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Abstract
We define and investigate the problem of c-approximate
window search: approximate nearest neighbor search
where each point in the dataset has a numeric label,
and the goal is to find nearest neighbors to queries
within arbitrary label ranges. Many semantic search
problems, such as image and document search with
timestamp filters, or product search with cost filters,
are natural examples of this problem. We propose and
theoretically analyze a modular tree-based framework
for transforming an index that solves the traditional
c-approximate nearest neighbor problem into a data
structure that solves window search. On standard near-
est neighbor benchmark datasets with random label
values, adversarially constructed embeddings, and im-
age search embeddings with real timestamps, we obtain
up to a 75× speedup over existing solutions at the same
level of recall.

1. Introduction
The nearest neighbor search problem has been widely stud-
ied for more than 30 years (Arya & Mount, 1993). Given
a dataset D, the problem requires the construction of an
index that can efficiently answer queries of the form “what
is the closest vector to x in D?” Solving this problem ex-
actly degrades to a brute force linear search in high dimen-
sions (Rubinstein, 2018), so instead both theoreticians and
practitioners focus on the relaxed c-approximate nearest
neighbor search problem (ANNS), which asks “what is a
vector that is no more than c times farther away from x than
the closest vector to x in D?”

Recent advances in vector embeddings for text, images, and
other unstructured data have led to a surge in research and
industry interest in ANNS. This trend is reflected by a prolif-
eration of commercial vector databases: Pinecone (Pinecone
Systems, Inc., 2024), Vearch (vea, 2022), Weaviate (wea,
2022), Milvus (mil, 2022), and Vespa (ves, 2022), among
others. These databases offer hyper-parameter tuning, meta-
data storage, and solutions to a variety of related search
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problems. They especially tout their support of ANNS with
metadata filtering as a key differentiating application.

In this work, we are primarily interested in a difficult gen-
eralization of the c-approximate nearest neighbor problem
that we term Window Search (see Definition 3.3). Window
search is similar to ANNS, except queries are accompanied
by a “window filter”, and the goal is to find the nearest neigh-
bor to the query that has a label value within the filter. This
problem has a large number of immediate applications. For
instance, in document and image search, each item may be
accompanied by a timestamp, and the user may wish to filter
to an arbitrary time range (e.g., they may wish to search for
hiking pictures, but only from last summer, or forum posts
about a bug, but only in the days after a new version was
released). Another application is product catalogs, where
a user may wish to filter search results by cost. Finally,
we note that a large class of emerging applications is large
language model retrieval augmented generation, where by
storing and retrieving information LLMs can reduce hallu-
cinations and improve their reasoning (Peng et al., 2023);
window search may be critical when the LLM needs to
recall something stored on a certain date or range of dates.

Although this problem has many motivating examples, there
is a dearth of papers examining it in the literature. Some vec-
tor databases analyze window search-like problem instances
as an additional feature of their system, but this analysis
is typically secondary to their main approach and too slow
for large-scale real-world systems; as far as we are aware,
we are the first to propose, analyze, and experiment with a
non-trivial solution to the window search problem.

Our contributions include the following:

1. We formalize the c-approximate window search problem
and propose and test the first non-trivial solution that uses
the unique nature of numeric label based filters.

2. We design multiple new algorithms for window search,
including a modular tree-based framework and a label-
space partitioning approach.

3. We prove that our tree-based framework solves window
search and give runtime bounds for the general case and
for a specific instantiation with the Vamana ANNS al-
gorithm (Jayaram Subramanya et al., 2019). We also
analyze optimal partitioning strategies for the label-space
partitioning approach.
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4. We benchmark our methods against strong baselines and
vector databases, achieving up to a 75× speedup on real
world embeddings and adversarially constructed datasets.

2. Related Work

Filtered ANNS. The two overarching naive approaches to
filtered ANNS are prefiltering, where the dataset is restricted
to elements matching the filter before a spatial search over
the remaining elements, and postfiltering, where results
from an unfiltered search are restricted to those matching
the filter. Thus, one avenue for solving filtered ANNS has
focused on augmenting existing ANNS algorithms with
prefiltering or postfiltering strategies, resulting in solutions
like VBASE (Zhang et al., 2023) and Milvus (mil, 2022).
VBASE, for example, performs beam search on a general
purpose search graph and uses the order in which points
are encountered as an approximation of relative distance
to the query point, before finally postfiltering to find near
points matching the predicate. Non-graph based indices can
also be adapted with prefiltering and postfiltering to perform
filtered search; for example, the popular Faiss library finds
nearby clusters of points within an inverted file index, and
then prefilters the vectors in those clusters based on an arbi-
trary predicate function (Douze et al., 2024). While these
methods support arbitrary filters, they struggle when filters
greatly restrict the points relevant to a query (Gollapudi
et al., 2023).

Another popular direction focuses on dedicated indices for
filtered ANNS, which consistently outperform their general-
purpose counterparts (Simhadri et al., 2023). For example,
FilteredDiskANN, an adaptation of DiskANN (Jayaram Sub-
ramanya et al., 2019) that supports filters that are conjunc-
tive ORs of one or more boolean labels, builds a graph
that can be traversed by a modified beam search excluding
points not matching the filter (Gollapudi et al., 2023). An-
other approach is CAPS, which is an inverted index where
each partition stores a Huffman tree dividing points by their
labels (Gupta et al., 2023). While these methods are the
state of the art, they are restricted to filtering on boolean
labels; they do not support window search. Finally, recent
work (Mohoney et al., 2023) presents a tree based nearest
neighbor engine for combined vector-metadata searches and
show range-based filters as an application, but their parti-
tioning requires historical queries and many of their gains
come from batching queries to avoid redundant computation.
Their method also only builds ANNS indices in the “leaves”
of the tree, whereas we build indices at internal nodes, which
is the key idea that ensures our method only needs to query
a logarithmic number of ANNS indices. Thus, although
their code is not open source, we do not expect their system
to perform as well as ours on window search.

Segment Trees. Segment trees (and the closely related Fen-

Table 1: Notation used in this paper.

Symbol Definition

D Vectors to index
N |D|, the cardinality of D
V Metric space D is in, e.g., Rn

q Query vector q ∈ V
(a, b) Window filter; see Definition 3.2
c Approximation factor for window search

distV Distance function between points in D
d Running time to evaluate distV

A Arbitrary c-ANN algorithm, e.g., Vamana
Aq Query time of A
β Split factor for a β-WST; see Algorithm 1
α Pruning parameter for Vamana
δ Doubling dimension
R Set of closed integer ranges in [1, . . . , N ]

blowup(R) Max ratio of superset ∈ R over range length
cost(R) Sum of lengths of ranges in R

wick trees (Fenwick, 1994)) are tree data structures built
over an array that recursively sub-divide the array to obtain
a balanced binary tree (Bentley, 1977). By storing appropri-
ate augmented values at the internal nodes of this tree, these
data structures can be used to support a variety of queries
over arbitrary intervals in the array, e.g., computing the max-
imum value in any given query interval [l, r]. Segment and
Fenwick trees can be generalized to higher fanout trees, i.e.,
B-ary segment or Fenwick trees that have a fanout of B and
a height of ⌈logB n⌉ (Pibiri & Venturini, 2021). Our work
adapts these tree structures to the window search problem by
designing a similar data structure that stores ANNS indices
at internal tree nodes. Huang et al. (2023) use the Fenwick
tree for filtered search within a clustering context, but their
work only considers a prefix interval ([0, r]), and they use
kd-trees, which are designed for low-dimensional data.

Filtered Search in Relational Databases. Traditional re-
lational database systems support arbitrary range-based
queries by constructing B-trees or log-structured merge
trees (Ilyas et al., 2008; Qader et al., 2018). These databases
have complex query planning systems that determine during
execution whether and how to query these constructed in-
dices (see, e.g., (Kurc et al., 1999)), but typically do not have
support for ANNS. The few that do have support for ANNS
use an existing open-source ANNS implementation to per-
form the search (e.g., pgvector (Kane, 2024), an ANNS
add-on for PostgreSQL, uses HNSW (Malkov & Yashunin,
2018).

3. Definitions
This section lays out definitions for the main problem that
we study: window search. Notation for the next three sec-
tions can be found in Table 1.

Definition 3.1. [Labeled Dataset] Consider a metric space
V with distance function distV . Given a label function
ℓ : V → R and a set D ⊂ V , we define a labeled dataset to
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be the pair (D, ℓ).

Definition 3.2. [Window Filtered Dataset] Consider a la-
beled dataset (D, ℓ). We define a window filter to be an
open interval (a, b) with a, b ∈ R, and we define a window
filtered dataset to be D(a,b) = {x ∈ D | ℓ(x) ∈ (a, b)}.

Definition 3.3. [Window Search] Given a labeled dataset
(D, ℓ), we define a query to be a vector q ∈ V and a win-
dow filter (a, b), and we define the window filtered nearest
neighbor to be q∗ = argminx∈D(a,b)

distV (x, q).

Definition 3.4. [Approximate Window Search] Finally,
given a labeled dataset (D, ℓ), we define c-approximate
window search to be the task of constructing a data struc-
ture that takes in a query q ∈ V with window filter (a, b)
and returns a point y ∈ D(a,b) such that distV (q, y) ≤
c · distV (q, q

∗), or ∅ if D(a,b) = ∅.

4. Window Search Algorithms
In this section, we describe algorithms for solving the win-
dow search problem. In Section 4.1, we examine two naive
baselines for solving window search; in Section 4.2, we
introduce a new data structure, the β-WST, and design an
algorithm to query it; and in Section 4.3, we examine addi-
tional algorithms for solving window search.

We note that with a fixed window filter (a, b), a reasonable
approach to solving window search is simply to index D(a,b)

using an off-the-shelf ANNS algorithm and then query it
with each q. Thus, we are interested in the more challenging
problem where queries have arbitrary window filters.

4.1. Naive Baselines

As we discuss in Section 2, prefiltering and postfiltering
are the current state of the art for filtered search. Here, we
describe the specific way we implement them in more detail,
as they are the main baselines that we compare against in
our experiments.

Prefiltering is a naive baseline that works by sorting all of
the points by label ahead of time. Given a query x with
window filter (a, b), we perform binary search on the sorted
labels to find the start and end of the range that meet the
filter constraints, and then find the distance between x and
every point in the range and return the closest point.

Postfiltering (Yu et al., 2023; Chen et al., 2020) is a second
baseline that works by first building an index on all of D
using an ANNS algorithm A. To perform a window search,
we query A for k ≥ 1 points, and then repeatedly double
k until at least one point is returned that has a label within
(a, b). Finally, we return the closest of these points. We
additionally define a hyper-parameter called final multiply;
if this is greater than 1, then we perform a final additional
search with a final multiply times larger value of k.
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Figure 1: Top left: A 2-WST. Each node of the tree in green
contains a recursive partition of the entire dataset D indexed by
an ANNS algorithm (see Algorithm 1). The graph in each green
node represents a graph-based ANNS index built by an algorithm
like Vamana. Top right: the structure of an example label space
partitioning method that ensures that no optimized postfiltering
query will have a large blowup (see Theorem 5.7). Bottom: Dif-
ferent query methods; from left to right: a tree-based query as in
Algorithm 2, an optimized postfiltering query with a small blowup
(see Definition 5.5), and an optimized postfiltering query with a
large blowup (see Definition 5.5).

4.2. β-Window Search Tree

We now propose a data structure that we call a β-Window
Search Tree, or β-WST. This data structure with β = 2 is
illustrated in the top left of Figure 1 and the accompanying
query method is illustrated in the bottom left. The overall
idea to construct a β-WST is to split D into β subsets, one
corresponding to each child node, construct an instance of
A at each node, and recurse on each child. We continue this
process until the subset size is less than β, in which case we
just store the points directly.

More formally, let x1, . . . , xN be the points of D sorted by
ℓ, such that ℓ(x1) ≤ ℓ(x2) . . . ≤ ℓ(xn). With a slight abuse
of notation, we define the argmin of an empty set to be the
empty set. A β-WST works as follows:

Index Construction. A β-WST T can be constructed as
shown in Algorithm 1. In the base case, if the dataset D
is small, we do not construct any tree node (Lines 3–4).
Otherwise, we construct an ANNS index of D (Line 5).
On Lines 6–7, we define the sizes for splitting D into β
partitions, all of which are equally sized except the last,
which may be smaller. On Line 8, we initialize the children

3



Approximate Nearest Neighbor Search with Window Filters

Algorithm 1 BuildTree(A, β, (D, ℓ))

1: Input: Dataset D with points x1, . . . , x|D| sorted by ℓ,
branching factor β, ANNS algorithm A.

2: Output: β-Window Search Tree of D
3: if |D| < β then
4: return (NULL,NULL, D)
5: index← A(D)
{The next two lines define the sizes of the β subsets; all are
equal size except the last}

6: sizes[1, . . . , β − 1]← ⌈|D|/β⌉
7: sizes[β]← |D| − (β − 1) · ⌈|D|/β⌉
8: children[1, . . . , β]← NULL
9: for i← 1 to β do in parallel

10: start← (i− 1) · ⌈|D|/β⌉+ 1
11: end← start+ sizes[i]
12: children[i]← BuildTree(A, β, (D(xstart,xend−1), ℓ))

13: return (index, (children,sizes), D)

nodes. We then loop through every partition in parallel
(Lines 9–12) and recursively call BuildTree on the set of
points (sorted by label) corresponding to the start and end of
the partition. Finally, on Line 13 we return the constructed
tree, which is a tuple consisting of an ANNS index built
on D, the result of BuildTree called on each child along
with the size of each child, and the point set D.

Querying the Index. We query a β-WST using Algorithm 2.
The input is a β-WST T as built by Algorithm 1, a query
point q , and a window filter (a, b). At a high level, Algo-
rithm 2 recurses through the tree constructed by Algorithm 1
and queries instances of A that union together to equal the
entire filtered dataset. If the dataset is small and the index
is a leaf node NULL, we do a brute force search over D
(Lines 3–4). If the window filter (a, b) covers all points, we
query the ANNS index and return the result (Lines 5–6).
Otherwise, D has some points that do not have a label in
(a, b), so we loop over each child (Line 8) and recurse into
it if some of the points in the child meet the query’s window
filter constraint. Finally, for each one of these children that
we recurse into, we add the returned points to a candidate
list Lcand, and return the closest point from Lcand on Line 13.

4.3. Additional Query Methods

In addition to Algorithm 2 above, we examine a number of
additional query methods for window search that come with
various trade-offs.

• OptimizedPostfiltering uses the index built by Algo-
rithm 1 but uses a novel query algorithm, shown in Al-
gorithm 3. Given a query x with window filter (a, b),
OptimizedPostfiltering finds the smallest subset S of D
corresponding to an index that we built I = A(S) where
D(a,b) ⊂ S, and then queries that index using the same
procedure as described in Postfiltering. A “small blowup”
query is one in which the smallest subset S is not that much
larger than D(a,b), whereas a “large blowup” query is one
where S is much larger than D(a,b). These small and large

Algorithm 2 Query(T, q, (a, b))

1: Input: β-WST T = (index, (children,sizes), D),
with points x1, . . . , x|D| ∈ D sorted by ℓ, query q, window
filter (a, b).

2: Output: Approximate window-filtered nearest neighbor y, or
∅ if no points in D meet window filter constraint.

3: if index = NULL then
4: return argminy∈D(a,b)

distV (q, y)

5: if (ℓ(x1), ℓ(x|D|)) ⊂ (a, b) then
6: return index(q)
7: start← 1, Lcand ← ∅
8: for i← 1 to β do
9: end← start+ sizes[i]

10: if ℓ(xstart), ℓ(xend−1) ∩ (a, b) ̸= ∅ then
11: Lcand ← Lcand ∪ Query(children[i], q, (a, b))
12: start← end
13: return argminy∈Lcand

distV (q, y)

Algorithm 3 OptimizedPostfiltering(T, q, (a, b))

1: Input: β-WST T = (index, (children,sizes), D),
query q, window filter (a, b).

2: Output: Approximate window-filtered nearest neighbor y, or
∅ if no points in D meet window filter constraint.

3: index ← smallest index in T containing all points with
labels in (a, b)

4: k ← 1
5: while k < N do
6: Lunfiltered ← index(q, k)
7: Lcand ← {x ∈ Lcand | ℓ(x) ∈ (a, b)}
8: if Lcand ̸= ∅ then
9: return argminy∈Lcand∩D(a,b)

distV (q, y)

10: k ← 2k
11: return ∅

blowup queries are shown on the bottom right of Figure 1.
Blowup factor is defined formally in Definition 5.5.

• ThreeSplit also uses the index built by Algorithm 1 and a
novel querying algorithm, shown in Algorithm 4. Similar
to Algorithm 2, a query initially finds the highest level
where any partition at all is entirely contained in the win-
dow filter, and then does a query on every one of these
partitions. Instead of recursing further down the tree, how-
ever, ThreeSplit then does an OptimizedPostfiltering call
on each of the remaining label subranges on each side of
the middle “covered” label portion. Because we fill in the
middle first, we are guaranteed that there can be no ”large
blowup” case like in OptimizedPostfiltering.

• SuperPostfiltering is the same as OptimizedPostfiltering
except that it operates on an arbitrary set of indexed subsets
of D and not necessarily the ones constructed by Algo-
rithm 1. One example of such a data structure is analyzed
in Theorem 5.7 and visualized in the top right of Figure 1.

5. Theoretical Analysis
5.1. Analysis of Building and Querying a β-WST

In our analysis in this section, we assume without loss of
generality that N is a power of β. Removing this assump-
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Algorithm 4 ThreeSplit(T, q, (a, b))

1: Input: β-WST T = (index, (children,sizes), D),
query q, window filter (a, b).

2: Output: Approximate window-filtered nearest neighbor y, or
∅ if no points in D meet window filter constraint.

3: index, (a′, b′)← index in T containing the most points with
labels in (a, b), label range of points in index

4: Lcand = OptimizedPostfiltering(T, q, (a, a′)) ∪ index(q) ∪
OptimizedPostfiltering(T, q, (b′, b))

5: return argminy∈Lcand∩D(a,b)
distV (q, y)

tion would lead to more floor and ceiling operators in The-
orem 5.2 and leave our other results unchanged. We defer
proofs to Appendix A. We will first analyze the construction
time and memory of Algorithm 1, and then we will prove
the correctness and analyze the query time of Algorithm 2.

Consider some function Af parameterized by the dataset D,
dataset size N , and subset size m. For example, Af may
be a construction time function or a memory function. This
function evaluated on all nodes of a β-WST is

O

logβ N∑
j=0

βjAf (D,N · β−j)

 .

Since we use Vamana indices in our experiments, we
now apply this result to obtain the running time of Al-
gorithm 1 (the construction time) and the memory of the
resulting index. We use a recent analysis for Vamana graph-
based search (Indyk & Xu, 2023) that assumes a “slow-
preprocessing” index construction with runtime O(N3) and
memory O(N(4α)δ log∆). Letting ∆ be the aspect ratio
of D, i.e., the ratio between the maximum and minimum
distances between any two pairs of points, we have the
following result:
Lemma 5.1. Algorithm 1 instantiated with a “slow prepro-
cessed” α-Vamana graph runs in time

O

(
1

1− β−2
N3

)
= O(N3)

and returns a β-WST of memory

O
(
(4α)δ log(∆)N logβ N

)
.

We now move on to our main runtime theorem, which both
proves that Algorithm 2 indeed solves c-approximate win-
dow search and upper bounds the running time for an arbi-
trary ANNS index A:
Theorem 5.2. If A can build an index that answers c-ANN
queries on an arbitrary size m subset of D with query time
O(Aq(D,m)), and a distance computation in V takes d
work, then Algorithm 2 solves the c-approximate window
search problem with running time

O

β logβ(N)d+ β

logβ N∑
j=0

Aq(D,N · β−j)

 .

Many theoretical ANN results in the literature have a run-
time of O(Nρ) for a constant ρ, e.g., LSH (Andoni & In-
dyk, 2008) and k-nearest neighbor graphs (Prokhorenkova
& Shekhovtsov, 2020). Other results have a runtime that
is parameterized only with constants describing the data
distribution, and have no reliance on N . By applying The-
orem 5.2, we have the following results for these common
function classes:

Lemma 5.3. If A is a c-ANN algorithm with Aq(D,m) =
O(Cdmρ) for ρ ∈ (0, 1) for some constant C depending on
D, the running time of Algorithm 2 is

O

(
CβdNρ

1− β−ρ

)
.

If A is a c-ANN algorithm with O(Aq(D,m)) =
O(Aq(D)), then the running time of Algorithm 2 is

O
(
β logβ(N)[d+Aq(D)]

)
.

We can again apply Lemma 5.3 using recent c-ANN results
for Vamana graph-based search (Indyk & Xu, 2023). We
have the following result:

Lemma 5.4. Algorithm 2 instantiated with a “slow prepro-
cessed” α-Vamana graph solves the c-approximate window
search problem in any metric space on a dataset with dou-
bling dimension δ and aspect ratio ∆ in running time

O

(
β logβ(N)

[
d+ logα

(
∆

(α−1)(c−α+1
α−1 )

)
(4α)δ log∆

])
.

5.2. Analysis of Super Postfiltering

SuperPostfiltering operates on an arbitrary collection of
window filtered subsets D(ai,bi). A natural question is how
to quantify the quality of a particular choice of subsets to
index, which motivates the following definition:

Definition 5.5. [Blowup Factor, Cost] Given a set of ranges
R, with Ri = [ai, bi] for ai, bi ∈ {1, . . . , N} and ai < bi,
we can define the blowup factor of a new query range [a, b]
with a, b ∈ {1, . . . N} as follows:

blowup(R, [a, b]) = min
[ai,bi]∈Ri

[ai,bi]⊃[a,b]

(
bi − ai
b− a

)
.

Intuitively, the blowup for [a, b] is the ratio between the size
of [a, b] and the smallest range in R that contains it. We can
further define the worst case blowup for a set of ranges (like
R) by taking the maximum blowup over all possible query
ranges [a, b]:

blowup(R) = max
a,b∈{1,...,N}

a<b

blowup(R, [a, b]).

We additionally define the cost of a set of ranges R as
cost(R) =

∑
i(bi − ai).
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Intuitively, if we build an ANNS index for the points cor-
responding to each range, then the worst-case blowup lim-
its how expensive a query can be, while the cost approx-
imates the memory required (since most practical ANNS
indices, e.g., LSH (Andoni & Indyk, 2008) and Vamana (Ja-
yaram Subramanya et al., 2019), have memory that is ap-
proximately linear in the number of points that they index).
Note that here, a range of, e.g., [17, 35] corresponds to an
ANNS index built on the 17’th point through the 35’th point
in D, assuming the points are sorted by label value.

As a quick warmup, we can achieve a worst-case blowup of
N and cost of N by choosing R = {[1, N ]}, and we can get
a worst-case blowup of 1 and cost of O(N3) by choosing
R = {[i, j] | i, j ∈ {1, . . . , N}, i < j}. We are interested
in choices for R that lead to better tradeoffs.

We can construct an R consisting of the ranges correspond-
ing to each subset indexed in a β-WST, so we can analyze
it using Definition 5.5. We prove the following lemma.
Lemma 5.6. The ranges corresponding to a β-WST have
worst case blowup factor B = N/2 = O(N) and cost ≤
N⌈logβ(N)⌉ = O(N logβ(N)).

Finally, we prove that we can do better than a β-WST.
Theorem 5.7. For any N and for any γ > 1, there exists
an R with worst case blowup factor 2γ that has cost at most
N
(
2 logγ(N) + 1

)
.

6. Experiments

Experiment Setup. We run all query methods on all
datasets and filter widths on a 2.20GHz Intel Xeon machine
with 40 cores and two-way hyper-threading, 100 MiB L3
cache, and 504 GB of RAM. We run index building using
all 80 hyper-threads and restrict queries to 16 threads, and
parallelize across (and not within) queries. We run index
construction experiments with varying values of β on a sep-
arate 2.10GHz Intel Xeon machine with 96 cores and two
way hyper-threading, 132 MiB L3 cache, and 1.47 TB of
RAM. We use all hyper-threads on the machine for these
experiments.

We use a Vamana index (Jayaram Subramanya et al., 2019)
with α = 1, degree = 64, and the construction beam search
width set to 500 for all ANNS indices, except for the Milvus
and VBASE baselines. Vamana allows searching for k ≥ 1
nearest neighbors; for simplicity of presentation, we assume
that the query beam search width is always set to k. We defer
a description of Vamana and its associated hyper-parameters
to Appendix C.

We note that our theory focuses on the c-ANN problem,
which only concerns whether a single c-approximate nearest
neighbor is returned. However, as is standard in much of
the ANN literature, in our experiments we report the recall

of the top 10 filtered neighbors to the query. While our
runtime proofs in Theorem 5.2, Lemma 5.3, and Lemma 5.4
assume that the underlying ANNS algorithm returns a single
ANN, in practice, we find that Vamana has high recall for
both single ANN and top-10 ANN. Therefore, we believe
that our theoretical analyses still provide insights into our
empirical results for top-10 ANN.

Finally, we ensure that our smallest filter fractions are still
wide enough such that there are at least 10 points that meet
the filter constraint, i.e., we ensure that |D(a,b)| ≥ 10.

Implementation Details. We provide an open source C++
library and associated Python bindings.1 Our code is built
on the ParlayLib library (Blelloch et al., 2020) for parallel
programming and the recent ParlayANN suite of parallel
ANNS algorithms (Manohar et al., 2024). We implement
a number of memory and performance optimizations, in-
cluding using a larger base case of 1000 in Algorithm 1 and
storing the entire dataset just once across all sub-indices.

Filter Fraction. Answering a window filter query that
matches almost the entire dataset is a substantially different
problem than one that matches almost none of it. Thus, we
define the filter fraction as a way of quantifying where in
this filter regime we are: let a query with filter fraction 2i for
i ≤ 0 be a query whose window filter matches a 2i fraction
of the points in D. For example, a query with filter fraction
2−3 has a window filter (a, b) that matches 1

8 of the dataset,
or in other words |D(a,b)| = 1

8 |D|. Queries with a small
filter fraction (e.g., 2−15) restrict to a small portion of the
dataset, queries with a large filter fraction (e.g., 2−2) restrict
to a large portion of the dataset, and queries with a medium
filter fraction (e.g., 2−8) restrict somewhere in between. A
query with a random filter of fraction 2i is a query where
we randomly select the filter (a, b) so that all possibilities
for the 2i ∗ |D| filtered points are equally likely.

Datasets. The datasets that we use are listed in Table 2
and further explained below. All datasets are available in
the same repository as the code; licensing information is
included in Appendix D.1.

• SIFT, GloVe, and Deep are ANN datasets from the
widely used and standardized ANN benchmarks reposi-
tory (Aumüller et al., 2020). To adapt them to window
search, we generate a label for each point uniformly at
random between 0 and 1. We create 16 different query sets
Q1, . . . , Q16, each one using the same 10000 query vec-
tors from ANN benchmarks with random filters of fraction
2−i.

• Redcaps is a dataset we created that builds on the Red-
Caps (Desai et al., 2021) image and caption dataset, which
consists of 11.6M Reddit, Imgur, and Flickr images and

1https://github.com/JoshEngels/
RangeFilteredANN
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Table 2: Summary of datasets used in our experiments.
Dataset Description Labels Num. dimensions Dataset size Num. queries
SIFT Image feature vectors Uniform random 128 1M 10K
GloVe Word embeddings Uniform random 100 1.18M 10K
Deep GoogLeNet embeddings Uniform random 96 9.9M 10K

Redcaps CLIP image embeddings Timestamps 512 11.6M 800
Adverse Mixture of Gaussians Noisy cluster ID 100 1M 9.9K

associated captions. To adapt RedCaps to window search,
we use CLIP (Radford et al., 2021) to generate an embed-
ding for each image and use the timestamp of the image
as its label. We create a set of 800 query vectors by asking
ChatGPT-4 (Achiam et al., 2023) to come up with queries
for an image search system, which we then embed using
CLIP. See Appendix B for full prompt details. We again
create 16 different query sets Q1, . . . , Q16 using the same
800 query vectors with random filters of fraction 2−i.

• Adverse is a synthetic dataset tailored to disadvantage
methods that rely on the label and point distributions being
independent. The overall idea is to craft a dataset and
queries where the points that meet the filter constraint
are much farther away from the query than the rest of
the dataset. To do this, we let D be a mixture of 100
Gaussians and draw 10000 points from each Gaussian,
where the means µi are drawn from N(0, I) and each
Gaussian is distributed as N(µi, 0.01 · I) (I is the 100-
dimensional identity matrix). A point generated from the
i’th Gaussian has a label equal to i+ Uniform(−0.5, 0.5),
and we generate a query for every pair i, j ∈ {1, . . . , 100}
with i ̸= j that consists of a random point drawn from
Gaussian i with window filter (j − 0.5, j + 0.5). In other
words, each query filters to only points from a different
cluster than it itself is drawn from.

Query Methods and Hyper-parameters. We run all of
the query methods described in Section 4.1, Section 4.2,
and Section 4.3. For all methods that use an arbitrary in-
dex A, we use a Vamana index as described earlier. We
run Algorithm 2 with β = 2 unless specified otherwise;
we call this method VamanaWST in our experiments. We
use Prefiltering unmodified as described in Section 4.1.
We expect Prefiltering to always achieve near 100% re-
call; it may not be 100% exactly due to numerical pre-
cision issues. For Postfiltering, OptimizedPostfiltering,
ThreeSplit, and SuperPostfiltering, we search over ini-
tial values of k in [10, 20, 40, 80, 160, 320, 640, 1280] and
final multiply value in [1, 2, 3, 4, 8, 16, 32]. We use the set-
ting γ = 2 from Theorem 5.7 for SuperPostfiltering, which
guarantees a worst case blowup factor of 4 using in practice
about 1.5 times as much memory as VamanaWST.

We also compare against Milvus (mil, 2022) and
VBASE (Zhang et al., 2023), two existing systems that sup-
port window search.

Milvus treats window search as an instantiation of catego-
rial filter search. Before querying the underlying ANNS

index, Milvus creates a bitset that marks all of the points
that meet the window filter. Then, while traversing the un-
derlying ANNS index, Milvus ignores points that are not set
in the bitset. We try all supported underlying Milvus indices:
HNSW, IVF PQ, IVF SQ8, SCANN, and IVF FLAT. We
search over the same beam sizes as for Postfiltering. Milvus
does not natively support a batch query with different filters
for each point in the batch, so we wrote a Python multipro-
cessing program that spins up many processes that query
the constructed index in parallel.

In addition to the heuristic described in Section 2, VBASE
uses a query planning step to attempt to predict how many
initial results to retrieve, then filters these retrieved results,
before finally applying a final top-k ranking to the retrieved
results that meet the filter constraint. We were not able to
get multiple queries to run in parallel with VBASE (and in
the original paper they also only operate in the regime of a
single query at a time).

Tradeoff of Queries per Second vs. Recall. We plot the
Pareto frontier of recall vs. queries per second of all meth-
ods on a selection of filter fractions on Deep in Figure 2
(the indices we compute the frontier on correspond to the
hyper-parameters specified in the last section). We include
plots of other datasets in Appendix D; the main observa-
tions are substantially the same across datasets. Overall,
our methods achieve multiple orders of magnitude query
speedup at fixed recall levels. SuperPostfiltering does par-
ticularly well at lower recall levels of around 0.9 to 0.99,
while at high recall levels VamanaWST and ThreeSplit are
the best methods, attaining about the same performance.
Additionally, for small filter fractions the Prefiltering base-
line is competitive with our methods, whereas for large
filter fractions the Postfiltering baseline is competitive.
Our methods achieve the largest speedups over baselines
in the medium filter fractions. We note that among our
methods, OptimizedPostfiltering performs the worst, which
we explain with the high worst case blowup of a 2-WST
(see Lemma 5.6). Finally, we note that the two vector
databases that we test against, VBASE and Milvus, are com-
pletely dominated by our naive baselines Prefiltering and
Postfiltering.

We also plot results on Adverse in Figure 3. Prefiltering
does well, as expected. Furthermore, VamanaWST of-
fers a good tradeoff between recall and query latency,
which makes sense because the query time guarantee
from Lemma 5.4 (assuming Vamana also does well for
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Figure 2: Comparison of Pareto frontiers of all methods on window search with different filter fractions on Deep using 16 threads. Up
and to the right is better. On medium filter fraction settings, our methods achieve orders of magnitude more queries per second than the
baselines at the same recall levels. Points along the Pareto frontier are denoted by circles for baseline methods and X’s for our methods.

0 0.5 0.9 0.99
0.999

0.9999

Recall

0

5000

10000

15000

20000

25000

30000

Qu
er

ie
s P

er
 S

ec
on

d

Baseline: Prefiltering
Baseline: Postfiltering
Baseline: Milvus
Baseline: VBASE

Three Split
Optimized Postfiltering
Super Postfiltering

Vamana WST

Figure 3: Comparison of window search methods on Adverse.
Up and to the right is better. VamanaWST and ThreeSplit achieve
a good recall vs. latency tradeoff, but besides the Prefiltering
baseline all of the other methods are unable to achieve a reasonable
recall. All methods are run with 16 threads.

top-10 ANN) holds for any query distribution, even an ad-
versarial one. However, all of the methods that rely solely
on postfiltering, as well as the other baselines, fail to achieve
meaningful recall. For the postfiltering methods, this result
is unsurprising: the index that gets selected for postfiltering
has many points that do not meet the query’s filter con-
straints, and by construction these points are frequently
closer to the query than the entire target cluster. The beam
search then has to expand over many near neighbors to reach
points meeting the filter constraint, at which point the accu-
racy of the beam search is likely low. Surprisingly, although
ThreeSplit does use postfiltering as a subroutine, it is able

to achieve similar performance to VamanaWST; this may
be because after querying for the indices that make up the
center of the label range (which is not postfiltering), the
label ranges that are left on each side are typically much
smaller.

We also include speedups of our best method (the best of
VamanaWST, OptimizedPostfiltering, SuperPostfiltering,
and ThreeSplit) over the best baseline method on filter frac-
tions i = 20, . . . , 2−11 on all datasets in Table 3 at a recall
level of 0.95, and we include the same table at additional
recall levels in Appendix D. These reinforce our findings
in Figure 2 across other datasets; at a 0.95 recall level, we
achieve up to a 75X speedup on Deep, up to a 16X speedup
on SIFT, up to a 9X speedup on GloVe, and up to a 17X
speedup on Redcaps.

Index Memory and Construction Time. Table 4 and
Table 5 show the construction time and memory sizes
for a single Vamana index (for Postfiltering), a 2-WST
with Vamana indices at each node (for VamanaWST,
OptimizedPostfiltering, and ThreeSplit), and the index for
SuperPostfiltering. We also show the memory for just the
dataset, which is exactly how much memory Prefiltering
needs (the build for Prefiltering is just a sort and takes less
than a few seconds across all datasets). We see that the 2-
WST takes about 3–8 times as much memory as a single Va-
mana index, depending on the dataset, whereas the index for
SuperPostfiltering takes about 5–14 times as much memory
as a single Vamana index. The construction times show a
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Table 3: Speedup of our best method over the best baseline, restricted to hyper-parameter settings that yield at least 0.95 recall. All
methods are run with 16 threads. We show a speedup across all filter fractions smaller than 2−1 on all datasets. We show up to a 75×
speedup on medium filter fractions.

Dataset 2−11 2−10 2−9 2−8 2−7 2−6 2−5 2−4 2−3 2−2 2−1 20

Deep 10.49 18.46 35.65 61.21 77.55 24.28 9.35 2.67 1.46 1.39 0.75 0.77
SIFT 1.35 1.88 3.05 4.87 8.68 16.51 11.26 4.46 2.26 1.28 0.90 0.92
GloVe 1.90 2.27 2.70 3.77 5.02 6.19 9.60 7.62 2.34 1.52 0.92 0.92
Redcaps 2.31 3.33 5.47 7.78 10.07 17.22 3.94 3.64 1.75 1.73 0.90 0.90

Table 4: Build times for different indexing methods across all
datasets, rounded to the nearest unit. Index construction was done
using 80 threads.

Dataset Vamana 2-WST Super
SIFT 1 m 8 m 14 m
GloVe 3 m 17 m 28 m
Deep 17 m 2 h 4 h
Redcaps 2 h 7 h 19 h
Adverse 3 m 23 m 41 m

Table 5: Index sizes for different indexing methods on all datasets,
rounded to the nearest 10th of a GB. Note that prefiltering takes
just the memory of the original dataset. The ”Raw” column is the
size of just the dataset.

Dataset Raw Vamana 2-WST Super
SIFT 0.5 GB 1.0 GB 4.7 GB 7.6 GB
GloVe 0.5 GB 1.1 GB 5.6 GB 9.5 GB
Deep 3.6 GB 6.8 GB 53.2 GB 94.6 GB
Redcaps 23 GB 27.1 GB 79.2 GB 127 GB
Adverse 0.8 GB 0.9 GB 4.6 GB 7.4 GB

similar increase across methods, with a 5–10X increase in
build time from Vamana to 2-WST and a 10–20X increase
from Vamana to SuperPostfiltering. Finally, we note that
while the larger datasets do take signficantly longer to build,
we are using a large beam search construction buffer of 500
in order to vary as few hyper-parameters as possible, and a
smaller buffer size may give faster build times with minimal
loss in recall.

Varying β. A larger branching factor β decreases the build
time and memory footprint of a VamanaWST index by re-
ducing the number of levels in the tree and thus reducing the
number of graphs that are built (see Figure 9 in Appendix D
for a plot showing the exact reduction in memory and build
time as we scale β). However, as shown in Figure 4, this
comes at the cost of a reduction in recall and latency. These
results are substantially the same across different filter frac-
tions; see Figure 10 in Appendix D for experiments with
more filter fractions.

7. Conclusion
We identify window search as an important and overlooked
search problem. The methods we present for solving win-
dow search give a significant speedup over the state of the
art, have strong theoretical guarantees, and are an important
step towards ensuring vector databases efficiently support a
full range of necessary embedding search operations.
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Figure 4: Pareto curves of recall vs. throughput on the SIFT dataset
for a filter fraction of 2−1 and varying branching factors β for
VamanaWST. Up and to the right is better. All trials are run with
16 threads.
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A. Proofs
Lemma A.1. Algorithm 1 instantiated with a “slow preprocessed” α-Vamana graph runs in time

O

(
1

1− β−2
N3

)
= O(N3)

and returns a β-WST of memory
O
(
(4α)δ log(∆)N logβ N

)
.

Proof. As stated in the main text, if we have some function parameterized by the dataset and subset size O(Af (D,m)),
then this function evaluated on all nodes of Algorithm 1 is

O

logβ N∑
j=0

βjAf (D,N · β−j)

 . (1)

If Af is of the form Cmρ for ρ ≥ 1 and for some constant C depending on D, then this is equivalent to:

= O

CNρ

logβ N∑
j=0

βj−jρ


= O

CNρ

logβ N∑
j=0

(β1−ρ)j


=

{
O(CNρ logβ N) if ρ = 1

O
(
CNρ 1−N1−ρ

1−β1−ρ

)
= O(( 1

1−β1−ρ )CNρ) if ρ > 1

Determining the memory of the index returned by Algorithm 1 is equivalent to determining the memory of all nodes built on
Line 5 throughout the recursion. Similarly, as long as these calls take longer than constant time, they are the computational
bottleneck of the recursion. Thus, we can plug the Vamana build time and memory from (Indyk & Xu, 2023) into these
results to get the build time and memory of a Vamana WST.

The slow preprocessing version of Vamana takes O(N3) for construction time and takes up O(N(4α)δ log∆) space,
so plugging into these results we have that a β-WST tree with a slow preprocessing Vamana implementation takes
O( 1

1−β−2N
3) = O(N3) time to build and has memory size O((4α)δ log(∆)N logβ N).

Theorem 5.2. If A can build an index that answers c-ANN queries on an arbitrary size m subset of D with query time
O(Aq(D,m)), and a distance computation in V takes d work, then Algorithm 2 solves the c-approximate window search
problem with running time

O

β logβ(N)d+ β

logβ N∑
j=0

Aq(D,N · β−j)

 .

Proof. First, we will show that Algorithm 2 solves the c-approximate window search problem. Then, we will show that it
solves it in the given running time.

ALGORITHM 2 SOLVES THE c-APPROXIMATE WINDOW SEARCH PROBLEM

First, we establish correctness and completeness of the evaluated points, i.e., that every point returned has a valid label, and
that all points that meet the valid label are ”evaluated” on either Line 4 or Line 6.

For correctness, note that if a point is returned on Line 4, by Definition 3.2 it has a label value in (a, b). Similarly, since a
point returned on Line 6 is in D and by the if statement we know that all points in D have a label in (a, b), a point returned
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on Line 6 has a label value in (a, b). Any point returned by Line 13 is an argmin over points returned in one of these two
cases, so we are guaranteed that the overall point y returned has ℓ(y) ∈ (a, b).

For completeness, first consider some call to Algorithm 2 with T = (index, (children, sizes), S). By assumption, N is a
power of β, so we will proceed inductively over |S| equal to powers of β. Let us first consider any S such that |S| = 1. If
x ∈ S(a,b), then it will be evaluated on Line 4. Now we assume that for |S| = βn, if x ∈ S, then a call to Query with the
tree corresponding to S will evaluate x. For all sets S of size βn+1 that contain some x, if Line 4 or Line 6 is executed, then
we evaluate x. Otherwise, by construction (Line 12 in Algorithm 1) the children subsets Si completely partition S, so x is in
some Si with |Si| = βn, and so by our inductive hypothesis x will be evaluated when we call query on children[i].

We now show that a c-approximate window-filtered nearest neighbor is returned for some (possible recursive) call to Query.
Because of our correctness guarantee, at some point q∗ will be evaluated on Line 4 or Line 6. If q∗ is evaluated on Line 4,
then because q∗ is the closest point to q in all of D(a,b), it will also be the closest point to q in S(a,b) ⊂ D(a,b), so it will get
returned by the argmin (and q∗ is trivially a c-approximate window filtered nearest neighbor). If q∗ is evaluated on Line 6,
then by the guarantee of the c-ANN algorithm A, some point y will be returned that is a c-ANN to q on S(a,b). Because q∗

is also in S(a,b), this implies that distV (q, y) ≤ c · distV (q, q
∗), so y is also a c-approximate window filtered nearest

neighbor.

Finally, we show that if any instance of a call to Query finds a c-approximate window filtered nearest neighbor, then the
overall algorithm will return a c-approximate window filtered nearest neighbor. Consider the case that a valid c-approximate
window filtered nearest neighbor y is returned by Line 4 or Line 6. If this is not a top-level call to Query, then Query was
called on Line 11, so the point y′ that gets returned will also be evaluated in the argmin on Line 13, and a point y′ will
be returned from Line 13 that is in D(a,b) (by our correctness result) and has d(q, y′) ≤ d(q, y) ≤ c · d(q, q∗). Thus by
transitivity, y′ is also a c-approximate window filtered nearest neighbor for q, and inductively the point y′′ that gets returned
by the original top-level Query call will be a c-approximate window filtered nearest neighbor.

ALGORITHM 2 RUNNING TIME

We will examine each level of the tree built by Algorithm 1 as Algorithm 2 traverses it, i.e., the nodes with |S| = N ,
|S| = N/β, |S| = N/β2, . . . , |S| = β, |S| = 1 (the nodes with |S| = 1 are just the index = NULL case).

At a high level, this analysis is similar to B-ary segment or Fenwick trees (Pibiri & Venturini, 2021), which have O(β logβ N)
query time and query at most O(β) indices per level. The overall idea for our analysis is to show that Algorithm 2 will run
an ANN search on at most 2β − 2 indices per level.

First, we note that our algorithm has a “one time evaluation guarantee”: if we execute an ANN search (Line 6) or an exact
search (Line 4) on some subset S, then we did not execute an ANN search or exact search on any parent of S (since then we
never would have reached it recursively), so every point in S (and therefore every point in D(a,b)) is evaluated just once.

Now consider the largest j such that there exists some set S in the tree of size βj such that S ⊂ D(a,b). In other words, S is
the largest set that we built an index for and that entirely consists of points within the filtered dataset corresponding to the
query. There may be multiple sets of size βj within D(a,b).

Let all sets of size βj be ordered such that each set’s labels are strictly less than the next set, and let these sets be indexed by
{Si}. Let Sfirst be the first set in this ordering that is a subset of D(a,b) and Slast be the last set in this ordering that is a
subset of D(a,b).

By completeness, every point in Sfirst, . . . , Slast is evaluated at some level, so the recursive traversal must go through
Sfirst, . . . , Slast, and since each of these sets is a subset of D(a,b), we will run the ANN search on Line 6 on each of
Sfirst, . . . , Slast.

By construction, every β sets in {Si} are partitions of a set from level j + 1 (e.g., sets {S1, . . . , Sβ}, {Sβ+1, . . . , S2β}, . . .).
Thus, any subsequence of {Si} that is of length ≥ 2β − 1 must have at least one complete partition of a set from level
j + 1. Since all of Sfirst, . . . , Slast are subsets of D(a,b), by the one time evaluation guarantee, we know that their parents
cannot be subsets of D(a,b) (since then in the recursive traversal, we would have run an ANN search on their parent). Thus,
Sfirst, . . . , Slast cannot contain a complete partition of a set from level j + 1, so the list Sfirst, . . . , Slast contains fewer
than 2β − 1 sets, or equivalently last− first+ 1 ≤ 2β − 2.

We also know that at level j, there are at most two more sets, Sfirst−1 and Slast+1, that have a non-empty intersection with
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D(a,b) (these are the sets that potentially contain points with labels just larger and just smaller than a and just larger and just
smaller than b).

This leads to our inductive hypothesis, which has three claims:

1. For all levels with j′ ≤ j (i.e., with |S| = βj′), there can be at most two sets that have a non-empty intersection with
D(a,b) that are not fully evaluated (i.e., that we recurse into).

2. No set that we recurse into or evaluate on level j′ ≤ j is a superset of D(a,b).

3. We will run the ANN search on Line 6 at most 2β − 2 times on each level.

We have just shown the base case for j′ = j. Now consider some 0 ≤ j′ < j. By part 1 of the inductive hypothesis, we
recurse into 2 or fewer sets on level j′ + 1 that have a nonempty intersection with D(a,b). For each of these sets, at most
β − 1 of its children will be a subset of D(a,b) (if all β of its children were a subset of D(a,b), then the set itself would have
been a subset of D(a,b) and would have been fully evaluated), and thus at most 2(β − 1) = 2β − 2 ANN searches are run on
level j′. This proves part 3 of our inductive claim. Furthermore, since each of the at most two sets that we are recursing into
are not a superset of D(a,b) by inductive claim 2, there can only be at most one side of each of their label ranges that expand
beyond (a, b). Thus, when we partition each of these sets, only one child of each of the sets can have a label range that
overlaps (a, b); the rest will either have labels entirely in (a, b) or entirely outside of (a, b). Thus there will be at most two
sets that have a nonempty intersection with D(a,b) that are not fully evaluated, proving inductive claim 1. Finally, because
each set that we recurse into on level j′ is not a superset of D(a,b), all of the children we recurse into that are subsets of
these sets are also not supersets of D(a,b), proving inductive claim 2.

We do work in Algorithm 2 on Line 6, the loop on Line 8, and Line 13 (we do not do work on Line 4 because the argmin is
just over one point; the argmin is necessary for the more general case where N is a not a power of j and the leaf nodes may
have more than one point). As a direct result from the first part of our inductive claim, we have that we will only make it to
the loop on Line 8 and the argmin on Line 13 twice for each of the logβ(N) levels. The time complexity for the loop is
O(β), and the time complexity for Line 13 is O(βd) because the maximum size for the candidate list is β, and for each
candidate in the list we spend O(d) doing a distance computation. Also, from the third part of our inductive claim, we have
that we call ANN search on an index of size m = βj at most 2β − 2 times for all j ∈ 1, . . . , logβ(N). Finally, again from
the third part our inductive claim, we evaluate at most 2β − 2 sets of size 1, so we evaluate Line 4 a maximum of 2β − 2
times. This gives the following total runtime for Algorithm 2:

O

logβ(N) ∗ (β + βd) + (2β − 2) ∗
logβ(N)∑

j=0

Aq(D,N ∗ β−j)

 = O

β logβ(N)d+ β ∗
logβ(N)∑

j=0

Aq(D,N ∗ β−j)

 .

Lemma 5.3. If A is a c-ANN algorithm with Aq(D,m) = O(Cdmρ) for ρ ∈ (0, 1) for some constant C depending on D,
the running time of Algorithm 2 is

O

(
CβdNρ

1− β−ρ

)
.

If A is a c-ANN algorithm with O(Aq(D,m)) = O(Aq(D)), then the running time of Algorithm 2 is

O
(
β logβ(N)[d+Aq(D)]

)
.
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Proof. For the first result, we have via substitution into Theorem 5.2:

O

β logβ(N)d+ β

logβ N∑
j=0

Aq(D,N · β−j)


= O

β logβ(N)d+ β

logβ N∑
j=0

CdNρ · β−jρ


= O

β logβ(N)d+ CβdNρ

logβ N∑
j=0

β−jρ)


= O

(
β logβ(N)d+ CβdNρ 1

1− β−ρ

)
= O

(
CβdNρ

1− β−ρ

)
.

and for the second result, we have via substitution into Theorem 5.2:

O

β logβ(N)d+ β

logβ N∑
j=0

Aq(D,N · β−j)


= O

β logβ(N)d+ β

logβ N∑
j=0

Aq(D)


= O

(
β logβ(N)d+ β logβ(N)Aq(D)

)
= O

(
β logβ(N)(d+Aq(D))

)
.

Lemma 5.4. Algorithm 2 instantiated with a “slow preprocessed” α-Vamana graph solves the c-approximate window
search problem in any metric space on a dataset with doubling dimension δ and aspect ratio ∆ in running time

O

(
β logβ(N)

[
d+ logα

(
∆

(α−1)(c−α+1
α−1 )

)
(4α)δ log∆

])
.

Proof. (Indyk & Xu, 2023) consider greedy search on an α-Vamana graph built on a dataset D with ”slow preprocessing.”
They show that the search procedure is guaranteed to return a (α+1

α−1 + ϵ)-ANN in O(logα(
∆

(α−1)ϵ )) steps, each of which
take O((4α)δ log∆) time. See Appendix C for an explanation of α and a complete overview of Vamana.

We can multiply together these two bounds on the running times to get an upper bound on the running time of the entire
procedure:

O

(
logα

(
∆

(α− 1) ϵ

)
(4α)

δ
log∆

)
= O

(
logα

(
∆

(α− 1) (c− α+1
α−1 )

)
(4α)

δ
log∆

)
.

Note the equality is due to the fact that c = α+1
α−1 + ϵ.

Now consider some S ⊂ D. We claim that the doubling dimension δ and the aspect ratio ∆ for S are no greater than for
D. (Indyk & Xu, 2023) describe doubling dimension as the the minimum value δ such that for any ball of radius r centered
at some point x in D, 2δ balls of radius r/2 can be arranged to cover all points in D ∩ B(x, r) (many previous works
use the same or an extremely similar definition of doubling dimension (see, e.g., (Clarkson, 1997; Krauthgamer & Lee,
2004)). Because S is a subset of D, any covering of D ∩B(x, r) is also a covering of S ∩B(x, r) for all x in D (and also
trivially therefore all x in S ⊂ D), so we know that the doubling dimension of S is at most the doubling dimension of D.
Similarly, (Indyk & Xu, 2023) use the aspect ratio of D, which is

maxx1,x2∈D,x1 ̸=x2
distV (x1, x2)

minx1,x2∈D,x1 ̸=x2 distV (x1, x2)
.

15



Approximate Nearest Neighbor Search with Window Filters

= Range Ri
= Possible Query Ranges

= Smallest Range Containing Query

0, ..., N

Figure 5: Illustration of structure of ranges for Theorem 5.7.

For any subset S of D, let the two points corresponding to the smallest distance be xsmall and ysmall and the two points
corresponding to the largest distance be xlarge and ylarge. Since S ⊂ D, xsmall, ysmall are also in D, so the smallest
distance in D is less than or equal to distV (xsmall, ysmall), and similarly xlarge, ylarge are also in D, so the largest
distance in D is greater than or equal to distV (xlarge, ylarge). Thus compared to ∆, the numerator of ∆S is no larger and
the denominator is no smaller, and so ∆S ≤ ∆. In other words, the aspect ratio of any subset S is less than the aspect ratio
∆ of D.

Because our running time result above is monotonic in ∆ and δ, and the other parameters α and c are constant, we have
that c-ANN search on any subset S ⊂ D is upper bounded by the running time on the entire dataset D. Thus, since
O(Aq(D,m) = Aq(D)), we can now plug in to Lemma 5.3, giving us our final result.

Lemma 5.6. The ranges corresponding to a β-WST have worst case blowup factor B = N/2 = O(N) and cost ≤
N⌈logβ(N)⌉ = O(N logβ(N)).

Proof. To see that the worst case blowup factor is O(N), consider the first split of D into children Si for i = 1, . . . β. These
Si correspond to label ranges {[ai, bi]}, where a0 = 0, blast = N , and each ai = bi−1 + 1. Consider the range (b1, a2).
This range is not a subset of any Si. Furthermore, because all smaller ranges further down the tree are strict subsets of some
Si, this range is also not a subset of any smaller range. Thus the smallest range that Si is a subset of is the top level range,
so a β-WST has a worst case blowup of N

2 = O(N).

For the cost, we note that the label ranges of each level of the tree (except possibly the last, since it might be only partially
full) are a partition of {1, . . . , N}, so the sum of bi − ai is equal to N for all levels but the last. There are ⌊logβ(N)⌋ levels,
and one possibly non-full level at the bottom of the tree which is smaller than or equal to a full partition of {1, . . . , N} and
so has a cost less than or equal to N . Thus the total cost is bounded by ⌈logβ(N)⌉ ·N .
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Theorem 5.7. For any N and for any γ > 1, there exists an R with worst case blowup factor 2γ that has cost at most
N
(
2 logγ(N) + 1

)
.

Proof. At a high level, our approach is to devise a strategy that can ensure all sets of size m have a blowup factor of 2. We
will then repeat this strategy for m = γj for all possible powers of j, which will ensure that all possible ranges have a small
worst case blowup factor. For a diagram of this structure see Figure 5.

First, consider the problem of choosing ranges Ri such that every range of size m is a subset of some Ri with blowup factor
equal to 2. One approach is to choose ranges of

cover(m) = {[jm+ 1, (j + 2)m] | j ∈ Z≥0, (j + 2)m ≤ N} ∪ [N − 2m+ 1, N ].

The ends of the ranges start at 2m and go until N by multiples of m, for a total of ⌊N
m⌋ − 1 ranges. These, plus the

additional range [N − 2m+ 1, N ], lead to a total of ⌊N
m⌋ ranges created using this strategy. Each range has width 2m, so

the arrangement has cost ⌊
N

m

⌋
· 2m ≤ 2N.

We now show that these ranges Ri do indeed cover all ranges of size m with blowup factor equal to 2. Consider some range
of length m starting at a. If a is within the first m+ 1 integers in a range, then it is entirely within the range. Therefore, we
are interested in the union of the first m+ 1 integers in all of the ranges, or⋃
(j+2)m≤N

{[jm+ 1, (j + 1)m+ 1]}
⋃

[N−2m+1, N−m+1] ⊃ [1, N−2m]
⋃

[N−2m+1, N−m+1] = [1, N−m+1].

This is all possible starting points for a range of length m, so Ri does indeed cover all ranges of size m. Furthermore, each
range is of size 2m, so the blowup factor for these ranges of size m is 2.

Now consider R = {cover(γj) | j ∈ Z≥0, γ
j < N} ∪ (0, N). We have that

cost = ⌊logγ(N)⌋ · 2N +N

≤ 2N logγ(N) +N

= N
(
2 logγ(N) + 1

)
.

Furthermore, we now show that R has worst case blowup factor 2γ. Consider some range rq of size m. Consider the
minimum j such that γj is greater than m. Let us first consider the case when γj is less than N . Consider some range r of
size γj that contains rq. By the definition of cover(γj), there is some range of size 2γj that contains r and that therefore
contains rq. Furthermore, since this j is the minimum j such that γj > m, we have that m > γj−1. Thus the maximum
blowup factor for rq is less than 2γj/γj−1 = 2γ. In the case where γj ≥ N , the smallest containing range is (0, N). We
have that m > γj−1 ≥ N/γ, so N/m < γ and thus the blowup factor for rq is less than γ (and also less than 2γ).

B. ChatGPT Queries for RedCaps Query Generation
Queries were generated in two sessions with ChatGPT-4. The first consisted of the first query and the second query repeated
4 times. The second consisted of 100 examples copied from the first session and the third and four query. The first query:

I wish to run an experiment where I generate many possible text queries for my image search system. Can you help me generate
queries? I want you to make the queries casual, and be as varied and creative as possible. To the best of your ability, don’t
repeat yourself! Here are a few example queries: ”Funny cat memes” ”C++ coding joke” ”Vegan recipe with blueberries”.

Repeated second query:

Can you generate 100 more? And still make sure to be as creative and casual as possible, and don’t repeat things you’ve
already said! Additionally, try to use unique semantic and syntactic structure where possible.
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Third and fourth queries:

Try not to generate queries with locations in them, because I already have lot’s of those. Thank you!

and

Great, now I just need 100 more, again as little repeats as possible, be creative! These can be more ”internet” language, so
things like, e.g., ”funny cat memes.”

C. Vamana Primer
Vamana (Jayaram Subramanya et al., 2019) is an approximate nearest neighbor algorithm that builds a graph on the input
dataset D. The entire system from (Jayaram Subramanya et al., 2019), including checkpointing and error recovery, is called
DiskANN; Vamana is solely the in-memory ANNS component.

To construct the “slow-preproccessing” variant, which is the variant with theoretical guarantees from (Indyk & Xu, 2023), for
each point x, we first connect x to all points. We then sort all other points in the graph in terms of increasing distance from x.
Starting from the first point y in the list, we prune edges from x to all other points y′ where α·distV (y, y

′) ≤ distV (x, y).
We repeat this pruning process with the next closest unpruned point until we reach the end of the list; the unpruned points
are the neighbors of x.

To construct the “fast-preprocessing” variant, which is the variant used in practice, we start with an empty graph. We then do
a beam search query for the nearest neighbor for all points x ∈ D, twice, building up the graph as we go. For each search,
we record all points traversed in the beam search, along with the nearest neighbor if it was not found, and then add these
as neighbors to x. We then prune this list using the same heuristic we use for the “slow-preprocessing” variant, and also
enforce with a hard cutoff that there are at maximum degree number of neighbors.

A beam search of size B is a generalization of a greedy search. Given a query x, we start at a start node s and “explore”
s by adding neighbors of s to a queue. This queue consists of the closest B points to x we have seen so far, explored
or unexplored. We continually explore the closest unexplored node from the queue to x until all nodes in the queue are
explored. By increasing B, the beam search explores more points and is more likely to find a better nearest neighbor of x.
We do beam searches for “fast preprorocessing” index construction and for approximate nearest neighbor queries.

D. Experiments
D.1. Dataset License Information

SIFT, GloVE, and DEEP are released under an MIT license by the ANN benchmarks repository (Aumüller et al., 2020).
The original RedCaps license has a restriction to non-commercial use, so our modified Redcaps dataset is released under
the same restriction. Since we generated the Adverse dataset ourselves, we release it under an MIT license.

D.2. Pareto Frontiers

See Figure 6, Figure 7, and Figure 8 for full Pareto frontier plots for a representative sample of filter widths on all datasets
not included in the main text.

D.3. Comments on Memory and Performance

We expect our method to scale well to larger datasets because our theory predicts only a logβ N factor increase in memory
cost over a single Vamana index constructed on D. Our implementation also addresses memory size further by not
constructing tree nodes that represent subsets smaller than 1000 points and only storing the dataset D once. Figure 9 shows
the memory and construction time of a β-WST tree constructed for SIFT as we increase β. For large β, a β-WST tree has
an only slightly larger memory footprint (about 2X) than a single ANN index, and for the theoretical and implementation
reasons above we expect this trend to hold for larger datasets.

Finally, we run additional performance experiments. See Figure 10 for comparisons of varying β on SIFT across all filter
fractions, and see Table 6 for speedups of our best method over the best baseline across recall levels 0.8, 0.9, 0.99, and
0.995.
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Figure 6: Comparison of Pareto frontiers of all methods on window search with different filter fractions on GloVe. Up and to the right
is better. On the medium filter fraction settings, our methods achieve multiple orders of magnitude more queries per second than the
baselines at the same recall levels. All methods are run with 16 threads.

Table 6: Speedup of our best method over the best baseline, restricted to hyper-parameter settings that yield the recall in parenthesis in the
dataset column. N/A means that none of our methods achieved that recall (on Redcaps this is due to poor Vamana graph quality).

Dataset 2−11 2−10 2−9 2−8 2−7 2−6 2−5 2−4 2−3 2−2 2−1 20

Deep (0.8) 10.49 18.46 35.65 65.40 84.88 26.23 10.23 4.59 2.37 1.33 0.78 0.79
SIFT (0.8) 1.35 1.88 3.05 4.87 8.68 16.51 11.26 4.92 2.47 1.39 0.91 0.94
GloVe (0.8) 1.90 2.56 3.29 4.90 8.82 16.37 10.57 4.77 1.49 0.90 0.90 0.92
Redcaps (0.8) 5.10 7.95 11.86 29.94 36.46 20.69 5.89 2.59 3.27 1.14 0.88 0.88
Deep (0.9) 10.49 18.46 35.65 65.40 84.88 26.23 10.23 4.26 2.18 1.23 0.75 0.76
SIFT (0.9) 1.35 1.88 3.05 4.87 8.68 16.51 11.26 4.92 2.47 1.39 0.91 0.94
GloVe (0.9) 1.90 2.56 3.29 4.46 5.38 9.97 6.96 4.04 1.87 1.57 0.90 0.90
Redcaps (0.9) 3.18 5.38 8.92 18.55 19.94 10.46 4.33 1.87 1.70 1.55 0.89 0.89
Deep (0.99) 6.80 11.77 22.05 40.06 50.55 9.86 4.33 3.70 1.58 1.47 0.75 0.75
SIFT (0.99) 1.35 1.79 2.88 4.53 8.04 10.10 6.73 2.88 1.61 1.01 0.88 0.91
GloVe (0.99) 1.90 1.99 2.13 1.96 3.03 4.02 6.00 5.71 4.66 2.67 0.95 0.92
Redcaps (0.99) 1.30 1.08 1.50 1.32 1.36 1.87 3.11 0.86 1.82 3.75 N/A N/A
Deep (0.995) 6.80 11.77 22.05 26.07 32.98 11.31 9.91 2.41 1.98 1.49 0.75 0.78
SIFT (0.995) 1.35 1.79 2.88 3.20 5.51 10.10 6.73 2.16 1.98 0.96 0.89 0.88
GloVe (0.995) 1.90 1.99 1.63 1.96 2.56 3.28 3.93 4.64 4.58 2.97 0.94 0.93
Redcaps (0.995) N/A 0.30 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
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Figure 7: Comparison of Pareto frontiers of all methods on window search with different filter fractions on SIFT. Up and to the right
is better. On the medium filter fraction settings, our methods achieve multiple orders of magnitude more queries per second than the
baselines at the same recall levels. All methods are run with 16 threads.
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Figure 8: Comparison of Pareto frontiers of all methods on window search with different filter fractions on Redcaps. Up and to the right
is better. On the medium filter fraction settings, our methods achieve multiple orders of magnitude more queries per second than the
baselines at the same recall levels. All methods are run with 16 threads.
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Figure 9: Plots of index size and build time for varying branching factors β for VamanaWST on SIFT. The indices were built using 96
threads. Smaller values are better.
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Figure 10: Pareto curves of recall vs. throughput on SIFT for varying window sizes and branching factors β for VamanaWST. The
experiment was run using 16 threads. Up and to the right is better.
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