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Abstract

Federated Learning (FL) methods often strug-
gle in highly statistically heterogeneous settings.
Indeed, non-IID data distributions cause client
drift and biased local solutions, particularly pro-
nounced in the final classification layer, negatively
impacting convergence speed and accuracy. To
address this issue, we introduce Federated Recur-
sive Ridge Regression (FED3R). Our method fits
a Ridge Regression classifier computed in closed
form leveraging pre-trained features. FED3R is
immune to statistical heterogeneity and is invari-
ant to the sampling order of the clients. Therefore,
it proves particularly effective in cross-device sce-
narios. Furthermore, it is fast and efficient in
terms of communication and computation costs,
requiring up to two orders of magnitude fewer re-
sources than the competitors. Finally, we propose
to leverage the FED3R parameters as an initializa-
tion for a softmax classifier and subsequently fine-
tune the model using any FL algorithm (FED3R
with Fine-Tuning, FED3R+FT). Our findings also
indicate that maintaining a fixed classifier aids in
stabilizing the training and learning more discrim-
inative features in cross-device settings. Official
website: https://fed-3r.github.io/.

1. Introduction
Federated Learning (FL) (McMahan et al., 2017) provides a
practical framework for training machine learning models
collaboratively across distributed clients while ensuring pri-
vacy. This decentralized approach involves multiple commu-
nication rounds between clients and a central server. During
each round, clients leverage their private data to improve
their local models. Then, they send the model updates to the
server, which aggregates them and transmits the improved
model to the next set of clients for further improvement.
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While appealing, limiting the optimization on the client side
presents several challenges. In real-world scenarios, billions
of clients might be involved (Kairouz et al., 2021), and data
are often collected based on user preferences (Tan et al.,
2022), availability (Gu et al., 2021), geographical location
(Hsu et al., 2020; Fantauzzo et al., 2022), or personal habits
(Fallah et al., 2020; Yang et al., 2018). This leads to data
distributions across clients with inherent statistical hetero-
geneity in the form of quantity skewness (Li et al., 2020b;
Wang et al., 2020; Hsu et al., 2020), label skewness (Karim-
ireddy et al., 2020b; Li et al., 2022; Caldarola et al., 2022;
Fanì et al., 2023), or domain shift (Fantauzzo et al., 2022;
Nguyen et al., 2022; Liu et al., 2021).

As a result, training models that generalize well across the
global underlying data distribution presents a major chal-
lenge. Specifically, convergence speed is hampered due to
clients’ sparse sampling and partial participation in succes-
sive rounds (Li et al., 2020b; Karimireddy et al., 2020a).
Furthermore, the process of aggregating model updates be-
comes particularly challenging in strongly heterogeneous
settings. This difficulty arises because biased local updates
from individual clients can potentially steer the model away
from global minimizers (Karimireddy et al., 2020b; Li et al.,
2020a; Acar et al., 2021).

Most of the approaches addressing such issues focus on
regularizing the local objective to reduce model parameters
drift (Li et al., 2020a; Karimireddy et al., 2020b; Acar et al.,
2021; Ozfatura et al., 2021) or leveraging momentum to
incorporate knowledge from previous updates and align the
local optimization to the global direction (Karimireddy et al.,
2020a; Xu et al., 2021; Kim et al., 2022; Liu et al., 2023).

In particular, Luo et al. (2021) shows that model parameter
drift in FL mainly involves neural network prediction heads.
Indeed, deeper layers tend to be more susceptible to bias
towards the individual client data distributions, while initial
layers maintain better consistency in terms of representation
similarity. As mainly studied in other areas such as Contin-
ual Learning (Ratcliff, 1990; McCloskey & Cohen, 1989), in
classification this phenomenon occurs due to the inherent na-
ture of the softmax classifier, which is prone to forgetting if
updated by sampling data in a non-i.i.d. or class-imbalanced
manner (Kirkpatrick et al., 2017), as the most recently ac-
quired knowledge tends to be more relevant than the older
one, resulting in recency bias (or catastrophic forgetting)
(Mai et al., 2021; Masana et al., 2022; Wu et al., 2019; Lyu
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et al., 2024). Similarly, in FL, the local optimization biases
the classifier towards the local distribution, which can result
in overwriting past clients’ knowledge (Legate et al., 2023b;
Caldarola et al., 2022). This problem is exacerbated in re-
alistic cross-device scenarios with large number of devices,
where clients may not be revisited during training (Ruan
et al., 2021), making the optimization slower and unstable.
To address this issue, we propose Federated Recursive Ridge
Regression (FED3R), a novel approach to FL leveraging pre-
trained representations to train classifiers that are immune
to statistical heterogeneity by design. The FED3R classi-
fier can be efficiently trained and incrementally updated in
closed form by repurposing the Ridge Regression (RR) on-
line formulation for FL. Each client computes its local RR
statistics using the feature maps generated by the pre-trained
feature extractor and sends them to the server, where they
are aggregated and used to compute the RR classifier. The
FED3R solution is equivalent to the centralized RR solution
and invariant to the sampling order of the clients. Our strat-
egy allows aggregating client models exactly, efficiently, and
without the need for backpropagation. Moreover, each client
necessitates only a single round of communication with the
server, contrary to traditional gradient-based methods.
Furthermore, to address non-linearities of the latent space
and the distribution shift of the target task from the pre-
trained representation, we present FED3R with Random
Features (FED3R-RF), a kernelized version of FED3R, and
FED3R with Fine-Tuning (FED3R+FT), which can update
both feature extractor and the classifier jointly.
Finally, we repurpose RR as a tool to quantitatively assess
the quality of the feature extractors. Indeed, learning an RR
classifier on the features of a trained feature extractor allows
decoupling the contributions of the feature extractor and
the classifier on the final performance. With this, we find
that fine-tuning only the feature extractor while keeping the
FED3R classifier fixed not only helps to counteract client
drift and destructive interference during the aggregation
phase but also improves the quality of the features in settings
with strong statistical heterogeneity.

Contributions
• We propose FED3R, a federated version of Ridge Re-

gression, to efficiently learn a linear classifier that
is immune to statistical heterogeneity. We also pro-
pose FED3R-RF, a kernelized version of the algorithm
based on random features to handle the non-linearities
of the input space.

• We demonstrate that FED3R significantly accelerates
training, converging faster than FL other methods. Ad-
ditionally, we show that FED3R reduces communica-
tion and computational costs by up to two orders of
magnitude compared to other methods.

• We show that FED3R can also be employed as a clas-

sifier initialization for fine-tuning representations and
how it can stabilize the training in highly heteroge-
neous settings. We evaluate the effectiveness of our
proposed algorithms on the Landmarks and iNaturalist
datasets (Hsu et al., 2020), two realistic and cross-
device FL scenarios for visual classification with thou-
sands of clients and classes.

• We show how to repurpose RR as a tool to discern the
contributions of the feature extractor and the classifier
to the final model performance. We find that fine-
tuning the feature extractor while keeping the FED3R
classifier fixed greatly improves the features’ quality,
robustness to client drift, and destructive interference.

2. Related Works
Statistical heterogeneity in FL. Despite the effectiveness
of current FL approaches in homogeneous scenarios with
i.i.d. data, addressing statistically heterogeneous and re-
alistic settings remains challenging (Kairouz et al., 2021).
Private data exhibits biases due to factors such as personal
habits and geographical locations (Hsu et al., 2020; Kairouz
et al., 2021; Fallah et al., 2020), causing variations among
clients in categories, domains, and dataset sizes. This bias
induces client drift (Karimireddy et al., 2020b), leading
local models to converge toward different minima, deviat-
ing from the global direction, resulting in noisy, unstable
learning trends (Li et al., 2020b; Caldarola et al., 2022).

Optimization-based methods for heterogeneous FL. To
reduce the impact of heterogeneity, simple solutions involve
limiting the drift of the local models with regularization tech-
niques. For instance, FedProx (Li et al., 2020a) introduces
a penalization in the local objectives to prevent divergence
from the global model. Other methods, such as Scaffold
(Karimireddy et al., 2020b), leverage stochastic variance
reduction (Reddi et al., 2016) to correct the local direction
with the global one. FedDyn (Acar et al., 2021) aligns local
and global stationary points at convergence, enjoying the
same convergence properties of Scaffold. Still, its practical
effectiveness in cross-device settings is limited since it is
often prone to parameter explosion (Varno et al., 2022).
Other approaches aim to reduce client drift by exploiting
the history of previous updates, incorporated with momen-
tum or adaptive optimizers (Wang et al., 2019; Reddi et al.,
2021). In particular, FedAvgM (Hsu et al., 2019) employs
momentum in the server-side aggregation, demonstrating
effectiveness in realistic settings (Hsu et al., 2020). Other
works introduce client-side momentum (Kim et al., 2022;
Xu et al., 2021; Karimireddy et al., 2020a) to guide the local
updates in the direction followed by the global model. Fi-
nally, Mime (Karimireddy et al., 2020a) aims at replicating
the behavior of models trained on i.i.d. data by combining
stochastic variance reduction and client-side momentum.
Despite these methods being theoretically principled, our
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work empirically reveals their inherent instabilities in real-
world cross-device FL scenarios. In contrast, we demon-
strate that training classifiers with closed-form solutions and
exact aggregation can be dramatically faster and communi-
cation efficient than gradient-based optimization in practical
cross-device scenarios. Additionally, we illustrate that inte-
grating our method with FL optimizers can further expedite
convergence through a final fine-tuning stage.

Classifier bias and destructive interference. A natural
direction to study the effect of heterogeneity is to analyze
its impact on different parts of the model. On this matter,
Luo et al. (2021) showed that the bias of the clients towards
local data distributions is significantly more pronounced
in the deeper layers, with a peak in the last one, i.e., the
prediction head. This phenomenon has also been observed
in Continual Learning on sequences of heterogeneous task
distributions (Ramasesh et al., 2020; Davari et al., 2022;
Kim & Han, 2023). Other works observed that biased clas-
sifiers and misaligned features create a vicious cycle (Zhou
et al., 2022; Li et al., 2023). On one side, discriminative fea-
tures are needed to train models effectively, as convergence
speed improves when gradients are more aligned (Nguyen
et al., 2023). However, heterogeneity heavily affects the
prediction head, which suffers from destructive interference
during the aggregation phase and hampers the features learn-
ing process. Indeed, Yu et al. (2022) shows that learning the
feature extractor and the classifier in two separate phases
may be beneficial in FL, as also observed in other fields
(Kang et al., 2020; Wang et al., 2022).
Previous research attempted to mitigate classifier biases at
the end of FL training by retraining only the classifier on
the server with generated virtual features (Luo et al., 2021;
Shang et al., 2022; Nguyen et al., 2023). However, this
approach remains sub-optimal as it is based on the quality
of the feature representation and generative process, which
could negatively affect the retrained classifiers. More re-
cently, Li et al. (2023) proposed a fixed synthetic classifier,
motivated by the simplex geometry of the logits space in-
duced by the neural collapse (Papyan et al., 2020).
In this work, we take a different turn and tackle the classifier
bias problem with a principled approach. Starting from a
pre-trained representation, we employ a one-vs-rest Ridge
Regression (RR) classifier that can be trained in a distributed
setting with exact aggregation. This efficiency stems from
an online formulation that recovers the closed-form solu-
tion of the centralized problem by effectively providing a
classifier that does not suffer from statistical heterogeneity
and is invariant to the actual federated split. Legate et al.
(2023a) adopts a similar rationale for a Nearest Class Mean
(NCM) classifier, avoiding gradient updates using class cen-
troids. While NCM may be effective on simpler datasets, we
demonstrate its weakness in realistic scenarios, contrasting
the consistent performance of RR.

We refer to Appendix A for additional related works on
existing RR-based methods in distributed learning and ver-
tical FL and a broader overview of the existing literature on
transfer learning methods with pre-trained models in FL.

3. Background
In this section, we provide a concise overview of the FL
framework and the fundamental concepts of Ridge Regres-
sion before formally describing our algorithm.

3.1. FL Problem Formulation
LetK be the set of all the clients involved in the training with
cardinality |K| = K, and let S be the server that orchestrates
the training procedure. Each client k ∈ K has access to a
private local datasetDk of size nk = |Dk|; neither the server
nor the other clients can access Dk. Each local dataset Dk

is composed of nk pairs (x, y) ∼ Pk, where x ∈ X , y ∈ Y .
Here, X and Y represent the input and output spaces, and
Pk is the joint data distribution associated with client k.
The global federated objective is given by:

θ∗ = argmin
θ

∑
k∈K

Lk(M;Dk), (1)

where Lk =
∑

(x,y)∈Dk
ℓ(M(x; θ), y) is the Local Empiri-

cal Risk associated to the client k, computed according to
a loss function ℓ (e.g., cross-entropy), andM is a model
parameterized by θ. At each round t, a subset of selected
clients K′ ⊆ K receives the global parameters θt−1 of the
previous round from the server, initializes the local parame-
ters θk = θt−1 and optimizes them using the private datasets
Dk, obtaining the new parameters θtk. Then, the locally op-
timized model parameters θtk are shared with the server S,
which aggregates them according to the specific FL algo-
rithm. For instance, the FedAvg (McMahan et al., 2017)
aggregation rule is a weighted average of clients’ models
θt =

∑
k∈K′

nk

n θtk, where n =
∑

k∈K′ nk. The server
broadcasts the aggregated model θt to the new active clients.
The process is repeated for several rounds until convergence.

3.2. Closed-form Ridge Regression (RR)
Our work is based on the idea of using one-vs-rest classi-
fiers such as least-squares regressors (Stigler, 1981; Björck,
1996; Rifkin et al., 2003) that admit a closed-form solution
and can be computed efficiently. We first define the problem
for the centralized setting, where samples from a dataset D
can be accessed simultaneously.
Although simple least-squares empirical risk minimization
is generally prone to overfitting (Bishop, 2006), it can eas-
ily be augmented with L2 regularization (controlled by a
Tikhonov hyper-parameter λ ∈ R+), obtaining a Ridge
Regression (Boyd & Vandenberghe, 2004) problem:

W ∗ = argmin
W∈Rp×C

∥Y −XW∥2 + λ ∥W∥2 , (2)
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where X ∈ Rn×p is the matrix of the n stacked input
samples, Y ∈ Rn×C is the matrix of the stacked one-hot-
encoding vectors of the corresponding C classes, and p is the
input dimensionality. The solution W ∗ constitutes the opti-
mal parameters for the linear predictor f(x;W ) = W⊤x.
The problem in Eq. (2) admits a closed-form solution:

W ∗ = (X⊤X + λIp)
−1X⊤Y, (3)

where Ip is the p× p identity matrix.
Since X⊤X + λIp ≻ 0 for any λ > 0, no additional as-
sumptions on the rank or the dimensions of the matrix X are
required to prove that the optimal solution W ∗ exists (Boyd
& Vandenberghe, 2004). Moreover, RR can be directly ap-
plied to classification, as introduced in Rifkin et al. (2003),
and it converges in probability to the optimal Bayes classi-
fier as n tends to infinity (Steinwart & Christmann, 2008;
Bartlett et al., 2006; Shawe-Taylor & Cristianini, 2004).

3.3. Handling Non-linear Input Spaces in RR
While simple and powerful, RR is a linear classifier whose
performance is tied to the separability of the input space.
To handle the non-linearities of the input space, we map
X onto a latent feature space Z ⊆ Rd using a pre-trained
feature extractor φ : X → Z and apply Eq. (3) directly on
the feature maps to obtain the optimal predictor.
For clarity, we express Eq. (3) for a linear classifier W ∗ ∈
Rd×C whose input space is Z , as:

W ∗ = (A+ λId)
−1b (4)

Here, A := Z⊤Z =
∑

(x,y)∈D φ(x)φ(x)⊤ ∈ Rd×d is the
covariance matrix of samples in the mapped space, where
Z ∈ Rn×d is the matrix of mapped input samples with each
row Zi = φ(Xi). Also, b := Z⊤Y =

∑
(x,y)∈D φ(x)e⊤y ∈

Rd×C , and ey is the one-hot encoding vector for class y.
Although a pre-trained feature extractor φ can be used for
handling non-linearities in the input space, the performance
depends on the quality of φ on the target task. To further
improve the latent space’s separability, we also consider
employing Kernel Ridge Regression (KRR) in our method.
KRR is a nonparametric learning algorithm that uses kernel
functions to implicitly address the non-linearity of the in-
put space (Hastie et al., 2009; Shawe-Taylor & Cristianini,
2004). However, the kernel matrix’s space complexity is
O(n2), in contrast to the covariance matrix A with space
complexity of O(d2). For sizable datasets (n ≫ d), stor-
ing the kernel matrix and computing the exact KRR solu-
tion becomes impractical. To overcome this bottleneck, we
employ Random Features KRR (Rahimi & Recht, 2007),
a data-independent subsampling scheme enabling optimal
generalization properties while reducing the computational
complexity of KRR (Rudi & Rosasco, 2017) through an
approximate nonlinear mapping of the input features. Its

properties are particularly suitable for the FL setting, en-
abling us to keep the same formulation as our algorithm’s
linear version, as shown in the next section.

4. Method
We now present Federated Recursive Ridge Regression
(FED3R), and show how recursive least squares can be ele-
gantly repurposed to the FL setting. Each client contributes
to the A and b matrices of Eq. (4) by independently comput-
ing local statistics, which are then collected and aggregated
by the server and used to compute the global RR classifier
in closed form. Moreover, we introduce FED3R-RF, a ker-
nelized version of our algorithm that uses random features
to approximate the KRR solution.

4.1. Federated Recursive Ridge Regression (FED3R)
While the least-squares problem can be effectively solved
in a closed form via Eq. (3), in principle it needs access to
the entire dataset D, which is not always available if data is
accessed sequentially (Camoriano et al., 2017; Wang et al.,
2022) or is distributed across devices, as in FL.
Luckily, thanks to the linearity of Eqs. (3) and (4), when
new samples become available, the optimal solution can be
exactly updated by recursive least squares (Kailath et al.,
2000). This method computes solutions recursively and
efficiently via Sherman-Morrison-Woodbury or Cholesky
updates (Sherman & Morrison, 1950; Hager, 1989).
Alternatively, the RR statistics A and b can be cumulatively
updated without re-computing them from scratch on the
entire dataset. The solution can then be computed using the
updated statistics by solving a linear system. Our method
is based on the observation that the matrices A and b can
be incrementally computed, for instance, by simply sum-
ming over the samples of the dataset D. Exact and efficient
incremental RR updates enable several continual and in-
cremental classification methods (Camoriano et al., 2017;
Wang et al., 2022), as RR admits an equivalent exact in-
cremental solution (Björck, 1996; Sayed, 2008) that we
reformulate specifically for the FL context, finally leading
to our FED3R algorithm.
In practice, thanks to the associative property of the sum,
we can break the matrices A and b into the contributions of
the clients’ local datasets Dk:

A =
∑

(x,y)∈D

φ(x)φ(x)⊤ =
∑
k∈K

∑
(x,y)∈Dk

φ(x)φ(x)⊤

=
∑
k∈K

Z⊤
k Zk =

∑
k∈K

Ak, (5)

b =
∑

(x,y)∈D

φ(x)e⊤y =
∑
k∈K

∑
(x,y)∈Dk

φ(x)e⊤y

=
∑
k∈K

Z⊤
k Yk =

∑
k∈K

bk. (6)
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Algorithm 1 - FED3R and FED3R-RF
Require:
Server S , clients K
Fixed pre-trained feature extractor φ : X → Rd

Random features ω ∈ Rd×D

Hyper-parameter λ > 0
Clients k ∈ K:
for each client k ∈ K in parallel do
Zk = φ(Xk)
Map Zk to a D-dimensional space using the RF ω
Ak = Z⊤

k Zk, bk = Z⊤
k Yk

end for
Server S:
Collect all the clients’ statistics
Compute A =

∑
k∈K Ak, b =

∑
k∈K bk

Apply Eq. (4) to get W ∗

Normalize W ∗: W ∗
c ←W ∗

c / ∥W ∗
c ∥ ∀c ∈ [C]

This is true for all the possible partitions of the underlying
dataset D such that D =

⋃
k∈KDk is the union of the local

datasets Dk, with K the set of all the clients.
In FED3R, each client k computes its local Ak and bk statis-
tics and shares them with the server, where they are aggre-
gated and employed to calculate W ∗. Hence, the FED3R
solution is mathematically equivalent to the centralized RR
solution, independently of the federated split. Therefore, it
inherits all the generalization properties of RR. In partic-
ular, it achieves optimal convergence rates in probability
(Caponnetto & De Vito, 2007).
Finally, to address possible class unbalanced distributions
over D, we normalize W ∗ by dividing each column by its
class norm, similar to the approach used by the authors of
(Legate et al., 2023a): W ∗

c ←W ∗
c / ∥W ∗

c ∥.

4.2. FED3R with Random Features (FED3R-RF)
As pre-trained feature extractors may not be expressive
enough to separate features for complex learning problems
linearly, we also introduce FED3R-RF, which first performs
a nonlinear random features mapping of the latent feature
space to a new D-dimensional feature space by approximat-
ing the corresponding kernel feature map, where D > d is a
hyper-parameter. Consequently, all the dimensionalities of
the statistics that depended on d here depend on D. FED3R
and FED3R-RF are summarized in Algorithm 1.

4.3. FED3R and FED3R-RF Properties
The FED3R (FED3R-RF) solution computed using all the
local datasets Dk is mathematically equivalent to the cor-
responding centralized RR (RR with Random Features)
solution using D. Consequently, the federated classifiers in-
herit all the properties and guarantees of the centralized ones.
Additionally, both methods exhibit three fundamental and
desirable properties related to the FL setting, which we list

below. Finally, for a discussion on the privacy guarantees of
our method, we refer the reader to Appendix B.

Immunity to statistical heterogeneity. As Eqs. (5)
and (6) show, due to the associative and commutative prop-
erties of the sum, once all the clients have shared their
statistics with the server, the matrices A and b are the same
for all possible partitions of the dataset. Hence, the FED3R
solution is invariant to the particular data split across the
clients; in other words, FED3R is immune to statistical het-
erogeneity and is invariant to the clients’ sampling order.
Consequently, FED3R guarantees the same final solution
given any FL split of the same dataset D.

Clients are sampled only once. In FED3R, each client
only needs to communicate its statistics once, meaning it
only needs to be sampled once. If we assume that, as for
classical FL algorithms, κ clients are sampled during each
round without replacement, FED3R requires exactly ⌈K/κ⌉
rounds to converge to its final optimal solution, and no
asymptotic convergence proof is required. The convergence
is exact and guaranteed after ⌈K/κ⌉ rounds. Therefore, the
higher the participation rate, the faster FED3R converges.
This is not generally guaranteed for gradient-based FL algo-
rithms.

Differences with gradient-based FL algorithms. Unlike
gradient-based FL algorithms, FED3R does not rely on com-
mon assumptions such as the smoothness of clients’ objec-
tives or the unbiasedness and bounded variance of stochastic
gradients (Kairouz et al., 2021; Karimireddy et al., 2020a;b;
Acar et al., 2021). In addition, FED3R does not require as-
suming bounded gradient dissimilarity among clients, which
formalizes the effect of heterogeneous local datasets.

4.4. FED3R with Fine-Tuning (FED3R+FT)
The proposed FED3R algorithm is a fast and efficient solu-
tion to learn a classifier with guarantees of being immune
to statistical heterogeneity. However, FED3R performance
relies on the quality of the pre-trained feature extractor,
which is frozen. Similar to the approaches from Wang et al.
(2022) and Legate et al. (2023a), we propose FED3R with
Fine-Tuning (FED3R+FT), a two-stage algorithm where a
fine-tuning stage follows the classifier initialization.
First, FED3R+FT learns a FED3R classifier using a pre-
trained feature extractor. Then, it initializes a softmax clas-
sifier using the parameters of the FED3R classifier. Finally,
the whole model is fine-tuned using a traditional FL algo-
rithm. As the FED3R classifier is the optimal Regularized
Least Squares classifier obtained using the pre-trained fea-
ture extractor, it provides a stable starting point that can
mitigate client drift and destructive interference during ag-
gregation.
However, due to the FED3R classifier’s derivation from the
mean squared loss, the entropy of its predictions distribution
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Figure 1: FED3R and FED3R-RF invariance to different
iNaturalist splits. All the curves converge to the same val-
ues, showing how both methods are immune to statistical
heterogeneity.

may not directly correspond to that of the cross-entropy
(CE) loss employed in the fine-tuning phase. Consequently,
the shape of the two loss landscapes can significantly vary.
To solve this issue, we calibrate the entropy of the FED3R
initialization by adjusting the temperature of the softmax
function (see more details in Appendix C).

We propose three different fine-tuning strategies for
FED3R+FT. The first involves fine-tuning the entire model,
which we actually refer to as FED3R+FT1. In some cases,
the pre-trained features may already be robust enough, so it
is reasonable only to fine-tune the classifier. We call this vari-
ant FED3R+FTLP. On the other hand, keeping the FED3R
classifier constant while fine-tuning the feature extractor
could help minimize destructive interference, especially in
cross-device scenarios with high statistical heterogeneity,
where the classifier is often the most affected layer (Luo
et al., 2021; Li et al., 2023). We refer to this last variant as
FED3R+FTFEAT.

5. Experiments
In this section, we empirically evaluate the performances
of our proposed methods in terms of accuracy, convergence
speed, communication, and computational costs. First, we
empirically show that FED3R and FED3R-RF are both
immune to statistical heterogeneity and their performances
are equivalent to the ones of the corresponding centralized
RR solutions. Then, we compare FED3R and FED3R-RF
with FedAvg (McMahan et al., 2017), FedAvgM (Hsu et al.,
2019), and Scaffold (Karimireddy et al., 2020b). Finally,
we show how FED3R can effectively bootstrap training and
use it as powerful initialization when combined with other
optimization methods using FED3R+FT.

Datasets. For the evaluation we choose two large-scale
image classification datasets, Landmarks (Weyand et al.,
2020) and iNaturalist (Van Horn et al., 2018), both parti-

1We sometimes use FED3R+FT FEAT+LP for convenience,
meaning that we fine-tune both feature extractor and classifier.

tioned as proposed in (Hsu et al., 2020) 2. These datasets
emulate realistic FL scenarios, as they offer over 105 train-
ing images and involve thousands of heterogeneous clients
(see Table 4 in Appendix C for additional details). We select
10 clients per round in all our experiments, except when dif-
ferently declared, simulating a participation rate of ≈ 0.8%
for Landmarks and ≈ 0.1% for iNaturalist.

Models and baselines. All the experiments are conducted
using a MobileNetV2 architecture (Sandler et al., 2018) pre-
trained on ImageNet-1k (Deng et al., 2009). As baselines
we included FedAvg (McMahan et al., 2017), FedAvgM
(Hsu et al., 2019) and Scaffold (Karimireddy et al., 2020b).
We do not include FedDyn (Acar et al., 2021), Mime, and
MimeLite (Karimireddy et al., 2020a) because they fail to
converge in most of the FED3R+FT setting. Moreover, we
do not include Scaffold in all the iNaturalist experiments, as
it fails to converge. We refer to Appendix C for additional
implementation details.

Additional details. Appendices D and E offer supplemen-
tary information regarding the estimation of communication
costs and computation costs, respectively. Further explo-
ration into the efficacy of random feature approximation
and the performance of our methods on the small-scale Ci-
far100 dataset are presented in Appendix F and Appendix G,
respectively. Appendix H provides additional plots that
compare the best methods for Landmarks and iNaturalist.

5.1. FED3R Equivalence to (Centralized) RR
In this section, we evaluate the results of FED3R and
FED3R-RF on several splits of the iNaturalist dataset, simu-
lating various levels of statistical heterogeneity as proposed
in Hsu et al. (2020). Both algorithms rely only on the pre-
trained feature extractor to train the classifiers and do not
adjust the representation. Hence, to ensure a fair compari-
son, we compare them with the Linear Probing version (LP)
of the FedAvg baseline, where we keep the parameters of the
feature extractor frozen and train only the softmax classifier.
For these experiments, we choose FedAvg as the baseline
to compare with because it shows similar performances to
FedAvgM and Scaffold fails to converge.
Specifically, Figure 1 compares FED3R, FED3R-RF with
10k random features, and FedAvg-LP, using four different
iNaturalist splits (for details on the splits, refer to Table 4 in
Appendix C). All the FED3R and FED3R-RF 10k experi-
ments converge to 45.1% and 47.6% accuracy, respectively,
which are equivalent to RR and RR-RF with 10k random
features in the centralized scenario (the dashed lines). This
confirms the invariance to statistical heterogeneity and the
equivalence of the FL and centralized solution, as discussed

2For Landmarks and iNaturalist, we always mean the
Landmark-Users-160K and iNaturalist-Users-120K partition, re-
spectively, except when differently declared.
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Figure 2: Comparison between FED3R and the baselines. From left to right: accuracy vs rounds, accuracy vs communication
budget, accuracy vs average computation per client. Top row: Landmarks results, Bottom row: iNaturalist results. Fed3R
shows clear advantages regarding convergence speed, communication, and computation budget required.

in Section 4.3 from a theoretical perspective. Finally, as no-
ticeable, convergence is much faster than FedAvg-LP, as its
speed is proportional to the number of clients in the specific
split, as discussed in Section 4.3.

5.2. FED3R vs. Gradient-based FL Baselines
Figure 2 shows how the methods perform in terms of accu-
racy and convergence speed (left), communication costs to
reach the target accuracy (center), and average computation
needed per client to reach the target accuracy (right). This
is shown for both the Landmarks dataset (first row) and the
iNaturalist dataset (second row). The communication and
computation costs can be interpreted as the budget needed
for an FL system to reach a specific accuracy using the
respective method.

As shown in Figure 2, FED3R outperforms all the LP base-
lines in terms of speed and computational efficiency. No-
tably, on the Landmarks dataset, FED3R achieves compa-
rable results to Scaffold-LP – the best of the LP baselines –
while requiring two orders of magnitude less communica-
tion and computations, with FED3R-RF even surpassing it
at the expense of communication cost, but still being more
computationally efficient.

Remarkably, FED3R exhibits even greater efficacy on the
iNaturalist dataset, surpassing all LP and full-training base-
lines by a substantial margin across all evaluation criteria, in-
cluding rounds, total communication, and computation costs.
This underscores the significant impact of exact aggregation
classifiers and the challenges faced by optimization-based
FL methods in heterogeneous cross-device settings.

Discussion on the convergence speed. Both FED3R and
FED3R-RF (with D = 5k and D = 10k) are much faster
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Figure 3: Accuracy vs Rounds with three different participa-
tion rates (indicated in the legend by x cl/r, where cl/r stands
for sampled clients per round) and two sampling strategies
(without replacement for FED3R and with replacement for
FedAvg-LP, if not differently specified), iNaturalist dataset.

than the baselines and require up to two orders of magnitude
less communication and average computation budget. For in-
stance, FED3R-RF with D = 10k on the Landmarks dataset
hits 40% accuracy after 27.3 rounds on average, compared
to the 528.7 (speedup ×19.3) needed by FedAvg, 285.7
needed by Scaffold (speedup ×10.5), and 2251.3 (speedup
×82.4) and 690.33 (speedup ×25.3) needed by their corre-
sponding LP versions. Similar consistent speedups can be
observed for higher values of accuracy and on iNaturalist.

Indeed, since each client needs to be sampled only once,
the convergence speed of FED3R depends only on the total
number of clients and the participation rate. With 10 clients
sampled per round and a total of 1262 clients for Landmarks
and 9275 clients for iNaturalist, FED3R always needs ex-
actly 127 and 928 rounds to converge, respectively, which
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Table 1: Final accuracy (%) achieved by the FED3R family
of classifiers and by the FedNCM classifier.

FED3R FED3R-RF 5k FED3R-RF 10k FEDNCM

Landmarks 49.6 ± 0.0 53.9 ± 0.0 56.6 ± 0.0 36.2 ± 0.0

iNaturalist 45.1 ± 0.0 46.8 ± 0.0 47.6 ± 0.0 32.2 ± 0.0

is an important advantage over gradient-based optimization
methods as they require multiple passes over the data.

Performance with different sampling rates. Figure 3
shows how FED3R final performance is invariant to the
number of clients sampled at each round by construction (as
explained in Section 4.3). As a worst-case analysis, we also
show that even sampling with replacement, as in FedAvg
and the other classical algorithms, proves to be faster than
the LP methods. Notably, FED3R, with a sampling rate of
10 clients per round, converges faster than FedAvg-LP with
a sampling rate of 100 clients per round. Indeed, FED3R
almost achieves convergence performance after just 1.5k
rounds. Therefore, FED3R does not really need to wait for
all the clients in the federation to be available. For further
investigation on how many rounds are needed to sample
with replacement a given percentage of distinct clients, we
refer the reader to the Appendix I.

Ablation on Fed3R vs. FedNCM. Similarly to FED3R,
Legate et al. (2023a) propose fitting a closed-form classifier
using Nearest Class Means (FEDNCM). Table 1 compares
the performance of FEDNCM, FED3R, and FED3R-RF at
convergence for both the Landmarks and iNaturalist datasets,
without the fine-tuning stage. FED3R clearly emerges as a
more powerful and robust approach that can deal with com-
plex datasets, outperforming FedNCM by a significant mar-
gin - up to 20 accuracy points with the kernelized version.
Consequently, as our method yields superior classifiers, we
omit the FEDNCM experiments from the FT discussions in
Section 5.3. This decision is based on the assumption that
employing a weaker classifier as initialization would result
in a lower final accuracy.

5.3. FED3R+FT experiments
In the previous section, we showed the efficacy of the
FED3R algorithm in terms of speed and efficiency. However,
sometimes its performance may not surpass baseline meth-
ods, particularly when utilizing FED3R instead of FED3R-
RF, as shown in Figure 2, top row. However, while employ-
ing FED3R-RF incurs a minimal computational overhead, it
substantially escalates communication costs, rivaling other
baseline methods. Moreover, both FED3R and FED3R-RF
rely only on pre-trained features, as the pre-trained feature
extractor is not optimized on the target datasets of the clients.
Therefore, we propose also FED3R+FT and its variants, as
discussed in Section 4.4.

Table 2: FED3R+FT final performance (Acc. %).

Dataset FT alg. Classifier
Initialization FTFEAT FTLP FT

L
an

dm
ar

k-
U

se
rs

-1
60

K

FedAvg ✗ - 41.0 ± 1.6 57.7 ± 1.2

FED3R 59.6 ± 0.2 56.7 ± 0.4 64.1 ± 0.4

FedAvgM ✗ - 40.8 ± 1.2 58.7 ± 0.8

FED3R 59.0 ± 0.2 56.2 ± 0.5 64.1 ± 0.2

Scaffold ✗ - 51.7 ± 0.3 63.4 ± 0.9

FED3R 63.4 ± 0.1 58.0 ± 1.5 67.4 ± 0.3

iN
at

ur
al

is
t-

U
se

rs
-1

20
K FedAvg ✗ - 36.7 ± 0.4 39.5 ± 3.2

FED3R 50.8 ± 0.2 42.0 ± 0.3 49.0 ± 0.6

FedAvgM ✗ - 37.6 ± 0.2 39.3 ± 0.7

FED3R 51.5 ± 0.2 43.5 ± 1.9 49.8 ± 0.8

Table 2 shows the final accuracy values for the different
strategies. Moreover, Figure 4 shows the performance and
the costs of FED3R+FT and baseline methods for the Land-
marks dataset, while Figure 5 compares the three variants
of FED3R+FT for the iNaturalist dataset. FedAvgM serves
as the FT algorithm in both scenarios. Notably, at least one
of our FED3R+FT variants significantly outperforms the
baselines for both datasets, achieving accuracies of 67.4
± 0.3 and 51.5 ± 0.2 in the Landmarks and iNaturalist
experiments, respectively, and the curves associated with
our methods are consistently and significantly above the
comparisons across every x-axis value.
Fine-tuning the entire model shows benefits on Landmarks,
which is more similar to cross-silo FL than iNaturalist. On
the other hand, in federated settings with more clients,
such as in iNaturalist, there is a significant negative im-
pact during the aggregation phase for the FED3R+FT and
FED3R+FTLP experiments, as the classifier is fine-tuned
and becomes susceptible to the classifier bias phenomenon,
as discussed in Section 1. Conversely, keeping the classifier
fixed and only fine-tuning the feature extractor as in the
FED3R+FTFEAT experiments eliminates this phenomenon
for the classifier, ensuring performance improvement and
clearly indicating that the pre-trained features were not suf-
ficiently good for the target task.

5.4. Features Quality Evaluation via Ridge Regression
In this section, we show that RR is a useful tool for quan-
tifying features’ quality and linear separability in an FL
scenario. Indeed, RR provides a closed-form deterministic
solution that solely depends on the feature space and that
can be computed in federated settings through the FED3R
equivalent formulation, unaffected by statistical heterogene-
ity. Moreover, RR is independent of the specific training
hyper-parameters, conversely to softmax classifiers trained
with gradient-based methods.
Table 3 provides this quantitative analysis, where we com-
pute RR on the feature extractor of the model after fine-
tuning, at convergence. The findings demonstrate an en-
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Figure 4: Comparison between FED3R+FT and the baselines Landmarks dataset. At the convergence point of FED3R, we
substitute the parameters of the FED3R classifier to the ones of the softmax and then use another algorithm for fine-tuning.
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Figure 5: Comparison between FED3R+FT in all its variants and the baselines, iNaturalist dataset.

Table 3: Quality of the feature extractors (acc. %) at conver-
gence measured with Ridge Regression.

Dataset FT alg. FT strategy Cls Init. Softmax RR

L
an

dm
ar

ks
-

U
se

rs
-1

60
K

- - FED3R - 49.6 ± 0.0

FedAvg
FEAT + LP - 57.7 ± 1.2 58.8 ± 2.1

FEAT + LP FED3R 64.1 ± 0.4 59.6 ± 0.2

FEAT FED3R 59.6 ± 0.2 62.1 ± 0.1

Scaffold
FEAT + LP - 63.4 ± 0.9 57.0 ± 1.9

FEAT + LP FED3R 67.4 ± 0.3 61.8 ± 0.1

FEAT FED3R 63.4 ± 0.1 64.3 ± 0.2

iN
at

ur
al

is
t-

U
se

rs
-1

20
K - - FED3R - 45.1 ± 0.0

FedAvg
FEAT + LP - 39.5 ± 3.2 53.1 ± 0.9

FEAT + LP FED3R 49.0 ± 0.6 52.2 ± 0.3

FEAT FED3R 50.8 ± 0.2 54.6 ± 0.1

hancement in the quality of the learned features with the
robust FED3R initialization. This initialization aids in sta-
bilizing the training process, reducing destructive interfer-
ence and forgetting caused by heterogeneity. Specifically,
FED3R+FT and FED3R+FTFEAT consistently yield higher
RR accuracy than the corresponding baseline with the same
fine-tuning algorithm, for both the Landmarks and iNat-
uralist datasets. Moreover, FED3R+FTFEAT consistently
outperforms FED3R+FT in all cases, as keeping the classi-
fier fixed completely prevents the classifier bias.

Furthermore, in realistic cross-device scenario as iNaturalist,
RR at convergence achieves even higher accuracy than the
softmax classifier in all the fine-tuning strategies. This
observation suggests the possibility of executing FED3R
after the training process to further improve performance.

6. Conclusion
In this work, we introduce FED3R, a family of Federated
Learning algorithms based on Recursive Ridge Regression.
FED3R is designed to minimize communication and compu-
tation costs and accelerate convergence speed while adher-
ing to the privacy constraints of FL. Unlike gradient-based
FL algorithms where statistical heterogeneity is a significant
challenge, FED3R is immune to statistical heterogeneity
by design and can also serve as a robust initialization for
further fine-tuning with optimization-based FL algorithms.
Results show that our algorithm requires up to two orders
of magnitude less communication and computation costs
to convergence than the baselines (see Figure 2) and im-
proves the accuracy up to 12% in challenging cross-device
FL scenarios (see Table 2, iNaturalist results). Finally, our
findings reveal that the features produced during the fine-
tuning stage are more robust than those achieved by other
methods at convergence see Table 3). This underscores the
notion that in challenging cross-device settings, the quality
of the feature extractor may serve as a bottleneck alongside
the classifier’s quality. Future works may extend FED3R to
streaming data or personalized learning scenarios within the
FL framework.

Impact Statement
FED3R significantly enhances training efficiency by pro-
viding remarkable speed and minimal computational and
communication costs. By lightening the FL training load,
our algorithm not only improves efficiency but also reduces
the energy required for training. This not only benefits cost
savings but also contributes to reducing environmental pollu-
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tion associated with training models, as the energy required
for training may still be generated using unsustainable meth-
ods. This has the potential to significantly impact various
applications across industries, making them more accessible
and cost-effective. The rapid execution and resource effi-
ciency of our method could lead to increased adoption of FL
techniques, enabling advancements in fields ranging from
healthcare and finance to autonomous systems and beyond.
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A. Additional Related Works
In this section, we expand on the related works concerning Ridge Regression in Distributed and Federated Learning settings
and Transfer Learning methods involving pre-trained models in FL.

Ridge Regression in distributed and federated learning. Regarding prior works on Ridge Regression in FL settings,
Afonin & Karimireddy (2021) finds an optimal Tikhonov Regularized Least Squares solution for a federation of only two
clients that, in practice, constitutes a cross-knowledge distillation framework. Cai et al. (2022) and Huang et al. (2022) apply
Ridge Regression to a Vertical FL scenario in which each client possesses different features of all the samples. Conversely, in
this work, we focus on the more common Horizontal FL (Yang et al., 2019) setting, where the feature space is shared among
clients, but local datasets vary. The most critical distinction between Federated RR methods for V-FL and H-FL concerns
how best to compute gradients and aggregate statistics in a privacy-preserving manner while having the global dataset
partitioned in a fundamentally different way across clients. Such radically different splitting strategies result in distinct
algorithm design choices. For example, client drift is a major challenge in H-FL, and algorithms aim to reduce the effect of
biased local gradients during aggregation. On the other hand, V-FL methods mostly focus on reducing the communication
costs for computing good loss and gradient estimates based on a reduced feature set while preserving privacy. Importantly,
we also have to face severe statistical heterogeneity in H-FL, which is typically not an issue in V-FL since it concerns only
Cross-Silo scenarios. To the best of our knowledge, we are the first to apply RR within this specific context by leveraging
its online formulation as an alternative to gradient-based optimization to speed up training and improve communication
efficiency in realistic heterogeneous cross-device scenarios.
Other works tackle large-scale least-squares problems in distributed learning and optimization settings (Zhang et al., 2012;
2015; Richtárik & Takáč, 2016). While similar in spirit, distributed settings differ fundamentally from FL as privacy is not a
constraint, and data is usually assumed i.i.d. across clients.

Transfer learning methods with pre-trained models in FL. The work presented in Oh et al. (2021) proposes a two-stage
algorithm that uses a fixed, random classifier and trains only the feature extractor. However, while Oh et al. (2021) focuses
on the Personalized FL setting by specializing in the head for each client, our work addresses the classifier bias problem in
the conventional FL setting, where the goal is to learn a global classifier that represents the overall underlying distribution.
Similarly, Kim et al. (2024) outlines a method for semi-supervised learning scenarios and object detection to selectively
train the model’s backbone while keeping the rest of the model frozen. They claim this approach helps train more consistent
representations and establishes a stronger backbone for further fine-tuning with an extra regularization term.
Transfer learning techniques have recently garnered attention in the FL community to make Foundation Models suitable for
the cross-device setting (Guo et al., 2023; Chen et al., 2022; Zhang et al., 2024). These techniques exploit methods based on
Low-Rank Approximation for parameter-efficient fine-tuning (Babakniya et al., 2023; Cho et al., 2024; Yi et al., 2023).

B. Privacy of FED3R
In the context of FED3R, clients have to transmit only the Ak and bk statistics. Some may express concerns about the
potential information leakage inherent in sharing this data, which extends beyond the disclosure associated with merely
sharing model weights or gradients. However, it is crucial to note that any information the clients send to the server only
needs to be aggregated. In other words, the server does not necessitate accessing individual values but rather needs solely
to use the aggregated results. Therefore, privacy can be easily achieved by employing the Secure Aggregation protocol
(Bonawitz et al., 2016).

C. Additional Implementation Details
FED3R requires only one communication round with each client, which can occur as soon as the clients are ready. However,
to guarantee privacy, we simulate the server waiting for a group of clients, similar to classical algorithms. In this way,
a practical implementation might incorporate a Secure Aggregation (Bonawitz et al., 2016) step, where the information
provided by individual clients is concealed within the aggregation of statistics shared by all sampled clients.
We run all the experiments using an NVIDIA A100-SXM4-40GB using the FL clients partitions provided by (Hsu et al.,
2020) for Landmarks (Weyand et al., 2020) and iNaturalist (Van Horn et al., 2018). For the cifar100 (Krizhevsky et al.,
2009) experiments, we focus on the most heterogeneous case (α = 0, (Hsu et al., 2019)), where each client has access to
images belonging to the same single class.
Details on the datasets are provided in Table 4. We used a MobileNetV2 (Sandler et al., 2018) network pre-trained on
ImageNet for all our experiments. We replicate the same augmentation used to pre-train the model to best exploit the
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Table 4: Datasets additional information.

Dataset Avg. samples
per client K C

Landmark-Users-160K 119.9 1262 2028
iNaturalist-Users-120K 13.0 9275 1203
iNaturalist-Geo-100 33.4 3606 1203
iNaturalist-Geo-300 99.6 1208 1203
iNaturalist-Geo-1K 326.9 368 1203
Cifar100 500 100 100
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Figure 6: Comparison between baseline algorithms and their LP versions. Left: Landmark-Users-160K; right: iNaturalist-
Users-120K.

pre-trained features. Therefore, we scaled all the images to 224×224, even for the 32×32 images of Cifar100.

We conducted the Landmarks experiments for 3000 rounds, the iNaturalist experiments for 5000 rounds, and the Cifar100
experiments for 1500 rounds. We sampled 10 clients per round in all three cases unless stated otherwise. We utilized SGD
as the client optimizer with a learning rate (lr) of 0.1 and a weight decay (wd) of 4× 10−5, a batch size of 50, and 5 local
epochs for both Landmarks and iNaturalist, and 1 local epoch for Cifar100. Additionally, we employed SGD as the server
optimizer (Reddi et al., 2021) with a learning rate (slr) set to 1.0 and no momentum (smom). The best hyper-parameters
were the same across all methods and datasets, selected based on a grid search: lr = {0.1, 0.01}× slr = {0.1, 1.0}×wd =
{0.0, 4 · 10−5} × smom = {0.0, 0.9}. For the FED3R λ hyper-parameter, we set λ = 0.01 as it consistently yielded the
best RR results.

Despite our best efforts and hyper-parameters tuning, Scaffold failed to converge on the iNaturalist dataset, although it
converges on the Landmarks experiments. We attribute this to its initial design for cross-silo settings, as control variates
become stale in realistic cross-device scenarios (Karimireddy et al., 2020a).

Figure 6 shows the performance of the baseline algorithms with the best hyper-parameters from the grid search. Only
FedAvg (and FedAvgM, which had similar results to FedAvg and was not included in the two plots for clarity) consistently
performs well on both datasets. At the same time, the other algorithms struggle, especially in the realistic cross-device
scenario of iNaturalist, where FedAvg is the only baseline algorithm that works.

In all our FED3R-RF experiments, we considered a random features approximation of an RBF kernel k(z, ζ) =

e−∥z−ζ∥2/2σ2
, z, ζ ∈ Rd. The hyper-parameter σ has been tuned once in the centralized Landmarks setting, and the

best value σ = 1000 has been selected for all the experiments. For the FED3R+FT, FED3R+FTLP, FED3R+FTFEAT
experiments, we found that the softmax temperature value of 0.1 yields the best results on both the Landmarks and iNaturalist
datasets, as Figure 7 shows.

We assume all the values are stored as FP32 numbers to estimate the communication and computation costs. See Appendix D
and Appendix E for more details.

15



Accelerating Heterogeneous Federated Learning with Closed-form Classifiers

Figure 7: Cross-entropy loss values evaluated on the training set using different softmax temperatures. The model is
initialized with the FED3R classifier and the pre-trained feature extractor. The best temperature is 0.1 for both the
Landmarks and iNaturalist datasets.
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D. Communication Costs Computation
We initially estimate the costs per round for each client to evaluate the communication costs. The overall communication
cost per round and client comprises two components: the downstream and upstream costs, representing the communication
from and to the server, respectively, which may vary across different methods. With this figure in hand, we then determine
the total costs per round by multiplying the cost per round per client by the number of sampled clients per round. In all
the communication costs plots, we multiplied the final values by 4 to measure the final cost in bytes, as we assume all the
parameters are stored as FP32 values, i.e., 4 bytes.
Below, we briefly summarize how the downstream and upstream costs have been calculated per each algorithm and eventual
additional costs. Let m, b, and c be the sizes of the whole model, the feature extractor, and the classifier, respectively. As the
classifier is a linear layer, its size is equivalent to the product of the latent feature dimensionality and the number of classes
of the dataset: c = dC. Therefore, m = b+ dC. Then:
• FedAvg (McMahan et al., 2017), FedAvgM (Hsu et al., 2019). Each sampled client downloads and uploads the model

only once: Downstream/k = b+ dC, Upstream/k = b+ dC.
• Scaffold (Karimireddy et al., 2020b). Each sampled client downloads and uploads both the model and its control variate:

Downstream/k = 2(b+ dC), Upstream/k = 2(b+ dC).
• FedAvg-LP, FedAvgM-LP. Each sampled client downloads and uploads the classifier only once: Downstream/k = dC,

Upstream/k = dC.
• Scaffold-LP. Each sampled client downloads and uploads both the classifier and its control variate: Downstream/k = 2dC,

Upstream/k = 2dC.
• FED3R, FED3R-RF. Each client needs to receive the feature extractor parameters only once. If we do not assume clients

already have the feature extractor parameters before the training begins (though this assumption is reasonable in scenarios
where the server, as a business, deploys its application and may have already incorporated these parameters in the clients’
software), there is an additional communication cost of bK. Except that for these costs, each sampled client does not need
to download any information from the server, but it needs to upload the local statistics Ak, bk to the server: Downstream/k
= 0, Upstream/k = d2 + dC. If we use FED3R-RF the upstream costs per client are Upstream/k = D2 +DC instead.

• FED3R+FT. In this scenario, the Downstream/k and Upstream/k costs correspond to those of FED3R during the initial
phase of the experiments, when FED3R+FT generates the FED3R classifier as initialization for the softmax classifier.
Subsequently, the costs reflect those of the FT algorithm, with the sole exception for FED3R+FTFEAT, where the FT
phase costs are Downstream/k = Upstream/k = b for FedAvg and FedAvgM, and Downstream/k = Upstream/k = 2b for
Scaffold.

E. Average Computation Costs per Client
We prioritize the average computation costs per client over the total computation cost among all clients. This decision
stems from our belief that this statistic provides more insightful information regarding the budget required by an FL system
developer for their clients.
To estimate this value, let T be the total average cost per round per single client for a given algorithm. Let x be the number
of times a specific client is sampled. Then, the cumulative average cost Tt from round 1 to round t is proportional to the
expected number of times E[x] a specific client is sampled over t rounds, that is E[x] = t κ

K , where κ is the number of
clients sampled per each round and K is the total number of clients. Therefore, Tt = T E[x] = T t κ

K .
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Table 5: MobileNetV2 (Sandler et al., 2018) forward MFLOPs.

Dataset Fφ Fϕ FM

Landmarks 332.9 2.6 335.5
iNaturalist 332.9 1.5 334.4
Cifar100 332.9 0.1 333.0

The specific T value depends on the algorithm. Let F∗ and B∗ be the costs of one forward pass of a single image and one
backward pass of a single image through the model ∗. As the authors of (Legate et al., 2023a), we approximate B∗ ≃ 2F∗,
and consider both the forward FN

∗ and backward BN
∗ of a batch of N images as directly proportional to B and F , i.e.,

FN
∗ = NF∗ and BN

∗ = NB∗. Therefore, one epoch’s total forward and backward costs for a single client are simply Fnk
∗

and Bnk
∗ .

We measure these costs in FLOPs. Therefore, we divide by half the count of the matrix operations since one FLOP is defined
as one addition and one multiplication of floating point numbers. Let E be the number of local epochs. Then:

• FedAvg (McMahan et al., 2017), FedAvgM (Hsu et al., 2019), Scaffold (Karimireddy et al., 2020b). All these methods
have one forward pass and one backward pass through the whole model and other negligible operations, such as SGD
updates and computations of client control variates for Scaffold. Therefore, we consider the same total cost per round
T = Enk(FM +BM) = 3EnkFM.

• FedAvg-LP, FedAvgM-LP, Scaffold-LP. In this case, the forward is through the whole model, but the backward is only
up to the classifier: T = Enk(FM +Bϕ) = Enk(Fφ + 3Fϕ).

• FED3R. The clients need to forward the input images through the feature extractor once. Then, they must compute
the matrices Ak = ZT

k Zk and bk = ZT
k Yk. Since Ak is symmetric, computing Ak costs 1

2nkd(d+ 1) FLOPs. Instead,
computing bk costs nkdC FLOPs. Therefore, T = nk(Fφ + 1

2d(d+ 1) + dC).

• FED3R-RF. The costs are the same of FED3R, with the sole exception that the latent feature space is D-dimensional
here.

• FED3R+FT. The costs correspond to those of FED3R during the initial phase of the experiments, when FED3R+FT
generates the FED3R classifier as initialization for the softmax classifier. Subsequently, the costs reflect those of the FT
algorithm. For FED3R+FTFEAT, the FT phase costs are T = 3EnkFM.

The specific forward FLOPs of the MobileNetV2 model are summarized in Table 5.

F. Centralized RR Results Using the Random Features
The outcomes of centralized experiments employing random features to approximate the RBF kernel empirically show
that augmenting the number of random features significantly enhances performance. Specifically, Figure 8 illustrates how,
with the random features approximation, the performance of RR calculated over the feature maps provided by the feature
extractor across the entire Landmarks dataset eventually approaches the upper bound established by the exact KRR solution
on a subset of the dataset, where a maximum of 40 images per class is considered.

It is noteworthy that the exact KRR solution was not computed over the entire dataset due to computational constraints.
Indeed, the exact solution would require storing a kernel matrix of dimensionality n× n, where n = 164172 for Landmarks.
Nevertheless, utilizing the whole dataset or increasing the number of random features should theoretically improve results
further.

In addition, Figure 8b empirically shows that KRR can even yield superior performance compared to a softmax classifier at
convergence.

G. Cifar100 Experiments
Figure 9 shows the immunity to statistical heterogeneity property of FED3R and FED3R-RF also for several Cifar100
FL splits. The number of rounds necessary to converge is only 10 since there are only 100 clients, and we simulate a
participation rate of 0.1 i.e., we sample 10 clients per round. Moreover, Table 6 shows a comparison between the FED3R
and FED3R-RF classifiers with the FEDNCM classifier (Legate et al., 2023a).

17



Accelerating Heterogeneous Federated Learning with Closed-form Classifiers

101 102 103 104

D

0

10

20

30

40

50

60

Ac
cu

ra
cy

RR-RF =1000
KRR 40 samples/class
RR

(a) Pre-trained on ImageNet

101 102 103 104

D

0

10

20

30

40

50

60

70

80

Ac
cu

ra
cy

RR-RF =1000
KRR 40 samples/class
RR
Softmax Classifier

(b) Fine-tuned on Landmarks-Users-160K

Figure 8: (Centralized) RR using D random features to approximate the RBF kernel compared to the exact KRR solution
with RBF kernel computed over a subset of the whole Landmarks-Users-160K dataset where there are at most 40 images
per class, using the MobileNetV2 (Sandler et al., 2018) architecture. We keep σ = 1000 for both KRR and RR-RF.
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Figure 9: FED3R and FED3R-RF immunity to statistical heterogeneity showed with several Cifar100 FL splits. A lower
value of α is associated with a higher level of statistical heterogeneity.
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Table 6: Final accuracy (%) of the FED3R family of classifiers and FedNCM on the Cifar100 dataset.

Algorithm Accuracy (%)

FED3R 63.2
FED3R-RF 5k 66.2
FED3R-RF 10k 67.5
FEDNCM 51.0
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Figure 10: Comparison between FED3R and the baselines for the Cifar100-α=0 dataset.
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Figure 11: Comparison between FED3R+FT and the baselines for the Cifar100-α=0 dataset.

Furthermore, Figure 10 illustrates the performance and costs of both FED3R and FED3R-RF, whereas Figure 11 showcases
the performance and costs of FED3R+FT. While FED3R alone may not achieve satisfactory performance compared to
the baselines in this scenario, incorporating the fine-tuning stage remarkably enhances its performance to a comparable or
superior level with respect to the baselines while retaining the same communication and computation advantages.

H. Best Methods Comparison
Figures 12 and 13 show a comparison among the best FED3R algorithms and the best baseline for the Landmarks and
iNaturalist datasets, respectively.

FED3R+FT provides the best performance for Landmarks, and has better communication costs than FED3R-RF at the
maximum FED3R-RF accuracy (56.6%). However, if the computation budget is the main constraint, FED3R-RF is the best
method for computation budget ≤ 103 GFLOPs. Similarly, FED3R-RF is the best method up to 102 GFLOPs per client in
the iNaturalist experiments, although suffering high communication costs.

In all the cases, all our best-performing methods are much better than the best of the baselines, with the sole exception of the
communication costs required to reach a target accuracy of FED3R-RF, which are comparable with the best baseline in the
final stages of the training.
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Figure 12: Comparison between the best FED3R methods and the best baseline method for the Landmarks dataset.
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Figure 13: Comparison between the best FED3R methods and the best baseline method for the iNaturalist dataset.

I. Expected Number of Rounds to Sample Each Client at Least Once With Replacement
Given the total number of clients K in the federation and the number of clients κ sampled per round, it is theoretically
possible to estimate the expected number of rounds that are necessary to sample each client at least once. This problem
is known in the literature as the Batch Coupon Collector’s Problem (Stadje, 1990; Ferrante & Frigo, 2012; Ferrante &
Saltalamacchia, 2014).
Table 7 shows the average number of rounds necessary to sample a given percentage of clients in the corresponding settings
after simulating the sampling with replacement one thousand times for each case. It is possible to observe how, to sample
all the clients, many more rounds are needed on average than the rounds needed to sample 50% or 75% distinct clients.
Interestingly, regarding the scenarios involving sampling with replacement as the one in Figure 3, this table provides insight
into why FED3R achieves good performance with few rounds compared to the total needed to achieve full convergence.

Table 7: Average number of rounds necessary to sample the given percentage of clients in the corresponding settings when
the clients are sampled with replacement.

Dataset K κ Participation Rate (%) 25% 50% 75% 100%

Landmarks 1262
10 0.8 37 ± 1 88 ± 2 175 ± 4 970 ± 155

20 1.6 19 ± 1 44 ± 1 87 ± 2 483 ± 79

50 4.0 8 ± 0 18 ± 1 35 ± 1 191 ± 32

iNaturalist 9275
10 0.1 267 ± 2 643 ± 5 1286 ± 12 9020 ± 1189

20 0.2 134 ± 1 322 ± 3 643 ± 6 4494 ± 596

50 0.5 54 ± 1 129 ± 1 257 ± 2 1809 ± 247

Cifar100 100
10 10 3 ± 0 7 ± 1 14 ± 1 50 ± 12

20 20 2 ± 0 4 ± 0 7 ± 1 24 ± 5

50 50 1 ± 0 1 ± 0 3 ± 0 8 ± 2
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