or data, suggesting that there is a potential for fur-
ther performance improvements with larger models trained
for even longer schedules. We hope that AIM serves as a
seed for future research in scalable vision models that effec-
tively leverage uncurated datasets without any bias towards
object-centric images or strong dependence on captions.

7. Limitations.
AIM excels in its seamless scalability and its effective uti-
lization of large volumes of uncurated image data. How-
ever, alternative methods can offer different trade-offs.
MAE [He et al., 2022] provides high sample efficiency
and can learn good representations using a small amount
of pre-training data, reducing the risk of overfitting [El-
Nouby et al., 2021] in contrast to our approach. Contrastive
methods [Oquab et al., 2023; Zhou et al., 2022; Caron
et al., 2021] currently result in stronger representations for
a given model size compared to generative approaches such
as MAE and AIM, but pose significant challenges in terms
of scalability and loss tractability due to the complexity of
their objective.
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A. Datasets
To assess the effectiveness and general applicability of the
learned representations by AIM, we measure its recognition
accuracy on a varied collection of 15 benchmarks in Ta-
ble 6. The specifics of each benchmark can be found in Ta-
ble 9. These benchmarks include datasets for tasks such
as fine-grained recognition, medical imaging, satellite im-
agery, images in natural environments, and infographic im-
ages.

Dataset train test classes
Imagenet-1k [Deng et al., 2009] 1,281,167 50,000 1000
iNAT-18 [Van Horn et al., 2018] 437,513 24,426 8142
CIFAR-10 [Krizhevsky et al., 2009] 50,000 10,000 10
CIFAR-100 [Krizhevsky et al., 2009] 50,000 10,000 100
Food101 [Bossard et al., 2014] 75,750 25,250 101
DTD [Cimpoi et al., 2014] 3,760 1,880 47
Pets [Parkhi et al., 2012] 3,680 3,669 37
Cars [Krause et al., 2013] 8,144 8,041 196
iWildCam [Beery et al., 2020] 129,809 14961 182
Camelyon17 [Bandi et al., 2018] 302,436 34904 2
PCAM [Veeling et al., 2018] 262,144 32768 2
RxRx1 [Taylor et al., 2019] 40,612 9854 1139
EuroSAT [Helber et al., 2017] 16,200 5400 10
fMoW [Christie et al., 2018] 76,863 19915 62
Infograph [Peng et al., 2019] 36,023 15,582 345

Table 9: Evaluation benchmarks. We provide the references,
the number of images in the train and test sets, and the number of
categories of all the 15 recognition benchmarks used in this work.

B. Autoregression Patterns
We investigate different patterns that can be used to traverse
an image during pre-training in Table 3b. All patterns used
in this investigation are illustrated in Figure 8.

C. Additional Analysis
C.1. Raster pattern validation loss

In Figure 7, we noticed that the validation loss of the raster
pattern across chunks surprisingly declined for the second
chunk before increasing again. We investigated this further
in Figure 9 and observed that this behavior is a side-effect
of using the IN-1k validation set. In particular, we observed
that the top rows of the image, aside from the first one,
typically have a lower loss, whether the loss is computed
over the regular image or its vertically flipped counterpart.

C.2. Downstream performance across layers

In Tables 7 and 6, we discussed the gain in downstream per-
formance that can be achieved by probing shallower layers
in the model rather than the last. We study this in more de-
tail in Figure 10. We find that for all AIM variants, we ex-
tract the highest quality features, with respect to the down-
stream transfer, from layers roughly at two-thirds of the
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Figure 8: Autoregression patterns. We illustrate the different
autoregression patterns studied in this work including raster, spi-
ral, checkerboard, and fixed random.
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Figure 9: Raster pattern across patches. We compute the IN-
1k validation loss per a chunk of 16 patches (i.e., a row) for AIM-
0.6B, pre-trained using a raster pattern. We measure the same loss
for the vertically flipped images of the validation set. We observe
that, for IN-1k validation set, the patches from the top rows in
the image are easier to predict with lower loss, likely due to the
concentration of background patches in that region.

way into the model depth. However, it is important to note
that the performance of deeper layers does not experience a
steep decline and continues to exhibit strong performance.

D. Hyperparameters
Pre-training. AIM models of all capacities have been pre-
trained using the same set of hyperparameters that are re-
ported in Table 10. The AIM-0.6 model however has been
trained only for the shorter schedule of 500k iterations. We
did not observe any instability while scaling the capacity of
our model, thereby not requiring any further tuning of the
optimization hyperparameters.
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Figure 10: Downstream performance across layers. The highest quality features in terms of transfer to downstream recognition tasks
can be extracted from layers different than the last, with the peak performance achieved by extracting from features roughly at two-thirds
of the model depth. Deeper layers still retain a strong performance and no sharp decline is observed.

config value
Optimizer AdamW
Optimizer Momentum β1 = 0.9, β2 = 0.95
Peak learning rate 1e−3

Minimum Learning rate 0.0
Weight decay 0.05
Batch size 4096
Patch size (14, 14)
Gradient clipping 1.0
Warmup iterations 31,2050
Total iterations 1,250,000
Learning rate schedule cosine decay
Augmentations:
RandomResizedCrop
size 224px
scale [0.4, 1.0]
ratio [0.75, 1.33]
interpolation Bicubic

RandomHorizontalFlip p = 0.5

Table 10: Pre-training hyperparameters All AIM variants of
different capacities have been trained using the same set of hyper-
parameters detailed above.

Attentive Probing. Downstream evaluation for AIM and
the baselines has been primarily conducted via attentive
probing as described in § 4. We report the hyperparameters
used to probe all methods in Table 11. For a fair compari-
son with other baselines, we search over different values for
the learning rate and report the best performance of each
method similar to [Oquab et al., 2023]. For AIM and other
generative baselines, we average the features for the last 6
layers of the model before feeding them to the attention-
probing head which leads to a modest gain in performance.
Note that the descriptor dimensionality remains the same
which is different from the practice of concatenating fea-
tures similar to iGPT[Chen et al., 2020a] which indirectly

config IN-1k Others
Optimizer AdamW
Optimizer Momentum β1 = 0.9, β2 = 0.999
Peak learning rate grid [1, 3, 5, 10, 15, 20, 40] ×1e−4

Minimum Learning rate 1e−5

Weight decay 0.1
Batch size 1024 512
Gradient clipping 3.0
Warmup epochs 5 0
Epochs 50 100
Learning rate schedule cosine decay
Augmentations:
RandomResizedCrop
size 224px
scale [0.08, 1.0]
ratio [0.75, 1.33]
interpolation Bicubic

RandomHorizontalFlip p = 0.5
Color Jitter 0.3
AutoAugment rand-m9-mstd0.5-inc1

Table 11: Attentive probe hyperparameters. We detail the hy-
perparameters used for attentive probing AIM as well as the base-
lines. For all experiments, we search over different learning rate
values and report the best for both AIM and baselines.

inflates the capacity of the evaluation head.

Low-rank adaptation. For LoRA finetuning, we use the
same hyperparameters as reported in Table 11 in addition to
mixup [Zhang et al., 2018] (alpha=0.8). We apply LoRA
adaptation, with rank=8, only to the parameters of the at-
tention block. In particular, the weight matrices for the
queries, values, and out projection.
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