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Abstract
Designing deep neural network classifiers that
perform robustly on distributions differing from
the available training data is an active area of
machine learning research. However, out-of-
distribution generalization for regression—the
analogous problem for modeling continuous
targets—remains relatively unexplored. To tackle
this problem, we return to first principles and
analyze how the closed-form solution for Ordi-
nary Least Squares (OLS) regression is sensitive
to covariate shift. We characterize the out-of-
distribution risk of the OLS model in terms of
the eigenspectrum decomposition of the source
and target data. We then use this insight to pro-
pose a method called Spectral Adapted Regres-
sor (SpAR) for adapting the weights of the last
layer of a pre-trained neural regression model
to perform better on input data originating from
a different distribution. We demonstrate how
this lightweight spectral adaptation procedure can
improve out-of-distribution performance for syn-
thetic and real-world datasets.

1. Introduction
Despite their groundbreaking benchmark performance on
many tasks—from image recognition and natural language
understanding to disease detection (Balagopalan et al., 2020;
Krizhevsky et al., 2017; Devlin et al., 2019)—deep neural
networks (DNNs) tend to underperform when confronted
with data that is dissimilar to their training data (Geirhos
et al., 2020; D’Amour et al., 2022; Arjovsky et al., 2019;
Koh et al., 2021).

Understanding and addressing distribution shift is critical
for the real-world deployment of machine learning (ML)
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systems. For instance, datasets from the WILDS benchmark
(Koh et al., 2021) provide real-world case studies suggest-
ing that poor performance at the subpopulation level can
have dire consequences in crucial applications such as mon-
itoring toxicity of online discussions, or tumor detection
from medical images. Furthermore, DeGrave et al. (2021)
demonstrated that models trained to detect COVID-19 from
chest X-Rays performed worse when evaluated on data gath-
ered from hospitals that were not represented in the training
distribution. Unfortunately, poor out-of-distribution (OOD)
generalization remains a key obstacle to broadly deploying
ML models in a safe and reliable way.

While work towards remedying these OOD performance
issues has been focused on classification, predicting con-
tinuous targets under distribution shift has received less
attention. In this paper, we present a lightweight method
for updating the weights of a pre-trained regression model
(typically a neural network, in which case only the fi-
nal layer is updated). This method is motivated by a
theoretical analysis that yields a concrete reason, which
we call Spectral Inflation, to explain why regressors may
fail under covariate shift, a specific form of distribution
shift. Through experiments on synthetic, tabular, and im-
age data, we show that our novel post-processing method
consistently improves the OOD performance of regression
models. We release the code for these experiments at
https://github.com/btleyre/spar.

2. Background
Distribution shift problems involve training on inputs X and
target labels Y sampled from P (X,Y ), then evaluating the
resulting model on a distinct distribution Q(X,Y ). Several
learning frameworks consider different forms of distribution
shift, depending on the structure of P and the degree of
prior knowledge about Q that is available. Within this work,
we assume access to a set of unlabelled examples from the
target distribution Q.

We also assume the distribution shift is due to covariate shift,
where the conditional distribution over the evaluation data
Q(Y |X) is equal to the conditional distribution over the
training data P (Y |X), but the input marginals P (X) and
Q(X) differ. This broadly studied assumption (Sugiyama
et al., 2007; Gretton et al., 2009; Ruan et al., 2022) states
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that the sample will have the same relationship to the label
in both distributions.

3. Robust Regression by Spectral Adaptation
Least-squares regression has a known closed-form solution
that minimizes the training loss, and yet this solution is not
robust to covariate shift. In this section we show why this
is the case by characterizing the OOD risk in terms of the
eigenspectrum of the source and (distribution-shifted) target
data. We then use insights from our theoretical analysis
to derive a practical post-processing algorithm that uses
unlabeled target data to adapt the weights of a regressor pre-
viously pre-trained on labeled source data. The adaptation
is done in the spectral domain by first identifying subspaces
of the target and source data that are misaligned, then pro-
jecting out the pre-trained regressor’s components along
these subspaces. We call our method Spectral Adapted
Regressor (SpAR).

3.1. Analyzing OLS Regression Under Covariate Shift

We begin with the standard Ordinary Least Squares (OLS)
data generating process (Murphy, 2022). Rows of the input
data matrix, X ∈ RN×D, are i.i.d. samples from an un-
known distribution P over RD; these can be any representa-
tion, including one learned by a DNN from training samples.
The rows of the evaluation input data, Z ∈ RM×D, are gen-
erated using a different distribution Q over RD. Analyzing
final layer representations is useful as DNN architectures
typically apply linear models to these to make predictions.
Targets depend on X and w∗, a labeling vector in RD, and
a noise term1 ϵ. The targets associated with the test data Z
use the same true labeling vector w∗ but do not include a
noise term as it introduces irreducible error:

X ∼ PN , YX = Xw∗ + ϵ, ϵ ∼ N (0, σ2I), (1)

Z ∼ QM , YZ = Zw∗.

The estimated regressor ŵ that minimizes the expected
squared error loss has the following form (Murphy, 2022),
using X†, the Moore-Penrose Pseudoinverse of X , and its
Singular Value Decomposition (SVD), X† = VXD†

XU⊤
X :

argmin
w
E[∥YX−Xw∥22] = ŵ = X†YX = VXD†

XU⊤
XYX .

(2)
We refer to ŵ as the “OLS regressor” or “pseudoinverse
solution”. Our primary expression of interest will be the ex-
pected loss of ŵ under covariate shift, which is the squared
error between the true labels YZ and the values predicted by

1We assume after the design matrices X and Z are sampled
that they are fixed, so the only random variables in our analysis are
those in the label noise vector ϵ.

our estimator ŵ. Specifically, we will analyze the expres-
sion:

RiskOLS−OOD(ŵ) = E[∥YZ − Zŵ∥22]. (3)

In addition to using the SVD of X = UXSXV ⊤
X , we can

also use the SVD of the target data Z = UZSZV
⊤
Z . We

define λx,i, λz,i to be the ith singular values of X and Z,
respectively, and ex,i, ez,i their corresponding unit-length
right singular vectors. We will also refer to λ2

x,i, λ
2
z,i and

ex,i, ez,i as eigenvalues/eigenvectors, as they comprise the
eigenspectrum of the uncentered covariance matrices X⊤X
and Z⊤Z. We use the operator Rows() to represent the
set containing the rows of a matrix. The OOD risk of ŵ is
presented in the following theorem in terms of interaction
between the eigenspectra of X and Z:
Theorem 3.1. Assuming the data generative procedure de-
fined in Equations 1, and that w∗ ∈ Span(Rows(X)) and
Rows(Z) ⊂ Span(Rows(X)), the OOD squared error loss
of the estimator ŵ = X†Y is equal to:

E[∥YZ−Zŵ∥22] = σ2
D∑
i=1

D∑
j=1

λ2
z,j

λ2
x,i

⟨ex,i, ez,j⟩21[λx,i > 0].

This decomposition of the OLS test loss reveals key compo-
nents of the loss: if the samples in Z present a large amount
of variance along the vector ez,j , resulting in a large eigen-
value λ2

z,j , but the training set X displays very little variance
along vectors at very similar angles, ŵ will incur high loss.
We refer to this scenario, when an eigenvector demonstrates
this spike in variance at test time, as Spectral Inflation. An
illustration of Spectral Inflation and its consequences are
depicted in Figure 1, and we present evidence of Spectral
Inflation occurring in DNN representations in a real-world
dataset in Figure 2. The analysis follows from the cyclic
property of the trace operator, which allows us to isolate the
noise term ϵ. This, in turn, enables a decomposition of the
remaining expression in terms of the two eigenspectra of
Z⊤Z and X⊤X . A full derivation of this decomposition is
available in Appendix B.

3.2. Spectral Adaptation Through Projection

We now focus on identifying the eigenvectors occupying
the rows of V ⊤

Z that contribute significantly to the expected
loss described in Theorem 3.1, and use them to construct a
subset S ⊆ Rows(V ⊤

Z ). We then use S to construct a new
regressor wproj, by projecting ŵ onto the subspace spanned
by the eigenvectors in Sc, the complement of S:

wproj = ŵ −
∑
e∈S

⟨ŵ, e⟩e. (4)

This regressor is not influenced by the Spectral Inflation
displayed along each eigenvector in S, as wproj exists in a
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Figure 1. Ordinary Least Squares Regression under Covariate Shift. (a) Points in this illustration are 2D input samples in the training
set X (in-distribution (ID)) and test set Z (out-of-distribution (OOD)). The training data demonstrates nearly zero vertical variance, while
the test data varies significantly in this direction. (b) Samples in Z shaded according to their true, noiseless labels Zw∗. (c) Samples in Z
shaded according to their OLS predictions Zŵ. Crucially, to minimize training risk, OLS learns to weigh the vertical component highly
causing erroneous predictions OOD. (d) Illustration of SpAR, which identifies a spectral subspace S where train/test variance differ the
most, and projects it out. (e) Here the regressor created by SpAR ignores the direction with high variance and nearly recovers w∗. In (b, d,
e), Purple indicates ground truth test labels, while Blue indicates model predictions on test data.

subspace orthogonal to the subspace spanned by the vectors
in S. We can decompose the loss for this estimator wproj

into a sum over each eigenvector in Rows(V ⊤
Z ), where the

contribution of the eigenvector ez,j to the loss is determined
by whether that eigenvector is included in the set S. The fol-
lowing theorem expresses the expected OOD loss of wproj:

Theorem 3.2. Taking on the same assumptions as The-
orem 3.1, the regressor wproj constructed using a set
S ⊆ Rows(V ⊤

Z ) as defined in Equation 4, has the following
expected OOD squared error loss:

E[∥YZ − Zwproj∥22] =
∑

j,ez,j∈S

⟨w∗, ez,j⟩2λ2
z,j︸ ︷︷ ︸

Biasz,j

(5)

∑
j,ez,j∈Sc

σ2
D∑
i=1

λ2
z,j

λ2
x,i

⟨ex,i, ez,j⟩21[λx,i > 0]︸ ︷︷ ︸
Varz,j

.

The proof for this theorem is similar to the proof of Theorem
3.1 in that it uses the cyclic property of the trace to isolate
the noise term. We then use the fact that each ez,j ∈ S is an
eigenvector of Z⊤Z to further decompose the expression.
A full derivation is included in Appendix C. This case-like
decomposition of the loss motivates our definition of the two
different loss terms a single eigenvector ez,j can contribute
to the overall expected loss. For a given eigenvector ez,j
with associated eigenvalue λ2

z,j , we will incur its variance
loss if ez,j ̸∈ S, and its bias loss if ez,j ∈ S, where the
variance loss Varz,j and bias loss Biasz,j are defined as:

Biasz,j = ⟨w∗, ez,j⟩2λ2
z,j , (6)

Figure 2. Spectral Inflation. We use the PovertyMap-WILDS
dataset (Koh et al., 2021) to investigate how input spectra change
when a regressor trained on real-world data generalizes to (perhaps
shifted) test data. X and Z are composed of representations from
a DNN. Z represents data either from an in-distribution or out-of-
distribution test set. Varz,j , as defined in Equation 6, measures
the amount of Spectral Inflation—small amounts of training set
variation becoming large at test time—occurring along a given
test eigenvector. Because each test sample has a different number
of examples M , we normalize for a fair comparison. We see
that when Z is an out-of-distribution sample, much more spectral
inflation occurs than when we generalize to an in-distribution
sample.
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Varz,j = σ2
D∑
i=1

λ2
z,j

λ2
x,i

⟨ex,i, ez,j⟩21[λx,i > 0].

Varz,j is closely tied with the Spectral Inflation of an eigen-
vector, as Varz,j will be large if ez,j demonstrates Spectral
Inflation at test time. In this case if ez,j ̸∈ S, wproj will
have higher loss as a consequence of the label noise on the
training examples distributed along this eigenvector. On
the contrary, Biasz,j is determined by the cosine similarity
between the true labeling regressor w∗ and the eigenvec-
tor ez,j . High cosine similarity means that this eigenvector
makes a large contribution to determining a sample’s label.
If ez,j ∈ S and ez,j has a large cosine similarity to w∗,
wproj will incur a high amount of loss as it is orthogonal to
this important direction.

3.3. Projection Reduces Out-of-Distribution Loss

Thus far, we have presented a decomposition for the ex-
pected loss of an estimator that is equal to the pseudoinverse
solution ŵ projected into the ortho-complement of the span
of the set S ⊆ Rows(V ⊤

Z ). In this subsection, we present a
means for constructing the set S to minimize the expected
loss by comparing Varz,j and Biasz,j for each test eigen-
vector ez,j .

The ideal set S∗ ⊆ Rows(V ⊤
Z ) would consist solely of

the eigenvectors ez,j that have a greater variance loss than
bias loss. Formally, this set would be constructed using the
following expression:

S∗ =
{
ez,j : ez,j ∈ Rows(V ⊤

Z ),Varz,j ≥ Biasz,j
}
. (7)

The following theorem demonstrates that using the set S∗

would give us a regressor that achieves superior OOD per-
formance than any other regressor produced using this pro-
jection procedure (including ŵ, which uses S = {}).
Theorem 3.3. Under the same assumptions as Theorem
3.1, the regressor w∗

proj constructed as in Equation 4 using
the set S∗ (cf. Equation 7) can only improve on the OOD
squared error loss of any other projected regressor wproj

constructed as in Equation 4 using a set S ⊆ Rows(V ⊤
Z ):

E[∥YZ − Zwproj∥22] ≥ E[∥YZ − Zw∗
proj∥22]. (8)

3.4. Eigenvector Selection Under Uncertainty

Theorem 3.3 shows that a regressor based on the set S∗ has
better OOD performance. Finding S∗ would be easy if we
knew both Varz,j and Biasz,j for each test eigenvector ez,j .
While we can calculate Varz,j directly, Biasz,j requires the
true weight vector w∗, and so we can only estimate it using
the pseudoinverse solution ŵ:‘Biasz,j = ⟨ŵ, ez,j⟩2λ2

z,j = (w∗T ez,j + ϵ⊤X†⊤ez,j)
2λ2

z,j .
(9)

We fortunately have knowledge of some of the distribu-
tional properties of the dot product being squared: ⟨ŵ, ez,j⟩.
In particular, w∗⊤ez,j is a fixed but unknown scalar and
ϵ⊤X†⊤ez,j is the linear combination of several i.i.d. Gaus-
sian variables with zero mean and variance σ2.

ϵ⊤X†⊤ez,jλz,j ∼ N (0,Varz,j) (10)

⟨ŵ, ez,j⟩λz,j ∼ N (
√
Biasz,j ,Varz,j).

The fact that ‘Biasz,j is a random variable makes it difficult
to directly compare it with Varz,j . However, we can analyze
the behavior of ‘Biasz,j when Biasz,j is much larger than
Varz,j , and vice versa, in order to devise a method for
comparing these two quantities.

(Case 1): Biasz,j ≫ Varz,j . In this case, Biasz,j ≈‘Biasz,j . This is because w∗⊤ez,j will be much greater than
ϵ⊤X†⊤ez,j , which causes the former term to dominate in
the RHS of Equation 9. Therefore ‘Biasz,j ≫ Varz,j .

(Case 2): Varz,j ≫ Biasz,j . In this case, ‘Biasz,j ≈
(ϵ⊤X†⊤ez,j)

2λ2
z,j . This is because w∗⊤ez,j will be much

smaller than ϵ⊤X†⊤ez,j , which causes the latter term to
dominate in the RHS of Equation 9. Therefore, since Equa-
tion 10 indicates (ϵ⊤X†⊤ez,j)λz,j is a scalar Gaussian ran-
dom variable, we know the distribution of its square:‘Biasz,j ∼ Varz,j × χ2

df=1, (11)

where χ2
df=1 is a chi-squared random variable with one

degree of freedom. If CDF−1
χ2
df=1

is the inverse CDF of the
chi-squared random variable, then we have:

Pr(‘Biasz,j ≤ CDF−1
χ2
df=1

(α)×Varz,j) = α. (12)

By applying these two cases, we can construct our set S as
follows:

S =
{
ez,j : ‘Biasz,j ≤ CDF−1

χ2
df=1

(α)×Varz,j

}
. (13)

The intuition behind this case-by-case analysis is formalized
with the following proposition and lemma:

Proposition 3.4. Making the same assumptions as Theorem
3.1, for a given choice of α ∈ [0, 1], the probability that test
eigenvector ez,j is included in our set S as defined in 13:

Pr(ez,j ∈ S) = 1−Q 1
2

Ç 
Biasz,j
Varz,j

,
√

CDF−1
χ2
df=1

(α)

å
.

where Q 1
2

is the Marcum Q-function with M = 1
2 .

Lemma 3.5. Using the same assumptions as Proposition
3.4:

Pr(ez,j ∈ S)

Biasz,j
Varz,j

→∞
−−−−−−−→ 0, Pr(ez,j ∈ S)

Biasz,j
Varz,j

→0

−−−−−−→ α.
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Lemma 3.5 tells us that if we would incur significantly
higher OOD loss from including ez,j in S than excluding it,
then ez,j will not be included in S. Similarly, if we would
incur significantly higher OOD loss from excluding ez,j in
our set S than including it, then ez,j will be included in S.

3.5. Spectral Adapted Regressor

Creating wproj in this way yields SpAR, a regressor tailored
for a specific covariate shift (see Algorithm 1). Finally, this
procedure requires the the variance of the training label
noise, σ2. We use a maximum likelihood estimate of this
parameter (Murphy, 2022) from the training data.

SpAR takes as input a set of embedded train and test exam-
ples. Creating these representations is slightly less compu-
tationally expensive than simply performing inference on
these two datasets, and far less computationally expensive
than an additional training epoch and test set evaluation.
SpAR also requires SVD to be performed on X and Z,
which is polynomial in the number of samples. Importantly,
these additional computations only have to be performed a
single time for each unique evaluation set. This is a stark
contrast from other methods which require a computation-
ally taxing regularizer to be computed with every batch
(Ganin et al., 2016; Sun & Saenko, 2016; Yao et al., 2022).
Empirically, we find that using SpAR is much faster than
other methods we compare with (Appendix O).

It is important to note that λ2
z,j can be cancelled out from

both ‘Biasz,j and Varz,j in the comparison made in Equa-
tion 13. While the amount of variance seen in the target
distribution makes a great impact on the value of the loss,
SpAR does not consider λ2

z,j when selecting whether ez,j
should be projected out. SpAR can be thought of selecting

eigenvectors whose signal-to-noise ratio is low.
’Biasz,j
λ2
z,j

cap-
tures the “signal,” or correlation between ez,j and the true
weight vector, while Varz,j

λ2
z,j

captures the expected amount
of noise associated with this eigenvector. Given that the
Spectral Inflation associated with ez,j is the variance of the
noise scaled by the variance in the test distribution λ2

z,j ,
SpAR still targets eigenvectors that are likely to be a source
of Spectral Inflation. Future work should investigate how to
better make use of λ2

z,j , such as how Lei et al. (2021) use
these eigenvalues to produce a minimax optimal estimator.

4. Experiments
We apply SpAR to a suite of real-world and synthetic
datasets to demonstrate its efficacy and explain how this
method overcomes some shortcomings of OLS as well other
methods meant to improve OOD robustness.

Here we use models that are optimized using gradient-based

Algorithm 1 Spectral Adapted Regressor (SpAR)
Require: Training Data X,YX , Unlabeled Test Distribu-

tion Data Z, Rejection Confidence α
ŵ ← X†YX

UX , DX , V ⊤
X ← SVD(X)

UZ , DZ , V
⊤
Z ← SVD(Z)

σ̂2 ← MLE(X,YX)
S ← {} ▷ Initialize the set S as empty
for ez,j ∈ Rows(V ⊤

Z ), λz,j ∈ Diagonal(DZ) do
Varz,j ← σ̂2

∑D
i=1

λ2
z,j

λ2
x,i
⟨ex,i, ez,j⟩21[λx,i > 0]

Biasz,j ← ⟨ŵ, ez,j⟩2λ2
z,j

if (CDF−1
χ2 (α)×Varz,j) ≥ Biasz,j then

S ← S ∪ {ezj} ▷ Include this vector in S .
end if

end for
wproj ← ŵ −

∑
e∈S⟨ŵ, e⟩e ▷ Projection

return wproj

procedures. This contrasts with the main target of our anal-
ysis, the OLS solution (Equation 2), as ŵ is not found using
an iterative procedure. Despite these differences, our anal-
ysis remains relevant as the optimality conditions of mini-
mizing the squared error loss ensure that gradient descent
will converge to the OLS solution.

4.1. Synthetic Data

We establish a proof of concept by considering a synthetic
data setting where we can carefully control the distribu-
tion shift under study. Specifically, we apply our approach
to two-dimensional Gaussian data following the data gen-
erative process described in Section 3.1. Specifically, for
experiments 1,2, and 3, we sample our train and test data
X and Z from origin-centered Gaussians with diagonal
covariance matrices, where the variances of X and Z are
(5, 10−5) and (1, 40) respectively. For Experiment 4, there
is no covariate shift and so the diagonal covariance matrices
of X and Z are both (1, 40).

We refer to the first and second indices of these vectors
as the “horizontal” and “vertical” components and plot
the vectors accordingly. In the first three experiments,
the test distribution has much more variance along the
vertical component in comparison to the training distribu-
tion. We experiment with three different true labeling vec-
tors: w∗

1 = (.01, .99999995)T ; w∗
2 = (0.9999995, 0.01)T ;

w∗
3 = ( 1√

5
, 2√

5
)T . The first two true labeling vectors rep-

resent functions that almost entirely depend on the verti-
cal/horizontal component of the samples, respectively. w∗

3

depends on both directions, though it depends slightly more
on the vertical component. For Experiment 4, we re-use
w∗

3 as the true labelling vector as the focus of this exper-
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Table 1. Synthetic Data. Mean of the squared error of estimated
regressors versus true labeling vectors. Experiments 1, 2, and 3
use different true weight vectors, while Experiment 4 does not
experience covariate shift (see Section 4.1).

Method Exp. 1 (w∗
1) Exp. 2 (w∗

2) Exp. 3 (w∗
3) Exp. 4 (w∗

3)

OLS 2.5e6 ± 3.8e6 2.5e6 ± 3.8e6 2.5e6 ± 3.8e6 1.7e0 ± 1.2e0
PCR 1.6e5 ± 3.1e3 1.1e0±0.8e0 1.3e5 ± 2.5e3 8.0e2 ± 1.3e1
SpAR 1.6e5 ± 3.1e3 2.8e0±4.5e0 1.3e5 ± 2.5e3 1.7e0 ± 1.2e0

iment is the lack of covariate shift. For each labeling
vector, we randomly sample Z,X , and ϵ 10 times and
calculate the squared error for three regression methods:
OLS/Pseudoinverse Solution (OLS): the minimizer for the
training loss, ŵ = X†YX ; Principal Component Regres-
sion (Bair et al., 2006) (PCR): we calculate the OLS solution
after projecting the data onto the first principal component
of the training data; and SpAR: the regressor produced by
SpAR.

We present the results of these experiments in Table 1. For
the first three experiments, ŵ has the same error regardless
of the true labeling vector. Notably, SpAR outperforms
OLS in each of the first 3 experiments. Our method is most
effective when w∗

2 is being used to label the examples. This
is because it relies mostly on the horizontal component of
the examples, which has a similar amount of variance at both
train and test time. As a result, SpAR is able to project out
the vertical component while retaining the bulk of the true
labeling vector’s information. An example showing why this
projection method is useful when w∗

2 is being used to label
the examples is depicted in Figure 1. Here, ŵ significantly
overestimates the influence of the vertical component on
the samples’ labels. SpAR is able to detect that it will not
be able to effectively use the vertical component due to the
large increase in variance as we move from train to test,
and so it projects that component out of ŵ. Consequently,
SpAR produces a labeling function nearly identical to the
true labeling function.

PCR projects the second principal component of the train-
ing data out of the OLS solution, regardless of the spectral
properties of X or Z. This is a reasonable decision in
some scenarios; PCR is able to achieve performance similar
to SpAR on Experiments 1, 2, and 3. These experiments
have the second training principal component experiencing
Spectral Inflation, and so both methods achieve superior per-
formance by projecting out the second principal component.
In Experiment 4, however, no such Spectral Inflation occurs,
and so SpAR and OLS achieve performance far superior to
PCR by leaving the OLS regressor intact. This demonstrates
one of SpAR’s most important properties: it flexibly adapts
to the covariate shift specified by the test data, rather than
relying on the assumption that a certain adaptation will best
perform OOD, as is the case with PCR.

4.2. PovertyMap - WILDS

We next examine the robustness of deep regression mod-
els under realistic distribution shifts in a high-dimensional
setting. This experiment uses the PovertyMap-WILDS
dataset (Koh et al., 2021), where the task is to regress local
satellite images onto a continuous target label representing
an asset wealth index for the region. PovertyMap provides
an excellent test-bed for our method since, as seen in Fig-
ure 2, DNNs attempting to generalize OOD on this dataset
suffer from Spectral Inflation.

For this dataset, we experiment with an unsupervised do-
main adaptation setting (Ben-David et al., 2006) where
we used unlabeled target domain data distinct from the test
set to perform adaptation with SpAR (Sagawa et al., 2022).
Both this setting and the setting where adaptation is per-
formed directly using the test data are realistic and relevant
to machine learning (Shocher et al., 2018; Sun et al., 2020;
Bau et al., 2019) and so we experiment with both conditions.

We compare with many methods for robust ML, including
some "in-processing" methods (Caron et al., 2020) which
use the unlabelled data to define an additional objective
that is optimized during training. Results are presented in
Table 2. Two methods that we will benchmark in other
experiments as well are:

• Standard Training (ERM): both the encoder and the
regressor are trained in tandem to minimize the training
objective using a gradient-based optimizer, in this case
ADAM (Kingma & Ba, 2015).

• C-Mixup (Yao et al., 2022): a data augmentation tech-
nique that generalizes the Mixup algorithm (Zhang
et al., 2018) to a regression setting. For this method,
the encoder and regressor are optimized to minimize
the error on both the original samples and the synthetic
examples produced by C-Mixup.

Data-augmentation techniques such as C-Mixup can be used
in tandem with other techniques for domain adaptation,
such as SpAR, to achieve greater results than either of the
techniques on their own. Our results substantiate this.

We use the hyperparameters reported by Yao et al. (2022)
when training Resnet-18 based models (He et al., 2016) on
both ERM and C-Mixup. When training these baselines,
we follow Yao et al. (2022) and select the model check-
point which performed best on a hold-out validation set
as a form of early stopping. These choices help to create
strong baselines. After training, we apply SpAR to create
a new regressor using the representations produced by the
ERM model (ERM + SpAR) or C-Mixup model (C-Mixup +
SpAR). We explored a few settings of SpAR’s hyperparam-
eter α (see Appendix N for a discussion), and use a fixed
value of α = 0.999 in all experiments presented here.

6
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Figure 3. PovertyMap. Mean worst group Pearson r across 12
seeds for each of the 5 data splits of PovertyMap (higher is better).

We find that even when using a sample distinct from the
evaluation data, the use of SpAR on either ERM or C-Mixup
yields the best performance. The worst group performance
of C-Mixup + SpAR is state of the art on PovertyMap-
WILDS for methods using unlabeled target domain data2

(Sagawa et al., 2022). SpAR is also more computation-
ally efficient than other robustness methods (see Appendix
O).We also conduct experiments on applying SpAR using
the evaluation data directly, the results of which are pre-
sented in Appendix K and L. SpAR achieves a similar per-
formance increase to that presented in table 2, demonstrating
SpAR’s effectiveness when using different OOD samples.

PovertyMap uses the average of five different data splits to
benchmark performance. To further investigate how SpAR
performs in comparison to the strongest baseline, ERM,
we repeated the experiments on each of these five different
distribution shifts 12 times using 12 different seeds and
calculated the average worst group Pearson r. We find that
SpAR is able to improve performance in 4 out of the 5
distribution shifts (see Figure 3).

4.3. Tabular Datasets

We next experiment with two tabular datasets. Tabular data
is common in real-world machine learning applications and
benchmarks, particularly in the area of algorithmic fairness
(Barocas et al., 2019). Therefore, it is important for robust
machine learning methods to function well in this setting.

CommunitiesAndCrime, a popular dataset in fairness stud-
ies, provides a task where crime rates per capita must be
predicted for different American communities, with some
states held out of the training data and used to form an
OOD test set (Redmond & Baveja, 2009; Yao et al., 2022).
Skillcraft defines a task where one predicts the latency, in
milliseconds, between professional video game players per-
ceiving an action and making their own action (Blair et al.,

2
https://wilds.stanford.edu/leaderboard/

#with-unlabeled-data-7

Figure 4. SkillCraft. OOD RMSE for several methods, each aver-
aged across 10 seeds (lower is better).

Figure 5. CommunitiesAndCrime. OOD RMSE for several meth-
ods, each averaged across 10 seeds (lower is better).

2013). An OOD test set is created by only including players
from certain skill-based leagues in the train or test set.

We train neural networks with one hidden layer in the style
of Yao et al. (2022). We again use the hyperparameters
reported by Yao et al. (2022) when training both ERM and
C-Mixup. In addition to benchmarking SpAR, we similarly
benchmark the performance of the Pseudoinverse solution
by replacing the last layer weight with ŵ (ERM/C-Mixup +
OLS). Results from these tabular data experiments can be
found in Figures 4 and 5. Exact numbers are presented in
Table 7 in the Appendix.

Figures 4 and 5 show that SpAR always produces a model
with competitive or superior Average and Worst Group
RMSE, regardless of the base model that it is applied to. We
also experiment with tuning the hyperparameters for both
the ERM and C-Mixup models in Appendix M. With no
additional tuning SpAR yields a model with the strongest
worst-group performance.

4.4. Image Datasets

We now turn our attention to SpAR’s efficacy on high-
dimensional image datasets where a distribution shift is
induced. Specifically, we experiment with the RCF-MNIST
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Table 2. PovertyMap-WILDS with unlabeled data. In-processing methods and SpAR use unlabeled data that are distinct from the test
set, but come from the same distribution (Sagawa et al., 2022).

Robustness approach Method rall(↑) rwg(↑)
— ERM 0.79 ± 0.04 0.50 ± 0.10

Data augmentation C-Mixup (Yao et al., 2022) 0.78 ± 0.05 0.49 ± 0.05
(pre-processing) Noisy Student (Xie et al., 2020) 0.76 ± 0.08 0.42 ± 0.11

Self-supervised pre-training SwAV (Caron et al., 2020) 0.78 ± 0.06 0.45 ± 0.05
(pre-processing)

Distribution alignment DANN (Ganin et al., 2016) 0.69 ± 0.04 0.33 ± 0.10
(in-processing) DeepCORAL (Sun & Saenko, 2016) 0.74 ± 0.05 0.36 ± 0.08

AFN (Xu et al., 2019) 0.75 ± 0.08 0.39 ± 0.08
Subspace alignment RSD (Chen et al., 2021) 0.78 ± 0.03 0.44 ± 0.09

(in-processing) DARE-GRAM (Nejjar et al., 2023) 0.76 ± 0.06 0.44 ± 0.05
Spectral adaptation ERM + SpAR (Ours) 0.79 ± 0.04 0.51 ± 0.10

(post-processing) C-Mixup + SpAR (Ours) 0.79 ± 0.04 0.52 ± 0.08

dataset from Yao et al. (2022), as well as the ChairAngles-
Tails dataset from Gustafsson et al. (2023). RCF-MNIST
tasks the model with predicting the angle of rotation for a
series of images of clothing (Xiao et al., 2017). However, a
spurious correlation between color and rotation angle that
is inverted at test time causes regressors focussing on this
spurious feature to perform poorly when evaluated. The
ChairAngles-Tails dataset requires the model to predict the
angle of rotation for a synthetic image of a chair. A distri-
bution shift is induced by only including certain rotation
angles in the training set.

We benchmark ERM and C-Mixup, as well as two additional
baseline methods:

• DANN (Ganin et al., 2016): in addition to minimizing
the training loss, the encoder is trained to maximize
the loss of an adversary trained to predict whether the
representation comes from the training set or test set.

• Deep CORAL (Sun & Saenko, 2016): the encoder
minimizes both the training loss and the difference
between the first and second moments of the train and
test data matrices.

After performing a hyperparameter sweep (additional details
in Appendix L), we average results across 10 random seeds.
We apply SpAR to each of these baseline models using α =
0.999 and no additional hyperparameter tuning. In the style
of Yao et al. (2022), we select the model checkpoint which
best performed on a hold-out validation set as a form of early
stopping. Following Gustafsson et al. (2023) and Yao et al.
(2022), we use Resnet-34 and Resnet-18 based models for
ChairAngles-Tails and RCF-MNIST, respectively. Results
are presented in Tables 3 and 4.

SpAR is regularly able to improve performance across a
wide variety of architectures, tasks, and training methods.
The best performing baseline method varies across these two
datasets, with ERM performing best on RCF-MNIST and
Deep CORAL performing best on ChairAngles-Tails. De-
spite these inconsistencies in baseline performance, SpAR
consistently improves the performance of each method. This

Table 3. RCF-MNIST. OOD RMSE averaged across 10 seeds.
RCF-MNIST
Method Baseline (↓) Baseline + SpAR (↓)
ERM 0.155 ± 0.006 0.154 ± 0.006
C-Mixup 0.158 ± 0.011 0.156 ± 0.009
Deep CORAL 0.167 ± 0.012 0.165 ± 0.010
DANN 0.177 ± 0.019 0.170 ± 0.015

Table 4. ChairAngles-Tails. OOD RMSE averaged across 10
seeds.

ChairAngles-Tails
Method Baseline (↓) Baseline + SpAR (↓)
ERM 6.788 ± 0.634 6.753 ± 0.648
C-Mixup 6.504 ± 0.324 6.449 ± 0.325
Deep CORAL 5.978 ± 0.243 5.839 ± 0.259
DANN 6.440 ± 0.602 6.337 ± 0.603

demonstrates SpAR’s utility as a lightweight, efficient post
processing method with a strong theoretical foundation that
can be applied to a wide array of learned representations.

5. Related Work
Improving OOD performance is a critical and dynamic area
of research. Our approach follows in the tradition of Trans-
ductive Learning (Gammerman et al., 2013) (adapting a
model using unlabelled test data) and unsupervised Domain
Adaptation (Ben-David et al., 2006; Farahani et al., 2021)
(using distributional assumptions to model train/test differ-
ences, then adapting using unlabeled test inputs). Regular-
izing statistical moments between P and Q during training
is a popular approach in unsupervised DA (Gretton et al.,
2009) that has also been realized using deep neural net-
works (Ganin et al., 2016; Sun et al., 2017). Other methods
exploit additional structure in P—such as auxiliary labels in-
dicating the “domain” or “group” that each training example
belongs to— to promote OOD generalization. Noteworthy
approaches include Domain Generalization (Arjovsky et al.,
2019; Gulrajani & Lopez-Paz, 2021) and Distributionally
Robust Optimization (Hu et al., 2018; Sagawa et al., 2019;
Levy et al., 2020).

Data augmentation is another promising avenue for improv-
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ing OOD generalization (Hendrycks & Dietterich, 2019;
Ovadia et al., 2019). The recently proposed C-Mixup
method focuses on regression under covariate shift; it adapts
the Mixup algorithm (Zhang et al., 2018) to regression
by upweighting the convex combination of training exam-
ples whose target values are similar. This pre-processing
approach complements our post-processing adaptation ap-
proach; in our experiments we find that applying SpAR to a
C-Mixup model often yields the best results.

In this work we investigate covariate shift in a regression
setting by analyzing how the distribution shift affects eigen-
spectra of the source/target data. Others have studied spec-
tral properties in this setting. Tripuraneni et al. (2021) used
a similar decomposition of the OLS test loss as a motivat-
ing example when analyzing the expected loss of random
feature models under covariate shift. Lei et al. (2021) also
proposed a similar expression for the OLS test loss as a step
towards characterizing the minimax risk of linear models
under covariate shift. In contrast to these works, we also
propose a bias-variance decomposition for each eigenvector
of the second moment matrix of the test representations,
as well as methods for estimating both of these quantities.
Pathak et al. (2022) propose a new similarity measure be-
tween P and Q that can be used to bound the performance of
non-parameteric regression methods under covariate shift.
Wu et al. (2022) analyze the sample efficiency of linear
regression in terms of an eigendecomposition of the covari-
ance matrices of P and Q. Our work differs from these in
that we go beyond an OOD theoretical analysis to propose
a practical post-processing algorithm, which we find to be
effective on real-world datasets.

6. Conclusion
This paper investigated the generalization properties of re-
gression models when facing covariate shift. We show that
the OLS solution can fail dramatically OOD due to Spectral
Inflation, where spectral subspaces with small variation dur-
ing training see increased variation upon evaluation. Our
adaptation method, SpAR, uses unlabeled test data to esti-
mate the subspaces with spectral inflation and project them
away. We apply our method to the last layer of deep neural
regressors and find that it improves OOD performance on
several synthetic and real-world datasets. Our limitations
include assumed access to unlabeled test data, and that the
distribution shift in question is covariate shift.

Impact Statement
Our research seeks to improve OOD generalization with the
hopes of ensuring ML benefits are distributed more equi-
tably across social strata. However, it is worthwhile to be
self-reflexive about the methodology we use when working

towards this goal. For example, for the purposes of compar-
ing against existing methods from the literature, we use the
Communities and Crime dataset, where average crime rates
are predicted based on statistics of neighborhoods, which
could include demographic information. This raises a po-
tential fairness concern: even if we have an OOD-robust
model, it may not be fair if it uses demographic information
in its predictions. While this is not the focus of our paper,
we note that the research community is in the process of
reevaluating tabular datasets used for benchmarking (Ding
et al., 2021; Bao et al., 2021).
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A. OLS and the Pseudoinverse
Classical statistics (Murphy, 2022) tells us that when X is full rank, the ŵ minimizing this expression—known as the OLS
regressor—has the following form:

ŵOLS = (X⊤X)−1X⊤YX (14)

Of course, if X is not full rank, the product X⊤X cannot be inverted. In this case, the minimum norm solution can be
constructed using the singular value decomposition of X. Specifically, X can be decomposed as X = UXDXV ⊤

X . We can
then construct the pseudoinverse of X by using UX , VX , and the matrix D† which is given by taking the transpose of D, and
replacing the diagonal singular value elements with their reciprocal. In the case that the singular value is zero, the value of
zero is used instead. The pseudoinverse is then constructed as X† = VXD†

XU⊤
X . Using these components, the minimum

norm solution in the case of a degenerate X matrix is given by the following expression:

ŵ = X†YX = VXD†
XU⊤

XYX (15)

B. Derivation of Loss of OLS Under Covariate Shift
We are interested in the following expression for the OOD risk of the OLS regressor:

RiskOOD(ŵ) = E[∥YZ − Zŵ∥22] = E[∥Zw∗ − ZX†YX∥22] (16)

= E[∥Zw∗ − ZX†(Xw∗ + ϵ)∥22]

If we assume that w∗ exists within the span of the rows of X, then X†X acts as an identity on w∗, giving us:

= E[∥ZX†ϵ∥22] (17)

The Euclidean norm is ∥x∥2 =
√
x⊤x, so we can rephrase this expression as a scalar dot product. Scalars can be seen as

1× 1 matrices, and are therefore equal to their trace. Therefore we can express this dot product as a trace in order to later
use the cyclic property of the trace operator:

= E[ϵ⊤X†⊤Z⊤ZX†ϵ] = E[tr(ϵ⊤X†⊤Z⊤ZX†ϵ)] (18)

We can cycle the trace and apply the properties of the trace of the product of two N ×N matrices:

= E[tr(ϵϵ⊤X†⊤Z⊤ZX†)] = E[
N∑
i=1

N∑
j=1

(ϵϵ⊤)i,j(X
†⊤Z⊤ZX†)i,j ] (19)

Since each entry of ϵ is independent from the other entries, and these entries follow the normal distribution N (0, σ2), by
applying the linearity of expectation we know that every term in this sum such that i ̸= j will be equal to zero, giving us:

=

N∑
i=1

N∑
j=1

E[(ϵϵ⊤)i,j ](X
†⊤Z⊤ZX†)i,j =

N∑
i=1

σ2(X†⊤Z⊤ZX†)i,i = σ2tr(X†⊤Z⊤ZX†) (20)

We will use the singular value decompositions of these two matrices to simplify the expression further after cycling the trace:

= σ2tr(Z⊤ZX†X†⊤) = σ2tr(VZD
⊤
ZU

⊤
Z UZDZV

⊤
Z VXD†

XU⊤
XUXD†⊤

X V ⊤
X ) (21)

= σ2tr(VZD
2
ZV

⊤
Z VXD†2

X V ⊤
X ) = σ2tr(D†2

X V ⊤
X VZD

2
ZV

⊤
Z VX) (22)
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where D2
Z , D

†2
X are D ×D diagonal matrices with diagonal values equal to the diagonal values of DZ and D†

X squared,
respectively. The ith diagonal entry of the matrix V ⊤

X VZD
2
ZV

⊤
Z VX is:

[
diag(V ⊤

X VZD
2
ZV

⊤
Z VX)

]
i
=

D∑
j=1

λ2
z,j⟨ex,i, ez,j⟩2 (23)

Meaning that the entire expression will be equal to the value described:

RiskOOD(ŵ) = σ2
D∑
i=1

D∑
j=1

λ2
z,j

λ2
x,i

⟨ex,i, ez,j⟩21[λx,i > 0]. (24)

C. Derivation of Bias-Variance Decomposition
SpAR produces a regressor of the following form:

wproj = ŵ −
∑
e∈S

⟨ŵ, e⟩e (25)

Where we are projecting out a set of eignevectors S from the pseudoinverse solution ŵ. We can substitute this into our
expression for the OOD risk of a regressor to arrive at a bias-variance decomposition.

RiskOOD(wproj) = E[∥Zw∗ − Z(ŵ −
∑

ez,j∈S

⟨ŵ, ez,j⟩ez,j)∥22] (26)

= E[∥ − ZVXD†
XU⊤

X ϵ+ Z
∑

ez,j∈S

(ϵ⊤X†⊤ez,j + w∗⊤ez,j)ez,j∥22] (27)

= E[∥ − ZVXD†
XU⊤

X ϵ+ Z
∑

ez,j∈S

⟨w∗, ez,j⟩ez,j + Z
∑

ez,j∈S

⟨VXD†
XU⊤

X ϵ, ez,j⟩ez,j∥22] (28)

We can further simplify this expression by using the fact that the eigenvectors in Rows(V ⊤
Z ) form an orthonormal basis,

and so the sum of their outer products forms an identity matrix. Formally,
∑D

j=1 ez,je
⊤
z,j = I . Using this on the leftmost

term in the sum, we have:

= E[∥ − Z

D∑
j=1

ez,je
⊤
z,jVXD†

XU⊤
X ϵ+ Z

∑
ez,j∈S

⟨w∗, ez,j⟩ez,j + Z
∑

ez,j∈S

⟨VXD†
XU⊤

X ϵ, ez,j⟩ez,j∥22] (29)

= E[∥ − Z

D∑
j=1

⟨VXD†
XU⊤

X ϵ, ez,j⟩ez,j + Z
∑

ez,j∈S

⟨w∗, ez,j⟩ez,j + Z
∑

ez,j∈S

⟨VXD†
XU⊤

X ϵ, ez,j⟩ez,j∥22] (30)

We can use the fact that S ∪ Sc form an orthogonal basis, where Sc is the complement set of eigenvectors. We are also
assuming that we are only projecting out vectors from the Z right singular vector basis. This gives us:

E[∥ − Z
∑

ez,j∈Sc

⟨VXD†
XU⊤

X ϵ, ez,j⟩ez,j + Z
∑

ez,j∈S

⟨w∗, ez,j⟩ez,j∥22] = E[∥V −B∥22] (31)

The Euclidean norm ∥x∥2 =
√
x⊤x, and so we can consider the sum of products V ⊤V − 2V ⊤B +B⊤B. If we take the

expectation over the error term ϵ, which has mean 0, we are left with only V ⊤V +B⊤B.

V ⊤V is the error term we are already familiar with (Theorem 3.1), restricted to the eigenvectors that weren’t projected out:

13
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V ⊤V = (Z
∑

ez,j∈Sc

⟨VXD†
XU⊤

X ϵ, ez,j⟩ez,j)⊤Z
∑

ez,j∈Sc

⟨VXD†
XU⊤

X ϵ, ez,j⟩ez,j (32)

= (
∑

ez,j∈Sc

⟨VXD†
XU⊤

X ϵ, ez,j⟩ez,j)⊤Z⊤Z
∑

ez,j∈Sc

⟨VXD†
XU⊤

X ϵ, ez,j⟩ez,j (33)

We note that each vector ez,j ∈ Sc is an eigenvector of Z⊤Z with eigenvalue λ2
z,j .

=
∑

ez,j∈Sc

⟨VXD†
XU⊤

X ϵ, ez,j⟩e⊤z,j
∑

ez,j∈Sc

⟨VXD†
XU⊤

X ϵ, ez,j⟩λ2
z,jez,j (34)

=
∑

e′z,j∈Sc

∑
ez,j∈Sc

⟨VXD†
XU⊤

X ϵ, e′z,j⟩⟨VXD†
XU⊤

X ϵ, ez,j⟩λ2
z,je

′⊤
z,jez,j (35)

Since Sc is a subset of an orthonormal basis, we know that e′⊤z,jez,j = 1 iff e′z,j = ez,j . Otherwise, e′⊤z,jez,j = 0.

=
∑

ez,j∈Sc

⟨VXD†
XU⊤

X ϵ, ez,j⟩2λ2
z,j =

∑
ez,j∈Sc

ϵ⊤X†⊤ez,je
T
z,jX

†ϵλ2
z,j (36)

In the expected loss, the expectation operator is applied to this expression, giving:

E[V ⊤V ] = E[
∑

ez,j∈Sc

ϵ⊤X†⊤ez,je
T
z,jX

†ϵλ2
z,j ] (37)

We can use the properties of the trace to isolate the label noise, as in Appendix B:

=
∑

ez,j∈Sc

σ2tr(e⊤z,jX
†X†⊤ez,j)λ

2
z,j (38)

We can analyze the inner product of the vector X†⊤ez,j = UXD†⊤
X V ⊤

X ez,j with itself:

e⊤z,jX
†X†⊤ez,j =

d∑
i=1

d∑
k=1

1

λx,i
⟨ez,j , ex,i⟩

1

λx,k
⟨ez,j , ex,k⟩u⊤

x,iux,k1[λx,i > 0]1[λx,k > 0] (39)

Where ux,i is the ith column of UX , i.e. the ith left singular vector of X . These left singular vectors also create an
orthonormal basis, and so u⊤

x,iux,k = 1 iff ux,i = ux,k. Otherwise, u⊤
x,iux,k = 0. This ultimately gives us:

E[V ⊤V ] = σ2
D∑
i=1

∑
j,ez,j∈Sc

λ2
z,j

λ2
x,i

⟨ex,i, ez,j⟩21[λx,i > 0] (40)

We can use similar reasoning to show that bias term B⊤B is a simple expression relying on the true weight vector:

E[BTB] = BTB =
∑

ez,j∈S

⟨w∗, ez,j⟩e⊤z,jZ⊤Z
∑

ez,j∈S

⟨w∗, ez,j⟩ez,j (41)

=
∑

j,ez,j∈S

⟨w∗, ez,j⟩2λ2
z,i (42)

Therefore, we have the following expression for the expected loss:

14
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E[∥Zw∗ − Z(ŵ −
∑

ez,j∈S

⟨ŵ, ez,j⟩ez,j)∥22] = E[V ⊤V ] + E[B⊤B] (43)

= σ2
D∑
i=1

∑
j,ez,j∈Sc

λ2
z,j

λ2
x,i

⟨ex,i, ez,j⟩21[λx,i > 0] +
∑

j,ez,j∈S

⟨w∗, ez,j⟩2λ2
z,j (44)

D. Proof of Theorem 3.3
In this section, we provide the proof of Theorem 3.3.

This theorem compares the OOD squared error loss of two regressors, wproj and w∗
proj, which are constructed in the

following way:
wproj = ŵ −

∑
e∈S

⟨ŵ, e⟩e, w∗
proj = ŵ −

∑
e∈S∗

⟨ŵ, e⟩e (45)

We can invoke Theorem 3.2 to decompose the OOD squared error loss of the regressors:

E[∥YZ − Zwproj∥22] =
∑

ez,j∈Sc

Varz,j +
∑

ez,j∈S

Biasz,j (46)

E[∥YZ − Zw∗
proj∥22] =

∑
ez,j∈S∗c

Varz,j +
∑

ez,j∈S∗

Biasz,j (47)

Since Rows(V ⊤
Z ) = S ∪ Sc = S∗ ∪ S∗c, we can decompose the losses into four sums:

E[∥YZ − Zwproj∥22] =
∑

ez,j∈Sc∩S∗c

Varz,j +
∑

ez,j∈Sc∩S∗

Varz,j +
∑

ez,j∈S∩S∗

Biasz,j +
∑

ez,j∈S∩S∗c

Biasz,j . (48)

E[∥YZ − Zw∗
proj∥22] =

∑
ez,j∈Sc∩S∗c

Varz,j +
∑

ez,j∈Sc∩S∗

Biasz,j +
∑

ez,j∈S∩S∗

Biasz,j +
∑

ez,j∈S∩S∗c

Varz,j . (49)

This gives us:

E[∥YZ − Zwproj∥22]− E[∥YZ − Zw∗
proj∥22] =

∑
ez,j∈Sc∩S∗

(Varz,j − Biasz,j) +
∑

ez,j∈S∩S∗c

(Biasz,j −Varz,j). (50)

By the definition of S∗, we know that ez,j ∈ S∗ implies that Varz,j ≥ Biasz,j . Therefore:∑
ez,j∈Sc∩S∗

(Varz,j − Biasz,j) ≥ 0. (51)

Furthermore, for ez,j ̸∈ S∗ and therefore in S∗c, it must be the case that Varz,j < Biasz,j . Therefore:∑
ez,j∈S∩S∗c

(Biasz,j −Varz,j) ≥ 0. (52)

This implies that the difference of OOD squared error losses is also greater or equal to zero, and therefore that w∗
proj achieves

superior loss.

E[∥YZ − Zwproj∥22]− E[∥YZ − Zw∗
proj∥22] =

∑
ez,j∈Sc∩S∗

(Varz,j − Biasz,j) +
∑

ez,j∈S∩S∗c

(Biasz,j −Varz,j) ≥ 0 (53)

=⇒ E[∥YZ − Zwproj∥22] ≥ E[∥YZ − Zw∗
proj∥22]. (54)
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E. Distribution of ‘Bias
In Section 3.4 we make statements about the distribution of ‘Bias. In this section, we further explain our reasoning for these
claims. ‘Biasz,j = ⟨ŵ, ez,j⟩2λ2

z,j = (w∗T ez,j + ϵ⊤X†⊤ez,j)
2λ2

z,j . (55)

We know that ϵ is a Gaussian vector with zero mean and spherical covariance. Therefore, ϵ⊤X†⊤ez,jλz,j would also have
zero mean. For its covariance, we need only to multiply this expression by itself to recognize the expression from previous
derivations:

E[e⊤z,jX
†ϵϵ⊤X†⊤ez,jλ

2
z,j ] (56)

This expression is seen in the derivation of Theorem 3.2, where we show it is equal to Varz,j . Therefore, the variance
of ϵ⊤X†⊤ez,jλz,j is Varz,j . With this in mind, we can rewrite this expression as a scaling of a standard normal random
variable:

ϵ⊤X†⊤ez,jλz,j =
√

Varz,jβ, β ∼ N (0, 1) (57)

We can also easily describe the distribution of ⟨ŵ, ez,j⟩λz,j :

⟨ŵ, ez,j⟩λz,j = w∗T ez,jλz,j + ϵ⊤X†⊤ez,jλz,j (58)

Which is a Gaussian random variable plus a constant, which shifts the mean of the Gaussian. This gives us the two
distributions we list in Section 3.4:

ϵ⊤X†⊤ez,jλz,j ∼ N (0,Varz,j), ⟨ŵ, ez,j⟩λz,j ∼ N (
√
Biasz,j ,Varz,j). (59)

We would next like to explain the claims made in Case 2 of Section 3.4. Specifically, we make claims about the distribution
of ‘Biasz,j when ‘Biasz,j ≈ (ϵ⊤X†⊤ez,j)

2λ2
z,j :‘Biasz,j ≈ (ϵ⊤X†⊤ez,j)

2λ2
z,j = (

√
Varz,jβ)

2 = Varz,jβ
2 (60)

β ∼ N (0, 1), β2 ∼ χ2(df = 1) (61)

We therefore know in this case that ‘Biasz,j is the scaling of a chi-squared random variable. By properties of CDFs, we
know that Pr(Varz,jβ2 ≤ α) = Pr(β2 ≤ α

Varz,j
), and therefore we know that the inverse CDF of Varz,jβ2 will be

CDF−1
χ2
df=1

(α)×Varz,j .

F. Proof of Proposition 1

First, we will restructure ‘Biasz,j as the scaling of a non-central chi-squared random variable. From Equation 59, we know

the distribution of
»‘Biasz,j , which we can write in terms of a Gaussian random variable with non-zero mean:»‘Biasz,j = ⟨ŵ, ez,j⟩λz,j ∼ N (

√
Biasz,j ,Varz,j) (62)

=⇒
»‘Biasz,j = √

Varz,jδ, δ ∼ N (

√
Bias√
Varz,j

, 1) (63)
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We therefore know that δ2 is distributed according to a non-central chi-squared distribution:‘Biasz,j = (
√
Varz,jδ)

2 = Varz,jδ
2, δ2 ∼ χ2

λ(df = 1, λ =
Biasz,j
Varz,j

) (64)

Furthermore, we know the CDF of this variable as Pr(Varz,jδ2 ≤ α) = Pr(δ2 ≤ α
Varz,j

).

We include an eigenvector ez,j in our set S if ‘Biasz,j ≤ CDF−1
χ2
df=1

(α)×Varz,j . The probability of this event occurring is

given by the CDF of ‘Biasz,j , which is the following:

Pr(‘Biasz,j ≤ CDF−1
χ2
df=1

(α)×Varz,j) = 1−Q 1
2
(

 
Biasz,j
Varz,j

,

√
Varz,j

√
CDF−1

χ2
df=1

(α)√
Varz,j

) (65)

= 1−Q 1
2
(

 
Biasz,j
Varz,j

,
√

CDF−1
χ2
df=1

(α)) (66)

G. Proof of Lemma 3.5
Proposition 3.4 gives us an expression for the probability that a given eigenvector is included in the set S. Lemma 3.5 will
use this proposition to demonstrate the tail behaviour of this expression. We will first note that since the expression in
Proposition 3.4 is a CDF, it is continuous. Therefore, in order to find its limits at 0 and∞, we need only be able to evaluate
the expression at these values.

We will first show that:

Pr(ez,j ∈ S)

Biasz,j
Varz,j

→∞
−−−−−−−→ 0 (67)

This is a special value of the Marcum Q function (Sun & Baricz, 2008). Specifically, Q 1
2
(∞, b) = 1 for any b. Therefore:

Pr(ez,j ∈ S) = 1−Q 1
2
(∞,

√
CDF−1

χ2
df=1

(α)) = 1− 1 = 0 (68)

We will next show that:

Pr(ez,j ∈ S)

Biasz,j
Varz,j

→0

−−−−−−→ α (69)

This is another special value of the Marcum Q function (Sun & Baricz, 2008). Specifically:

Q 1
2
(0, b) =

Γ( 12 ,
b2

2 )

Γ( 12 )
(70)

For any b. Here, Γ with one argument is the gamma function and Γ with two arguments is the upper incomplete gamma
function. By properties of gamma functions, we know that if γ is the lower incomplete gamma function, then Γ( 12 ,

b2

2 ) +

γ( 12 ,
b2

2 ) = Γ(12 ). Using this property, and by letting b =
√
CDF−1

χ2
df=1

(α), we have the following:

Pr(ez,j ∈ S) = 1−Q 1
2
(0, b) =

Γ( 12 ,
b2

2 ) + γ( 12 ,
b2

2 )

Γ( 12 )
−

Γ( 12 ,
b2

2 )

Γ( 12 )
(71)
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=
γ( 12 ,

b2

2 )

Γ( 12 )
= CDFχ2

df=1
(CDF−1

χ2
df=1

(α)) = α (72)

Where we have used the observation that the leftmost expression in Equation 72 is the CDF for a chi-squared distribution
with one degree of freedom.

H. High Dimensional Synthetic Data
To supplement the two-dimensional experiment presented in Section 4.1, we present an additional synthetic experiment that
is more complex and occurs in a higher-dimensional space. It uses the following data generative process, which occurs in
100-dimensional space:

1. Generate a random target vector w∗ from N (0, I), the multivariate Normal distribution with zero mean and identity
covariance, and normalize it to be a unit vector.

2. Generate two random means from N (0, I), which will be the means of our train and test distributions.

3. Generate another random vector fromN (0, I) and take its absolute value. These will be the entries of our diagonal test
covariance matrix.

4. Generate a final random vector fromN (0, I) and take its absolute value for the ID covariance matrix. For block j of 10
entries in the vector, scale the entries by 10(7−j).

• For instance, entries 90 through 99 will be scaled by 10(7−9).
• As we descend through the entries, the scale of the variance along the associated eigenvectors seen at training time

shrinks exponentially. Meanwhile, the test distribution has no such scaling.

5. Generate ID and OOD Gaussian data X and Z, respectively, according to the respective means and covariance matrices.

6. Generate labels using the true target vector, with noise added to the training labels: YX = Xw∗+ϵ, ϵ ∼ N (0, I), YZ =
Zw∗.

We repeat this random procedure 100 times and benchmark the same methods presented in Table 1. We find that SpAR is
able to vastly outperform PCR and make strong gains on OLS. The results are presented in Table 5:

Table 5. High-dimensional synthetic experiment results.
ERM/OLS PCR U-PCR SpAR

OOD Squared Error 8.7e3±1.4e4 1.5e5±3.2e5 6.4e3±4.2e3 5.9e3±7.0e3

We note that since the mean differs between the train and test distributions, traditional PCR will suffer from the centering
operation performed using the training data. We include PCR as a baseline in spite of this as PCR is a commonly used
method.

In addition, we compare with a baseline that projects the OLS regressor onto the first right singular vector of X . This is
equivalent to PCR without the centering operation (U-PCR). We find that SpAR has a slight advantage, despite U-PCR
being a heavily biased method meant to overcome the shortcomings of PCR.

I. Additional Training Details
For our experiments in Section 4, we adapt the code provided by Yao et al. (2022) in this Github repo: https://github.
com/huaxiuyao/C-Mixup. While training, we perform early stopping on a validation set evaluation metric. For
PovertyMap, this procedure is seen in the original work of Koh et al. (2021). We also use the hyperparameters provided in
the appendix of Yao et al. (2022)’s work, including the learning rates and bandwidth parameters for C-Mixup provided in
Table 6.
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Table 6. Hyperparameters used for training models responsible for the results in Section 4.

Hyperparameter CommunitiesAndCrime SkillCraft PovertyMap
Learning Rate 1e-3 1e-2 1e-3
Bandwidth 1.0 5e-4 0.5

Table 7. Tabular data. OOD RMSE averaged across 10 seeds for models using the hyperparameters described in Table 6.
SkillCraft
Method Average RMSE (↓) Worst Group RMSE (↓)
ERM 6.273 ± 0.384 8.933 ± 1.338
ERM + OLS 6.884 ± 0.860 11.156 ± 3.892
ERM + SpAR (Ours) 6.049 ± 0.379 8.317 ± 1.327
C-Mixup 6.319 ± 0.450 8.713 ± 1.106
C-Mixup + OLS 7.070 ± 0.898 11.747 ± 3.450
C-Mixup + SpAR (Ours) 6.038 ± 0.705 8.343 ± 1.563

CommunitiesAndCrime
Method Average RMSE (↓) Worst Group RMSE (↓)
ERM 0.134 ± 0.006 0.166 ± 0.014
ERM + OLS 0.142 ± 0.004 0.175 ± 0.012
ERM + SpAR (Ours) 0.133 ± 0.002 0.163 ± 0.009
C-Mixup 0.131 ± 0.005 0.162 ± 0.016
C-Mixup + OLS 0.140 ± 0.003 0.175 ± 0.010
C-Mixup + SpAR (Ours) 0.133 ± 0.002 0.161 ± 0.004

We additionally make the modification to train models without a bias term in the final linear layer. This is due to the fact that
SpAR assumes a regressor that does not use a bias.

Models are trained using Tesla T4 GPUs from NVIDIA. Tabular and synthetic experiments take less than 10 minutes to run
for a single seed and hyperparameter setting. PovertyMap experiments take roughly 3 hours to run when training ERM and
roughly 15 hours to run when training C-Mixup.

J. Tabular Data Results with Base Hyperparameters
In this section, we provide the table of results that Figures 5 and 4 are based upon. This is the performance of the models
using the hyperparameters described in Table 6. The results are included in Table 7.

K. Transductive Learning for Povertymap
In this section, we investigate SpAR’s effectiveness on the PovertyMap dataset when using the evaluation data directly.
We can observe from Table 8 that applying SpAR can significantly improve worst-group performance while maintaining
competitive average performance. This is similar to the results presented in Table 2, suggesting that SpAR can achieve
strong performance with different sets of samples from the target distribution.

L. Hyperparameter Search
For hyperparameter tuning, we perform random search over the learning rate and the bandwidth used in C-Mixup. Specifi-
cally, we search over learning rates using the following formula for the learning rate lr and bandwidth bw:

lr = baselr ∗ 10u, u ∼ Unif(−1, 1) (73)

bw = basebw ∗ 10u, u ∼ Unif(−1, 1) (74)

where baselr and basebw are the values described in Table 6 for each dataset. We test out 10 randomly selected hyper-
parameter settings for both ERM and C-Mixup, and select the settings that yield the best validation performance. Those

Table 8. PovertyMap-WILDS. Average OOD all-group and worst-group Spearman r across 5 splits.
Method rall(↑) rwg(↑)
ERM 0.793 ± 0.040 0.497 ± 0.099
ERM + SpAR (Ours) 0.794 ± 0.046 0.512 ± 0.092
C-Mixup 0.784 ± 0.045 0.489 ± 0.045
C-Mixup + SpAR (Ours) 0.794 ± 0.043 0.515 ± 0.091
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hyperparameter settings selected for C-Mixup are presented in Table 9 and hyperparameter settings selected for ERM are
presented in Table 10.

Table 9. Tuned hyperparameters used for training C-Mixup models. 4.
Hyperparameter CommunitiesAndCrime SkillCraft PovertyMap
Learning Rate 0.003630376073213171 0.023276939100527687 0.003630376073213171
Bandwidth 0.35090148857968506 0.0013316008334250096 0.17545074428984253

Table 10. Tuned hyperparameters used for training ERM models.
Hyperparameter CommunitiesAndCrime SkillCraft PovertyMap
Learning Rate 0.008246671732726021 0.023276939100527687 0.003630376073213171

For RCF-MNIST and ChairAngles-Tails, we use a similar procedure, only instead using a base learning rate of 7e− 5 for
RCF-MNIST and 0.001 for ChairAngles-Tails. For the bandwidth, we use a base bandwidth of 0.2 for RCF-MNIST and
5e− 4 for ChairAngles-Tails. Additionally, Deep CORAL and DANN require a penalty weight pw which we generate using
the same procedure and a base pw of 1.0. These hyperparameters are presented in Tables 11 and 12.

pw = basepw ∗ 10u, u ∼ Unif(−1, 1) (75)

Table 11. Tuned hyperparameters used for training models on RCF-MNIST.
Method/Hyperparameter Learning Rate Bandwidth Penalty Weight
ERM 3.851230830192189e-05 - -
C-Mixup 3.636910217027964e-05 0.20091864782463165 -
Deep CORAL 5.2547676552479794e-05 - 3.721492665736836
DANN 7.100098449013041e-05 - 0.10654593849857387

Table 12. Tuned hyperparameters used for training models on ChairAngles-Tails.
Method/Hyperparameter Learning Rate Bandwidth Penalty Weight
ERM 0.0003572140318996373 - -
C-Mixup 0.0007506810936068544 0.0018607463328684177 -
Deep CORAL 0.008246671732726021 - 5.647617424572879
DANN 0.0010142997784304342 - 0.10654593849857387

M. Tuned Baselines
Using the hyperparameters presented in Tables 9 and 10 which were selected hyperparameter search process described in
Section L, we benchmark the performance of ERM and C-Mixup models across 10 seeds for the tabular datasets and the 5
data folds for PovertyMap. We report results for PovertyMap and the tabular datasets in Tables 14 and 13, respectively.

We find that SpAR can achieve superior worst group performance than any other method presented in either Tables 14 or 13,
or in Section 4. For C-Mixup on CommunitiesAndCrime, we see that tuning hyperparameters on the validation set yields
poorer performance (Table 13) than using the hyperparameters presented in Yao et al. (2022)’s work (Table 7). However, we
can see that a SpAR model is able to achieve the best worst-group RMSE of any model on this dataset, 0.161.

N. Sensitivity of Alpha Hyperparameter
Throughout this work, we use a single setting of α for each of our experiments. Our specific setting of α=0.999 was selected
using a minimal amount of tuning on a single seed of a single experiment. This value was then used on every seed of every
dataset, regardless of potential improvements. To achieve a more complete understanding of SpAR’s sensitivity to α, we
conduct an experiment measuring OOD performance as a function of α when SpAR is applied to an ERM base model on the
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Table 13. Tabular data. OOD RMSE averaged across 10 seeds for models using tuned hyperparameters.
SkillCraft
Method Average RMSE (↓) Worst Group RMSE (↓)
ERM 5.917 ± 0.620 8.308 ± 1.915
ERM + OLS 6.548 ± 0.915 10.219 ± 3.123
ERM + SpAR (Ours) 6.083 ± 0.681 8.193 ± 1.212
C-Mixup 5.816 ± 0.558 8.371 ± 1.611
C-Mixup + OLS 6.535 ± 0.822 10.297 ± 2.362
C-Mixup + SpAR (Ours) 5.833 ± 0.580 7.922 ± 1.043

CommunitiesAndCrime
Method Average RMSE (↓) Worst Group RMSE (↓)
ERM 0.133 ± 0.004 0.161 ± 0.010
ERM + OLS 0.149 ± 0.018 0.184 ± 0.032
ERM + SpAR (Ours) 0.134 ± 0.007 0.164 ± 0.013
C-Mixup 0.133 ± 0.003 0.171 ± 0.012
C-Mixup + OLS 0.144 ± 0.011 0.177 ± 0.019
C-Mixup + SpAR (Ours) 0.132 ± 0.004 0.164 ± 0.008

Table 14. PovertyMap-WILDS. Average OOD all-group and worst-group Spearman r across 5 splits for models using tuned hyperparam-
eters.

Method rall(↑) rwg(↑)
ERM 0.798 ± 0.052 0.518 ± 0.076
ERM + SpAR (Ours) 0.799 ± 0.045 0.522 ± 0.080
C-Mixup 0.806 ± 0.031 0.523 ± 0.083
C-Mixup + SpAR (Ours) 0.803 ± 0.038 0.528 ± 0.087

Figure 6. Hyperparameter sensitivity SpAR performance as a function of α on tabular datasets.

SkillCraft and CommunitiesAndCrime datasets. See Figure 6 for results. We see that on the CommunitiesAndCrime dataset,
a higher α than 0.999 could have resulted in superior worst case performance. Meanwhile, on SkillCraft, we clearly see that
setting α too close to 1 can result in very poor worst group performance. Expression 13 in the paper indicates that as α
tends towards zero, the regressor produced by SpAR will more closely resemble the solution produced by OLS. Specifically,
fewer eigenvectors will be projected out from the OLS solution. Conversely, as α tends towards one, the regressor produced
by SpAR will tend towards the zero vector. This can be seen as a tradeoff between the cases where no Spectral Inflation is
expected and where Spectral Inflation is expected to occur along every right singular vector.

In general, selecting α using validation set performance can have mixed results, as SpAR is intended to produce a regressor
for a specific evaluation set (namely, the OOD test set, not the ID validation set). Future work could investigate the interesting
question of how α could be selected based on the amount of spectral inflation presented in the train/evaluation data.

O. Computational Cost
The computational cost of SpAR comes from collecting the representations (running forward passes for every train and
test example) and performing SVD, with the former step dominating the cost. Notably, it is much less cumbersome than
other adaptation techniques. Computing the SVD of the matrix can be done in polynomial time, and we find in practice that
performing this one-time post-hoc adaptation is quite efficient relative to other methods that must compute a regularizer or
augment data on each training iteration (see Table 15).
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Table 15. Measured train time on PovertyMap. Each model is trained on a NVIDIA Tesla T4 GPU. In-processing methods and SpAR
use a large pool of unlabeled data that are distinct from the test set, but come from the same distribution (Sagawa et al., 2022).

Method Average RMSE
ERM 3h22m ± 0h22m
C-Mixup 14h58 ± 1h01m
DARE-GRAM 5h58m ± 0h26m
ERM + SpAR (Ours) 4h11m ± 0h33m
SpAR only 0h40m ± 0h18m

P. Limitations
SpAR is designed for covariate shift, and its ability to handle other types of distribution shift (such as concept shift) is not
known analytically. To be more specific, we assume that the targets have a the same linear relationship (via the ground truth
weight w∗) with inputs X and Z, and that X and Z are covariate-shifted. A subtle issue here is that when X and Z are
internal representations of some neural net, we require that the difference P and Q is captured in terms of a covariate shift in
the representation space, which may or may not correspond to a covariate shift in the original input space (which could be
some high-dimensional vector, e.g. pixels).

Empirically, however, we successfully apply SpAR to several real-world datasets without assurance that they exhibit only
covariate shift, and find promising results. The spectral inflation property that we observe in real data (Figure 2) may be
relevant to other distribution shifts as well, although this remains to be seen in future studies. Identifying covariate shift
within a datasets is an active area of work (Ginsberg et al., 2022) that complements our efforts in this paper.
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