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Abstract

In real-world scenarios such as traffic and energy
management, we frequently encounter large vol-
umes of time-series data characterized by miss-
ing values, noise, and irregular sampling patterns.
While numerous imputation methods have been
proposed, the majority tend to operate within a
local horizon, which involves dividing long se-
quences into batches of fixed-length segments
for model training. This local horizon often
leads to the overlooking of global trends and pe-
riodic patterns. More importantly, most meth-
ods assume the observations are sampled at reg-
ular timestamps, and fail to handle complex ir-
regular sampled time series in various applica-
tions. Additionally, most existing methods are
learned in an offline manner. Thus, it is not suit-
able for applications with rapidly arriving stream-
ing data. To address these challenges, we pro-
pose BayOTIDE : Bayesian Online Multivariate
Time series Imputation with functional decompo-
sition. Our method conceptualizes multivariate
time series as the weighted combination of groups
of low-rank temporal factors with different pat-
terns. We employ a suite of Gaussian Processes
(GPs),each with a unique kernel, as functional
priors to model these factors. For computational
efficiency, we further convert the GPs into a state-
space prior by constructing an equivalent stochas-
tic differential equation (SDE), and developing
a scalable algorithm for online inference. The
proposed method can not only handle imputation
over arbitrary timestamps, but also offer uncer-
tainty quantification and interpretability for the
downstream application. We evaluate our method
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on both synthetic and real-world datasets. We
release the code at https://github.com/
xuangu-fang/BayOTIDE.

1. Introduction
Multivariate time series data are ubiquitous and generated
quickly in many real-world applications (Wen et al., 2022;
Esling & Agon, 2012; Zhang et al., 2024), such as traf-
fic (Chen et al., 2024; Li et al., 2015) and energy (Zhu et al.,
2023; Grabner et al., 2023). However, the collected data are
often incomplete and noisy due to sensor failures, commu-
nication errors, or other reasons. The missing values in the
time series data can lead to inaccurate downstream analysis.
Therefore, it is essential to impute the missing values in the
time series data in an efficient way.

Most early methods for time series imputation (Acuna & Ro-
driguez, 2004; Van Buuren & Groothuis-Oudshoorn, 2011;
Durbin & Koopman, 2012) are based on statistical mod-
els. Deep learning based imputation methods have gotten
boosted attention (Wang et al., 2024a; Fang & Wang, 2020)
in recent years, for their ability to capture complex non-
linear patterns. Another remarkable direction is to apply
diffusion models (Yang et al., 2024; Song et al., 2020; Ho
et al., 2020) to handle probabilistic imputation, where filling
the missing value can be modeled as a denoising process.
Most recent work TIDER (LIU et al., 2023) proposed an-
other imputation direction to apply the matrix factorization
and decompose the series into disentangled representations.

Despite the success of the proposed methods, they are lim-
ited in several aspects. First, most DNN-based and diffusion-
based methods are trained by splitting the long sequence
into small patches. This local horizon can fail to capture the
crucial global patterns (Alcaraz & Strodthoff, 2022; Woo
et al., 2022), such as trends and periodicity (Chen et al.,
2022; Wen et al., 2021), leading to less interpretability. Sec-
ond, many methods assume the observations are sampled
at regular time stamps, and always under-utilize or ignore
the real timestamps. Thus, those models can only impute
on fixed-step and discretized time points, instead of the ar-
bitrary time stamps at the whole continuous field. Lastly, in
real-world applications such as electricity load monitoring,
massive time series data are generated quickly and collected
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in a streaming manner (Liu et al., 2023). It is extremely
costly or even impossible to retrain the model from scratch
when new data arrives. Thus, to align with streaming data,
the imputation model should work and update in an efficient
online manner. However, to the best of our knowledge, all
prior imputation methods are designed and optimized in an
offline manner, i.e., go through all collected data several
epochs for training, which is not suitable for streaming data
scenarios.

To handle those limitations, we propose BayOTIDE :
Bayesian Online multivariate Time series Imputation with
functional DEcomposition. BayOTIDE treats the observed
values of multivariate time series as the noisy samples from
a continuous temporal function. Then, we decompose the
function into groups of weighted functional factors, and
each factor is aimed to capture a dynamic pattern. We apply
Gaussian Processes (GPs) with smooth and periodic kernels
as functional priors to fit the factors. Employing the SDE
representation of GPs and moment-matching techniques,
we develop an online algorithm to infer the running poste-
rior of weights and factors efficiently. As it is a Bayesian
model, BayOTIDE can offer uncertainty quantification and
robustness against noise. The learned functional factors can
provide not only interpretability but also imputation over
arbitrary timestamps. We list the comparison of BayOTIDE
and other main-stream imputation methods in Table 1. In
summary, we highlight our contributions as follows:

• We propose BayOTIDE , a novel Bayesian method for
multivariate time series imputation. BayOTIDE can ex-
plicitly learn the function factors representing various
global patterns, which offer interpretability and uncer-
tainty quantification. As BayOTIDE is a continuous
model, it can utilize the irregularly sampled timestamps
and impute over arbitrary timestamps naturally.

• To the best of our knowledge, BayOTIDE is the first
online probabilistic imputation method of multivariate
time series that could fit streaming data well. Fur-
thermore, we develop a scalable inference algorithm
with closed-form update and linear cost via moment-
matching techniques.

• We extensively evaluate our method on synthetic and
real-world datasets, and the results show that Bay-
OTIDE outperforms the state-of-the-art methods in
terms of accuracy and efficiency.

2. Related Work
Disentangled representations of time series. The most
classical framework of decomposing time series into dis-
entangled representations is the seasonal-trend decomposi-
tion(STL) (Cleveland et al., 1990) along with its following

work (Wen et al., 2019; 2020; Abdollahi, 2020; Bandara
et al., 2021), which are non-parametric method to decom-
pose the univariate series into seasonal, trend and residual
components. (Qiu et al., 2018) proposed the structural de-
sign to extend decomposition into multivariate and prob-
abilistic cases. Recently, CoST (Woo et al., 2022) and
TIDER (LIU et al., 2023) show the disentangled representa-
tions of multivariate series could get significant performance
improvement in forecasting and imputation tasks, respec-
tively, with bonus of interpretability. However, they are
not flexible enough to handle the continuous time field and
observation noise. Benavoli & Corani (2021) propose a
similar idea to directly utilize the state-space GPs with mix-
ture kernels to estimate the seasonal-trend factors, but is
restricted in univariate series. Besides the imputation and
forecasting, learning the disentangled representation of time
series is a crucial tool for estimating causal-related latent
variables in sequential data (Yao et al., 2021; 2022). A series
of recent works on tensor-valued time series analysis (Fang
et al., 2022; 2024; Wang et al., 2024b) also apply the idea
of disentangled representations to learn temporal dynamics
in latent spaces.

Bayesian imputation modeling. Bayesian methods are
widely used in time series imputation tasks for robust
modeling and uncertainty quantification. Early work di-
rectly applies a single Bayesian model like Gaussian Pro-
cess (Roberts et al., 2013) and energy models (Brakel et al.,
2013) to model the dynamics. With deep learning boosting
in the past ten years, it is popular to utilize the probabilistic
modules with various deep networks, such as RNN (Mulyadi
et al., 2021), VAE (Fortuin et al., 2020) and GAN (Yoon
et al., 2018). Adopting score-based generative models
(SGMs) is another promising direction for probabilistic
imputation, which could be used as autoregressive denois-
ing (Rasul et al., 2021), conditional diffusion (Tashiro et al.,
2021), Schrödinger Bridge (Chen et al., 2023) and state-
space blocks (Alcaraz & Strodthoff, 2022). However, most
of the above methods are trained in the offline and patching-
sequence manner, which lacks interpretability and may not
fit streaming scenarios.

3. Background
3.1. Multivariate Time Series Imputation

The classical multivariate time series imputation problem
is formulated as follows. A N -step multivariate time series
X = {x1, . . . ,xN} ∈ RD×N , where xn ∈ RD is the D-
size value at n-th step and xd

n represents it’s values at d-th
channel. There is a mask matrix M ∈ {0, 1}D×N , indicat-
ing whether the series value is observed or missing. The
goal is to use the observed values, where Md,n = 1, to esti-
mate the missing values xd

n, where Md,n = 0. In the above
setting, the interval between two consecutive timestamps is
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Properties / Methods BayOTIDE TIDER Statistic-based DNN-based Diffusion-based

Uncertainty-aware ✓ ✗ ✗ @@! ✓
Interpretability ✓ ✓ ✓ ✗ ✗

Continuous modeling ✓ ✗ ✗ ✗ @@!
Inference manner online offline offline offline offline

Table 1: Comparison of BayOTIDE and main-stream multivariate time series imputation methods. @@! means only partial models in
the family have the property, or it’s not clear in the original paper. For example, only deep models with probabilistic modules can offer
uncertainty quantification, such as GP-VAE (Fortuin et al., 2020), but most deep models cannot. The diffusion-based CSDI (Tashiro et al.,
2021) and CSBI (Chen et al., 2023) take timestamps as input, but the model is trained with discretized time embedding.

assumed to be constant by default. If the timestamps are
irregularly sampled and continuous, the problem becomes
more challenging and the exact timestamps {t1, . . . , tN}
should be considered in the imputation model. In this paper,
we aimed to learn a general function X(t) : t → RD to
impute the missing values at any time t ∈ [t1, tN ].

3.2. Gaussian Process (GP) and State-Space Model

Gaussian Process (GP) (Rasmussen & Williams, 2006)s
is a powerful Bayesian prior for functional approxima-
tion, always denoted as f ∼ GP (0, κ (x,x′)). As a non-
parametric model, it’s characterized by a mean function,
here assumed to be zero, and a covariance function or kernel
κ (x,x′), which is a positive definite function that measures
the similarity of inputs. The choice of the kernel is crucial
as it determines the types of functions the GP can model.
For instance, the Matérn kernel

κMatérn = σ2

(√
2ν
l α (x,x′)

)ν
Γ(ν)2ν−1

Kν

(√
2ν

l
α (x,x′)

)
,

(1)

and periodic kernel:

κperiodic = σ2exp
(
−2 sin2(πα (x,x′) /p)/l2

)
(2)

are versatile choices to model functions with non-linear and
cyclical patterns, respectively. {σ2, l, ν, p} are hyperparam-
eters determining the variance, length-scale, smoothness,
and periodicity of the function. α (·, ·) is the Euclidean dis-
tance, and Kν is the modified Bessel function,Γ(·) is the
Gamma function.

Despite the flexibility and capacity, full GP is a com-
putationally expensive model with O(n3) inference cost
while handlining n observation data, which is not feasi-
ble in practice. To sidestep expensive kernel matrix com-
putation, (Hartikainen & Särkkä, 2010; Särkkä, 2013) ap-
plied the spectral analysis and worked out a crucial state-
ment: a temporal GP with a stationary kernel is equiva-
lent to a linear time-invariant stochastic differential equa-
tion (LTI-SDE). Specifically, given f(t) ∼ GP (0, κ (t, t′)),
we can define a vector-valued companion form: z(t) =

(
f(t), df(t)

dt , . . . , dfm(t)
dt

)⊤
: t → Rm+1, where m is the

order of the derivative. Then, the GP is equivalent to the
solution of the LTI-SDE with canonical form:

dz(t)

dt
= Fz(t) + Lw(t), (3)

where F is a (m+1)× (m+1) matrix, L is a (m+1)× 1
vector, and w(t) is a white noise process with spectral den-
sity qs. On arbitrary collection of timestamps {t1, . . . , tN},
the LTI-SDE (3) can be further discretized as the Markov
model with Gaussian transition, known as the state-space
model (SSM):

p(z(t1)) = N (z(t1)|0,P∞),

p(z(tn+1)|z(tn)) = N (z(tn+1)|Anz(tn),Qn),
(4)

where An = exp(F∆n), Qn =
∫ tn+1

tn
AnLL

⊤A⊤
n qsdt,

∆n = tn+1 − tn, and P∞ is the steady-state covariance
matrix, which can be obtained by solving the Lyapunov
equation FP∞ +P∞F⊤ +LL⊤qs = 0 (Lancaster & Rod-
man, 1995). SSM (4) can be efficiently solved with linear
cost by classical methods like the Kalman filter (Kalman,
1960). After inference over z(t), we can easily obtain f(t)
by a simple projection: f(t) = [1, 0, . . . 0]z(t).

We highlight that all the parameters of the LTI-SDE (3) and
its SSM (4): {m,F,L, qs,P∞} are time-invariant constant
and can be derived from the given stationary kernel function.
In practice, stationary kernels are a common choice for GP,
which requires the kernel to be a function of the distance
between two inputs. For example, the Matérn and periodic
kernels are stationary kernels, and we can work out their
closed-form formulas of LTI-SDE and SSM. We omit the
specific formulas here and refer the readers to the appendix.

4. Method
4.1. Functional Decomposition of Time Series

The motivation of BayOTIDE is based on the fact that the
different channels of real-world multivariate time series are
always correlated, and there may exist shared patterns across
channels. Thus, we propose to decompose the series into a
set of functional basis (factors) and channel-wise weights.
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Inspired by the classic seasonal-trend decomposition (Cleve-
land et al., 1990) and TIDER (LIU et al., 2023), we assume
there are two groups of factors representing different tempo-
ral patterns. The first group of factors is supposed to capture
the nonlinear and long-term patterns, and the second rep-
resents the periodic parts, namely, trends and seasonalities.
Thus, we decompose the function X(t) : t → RD as the
weighted combination of two groups of functional factors.
Specifically, assume there are Dr trend factors and Ds sea-
sonality factors, then we have the following decomposition:

X(t) = UV(t) = [Utrend,Useason]

[
vtrend(t),
vseason(t)

]
, (5)

where U = [Utrend ∈ RD×Dr ,Useason ∈ RD×Ds ] are
the weights of the combination. The trends factor group
vseason(t) : t → RDs , and seasonality factor groups
vtrend(t) : t → RDr are the concatenation of independent
temporal factors over each dimension:

vtrend(t) = concat[vitrend(t)]i=1...Dr
,

vseason(t) = concat[vjseason(t)]j=1...Ds ,
(6)

where vitrend(t), v
j
season(t) are the 1-d temporal function fac-

tor, aimed to model the i-th trend and j-th seasonality latent
pattern respectively.

For the imputation task, if we can estimate the U and V(t)
well, we can impute the missing values of X(t) by UV(t)
for any t. As TIDER (LIU et al., 2023) proposed a low-
rank decomposition similar to (5), our model can be seen
as a generalization of TIDER to the continuous-time and
functional field with the Bayesian framework.

4.2. GP Prior and Joint Probability of Our Model

We assume X(t) is partially observed with missing values
and noise on timestamps {t1, . . . tN}. We denote the ob-
served values as Y = {yn}Nn=1, where yn ∈ RD, and its
value at d-th channel is denoted as ydn. M ∈ {0, 1}D×N

is the mask matrix, where 1 for observed values and 0 for
missing values. The noise level is assumed to be the same
for all the channels. Thus, we set the Gaussian likelihood
for the observed values as:

p(Y|U,V(t), τ) =
∏

(d,n)∈Ω

N (ydn | udv(tn), τ
−1), (7)

where τ is the inverse of the noise level. Ω is the collec-
tion of observed values’ location, namely Ω = {(d, n) |
Md,n = 1}. ud ∈ R1×(Dr+Ds) is the d-th row of U, and
v(tn) ∈ R(Dr+Ds)×1 is the concatenation of vtrend(tn) and
vseason(tn).

As vseason(t) and vtrend(t) are supposed to capture different
temporal patterns, we adopt Gaussian Processes (GPs) with

different kernels to model them. Specifically, we use the
Matérn kernel to model the trend factors, and the periodic
kernel to model the seasonality factors:

vitrend(t) ∼ GP(0, κMatérn), v
j
season(t) ∼ GP(0, κperiodic).

(8)

We further assume that Gaussian prior for ud and Gamma
prior for τ . Then, the joint probability model is:

p(Y,V(t),U, τ) = Gam(τ | a0, b0)
D∏

d=1

N (ud | 0, I)

·
Ds∏
j=1

GP(0, κperiodic)

Dr∏
i=1

GP(0, κMatérn) · p(Y|Θ), (9)

where Θ = {U,V(t), τ} denotes all model random
variables for compactness. As each GP prior term cor-
responds to a companion form z(t) (see section(3.2)),
we define the concatenation of all factors’ companion
forms as Z(t) and we have p(V(t)) = p(Z(t)) =

P (Z(t1))
∏N−1

i=1 P (Z(tn+1)|Z(tn)).

4.3. Online Inference

With the joint probability (9), we further propose an online
inference algorithm to estimate the running posterior of Θ.
We denote all observations up to time tn as Dtn , i.e. Dtn =
{y1, . . . ,yn}. When a new observation yn+1 arrives at
tn+1, we aimed to update the posterior distribution p(Θ |
Dtn ∪yn+1) without reusing the previous observations Dtn .
The general principle for online inference is the incremental
version of Bayes’rule, which is:

p(Θ | Dtn ∪ yn+1) ∝ p(yn+1 | Θ,Dtn)p(Θ | Dtn).
(10)

However, the exact posterior is not tractable. Thus, we
first apply the mean-field factorization to approximate the
posterior. Specifically, we approximate the exact posterior
as:

p(Θ | Dtn) ≈ q(τ | Dtn)

D∏
d=1

q(ud | Dtn)q(Z(t) | Dtn),

(11)

where q(ud | Dtn) = N (md
n,V

d
n) and q(τ | Dtn) =

Gamma(τ | an, bn) are the approx. distributions for U and
τ at time tn respectively. For Z(t), we design the approxi-
mated posterior as q(Z(t) | Dtn) =

∏n
i=1 q(Z(ti)), where

q(Z(ti)) are the concatenation of q(z(ti)) = N (µi,Si)
across all factors. {{md

n,V
d
n}, {µi,Si}, an, bn, } are the

variational parameters of the approximated posterior to be
estimated.

With mean-field approximation, (10) is still not feasible. It’s
because the multiple factors and weights interweave in the
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likelihood, and R.H.S of (10) is unnormalized. To solve it,
we propose a novel online approach to update q(Θ | Dtn)
with a closed form by adopting conditional Expectation
Propagation(CEP) (Wang & Zhe, 2019) and chain structure
of Z(t). Specifically, with current q(Θ | Dtn) and prior
p(Θ), we can approximate each likelihood term of the new-
arriving observation yn+1 as several messages factors:

p(ydn+1 | Θ) ≈ Zfd
n+1(Z(tn+1))f

d
n+1(ud)f

d
n+1(τ), (12)

where Z is the normalization constant, fd
n+1(ud) = N (ud |

m̂d
n+1, V̂

d
n+1) and fd

n+1(τ) = Gamma(τ | ân+1, b̂n+1),
fd
n+1(Z(tn+1)) = concat[N (µ̂i, Ŝi)] are the approximated

message factors of ud, τ , and Z(tn+1) respectively.

Then, we merge all the message factors of U and τ and fol-
low the variational form of (10), and will obtain the update
equations:

q(τ |Dtn+1
) = q(τ |Dtn)

D∏
d=1

fd
n+1(τ), (13)

q(ud|Dtn+1) = q(ud|Dtn)f
d
n+1(u

d). (14)

The message approximation (12) and the message merging
procedure (13)(14) are based on the conditional moment-
matching technique, which can be done in parallel for all
channels with closed-form update. We omit the derivation
and exact formulas and refer the readers to the appendix.

Then, we present the online update of Z(t). With the chain
structure of q(Z(t) | Dtn) and p(Z(t)), we found the update
can be conducted sequentially. Specifically:

q(Z(tn+1)) =

q(Z(tn))p(Z(tn+1)|Z(tn))
∏
d=1

fd
n+1(Z(tn+1)), (15)

where p(Z(tn+1)|Z(tn)) is the concatenation of all factors’
transition given in (4). If we treat

∏
d f

d
n+1(Z(tn+1)) as

the observation of the state space, (15) is the Kalman filter
model (Kalman, 1960). Thus, we can obtain the closed-
form update of q(Z(t)| | Dtn), which is the running pos-
terior q(Zn|y1:n). After going through all observations,
we run Rauch-Tung-Striebel (RTS) smoother (Rauch et al.,
1965) to efficiently compute the full posterior of each state
q(Zn|y1:N ) from backward.

The online algorithm is summarized in Algorithm table 1:
we go through all the timestamps, approximate the message
factors with moment-matching, and run Kalman filter and
message merging and update sequentially. For each times-
tamp, we can run moment-matching and posterior update
steps iteratively several times with damping trick (Minka,
2001a) for better approximation. The algorithm is very effi-
cient as the message approximation (12) can be parallel for

Algorithm 1 BayOTIDE

Input: observation Y = {yn}Nn=1over {tn}Nn=1,
Ds, Dr, the kernel hyperparameters.
Initialize q(τ), q(W), {q(Z(tn))}Nn=1.
for t = 1 to N do

Approximate messages by (12) for all observed chan-
nels in parallel.
Update posterior of τ and U by (13) and (14) for all
observed channels in parallel.
Update posteriors of Z(t) using Kalman filter by (15).

end for
Run RTS smoother to obtain the full posterior of Z(t).
Return: q(τ), q(W), {q(Z(tn))}Nn=1

different channels, and all the updates are closed-form. The
algorithm is with time cost O(N(Ds+Dr)) and space cost
O(
∑Dr+Ds

k=1 N(mk +m2
k)+D(Ds+Dr)) where N is the

number of timestamps, D is the number of channel of origi-
nal time series, Dr, Ds are number of trends and seasonality
factors respectively, mk is the order of the companion form
of k-th factor’s GP prior determined by the kernel types.

4.4. Probabilistic Imputation at Arbitrary Timestamp

With the current posterior {q(z(t1)) . . . q(z(tN ))} over
the observed timestamps, the functional and chain prop-
erty of GP priors allow us to infer the prediction distri-
bution, namely do probabilistic interpolation at arbitrary
time stamps. Specifically, for a never-seen timestamp
t⋆ ∈ (t1, tN ), we can identify the closest neighbor of
t⋆ observed in training, i.e, tk < t⋆ < tk+1, where
tk, tk+1 ∈ {t1 . . . tN}. Then the predictive distribution
at t⋆is given by q(z(t⋆)) = N (z⋆ | m⋆,V⋆). {m⋆,V⋆}
are defined as:

V⋆ = (Q−1
1 +A⊤

2 Q−1
1 A2)

−1,

m⋆ = V⋆(Q−1
1 A1mk +A⊤

2 Q−1
2 mk+1),

(16)

where mk,mk+1 are the predictive mean of
q(z(tk)), q(z(tk+1)), {A1,A2,Q1,Q2} are transition
matrices and covariance matrices based on the forward-
backward transitions p(z(t⋆)|z(tk)), p(z(tk+1)|z(t⋆))
respectively. Eq.(16) offers continuous modeling of the
time series. We give a detailed derivation in the appendix.

5. Experiments
5.1. Synthetic data

We first evaluate BayOTIDE on a synthetic task. We first
set four temporal functions and a weight matrix, defined as
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follows:

U =


1 1 −2 −2
0.4 1 2 −1
−0.3 2 1 −1
−1 1 1 0.5

 ,

V(t) =


10t,

sin(20πt),
cos(40πt),
sin(60πt)

 .

Then, the four-channel time series is defined as X(t) =
UV(t), and each channel is a mixture of multiscale trend
and seasonality factors. We collected 2000 data points over
the 500 irregularly sampled timestamps from [0, 1]. We
randomly set only 20% of the data as observed values, and
the rest as missing for evaluation. We further add Gaussian
noise with a standard deviation 0.1 to the observed data. We
use the Matérn kernel with ν = 3/2 as the trend kernel and
the periodic kernel with period 20π as the seasonality kernel.
We set Dr = 1, Ds = 3. We highlight that evaluation could
be taken on the timestamps that never appear in the training
set, known as the all-channel-missing imputation, but we
can apply (16) to handle such hard cases easily.

The imputation results are shown in Figure 1a. We can see
that BayOTIDE recovers the series well, and the estimated
uncertainty is reasonable. We also show the channel-wise
estimated factors in Figure 1b,1c,1d, and 1e. We can see that
the estimated factors are close to the real factors, which indi-
cates that BayOTIDE can capture the underlying multiscale
patterns of the data.

5.2. Real-world Applications

Datasets We evaluate BayOTIDE on three real-world
datasets, Traffic-Guangzhou(Chen et al.): traffic speed
records in Guangzhou with 214 channels and 500
timestamps. Solar-Power(https://www.nrel.gov/
grid/solar-power-data.html) : 137 channels
and 52560 timestamps, which records the solar power
generation of 137 PV plants. Uber-Move(https://
movement.uber.com/): 7489 channels and 744 times-
tamps, recording the average movement of Uber cars along
with the road segments in London, Jan 2020. For each
dataset, we randomly sample {70%, 50%} of the avail-
able data points as observations for model training, and
the rest for evaluation. The data process and split strategy
are aligned with TIDER (LIU et al., 2023).

Baselines and Settings To the best of our knowledge, there
are no online algorithms for multivariate time series imputa-
tion. Thus, we set several popular deterministic and prob-
abilistic offline imputation approaches as baselines. The
deterministic group includes: (1) SimpleMean (Acuna &
Rodriguez, 2004), impute with column-wise mean values.

(2) BRITS (Cao et al., 2018), the RNN-based model for
imputation with time decay (3) NAOMI(Liu et al., 2019), a
Bidirectional RNN model build with adversarial training (4)
SAITS(Du et al., 2023), a transformer-based model which
adopts the self-attention mechanism. (5) TIDER(LIU et al.,
2023). State of art deterministic imputation model based on
disentangled temporal representations.

The probabilistic group includes: (1) Multi-Task GP(Bonilla
et al., 2008), the classical multi-output Gaussian process
model (2) GP-VAE(Fortuin et al., 2020), a deep generative
model which combines Gaussian Processes(GP) and varia-
tional autoencoder(VAE) for imputation (3) CSDI(Tashiro
et al., 2021) Famous probabilistic approach which apply con-
ditional diffusion model to capture the temporal dependency.
(4)CSBI Advanced diffusion method that models the impu-
tation task as a conditional Schrödinger Bridge(SB)(Chen
et al., 2023). We also set BayOTIDE-fix-wight by fixing all
weight values as one and BayOTIDE-trend-only, and only
using trend factor, respectively for BayOTIDE .

For most baselines, we use the released implementation
provided by the authors. We partially use the results of
deterministic methods reported in TIDER(LIU et al., 2023),
as the setting is aligned. To avoid the out-of-memory prob-
lem of diffusion-based and deep-based baselines, we follow
the preprocess of original papers, which split the whole se-
quence into small patches and subsample the channels for
those methods.

For BayOTIDE , we implemented it by Pytorch and fine-
tuned the Ds, Dr, and the kernel hyperparameters to obtain
optimal results. Detailed information on hyperparameter
settings is provided at Table 5 in the appendix. For the met-
rics, we use the mean absolute error (MAE) and the root
mean squared error (RMSE) as the deterministic evaluation
metrics for all methods. We adopt the continuous ranked
probability score (CRPS) and the negative log-likelihood
(NLLK), for BayOTIDE and all probabilistic baselines. We
use 50 samples from the posterior to compute CRPS and
NLLK. We repeat all the experiments 5 times and report
the average results. For the CEP step at each timestamp in
BayOTIDE , we use the damping trick (Minka, 2001a) in
several inner epochs to avoid numerical instability. For the
online imputation, we use the online update equations to
obtain the imputation results and run RTS smoother at every
evaluation timestamp.

Deterministic and Probabilistic performance Table 2 and
table 3 show the RMSE, MAE, and CRPS scores of im-
putation on three datasets with observed ratio = 50% and
= 70% respectively. We can see that BayOTIDE , an on-
line method that only processes data once, beats the offline
baselines and performs best in most cases. TIDER is the
sub-optimal method for most cases. For probabilistic ap-
proaches, diffusion-based CSDI and CSBI obtain fair per-
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Figure 1: (a): The multivariate time series recovered from observations. The shaded region indicates two posterior standard deviations.
(b)-(e): The weighted trend-seasonality factors learned by BayOTIDE of each channel.

Observed-ratio=50% Traffic-GuangZhou Solar-Power Uber-Move
Metrics RMSE MAE CRPS RMSE MAE CRPS RMSE MAE CRPS

Deterministic & Offline

SimpleMean 9.852 7.791 - 3.213 2.212 - 5.183 4.129 -
BRITS 4.874 3.335 - 2.842 1.985 - 2.180 1.527 -
NAOMI 5.986 4.543 - 2.918 2.112 - 2.343 1.658 -
SAITS 4.839 3.391 - 2.791 1.827 - 1.998 1.453 -
TIDER 4.708 3.469 - 1.679 0.838 - 1.959 1.422 -

Probabilistic & Offline

Multi-Task GP 4.887 3.530 0.092 2.847 1.706 0.203 3.625 2.365 0.121
GP-VAE 4.844 3.419 0.084 3.720 1.810 0.368 5.399 3.622 0.203
CSDI 4.813 3.202 0.076 2.276 0.804 0.166 1.982 1.437 0.072
CSBI 4.790 3.182 0.074 2.097 1.033 0.153 1.985 1.441 0.075

Probabilistic & Online

BayOTIDE-fix weight 11.032 9.294 0.728 5.245 2.153 0.374 5.950 4.863 0.209
BayOTIDE-trend only 4.188 2.875 0.059 1.789 0.791 0.132 2.052 1.464 0.067
BayOTIDE 3.820 2.687 0.055 1.699 0.734 0.122 1.901 1.361 0.062

Table 2: RMSE, MAE and CRPS scores of imputation results of all methods on three datasets with observed ratio = 50%.
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Observed-ratio=70% Traffic-GuangZhou Solar-Power UberLondon
Metrics RMSE MAE CRPS RMSE MAE CRPS RMSE MAE CRPS

Deterministic & Offline

SimpleMean 10.141 8.132 - 3.156 2.319 - 5.323 4.256 -
BRITS 4.416 3.003 - 2.617 1.861 - 2.154 1.488 -
NAOMI 5.173 4.013 - 2.702 2.003 - 2.139 1.423 -
SAITS 4.407 3.025 - 2.359 1.575 - 1.893 1.366 -
TIDER 4.168 3.098 - 1.676 0.874 - 1.867 1.354 -

Probabilistic & Offline

Multi-Task GP 4.471 3.223 0.082 2.618 1.418 0.189 3.159 2.126 0.108
GP-VAE 4.373 3.156 0.075 3.561 1.723 0.331 3.133 2.005 0.625
CSDI 4.301 2.991 0.069 2.132 1.045 0.153 1.886 1.361 0.068
CSBI 4.201 2.955 0.064 1.987 0.926 0.138 1.899 1.353 0.070

Probabilistic & Online

BayOTIDE-fix weight 13.319 9.29 0.677 5.238 2.026 0.388 5.889 4.849 0.208
BayOTIDE-trend only 4.002 2.759 0.056 1.651 0.712 0.124 2.015 1.438 0.065
BayOTIDE 3.724 2.611 0.053 1.621 0.709 0.116 1.832 1.323 0.061

Table 3: RMSE, MAE and CRPS scores of imputation results of all methods on three datasets with observed ratio = 70%.

formance, but are costly in memory and need to split the
long sequence into small patches for training. BayOTIDE-
fix-wight is with poor performance, which indicates that
the weighted bases mechanism is crucial. BayOTIDE-trend-
only is slightly worse than BayOTIDE , showing the mod-
eling of periodic factor is necessary. The results of NLLK
score over three datasets can be found at table 6 in the
appendix.

Online Imputation We demonstrate the online imputation
performance of BayOTIDE on three datasets with observed
ratio 50%. Whenever a group of observations at new times-
tamps have been sequentially fed into the model, we evalu-
ate the test RMSE of the model with the updated weights
and temporal factor. We compare the performance of Bay-
OTIDE with the BayOTIDE-fix-wight. The online result on
Traffic-Guangzhou is shown in Figure 2a. We can see that
BayOTIDE shows the reasonable results that the evaluation
error drops gradually when more timestamps are processed,
meaning the model can continuously learn and improve.
The performance of BayOTIDE-fix-wight is very poor. It
indicates the trivial usage of the GP-SS model for multi-
variate time series imputation may not be feasible. The
online results for the other two datasets can be found in the
appendix.

Scalability and Sensitivity We evaluate the scalability of
BayOTIDE over data size and factor numbers. We set three
different factor numbers: Dr +Ds = {5, 20, 50}. As for
the scalability over series length N , We make synthetic
data with channel number D = 1000, increase the N from
1000 to 4000, and measure the training time. The result
is shown in Figure 2b. Similarly, we fix the series length
N = 1000, increase the series channel D from 1000 to

4000, and then measure the training time. The result is
shown in Figure 2c. As we can see, the running time of
BayOTIDE grows linearly in both channel and length size,
and the factor number determines the slope. Therefore,
BayOTIDE enjoys the linear scalability to the data size,
which is suitable for large-scale applications.

We further examine the sensitivity of BayOTIDE with dif-
ferent hyperparameters. We build the model with Matérn
kernel with different smoothness ν = {1/2, 3/2} on the
Traffic-Guangzhou with observed ratio 70%. We vary three
crucial hyperparameters: the number of factors Dr+Ds, the
kernel length scale, and the kernel variance, and check how
imputation performance (CRPS) changes. The results are
shown in Figure 2d, Figure 2e, and Figure 2f, respectively.
We found more factors that will result in better performance
in general for both kernel types. We can find that the perfor-
mance is relatively stable over different hyperparameters for
Matérn kernel with smoothness ν = {1/2}. For the Matérn
kernel with smoothness ν = {3/2}, the performance is
more sensitive, especially to the kernel lengthscale. The
smaller kernel lengthscale will result in better performance.
The kernel variance is also sensitive, but the performance is
relatively stable when the variance is large enough. More
results on the sensitivity of BayOTIDE over different com-
binations of latent space dimensions (Dr, Ds) are shown in
Table 7 in the appendix.

Imputation on Irregular and All-Channel-Missing
Timestamps We further show BayOTIDE can work well
with irregulate timestamps with functional and continuous
design, and therefore can handle the challenging case of
all-channel-missing case. We select the observations at
{50%, 70%} randomly sampled irregulate timestamps for
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Figure 2: Online performance, scalability and sensitivity of BayOTIDE

training, and evaluate the model on the left all-channel-
missing timestamps. Such timestamps are never seen in the
training, and the model needs to do the interpolation. We
highlight that most existing advanced imputation methods
cannot handle this hard case well. It’s because they are
based on the regular-time-interval setting, which assumes
there is at least one observation at every timestamp during
the training. However, BayOTIDE can apply the Eq. (16)
and give probabilistic imputation at the arbitrary continuous
timestamp. Thus, we only list the results of BayOTIDE on
three datasets in Table 4. We can see the performance is
closed or even better than the standard imputation setting
shown in Table 2.

Dataset GuangZhou Solar-Power Uber-Move
Obs. 50% 70% 50% 70% 50% 70%

RMSE 3.625 3.383 1.624 1.442 3.017 2.931
MAE 2.524 2.401 0.706 0.614 1.199 1.154
CRPS 0.051 0.046 0.121 0.113 0.311 0.302
NLLK 2.708 2.634 1.861 1.857 2.137 2.138

Table 4: The imputation results of BayOTIDE with settings of
irregulate and all-channel-missing timestamps on three datasets
with observed ratio = {50%, 70%}.

6. Conclusion
We proposed BayOTIDE , a novel Bayesian model for on-
line multivariate time series imputations. We decompose
the multivariate time series into a temporal function basis
and channel-wise weights, and apply a group of GPs to fit
the temporal function basis. An efficient online inference
algorithm is developed based on the SDE representation
of GPs and moment-matching techniques. Results on both
synthetic and real-world datasets show that BayOTIDE out-
performs the state-of-the-art methods in terms of both im-
putation accuracy and uncertainty quantification. We also
evaluated the scalability and robustness of BayOTIDE on
large-scale real-world datasets with different settings of hy-
perparameters and missing patterns. . In the future, we plan
to extend BayOTIDE to handle more complex patterns and
more challenging tasks, such as long-term forecasting with
non-stationary patterns.
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Impact Statement
This paper is dedicated to innovating time series imputation
techniques to push the boundaries of time series analysis
further. While our primary objective is to enhance impu-
tation accuracy and computational efficiency, we are also
mindful of the broader ethical considerations that accom-
pany technological progress in this area. While immediate
societal impacts may not be apparent, we acknowledge the
importance of ongoing vigilance regarding the ethical use
of these advancements. It is essential to continuously as-
sess and address potential implications to ensure responsible
development and application in various scenarios.
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Appendix
.1. LTI-SDE representation of GP with Matérn kernel

and periodic kernel

.1.1. CONNECT GP WITH LTI-SDE BY SPECTRAL
ANALYSIS

We take the Matérn kernel as an example to show how to
connect GP with LTI-SDE. The Matérn kernel is defined as:

κν(t, t
′) = a

(
√
2ν
ρ ∆)ν

Γ(ν)2ν−1
Kν(

√
2ν

ρ
∆) (17)

where ∆ = |t − t′|, Γ(·) is the Gamma function, a > 0
and ρ > 0 are the amplitude and length-scale parameters re-
spectively, Kν is the modified Bessel function of the second
kind, and ν > 0 controls the smoothness of sample paths
from the GP prior f(t) ∼ GP(0, κν(t, t

′)).

For a stationary Matérn kernel κν(t, t
′) = κν(t − t′), the

energy spectrum density of f(t) can be obtained via the
Wiener-Khinchin theorem by taking the Fourier transform
of κν(∆):

S(ω) =
σ2

(α2 + ω2)m+1
(18)

where ω is the frequency, α =
√
2ν
ρ , and we take ν = m+ 1

2

for m ∈ {0, 1, 2, ...}.

Expanding the polynomial gives:

(α+ iω)m+1 =

m∑
k=0

ck(iω)
k + (iω)m+1 (19)

where ck are coefficients. This allows constructing an equiv-
alent frequency domain system:

m∑
k=1

ck(iω)
kf̂(ω) + (iω)m+1f̂(ω) = β̂(ω) (20)

where f̂(ω) and β̂(ω) are Fourier transforms of f(t) and
white noise w(t) with spectral density qs respectively.

Taking the inverse Fourier transform yields the time domain
SDE:

m∑
k=1

ck
dkf

dtk
+

dm+1f

dtm+1
= w(t) (21)
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We can further construct a new state z =
(f, f (1), . . . , f (m))⊤ (where each f (k) ∆

= dkf/dtk)
and convert (21) into a linear time-invariant (LTI) SDE,

dz(t)

dt
= Fz(t) + Lw(t) (22)

where

F =


0 1

. . . . . .
0 1

−c0 . . . −cm−1 −cm

 , L =


0
...
0
1

 .

The LTI-SDE is particularly useful in that its finite set of
states follows a Gauss-Markov chain, namely the state-space
prior. Specifically, given arbitrary t1 < . . . < tL, we have

p(z(t1), . . . , z(tL)) = p(z(t1))
∏L−1

k=1
p(z(tk+1)|z(tk))

where

p(z(t1)) = N (z(t1)|0,P∞),

p(z(tn+1)|z(tn)) = N (z(tn+1)|Anz(tn),Qn) (23)

where An = exp(F∆n), Qn =
∫ tn+1

tn
AnLL

⊤A⊤
n qsdt,

∆n = tn+1 − tn, and P∞ is the steady-state covariance
matrix of the LTI-SDE 3, which can be obtained by solving
the Lyapunov equation FP∞ + P∞F⊤ + LL⊤qs = 0
(Lancaster & Rodman, 1995), as we claimed in the main
paper.

Note that for other types of stationary kernel functions, such
as the periodic kernels, we can approximate the inverse spec-
tral density 1/S(ω) with a polynomial of ω2 with negative
roots (Solin & Särkkä, 2014), and follow the same way to
construct an LTI-SDE and state-space prior.

.1.2. THE CLOSED-FORM OF LTI-SDE AND STATE
SPACE PRIOR WITH MATÉRN KERNEL AND
PERIODIC KERNEL

With the canonical form of LTI-SDE (22)and state space
prior(23) and above derivation, we can work out the closed-
form of LTI-SDE and state space prior for Matérn kernel
and periodic kernel. We present the results in the following.

For Matérn kernel with m = 0, indicating the smoothness is
ν = 0 + 1

2 , it becomes the exponential covariance function:

κexp(τ) = σ2 exp
(
−τ

ℓ

)
(24)

Then the parameters of the LTI-SDE and state space prior
are: {m = 0,F = −1/l,L = 1, qs = 2σ2/l,P∞ = σ2}

For Matérn kernel with m = 1, indicating the smoothness
is ν = 1 + 1

2 = 3/2, the kernel becomes the Matérn 3/2

covariance function:

κMat. (τ) = σ2

(
1 +

√
3τ

ℓ

)
exp

(
−
√
3τ

ℓ

)
(25)

and the parameters of the LTI-SDE and state space prior

are: m = 1, F =

(
0 1

−λ2 −2λ

)
,L =

(
0
1

)
, P∞ =(

σ2 0
0 λ2σ2

)
, qs = 4λ3σ2, where λ =

√
3/ℓ.

For the periodic kernel:

κperiodic(t, t
′) = σ2 exp

(
−2 sin2(π∆/p)

l2

)
(26)

with preset periodicity p, (Solin & Särkkä, 2014) construct
corresponding SDE by a sum of n two-dimensional SDE
models(m=1) of the following parameters:

Fj =

(
0 − 2π

p j
2π
p j 0

)
,Lj =

(
1 0
0 1

)
(27)

P∞,j = q2j I2, where q2j = 2Ij
(
ℓ−2
)
/ exp

(
ℓ−2
)
, for j =

1, 2, . . . , n and q20 = I0
(
ℓ−2
)
/ exp

(
ℓ−2
)

(Solin et al.,
2016)

.2. Derivative of online update equations by conditional
moment matching

.2.1. BRIEF INTRODUCTION OF EP AND CEP

The Expectation Propagation (EP) (Minka, 2001b) and
Conditional EP (CEP) (Wang & Zhe, 2019) frameworks ap-
proximate complex probabilistic models with distributions
in the exponential family.

Consider a model with latent variables θ and observed data
D = {y1, . . . ,yN}. The joint probability is:

p(θ,D) = p(θ)

N∏
n=1

p(yn|θ) (28)

The posterior p(θ|D) is usually intractable. EP approxi-
mates each term with an exponential family distribution:

p(yn|θ) ≈ cnfn(θ) (29)
p(θ) ≈ c0f0(θ) (30)

where fn(θ) ∝ exp(λ⊤
nϕ(θ)) are in the exponential family

with natural parameters λn and sufficient statistics ϕ(θ).

The joint probability is approximated by:
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p(θ,D) ≈ f0(θ)

N∏
n=1

fn(θ) · const (31)

giving a tractable approximate posterior q(θ) ≈ p(θ|D).

EP optimizes the approximations fn by repeatedly:

1) Computing the calibrated distribution q\n excluding fn.

2) Constructing the tilted distribution p̃ incorporating the
true likelihood.

3) Projecting p̃ back to the exponential family by moment
matching.

4) Updating fn ≈ q∗

q\n
where q∗ is the projection.

The intractable moment matching in Step 3 is key. CEP
exploits factorized fn =

∏
m fnm(θm) with disjoint θm. It

uses nested expectations:

Ep̃[ϕ(θm)] = Ep̃(θ\m)Ep̃(θm|θ\m)[ϕ(θm)] (32)

The inner expectation is tractable. For the outer expectation,
CEP approximates the marginal tilted distribution with the
current posterior:

Ep̃(θ\m)[g(θ\m)] ≈ Eq(θ\m)[g(θ\m)] (33)

If still intractable, the delta method is used to approximate
the expectation with a Taylor expansion.

Once the conditional moment g(θ\m) is obtained, CEP
substitutes the expectation Eq(θ\m)[θ\m] to compute the
matched moment for constructing q∗.

Online inference Update

We then applied the EP and CEP to approximate the running
posterior p(Θ | Dtn ∪ yn+1). With the incremental version
of Bayes’rule (10), the key is to work out the close-form
factors in the likelihood approximation (12). In other words,
we adopt conditional moment match techniques to handle:

N (yd
n+1 | udV(tn+1), τ

−1) ≈
Zfd

n+1(Z(tn+1))f
d
n+1(ud)f

d
n+1(τ) (34)

Then we follow the standard CEP procedure to com-
pute the conditional moment of {Z(tn+1),ud, τ} and
update fd

n+1(ud) = N (ud | m̂d
n+1, V̂

d
n+1) and

fd
n+1(τ) = Gamma(τ | ân+1, b̂n+1), fd

n+1(Z(tn+1)) =

concat[N (µ̂i, Ŝi)].

Specifically, for fd
n+1(τ) = Gamma(τ | ân+1, b̂n+1) we

have:

ân+1 =
1

2
(35)

b̂n+1 =
1

2
Eq[(y

d
n+1 − udV(tn+1))

2] (36)

For fd
n+1(ud) = N (ud | m̂d

n+1, V̂
d
n+1), we have:

V̂d
n+1 = [Eq[τ · Z(tn+1)Z

T (tn+1)]]
−1 (37)

m̂d
n+1 = V̂d

n+1 · Eq[τy
d
n+1Z(tn+1)] (38)

For fd
n+1(Z(tn+1)) = concat[N (µ̂i, Ŝi)] = N (µ̂i, Ŝi) ,

we have:

Ŝi = [Eq[τ · udu
T
d ]]

−1 (39)

µ̂i = Ŝi · Eq[τy
d
n+1ud] (40)

All the expectation is taken over the current approximated
posterior q(Θ | Dtn).

With these message factors from the new-arriving likelihood,
the online update is easy. We follow the (13), (14) and
(15) to merge the factors and obtain the closed-form online
update for the global posterior.

.3. Derivation of the PROBABILISTIC IMPUTATION
AT ARBITRARY TIME STAMPS

Consider a general state space model, which includes a
sequence of states x1, . . . ,xM and the observed data D.
The states are at time t1, . . . , tM respectively. The key of
the state space model is that the prior of the states is a
Markov chain. The joint probability has the following form,

p(x1, . . . ,xM ,D)

= p(x1)

M−1∏
j=1

p(xj+1|xj) · p(D|x1, . . . ,xM ). (41)

Note that here we do not assume the data likelihood is fac-
torized over each state, like those typically used in Kalman
filtering. In our point process model, the likelihood often
couples multiple states together.

Suppose we have run some posterior inference to obtain
the posterior of these states q(x1, . . . ,xM ), and we can
easily pick up the marginal posterior of each state and each
pair of the states. Now we want to calculate the posterior
distribution of the state at time t∗ such that tm < t∗ < tm+1.
Denote the corresponding state by x∗, our goal is to compute
p(x∗|D). To do so, we consider incorporating x∗ in the joint
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probability (41),

p(x1, . . . ,xm,x∗,xm+1, . . . ,xM ,D)

= p(x1)

m−1∏
j=1

p(xj+1|xj) · p(x∗|xm)p(xm+1|x∗)

·
M∏

j=m+1

p(xj+1|xj) · p(D|x1, . . . ,xM ). (42)

Now, we marginalize out x1:M\{m,m+1} =
{x1, . . . ,xm−1,xm+2, . . . ,xM}. Note that since x∗

does not appear in the likelihood, we can take it out from
the integral,

p(xm,xm+1,x
∗,D)

=

∫
p(x1)

m−1∏
j=1

p(xj+1|xj)

M∏
j=m+1

p(xj+1|xj) · p(D|x1, . . . ,xM )dx1:M\{m,m+1}

· p(x∗|xm)p(xm+1|x∗)

=
p(xm,xm+1,D)p(x∗|xm)p(xm+1|x∗)

p(xm+1|xm)
. (43)

Therefore, we have

p(xm,xm+1,x
∗|D) ∝

p(xm,xm+1|D)p(x∗|xm)p(xm+1|x∗). (44)

Suppose we are able to obtain p(xm,xm+1|D) ≈
q(xm,xm+1). We now need to obtain the posterior of x∗.
In the LTI SDE model, we know that the state transition is a
Gaussian jump. Let us denote

p(x∗|xm) = N (x∗|A1xm,Q1)

p(xm+1|x∗) = N (xm+1|A2x
∗,Q2). (45)

Then, we can simply merge the natural parameters of the
two Gaussian and obtain

p(xm,xm+1,x
∗|D) = p(xm,xm+1|D)N (x∗|µ∗,Σ∗),

(46)

where

(Σ∗)
−1

= Q−1
1 +A⊤

2 Q
−1
2 A2,

(Σ∗)
−1

µ∗ = Q−1
1 A1xm +A⊤

2 Q
−1
2 xm+1. (47)

Those are the formulas for probabilistic imputation as arbi-
trary time stamps.

.4. More experimental results

The NLLK scores of probabilistic imputation approaches
across all datasets with different observed ratios are shown
in table 6. We can see that BayOTIDE , an online method
that only processes data once, beats the offline baselines and
achieves the best performance in all cases.

To further show the sensitivity of BayOTIDE over the dif-
ferent latent space dimensions, we evaluate our method on
the Guangzhou-traffic dataset (observed ratio = 70%) with
different settings of latent space dimension and evaluate
the test CRPC score. The results are shown in table 7. We
found that increasing the latent space dimension, especially
the trend factor dimension (Dr), can improve the model
performance. However, the improvement is not linear, and
the model may suffer from overfitting when the latent space
dimension is too large. A seasonal factor dimension (Ds)
that is too high may also lead to overfitting and degrading
the model performance.

For the online imputation, the results on the Solar-Power
and Uber-Move is shown in Figure 3a and Figure 3b.

15



BayOTIDE: Bayesian Online Multivariate Time Series Imputation with Functional Decomposition

Observed-ratio=50% Traffic-GuangZhou Solar-Power Uber-Move
Number of trend factor Dr 30 50 30
Number of seasonality factor Ds 10 5 5
Trend factor smoothness (ν) 1

2
3
2

3
2

Trend factor lengthscale 0.1 0.001 0.1
Trend factor variance 1.0 1.0 1.0
Seasonal factor frequency (2πp) 15 10 15
Seasonal factor lengthscale 0.05 0.5 0.05
Damping epochs 5 2 5

Observed-ratio=70% Traffic-GuangZhou Solar-Power Uber-Move
Number of trend factor Dr 30 50 30
Number of seasonality factor Ds 10 5 5
Trend factor smoothness (ν) 1

2
1
2

1
2

Trend factor lengthscale 0.1 0.0005 0.1
Trend factor variance 1.0 1.0 1.0
Seasonal factor frequency (2πp) 15 100 15
Seasonal factor lengthscale 0.05 0.5 0.05
Damping epochs 5 2 5

Table 5: The hyperparameter setting of BayOTIDE for the imputation task.
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Figure 3: Online imputation results on Solar-Power and Uber-Move.

Dataset Traffic-GuangZhou Solar-Power Uber-Move
Observed ratio 50% 70% 50% 70% 50% 70%

Probabilistic & Offline

Multi-Task GP 7.339 6.921 4.921 4.292 4.426 4.027
GP-VAE 5.353 4.691 6.921 6.006 7.323 5.827
CSDI 3.942 3.518 3.433 2.921 2.415 2.322
CSBI 3.912 3.527 3.537 3.016 2.424 2.331

Probabilistic & Online

BayOTIDE-fix weight 10.239 8.905 4.116 4.093 3.249 3.252
BayOTIDE-trend only 2.897 2.852 1.944 1.878 2.169 2.146
BayOTIDE 3.244 3.078 1.885 1.852 2.167 2.100

Table 6: The negative log-likelihood score (NLLK) of all probabilistic imputation methods on all datasets with observed ratio
= {50%, 70%}
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Test CRPC Dr = 5 Dr = 10 Dr = 20 Dr = 30 Dr = 40

Ds = 3 0.068 0.064 0.061 0.057 0.056
Ds = 5 0.067 0.063 0.059 0.056 0.055
Ds = 10 0.066 0.063 0.058 0.053 0.053
Ds = 20 0.081 0.074 0.065 0.059 0.058

Table 7: The test CRPC on Guangzhou-traffic dataset(observed ratio = 70%) with different settings of latent space dimension.
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