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Abstract
Causal inference on networks faces challenges
posed in part by violations of standard identifi-
cation assumptions due to dependencies between
treatment units. Although graph geometry fun-
damentally influences such dependencies, the po-
tential of geometric tools for causal inference on
networked treatment units is yet to be unlocked.
Moreover, despite significant progress utilizing
graph neural networks (GNNs) for causal infer-
ence on networks, methods for evaluating their
achievable reliability without ground truth are
lacking. In this work we establish for the first
time a theoretical link between network geome-
try, the graph Ricci curvature in particular, and
causal inference, formalizing the intrinsic chal-
lenges that negative curvature poses to estimating
causal parameters. The Ricci curvature can then
be used to assess the reliability of causal estimates
in structured data, as we empirically demonstrate.
Informed by this finding, we propose a method
using the geometric Ricci flow to reduce causal
effect estimation error in networked data, show-
casing how this newfound connection between
graph geometry and causal inference could im-
prove GNN-based causal inference. Bridging
graph geometry and causal inference, this paper
opens the door to geometric techniques for im-
proving causal estimation on networks.

1 Introduction
Inferring causal effects of interventions from observational
data is a critical task across disciplines — spanning epi-
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demiology, economics, and political science (Rothman &
Greenland, 2005; Keele, 2015; Varian, 2016; Yao et al.,
2021). Causal effect estimation methods aim to estimate
causal quantities by statistical ones (Pearl, 2009a). Estimat-
ing treatment effects on networked treatment units poses
considerable difficulties due to violations of standard iden-
tification assumptions (van der Laan, 2012; Zheleva & Ar-
bour, 2021). Despite progress on leveraging graph neural
networks (GNNs) for causal models for structured data (Guo
et al., 2020; Wein et al., 2021; Ma & Tresp, 2021; Harada &
Kashima, 2021; Kaddour et al., 2021; Jiang & Sun, 2022;
Cristali & Veitch, 2022), the full potentials of GNNs and
the graph structure they encode are yet to be unleashed for
causal inference on networked data.

In the realm of geometric deep learning, GNNs enable the
use of inherent geometry in graph-structured data (Bruna
et al., 2014; Bronstein et al., 2017; Monti et al., 2017; Cao
et al., 2020; Gong et al., 2020; Ye et al., 2020; Bronstein
et al., 2021; Atz et al., 2021; Topping et al., 2021; South-
ern et al., 2023). While the geometry of the graph is a
key driver of network-induced endogeneities and conse-
quent challenges posed to causal inference, the potential
of geometric tools for understanding and enhancing causal
inference on networks remains largely unexplored, leaving
a significant gap in GNN-based arsenal of tools for causal
inference. Moreover, existing techniques cannot canonically
assess reliability without ground truth, which significantly
limits validation.

Our work sets out to address these gaps by formally connect-
ing network geometry, in the form of discrete curvature, and
causal inference on networked data. Guided by the propo-
sition that curvature could serve as a practical measure for
system robustness in networks (Demetrius & Manke, 2005;
Tannenbaum et al., 2015), we take theoretical steps to en-
able exploiting this geometric signature of robustness to
gauge the confidence of causal models on networked data.
Validated by our empirical observations revealing a negative
correlation between Ricci curvature and individual treat-
ment effect (ITE) estimation error, our theoretical results
show that negative Ricci curvature corresponds to greater
intrinsic difficulty in identifying learned causal parameters.
Drawing from the theory of invariance of causal models and
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distributional robustness of causal parameters (Peters et al.,
2016; Meinshausen, 2018; Bühlmann, 2020; Weichwald &
Peters, 2021), we establish the theoretical connection be-
tween causal inference and curvature, bridging the gap using
the connection between curvature and entropy (Tannenbaum
et al., 2015; Sandhu et al., 2015; Pouryahya et al., 2017)
and results from entropic causal inference (Kocaoglu et al.,
2017; Compton et al., 2020; 2022). This contribution is
summarized schematically in Figure 1, visually highlighting
existing works in the literature, the gap between causal infer-
ence and Ricci curvature, and the path connecting multiple
arms of machine learning that we formulate to bridge this
gap.

Figure 1: Visual summary of our theoretical contributions
connecting the network geometry, via Ricci curvature, and
causal inference. Our theory and methodological contribu-
tions are based in putting together novel results (e.g., filling
the gap between different types of robustness), reformulat-
ing some of the existing links between relevant concepts
in the literature, and connecting between different areas
of machine learning. Arrow annotations mark the sections
where the corresponding link is discussed and/or the most
relevant related literature.

We present a theoretical layout of causal inference from a
distributional robustness perspective, which prepares the
ground for establishing the link to curvature as a robustness
indicator. This connection is formally implied from our
Theorem 6.1 and Corollary 6.3, which suggest that identi-
fication of causal effects becomes more challenging where
the curvature is negative. Applying this theoretical finding
to causal inference on empirical networks using GNNs, our
experiments show that the ITE estimation error is lower in
regions with non-negative curvature, firmly validating our
theoretical foundations. Collectively, the works revisited in
this paper and the foundations here developed suggest that
graph curvature could offer a powerful tool for enhancing
the performance of GNNs in causal inference tasks. Lastly,
we propose an adjustment using the Ricci flow to flatten the
network. Most empirical networks are sparse with locally
tree-like structure, hence, this flattening results in increasing

the Ricci curvature on a majority of edges. Thus, our pro-
posed method leads to a remarkable gain in ITE estimation
on observational networked data.

Main Contributions

The contributions of this work are threefold:

Theoretical Foundations. We establish a theoretical con-
nection between Ricci curvature and causal inference on
networks. Specifically, we show that the identification of
causal parameters is more challenging in negatively curved
regions of the network. This insight provides a foundational
understanding of how the geometric properties of a network
can influence causal analysis.

Application and Experimental Results. Guided by our
theoretical findings, we report experiments showing that
the estimation of the treatment effect tends to be most ac-
curate in areas of the network with positive Ricci curva-
ture. Demonstrating the practical applicability of our theory
in real-world scenarios, our empirical results indicate that
Ricci curvature effectively gauges the accuracy of causal es-
timates on networked treatment units without ground-truth
data.

Methodological Contribution. We propose a novel
method using the geometric Ricci flow to flatten the net-
work, improving causal estimation on networked data. Our
proposed method leads to superior performance in estimat-
ing ITE on empirical networks. Offering a new tool for
enhancing the reliability of causal inference in complex net-
works, this method showcases how our newfound connec-
tion opens the door for utilizing graph geometry to improve
GNN-based causal models.

2 Preliminaries

2.1 Causal Inference

Consider the causal mechanism involving features X and
target Y . Suppose we are interested in evaluating the causal
effect of a treatment T on Y for units with features X ,
which can be measured for each unit i by the individual
treatment effect (ITE), or the expected effect conditioned
on the features, known as the conditional average treatment
effect (CATE). Given features xi of an individual, the CATE
is given by

τi(xi) := E [Yi|do(ti = t, xi = x)− Yi|do(ti = t′, xi = x)] , (1)

where Yi|do(ti, xi) is the potential outcome of the unit with
features xi upon intervention by treatment ti (Pearl, 2009b).
Consider an example where we are interested in the effect
of a medication. Given an individual i with health and de-
mographic features xi, τi(xi) quantifies how effective the
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medication is, in average, on individuals with the same fea-
tures. Following Shalit et al. (2017) and Jiang & Sun (2022),
we adopt a conditional formulation of the ITE as the CATE
for the features of an individual unit, and throughout our
experiments, we refer to τi(xi) as the ITE. Since the data is
missing the counterfactual outcome, τi(xi) is only a causal
quantity and cannot be directly computed as a statistical
quantity. This is referred to as the fundamental problem
of causal inference (Holland, 1986). Hence, causal effect
estimation is essentially estimating causal quantities from
statistical quantities. Whether this estimation is possible —
the identification problem— is the central question of causal
inference (Pearl, 2003). Identification of the causal effect
from the data is contingent on a set of assumptions. When
estimating causal quantities on a network of units, relax-
ing two assumptions, ignorability and stable unit treatment
value assumption (SUTVA) (Imbens & Rubin, 2015; Rubin,
1980), is likely essential due to peer effects on each unit
from its neighbors’ features and treatments (Jiang & Sun,
2022). Four common assumptions, including ignorability
and SUTVA, are formally defined in Appendix A.

2.2 Ricci Curvature

The Ricci curvature indicates how much the local geometry
induced by a Riemannian metric deviates from that of a
Euclidean space (Bauer et al., 2017). Extended to discrete
structures such as graphs, the graph Ricci curvature captures
the dispersion through an edge in its neighborhood. As visu-
alized in Figure 2 for unweighted graphs, tree-like, grid-like,
and dense neighborhoods are analogous to hyperbolic, Eu-
clidean, and spherical spaces. Ricci curvature on graphs has
been proven powerful for performing various computational
tasks on GNNs (Topping et al., 2021; Southern et al., 2023;
Di Giovanni et al., 2023; Liu et al., 2023). While our theo-
retical foundations are independent of the particular form of
Ricci curvature, for the experiments in this paper we use the
Ollivier-Ricci curvature (Ollivier, 2009) —a graph curva-
ture notion rooted in optimal transport (Lott & Villani, 2009;
Villani et al., 2009) (this brings yet another connection with
a different arm of machine learning). A formal definition of
Ollivier-Ricci curvature as well as an alternative Ricci-type
curvature are included in Appendix B.

Figure 2: Graph Ricci curvatures of edges in tree-like (left),
grid-like (middle), and dense (right) are analogous to hy-
perbolic (-), Euclidean (0), and spherical spaces (+).

3 Related Work
In this work we show the connection between curvature and
causal inference, bridging for the first time the works on
invariance and robustness of causal models, geometric deep
learning, and causal inference. While the related work is
cited in each section as needed, and, as visualized in Figure
1, we connect between multiple arms of machine learning,
in Appendix C we extend on the most relevant works in each
aspect and point to other works in the literature. Although
these works provide critical foundations and motivations
for this work, none of them makes the explicit connections
we developed in this paper and, in particular, the close
connection between geometry/curvature, robustness, and
causal inference.

4 Curvature, Robustness, and Causal
Parameter Estimation Confidence

Here we present a preview of our main theoretical results
and their implications. In order to do so, we first explain
the link between Ricci curvature, robustness, and entropy,
which critically enables the theoretical foundation leading
to our results. The connection we establish between Ricci
curvature and causal inference is formally stated in Section
6. The in-depth discussion in Section 6 requires additional
background on our reinterpretation of causal parameters
as distributionally robust estimators, which we expound in
Section 5. Before delving deeper into such levels of detail,
we informally describe our theoretical results in this section
and discuss the core insights that follow.

Ricci Curvature and System Robustness. Ricci curva-
ture is known to be an indicator of the robustness of systems
(Pouryahya et al., 2017), due to its connection with entropy.
The following result from optimal transport (Lott & Villani,
2009), offers bounds on entropy in terms of a lower bound
on the Ricci curvature,

S(µλ) ≥ (1− λ)S(µ0) + λS(µ1) +
¯
k
λ(1− λ)

2
W2 (µ0, µ1)

2 , (2)

where S(·) denotes the Boltzmann entropy (Adkins, 1983),

¯
k is a lower bound on the Ricci curvature, W2 (µ0, µ1) is
the Wasserstein distance of order 2 between µ0 and µ1 in
the metric space (P (X ),W2) of probability measures on
X , and µλ for λ ∈ [0, 1] gives the geodesic between them
(Pouryahya et al., 2017). This inequality indicates a pos-
itive correlation between Ricci curvature kR and entropy
(Pouryahya et al., 2017), i.e.,

∆S ×∆kR ≥ 0. (3)
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On the other hand, there is a correlation between system ro-
bustness and entropy. Characterized by the fluctuation decay
rate (Demetrius & Manke, 2005), system robustness refers
to the ability of the system to rapidly return to its station-
ary state after a perturbation. By the Fluctuation Theorem
(Evans et al., 1993), there is a positive correlation between
system robustness and entropy, which in turn implies that
system robustness is positively correlated with curvature
(Pouryahya et al., 2017), considering Equation 3.

Causality, Ricci Curvature, and the Tale of Two Robust-
ness. Learning causal parameters could be formulated as
minimizing a worst-case risk to find a distributionally ro-
bust estimator (Bühlmann, 2020; Rothenhäusler et al., 2021).
Meanwhile, as explained above, Ricci curvature is known
to be an indicator of system robustness. While these two
notions of robustness are not equivalent, the correspondence
of Ricci curvature with one and causal inference with the
other suggests a possible connection (see Figure 1), which
we show exists using the link between the two and entropy.
This link is shown through Theorem 6.1 and Corollary 6.3.
Informally, Theorem 6.1 states that positive Ricci curva-
ture is more likely than negative Ricci curvature to further
constrain exogenous variables that pose challenges to an
accurate estimation of causal parameters. This implies that
when the Ricci curvature in the neighborhood of a node is
positive, the unobserved variables that impact the features
and outcome of the node are more likely to be ’benign’ —
not causing additional difficulties for causal inference. This
implication is proven in Corollary 6.3, which states that pos-
itive Ricci curvature corresponds to a higher probability of
having a sufficiently large set of variables which are not ob-
served in the data, for which the causal parameters learned
by a model are identified. The practical consequences, sum-
marized below, are confirmed through our experiments, and
schematically illustrated in Appendix D.

The Consequences. Formally explained in Section 6,
these theoretical results indicate that neighborhoods of the
network with negative Ricci curvature tend to pose greater
challenges to the identification of causal parameters, leading
to less reliable causal estimates. Therefore, Ricci curvature
could assess the confidence in causal estimation on networks
based on data alone, as empirically confirmed by our ex-
periments in Section 7. Next, we present a reinterpretation
of previously established results to build up the steps that
enable us to discuss our theoretical findings in depth.

5 Invariance and Distributional Robustness
of Causal Parameters

In this section, we formalize the derivation of causal quan-
tities from statistical quantities as a worst-case risk mini-

mization problem which leads to learning parameters that
are invariant across environments, revisiting the work by
Bühlmann (2020). We briefly discuss the problem formu-
lation and results which explain that the minimization loss
function upholding causal assumptions coincides with the
one that leads to distributional robustness (remember that
Ricci curvature relates to system robustness; we connect
between the two in this work). A more detailed discussion
is included in Appendix E. The discussion in this section
formally presents the main claim regarding the distributional
robustness of causal parameters. Linear anchor regression is
used for the purpose of this formal discussion as a pedagogic
example, the concepts regarding distributional robustness
are not limited to the specific settings of this example.

Adopting the notation in Bühlmann (2020), let Y e and Xe

denote the random variable and the nX -dimensional random
vector corresponding to an observed environment e ∈ E , and
F ⊇ E the union of observed and unobserved environments.
Consider the causal mechanism between X and Y described
by the structural equation Y = f(X) for some function f .
To infer f , we aim to learn a function g from observations
e ∈ E such that g(Xe) still provides accurate estimates for
Y e when e ∈ F \ E , under the assumption that e does not
directly impact Y e or change the mechanism between Xe

and Y e. Given a neural network g ≡ gθ parameterized by θ,
this can be formulated as solving

θcausal = argmin
θ

max
e∈F

L (Y e, gθ(X
e)), (4)

where L is the loss function (Bühlmann, 2020). If we can
find a subset of covariate indices S ⊂ {1, . . . , nX} such
that L (Y e, gθ(X

e
S)) is invariant with respect to e ∈ F , to

find θcausal it suffices to minimize L (Y e, gθ(X
e
S)) for any

observable e. This requirement, although abstract, eluci-
dates the invariance of causal estimation. When S is the
set of indices corresponding to the causal parents of Y e,
the relationship between Y e and Xe

S does not depend on
the environment and hence the causal parameters minimize
L (Y e, gθ(X

e
S)). Conditions which allow us to put this on a

computational footing, detailed in Appendix E, are contin-
gent on restrictive assumptions such as absence of hidden
confounders.

Figure 3: Causal graph for the anchor regression model.
A, H , X , and Y denote the anchor, hidden confounders,
covariates, and outcome.

To relax this assumption, consider the anchor regression
model, involving an anchor variable A, covariates X , out-
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come Y , and hidden confounders H , with the causal graph
shown in Figure 3. The estimand for linear anchor regres-
sion, here used for illustration purposes, can be computed
as the minimizer of the loss LA given by,

LA(γ) =E
[(
(I − PA) (Y −XT b)

)2]
+ γE

[(
PA(Y −XT b)

)2]
, (5)

where PA is the projection operator onto the column space
of A. The anchor variable —the root in the causal graph—
could be thought of as the determiner of the environment in
Equation 4, thus the second term in Equation 5 encourages
the invariance of LA(γ) with respect to the environment,
and can be considered a causal regularization term. Suppose
now that we replace the effect of the anchor on Y , modeled
as MA in the span of a constant matrix M , with a shift
perturbation of the form v ∈ span(M) generated by a vector
independent of the noise on Y . It can be shown, under
conditions described in Appendix E, that

LA(γ) = sup
v∈Cγ

E
[(

Y v − (Xv)T b
)2

]
,

where Xv and Y v correspond to X and Y in the perturbed
systems, and Cγ is the class of shift perturbations whose
size is typically constrained by O(γ) (Bühlmann, 2020;
Rothenhäusler et al., 2021). This implies that the anchor
regression estimand corresponds to worst-case risk mini-
mization in a perturbed system, and simultaneously pro-
motes conditions conforming to the assumptions for causal
identification. In other words, an estimand that satisfies
the criteria for a causal parameter is also a distributionally
robust optimizer, as we formally showcased through the
above discussion of anchor regression. This concludes our
discussion of the invariance and distributional robustness of
causal parameters.

6 Curvature and Causal Inference
Equations 2 and 3 together with the Fluctuation Theorem
(Evans et al., 1993; Pouryahya et al., 2017) provide the basis
for the positive correlations pointed to in Section 4 between
entropy, Ricci curvature, and system robustness. The discus-
sion in Section 5 on the other hand, formulates the problem
of learning causal parameters in terms of distributionally
robust optimization. Having built intuition into these rela-
tionships in prior sections, we now formally present our core
theoretical results elucidating the connection between Ricci
curvature and causal inference, which was explained infor-
mally in Section 4. These results rigorously substantiate the
theoretical grounds for using Ricci curvature as a practical
proxy for the reliability of causal estimation on networked
units. Moreover, this theoretical connection will, in turn,

inform a methodological remedy utilizing the geometric
Ricci flow to improve causal estimates on networks.

Consider the problem of identifying the causal relation-
ship between Xi and Yi for i ∈ {1, 2}, corresponding
to two sets of data with the true causal models given by
Yi = fi(Xi, Ei), where E ⊥⊥ X denotes the exogenous
variables. Suppose an alternative model Xi = gi(Yi, Ẽi),
with alternative exogenous variables Ẽi ⊥⊥ Y fits the data.
Assume that the Ricci curvature corresponding to Xi is
bounded from below by

¯
ki, for i ∈ {1, 2}. Then, under the

assumptions stated in Appendix G, where we also provide
the proof, the following holds:

Theorem 6.1. If
¯
k1 < 0 ≤

¯
k2, there exists a value η, for

which P
[
H(Ẽ2) > η

]
≥ P

[
H(Ẽ1) > η

]
, i.e., the proba-

bility that the Shannon entropy of Ẽ2 is lower bounded by η
is at least as high as the probability that η is a lower bound
for the entropy of Ẽ1.

The proof of this theorem, Appendix G, uses a result from
entropic causal inference (Appendix F) (Kocaoglu et al.,
2017; Compton et al., 2020; 2022). This provides a critical
link between entropy and causal inference, allowing us to
establish the connection with curvature using Equation 2.

Theorem 6.1 states that if the lower bound on the Ricci
curvature is negative for X1 and non-negative for X2, then
the alternative exogenous variables with which the wrong
model fits the data are more likely to have a larger entropy
in the case of X2 than X1. In other words, for the wrong
model to fit the data, we expect a higher entropy of the
exogenous variables when the curvature is non-negative.
The core insight from Theorem 6.1 is that a non-negative
Ricci curvature corresponds to a wrong model that admits
a smaller class of exogenous variables. When the Ricci
curvature is non-negative, the exogenous variables corre-
sponding to a fitting wrong model tend to require a larger
entropy lower bound, hence, the set of exogenous variables
which could make the wrong model fit the observed data
is smaller. This is formally stated in Corollary 6.3 below,
which specifically shows the implications of Ricci curvature
for causal identification. This property is intrinsic to the
network and independent of the exact algorithm used to
estimate the causal relationships.

6.1 Ricci Curvature and Causal Identification

In order to explicitly show the implications of Theorem 6.1
for causal identification, we briefly formalize the definition
of identified causal parameters over a family of unobserved
variables. Consider the problem of learning a causal pa-
rameter characterizing the relationship between X and Y
from data with population cumulative distribution function
(CDF) FX,Y,U ∈ FX,Y,U , where X and Y are observed
and U unobserved variables, and FX,Y,U is a family of
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joint CDFs. Let FX,Y ∈ FX,Y denote the observed CDF
of (X,Y ). For the purpose of this formalization, we shall
abstract away from the sampling process, hence consider
FX,Y to be the population distribution of the observed vari-
ables, and let h : FX,Y,U → FX,Y denote the mapping
that gives FX,Y = h(FX,Y,U ). We are interested in the
causal mechanism governing the population as described
by a function ϑ : FX,Y,U → Θ that maps any distribution
to its corresponding causal parameter θ ∈ Θ. Note that
an estimation method we use to learn θ(FX,Y,U ), such as a
neural network in a deep learning model estimating a causal
effect, has access only to FX,Y . The following definition
formally states what it means for the causal parameter to be
identified over a set of possible unobserved variables U .

Definition 6.2. We say the parameter is point identified over
U , if ΘU , defined below, is a singleton,

ΘU := { θ ∈ Θ : ∃ (U,FX,Y,U ) ∈ U × FX,Y,U

s.t. FX,Y = h(FX,Y,U )

and θ = ϑ(FX,Y,U )} . (6)

ΘU is the identified set over U . We further say that the
parameter is partially identified over U if ΘU ⊂ Θ, and
completely not identified over U if ΘU = Θ.

In other words, the identified set over U is the set of all
parameters that describe the population distributions which
are observationally equivalent.

Assume ϑ(·) is injective, i.e., the causal parameter of inter-
est are expressive of the population distribution. Consider
Xi, Yi, and

¯
ki for i ∈ {1, 2} in the setup for Theorem

6.1, and let θi denote the corresponding causal parameter.
Suppose further that the variables not observed in the data
include the exogenous variables Ei and Ẽi as described for
Theorem 6.1. Let (U , 2U ) be a measurable space equipped
with the measure µ, where U denotes the set of all possible
unobserved variables, i.e.,

{
E1, E2, Ẽ1, Ẽ2

}
⊆ U . Under

the conditions for Theorem 6.1, we have the following:

Corollary 6.3. Let Ūi denote the maximal set of unobserved
variables over which θi is point-identified. If

¯
k1 < 0 ≤

¯
k2,

then P
[
µ
(
Ū2

)
> υ

]
≥ P

[
µ
(
Ū1

)
> υ

]
for a constant υ.

In words, the probability that the causal parameter is point
identified over a set at least as large as υ is weakly higher
for the case of non-negative curvature. The proof of the
corollary is provided in Appendix G.

In light of the discussion in Section 5, Corollary 6.3 im-
plies that positive Ricci curvature is more likely to allow the
causal parameter to be point-identified over a larger class of
unobserved variables, such as shift perturbations. Shedding
light on a more direct implication of Ricci curvature for
causal inference, this corollary suggests that learning identi-
fied causal parameters tends to be more challenging where

the curvature is negative. Theorem 6.1 and its corollary ulti-
mately suggest that a positive Ricci curvature is expected to
correspond to a lower error in estimating causal parameters.

Intermezzo. To recap, Theorem 6.1 and Corollary 6.3 for-
mally establish the connection between Ricci curvature and
causal inference, demonstrating for the first time how the
geometry of a network influences causal estimations. They
show that positive curvature leads to causal parameters that
are identified for a larger class of perturbations, which en-
hances distributional robustness, making the worst-case risk
minimization in a system under perturbation a less challeng-
ing problem. This foundational result on the connection
between geometric properties of networks and causal infer-
ence paves the way for improving causal effect estimation,
as we show next and illustrate further with experiments in
Section 7.

6.2 Ricci Flow Adjustment for Improving Causal
Effect Estimates

Informed by the theoretical connection between Ricci curva-
ture and causal inference, we propose, if needed, to improve
treatment effect estimates on network data using the dis-
crete geometric Ricci flow (Jin et al., 2008; Ni et al., 2019).
Under the Ricci flow, at time t, the Riemannian metric g

evolves as ∂gij(t)
∂t = −2Rij , where Rij is the Ricci curva-

ture tensor. This is, in fact, equivalent to the heat equation,
considering the formulation of the Ricci flow as a scaling of
the Laplacian of the metric tensor (Chow & Knopf, 2004).
As a result, just as the temperature evolves towards a more
uniform distribution under heat diffusion, the Ricci flow
evolves to a uniform distribution of curvature (Hamilton,
1988; Jin et al., 2008). Similarly, its discrete analog iter-
atively updates the edge weights toward a flatter network,
without changing unweighted connectivities in the graph.

Let wvu be the weight on the edge (v, u) ∈ E, κvu its Ricci
curvature, and d(v, u) the geodesic distance. At iteration i,
wvu evolves under the discrete Ricci flow as

wi+1
vu = (1− κvu) d(v, u)

i. (7)

In order to improve estimations of treatment effects, we
propose modifying the edge weights via the discrete Ricci
flow to obtain an adjusted shift operator for the graph con-
volution, which is the weighted adjacency matrix. This is,
in essence, preprocessing the input data through comput-
ing a weight matrix by which we multiply the adjacency
matrix, and hence, a cost-efficient one-time computation.
Since real-world networks are predominantly sparse, this
flattening increases the Ricci curvature of the majority of
the edges in the network and, therefore, based on our theory,
is expected to reduce the error in estimating causal effects.
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Since the anticipated error reduction results from eliminat-
ing negative curvature values, this Ricci flow adjustment
is expected to be more effective in networks with larger
proportions of neighborhoods with highly negative Ricci
curvature.

7 Experiments
Building upon these theoretical foundations, we now turn
our attention to empirical validation. We employ numeri-
cal experiments on real-world network data to demonstrate
the practical utility of Ricci curvature for causal effect es-
timation. Considering the success of neural networks in
estimating causal effects, we use a GNN-based framework
to estimate treatment effects on the nodes in networked data.

7.1 Model and Data

When treatments are applied to a network with non-trivial
connections, traditional causal effect estimation methods
fail due to violation of ignorability or SUTVA (Kaddour
et al., 2021; Jiang & Sun, 2022; Chu et al., 2023). Jiang &
Sun (2022) proposed NetEst, a GNN-based model we use
here, which yields identifiable estimates of the treatment
effect on networked data in settings where SUTVA is vi-
olated due to peer exposure effect. Details of the NetEst
model, the ITE formulation, the training loss, and imple-
mentation are included in Appendix H and Appendix I.
While our experiments are primarily aimed at demonstrat-
ing our theoretical results in practice, and evaluating the
performance of NetEst and our proposed enhancement of
it in estimating ITE, the theory and methodology we de-
velop in this paper concern the intrinsic graph structure
of the treatment units; they neither depend on the estima-
tion method nor are specific to the estimand it estimates.
Additionally, in Section 7.3 we compare our results with
several baseline causal effect estimation methods. These
baselines include CFR (Shalit et al., 2017), TARNet (Shalit
et al., 2017), NetDeconf (Guo et al., 2020), T-Learner and
X-Learner (Künzel et al., 2019) with random forest (RF)
regressors, and T-Learner and X-Learner implemented us-
ing a GNN encoder followed by a multilayer perceptron.
To evaluate the performance in estimating the treatment ef-
fects, we use the ITE error εITE(v) := |τv − τ̂v| and the
Precision in Estimation of Heterogeneous Effect (PEHE)

ϵPEHE :=
√

1
N

∑
v∈V (τv − τ̂v)2, where τv and τ̂v denote

the true and estimated ITEs for node v.

Consistent with standard practice in causal machine learn-
ing, we use semi-synthetic datasets, namely empirically
observed network structures and features with simulated
treatments and potential outcomes (Hill, 2011; Shalit et al.,
2017; Veitch et al., 2019; Guo et al., 2020; Ma et al., 2021;
Jiang & Sun, 2022). Following the original experiments on

NetEst, we use the BlogCatalog (BC) and Flickr datasets
(Guo et al., 2020; Ma et al., 2021). We supplement our
experiments with numerous other empirical networks. All
datasets are described in Appendix J.

7.2 Ricci Curvature as an Indicator of the Treatment
Effect Estimation Error

We demonstrate the implications of Theorem 6.1 and Corol-
lary 6.3 by inspecting the joint distribution of εITE and the
Ricci curvature, which in turn, provides empirical evidence
for employing Ricci curvature to evaluate the reliability of
causal estimates. Ollivier-Ricci curvature is inherently an
edge-based measure (see Appendix B). To quantify the cur-
vature of the region surrounding a node, we aggregate the
curvature of its incident edges by taking their sum. We then
compute the empirical joint distribution of the sum of edge
curvatures and εITE for each node. The joint distributions
in Figure 4 show a negative correlation between Ricci curva-
ture and εITE , indicating that treatment effect estimations
are more reliable in regions with non-negative curvature.
Additional experiments in Appendix K show that these re-
sults are consistent not only across different datasets but also
different notions of Ricci curvature on networks, support-
ing our theoretical results on the connection between this
geometric feature and the reliability of causal estimation.

7.3 Geometric Ricci Flow Adjustment for Treatment
Effect Estimation

The theory and experiments alike speak to the adverse effect
of highly negative curvatures on estimating treatment effects.
In line with this observation, in Section 6 we proposed a
simple method to improve the estimation of treatment effects
on networked data by flattening the network via the discrete
Ricci flow. To evaluate this geometric method, we apply
this adjustment to the input graph of NetEst. We refer to
the modified method as f-NetEst (for flow). The ϵPEHE

values obtained from our experiments, Table 1, show that
f-NetEst achieves the best performance on all datasets with
relative gains of up to 52%. Comparing the distributions of
the ITE estimation errors (Appendix K.2) further confirms
that the Ricci flow adjustment leads to more accurate ITE
estimations.

Table 1 also reports the performances of several base-
line models. While our experiments primarily focus on
NetEst, which outperforms all the baselines, we also ex-
plore the impact of the Ricci flow adjustment on the perfor-
mance of three baseline models featuring GNN encoders:
T-Learner+GNN, X-Learner+GNN, and NetDeconf. These
additional experiments confirm that our proposed modifica-
tion results in a reduction in the treatment effect estimation
error in most cases across other GNN-based models as well.
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Figure 4: Joint distributions of the sum of Ollivier-Ricci curvatures in the neighborhood of each node and the estimation
error of ITE for that node. The distributions for nine different networks are shown (all datasets are described in Appendix
J). The regression lines with the corresponding 95% confidence intervals are marked on the plots. Additional experiments
in Appendix K show that these results are consistent also for different notions of Ricci curvature, supporting our theory.

Table 1: ϵPEHE for nine datasets, comparing the proposed f-NetEst against NetEst and several baseline models. The
baselines include three models implemented with GNN encoders. The experiment with the Ricci flow adjustment for these
models is marked with ”f-”. Boldface and underline mark the best and second best performances. Green and yellow mark,
respectively, relative gains greater than 5% and less than −5% from the Ricci flow adjustment. Smaller ϵPEHE is better.

BC Flickr Cornell Texas Wisconsin chameleon Cora CiteSeer Actor

T-Learner+RF 0.328 0.462 0.192 0.414 0.463 0.372 0.232 0.386 0.238
X-Learner+RF 5.612 5.745 5.928 3.827 3.815 3.709 8.626 5.606 5.231
TARNet 0.969 1.024 0.705 1.028 0.711 1.212 0.679 0.638 0.796
CFR 0.895 0.960 0.806 1.038 0.849 0.926 0.570 0.620 0.735

T-Learner+GNN 4.178 9.630 5.125 4.437 0.559 16.715 0.285 0.529 7.912
X-Learner+GNN 4.627 3.933 20.461 1.995 16.244 329.959 3.165 4.428 4.296
NetDeconf 1.092 1.251 0.900 1.137 0.952 1.207 0.791 0.752 0.895

f-TLearner+GNN 3.268 2.762 4.370 3.106 0.466 7.764 0.263 0.494 3.896
f-XLearner+GNN 4.222 3.859 17.395 2.020 20.815 251.290 3.053 3.919 3.967
f-NetDeconf 1.088 1.245 0.900 1.143 0.954 1.200 0.810 0.767 0.898

NetEst 0.069 0.213 0.165 0.330 0.147 0.247 0.082 0.176 0.094
f-NetEst (ours) 0.033 0.208 0.127 0.308 0.142 0.230 0.078 0.165 0.088

8 Conclusions and Limitations
We delved into the unexplored territory of leveraging geom-
etry for causal inference on networked data via GNNs. We
established a theoretical connection between curvature and
causal inference, uncovering the challenges posed by nega-

tive curvatures in identifying causal effects. We presented
numerical results using graph Ricci curvature to assess the
reliability of causal effect estimations on networked data,
empirically validating that positive curvature regions lead to
more accurate results, and showing that curvature can serve
as a practical measure of confidence in causal estimates with-
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out any ground-truth data. This property is intrinsic to the
network and independent of the method exploited for causal
estimation. We then proposed using the geometric Ricci
flow to enhance treatment effect estimation on networked
data, achieving superior performance through flattening the
edges.

To the best of our knowledge, this work is the first to for-
mally establish the connection between graph curvature, as
a proxy to geometry, and network causal inference. This
opens new avenues for applications of graph geometry in
causal inference, as well as neighboring tasks such as trans-
fer learning, out-of-distribution generalization, and domain
adaptation. The insights and tools presented in this paper
lay the groundwork for future exploration, paving the way
for innovative approaches to network causal analysis.

Limitations and Future Directions. Our proposed
method cannot target specific neighborhoods of the net-
work for improving causal effect estimation. Moreover,
using Ricci flow to reduce treatment effect estimation error
is a static adjustment on the graph that is not efficiently
updated during training. Our proposed improvement effec-
tively alters the graph by weighting the edges, requiring
careful consideration regarding conceptual consistency of
the edge weights with the context of the problem in hand.
In future work, our aim is to incorporate these additional
dimensions, enhancing the robustness and applicability of
curvature-based techniques in causal inference.
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G.-I., Wüst, S., Greenlee, M. W., and Lang, E. W. A graph
neural network framework for causal inference in brain
networks. Scientific Reports, 11(1):8061, 2021.

Yang, Z., Cohen, W., and Salakhudinov, R. Revisiting
semi-supervised learning with graph embeddings. In
International Conference on Machine Learning, pp. 40–
48. PMLR, 2016.

Yao, L., Chu, Z., Li, S., Li, Y., Gao, J., and Zhang, A.
A survey on causal inference. ACM Transactions on
Knowledge Discovery from Data, 15(5):1–46, 2021.

Ye, Z., Liu, K. S., Ma, T., Gao, J., and Chen, C. Curvature
graph network. In International Conference on Learning
Representations, 2020.

Zheleva, E. and Arbour, D. Causal inference from network
data. In SIGKDD Conference on Knowledge Discovery
& Data Mining, pp. 4096–4097. Association for Comput-
ing Machinery, 2021.

12



Ricci Curvature and the Reliability of Causal Inference on Networks

A Causal Identification Assumptions
A set of standard assumptions, often referred to as identification strategy, are commonly considered for identifying the
causal effect. In Section 2.1 we named two common assumptions. Here we include their description as well as two other
common assumptions (Forastiere et al., 2021; Imbens & Rubin, 2015; Rosenbaum & Rubin, 1983; Rubin, 1980),

• Positivity: For every unit i, P [ti = 1|xi] ∈ (0, 1), i.e., each unit may or may not receive the treatment.

• Consistency: If the treatment and covariates of unit i are ti and xi, then Yi = Yi|do(ti, xi). In other words, the
potential outcome of the observed treatment and covariates is the same as the observed outcome.

• Strong Ignorability: Also referred to as unconfoundedness, this assumption is formally defined as {Y |do(T =
1), Y |do(T = 0)} ⊥⊥ T |X . In other words, conditional on all the measured covariates, the potential outcome does not
depend on the treatment assignment.

• Stable Unit Treatment Values Assumption (SUTVA): The potential outcome of a unit is unaffected by treatment
assignment of all other units.

These assumptions, although not always sufficient or necessary, could lead to identification of the treatment effect in various
settings where there is no network effect, but fail to do so in the presence of network effects (Jiang & Sun, 2022). However,
Jiang & Sun (2022) show the identifiability of the treatment effect estimated by NetEst, under a set of modified assumptions
that account for the covariates of neighbors and the peer effect. For a graph G = (V,E) with treatments {tv}v∈V , features
{xv}v∈V , peer exposures {zv}v∈V , and potential outcomes {Yv}v∈V , these assumptions are as follows (Jiang & Sun, 2022),

• Positivity: For every node v ∈ V , P [tv = 1|xv, {xu}u∈Nv
] ∈ (0, 1).

• Consistency: For every node v ∈ V , Yv = Yv|do(tv = t, zv = z).

• Strong Ignorability: For every node v ∈ V , Yv|do(tv, zv) ⊥⊥ tv, zv|xv, {xu}u∈Nv
.

• Markov: For any two sets of treatments {tv}v∈V and {t′v}v∈V , given any node w ∈ V , if tw = t′w and
Z({tu}u∈Nw

) = Z({t′u}u∈Nw
), then Yw|do({tv}v∈V ) = Yw|do({t′v}v∈V ), where Z(.) is the exposure function,

and we use do({tv}v∈V ) to denote enforcing all treatments in {tv}v∈V . That is, the potential outcome of any node is
only affected by its treatment and the treatments of its immediate neighbors.

B Ricci Curvature Notions on Graphs
The Ricci curvature indicates deviation from the Euclidean space (Bauer et al., 2017; Do Carmo & Flaherty Francis, 1992;
Pouryahya et al., 2017). On graphs, this translates to measuring how much the neighborhood of an edge differs from a
grid. We used the Ollivier-Ricci curvature (Ollivier, 2009) for the experiments reported in the main text of the paper. The
Forman-Ricci curvature (Forman, 2003) is an alternative notion of Ricci curvature on graphs, which we use, in addition to
the Ollivier-Ricci curvature, in supplementary experiments included in Appendix K.1. In this section, we formally define
these two Ricci-type graph curvatures.

The Ollivier-Ricci curvature is an optimal transport formulation of the Ricci curvature on graphs. Given a graph G = (V,E),
for an edge (v, u) ∈ E, with µv and µu probability measure on the nodes anchoring (v, u), the Ollivier-Ricci curvature is
defined as

κOR(v, u) := 1− W1(µv, µu)

dG(v, u)
, (8)

where dG(.) is a distance metric on V and W1 denotes the 1-Wasserstein distance (Jost & Liu, 2014; Lin et al., 2011). Given
the flexibility with respect to the choice of µv and µu, the Ollivier-Ricci curvature is a versatile tool for capturing the local
geometry of edges in a graph.
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The Forman-Ricci curvature is a combinatorial curvature notion. The Forman-Ricci curvature of an edge (v, u) ∈ E in an
undirected graph is given by

κFR(v, u) := wvu

 wv

wvu
+

wu

wvu
−

∑
(v′,u′)∈Nv×Nu

(
wv√

wvuwvv′
+

wu√
wvuwuu′

) , (9)

where wv is the weight of the node v, wvu is the weight of the edge (v, u), and Nv ist the set of neighbors of the node v
(Sreejith et al., 2016; Weber et al., 2017). By convention, all weights are set to 1 in an unweighted graph, in which case the
Forman curvature becomes κFR(v, u) = 4− dv − du, where dv denotes the node degree.

In this paper we base our main experiments on the Ollivier-Ricci curvature for its proven effectiveness (see, e.g., Southern
et al. (2023)) and link to optimal transport —an essential building block of our theoretical framework. However, with a
combinatorial formulation, Forman-Ricci curvature is a more computationally efficient notion with linear computational
complexity. Meanwhile, the complexity of computing the Ollivier-Ricci curvature of each edge (v, u) is O((dv × du)

c),
where dv and du are the degrees, and c is the exponent in the cost of matrix multiplication ( 2.37 by current fastest algorithms).
In the most expensive case (fully-connected graph) this is O(n4.74), n is the number of nodes. Empirical networks are
typically sparse with an average degree of constant order, d, the cost becomes O(d4.74) (Ye et al., 2020). Approximating the
Wasserstein distance by Sinkhorn distances (Cuturi, 2013) reduces this complexity to a near-linear order in d (Altschuler
et al., 2017; Ye et al., 2020).

C Related Work
In this work we formally showed the connection between curvature and causal inference, bridging for the first time the
works on invariance and robustness of causal models, geometric deep learning, and deep learning for causal inference.
Although we have cited related works in each section as appropriate, we now mention the most relevant works in each aspect
and reference other contributions in the literature. While these works provide essential foundations and motivations for
the theory in this work, none of them establishes the explicit links we developed in the paper and, in particular, the close
connection between geometry/curvature, robustness, and causal inference.

Invariance, Robustness, and Causal Inference. Learning representations that are invariant across a set of environments
is the primary goal of invariant causal prediction (ICP) (Bühlmann, 2020; Heinze-Deml et al., 2018; Peters et al., 2016;
Shi et al., 2021) and invariant risk minimization (IRM) (Arjovsky et al., 2019; Bühlmann, 2020; Lin et al., 2022; Shi et al.,
2021). Bühlmann (2020) formally describes how IRM can lead to a distributionally robust estimator while imposing causal
identification assumptions. Remember that curvature is related to system robustness, and connecting it with distributionally
robustness as we did led to the foundations developed in this paper.

Geometric Deep Learning. Geometric tools have been instrumental to recent advances on GNNs (Bronstein et al., 2017;
2021; Bruna et al., 2014; Gong et al., 2020). Discrete Ricci curvatures on graphs, in particular, are well-established measures
with roots in Riemannian geometry (Ollivier, 2009; Samal et al., 2018; Sandhu et al., 2015), with applications for GNNs
(Southern et al., 2023; Topping et al., 2021). The connection between Ricci curvature and entropy is known from the optimal
transport literature (Lott & Villani, 2009), based on which, (Pouryahya et al., 2017) uses Ricci curvature as a measure of
system robustness. Moreover, curvature has been used by Srinivas et al. (2022) to improve robustness in neural networks.
However, the literature does not establish a connection with distributional robustness, a gap that we fill with the help of
results from entropic causal inference (Compton et al., 2020; 2022; Kocaoglu et al., 2017).

Deep Learning for Causal Inference. Deep learning methods have had success in estimating treatment effect (Louizos
et al., 2017; Shalit et al., 2017), counterfactual inference (Johansson et al., 2016; Pawlowski et al., 2020), and other problems
in causal inference (Frauen & Feuerriegel, 2022; Hägele et al., 2023; Immer et al., 2023; Ke et al., 2022; Lu et al., 2021; Luo
et al., 2020; Perry et al., 2022). Causal effect estimation on networked data on the other hand, is known to be notoriously
challenging (van der Laan, 2012; Zheleva & Arbour, 2021). Various methods have been proposed for estimating the
causal effect in structured data which violate traditional identification assumptions (Cristali & Veitch, 2022; Guo et al.,
2020; Harada & Kashima, 2021; Jiang & Sun, 2022; Kaddour et al., 2021; Ma & Tresp, 2021). For instance, Guo et al.
(2020) uses a Network Deconfounder to learn a representation of hidden confounders from the data, Kaddour et al. (2021)
proposes an effect decomposition, and Veitch et al. (2019) and Cristali & Veitch (2022) use the embeddings to deal with
unobserved confounders and the homophily effect. Another approach, taken in Jiang & Sun (2022); Ma & Tresp (2021);
Harada & Kashima (2021), is to account for the peer treatment effects in the network using GNN-based causal estimation
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methods, which allows the violation of SUTVA. However, the literature lacks a practical indicator of the local reliability
of the estimates. We show that Ricci curvature can serve as such an indicator, and informed by this result, we propose a
preprocessing using the Ricci flow to improve the causal effect estimates obtained from GNN-based methods.

D The Consequences of Ricci Curvature for Causal Prameter Estimation on Networks
As we discuss in Sections 4 and 6, our theoretical results imply that negative Ricci curvature poses greater challenges to
identifying causal parameters, hence is expected to lead to larger error in estimating them. In this appendix we visualize this
consequence of our results, schematically illustrated it in Figure 5.

Figure 5: Our theoretical results suggest that positive/negative Ricci curvature correspond to smaller/larger error in
estimating causal parameters. The Ollivier-Ricci curvature values of the edges in the neighborhoods of the blue and pink
nodes are shown in this illustration, and the sizes of the shaded shapes around them mark our anticipated relative error of
estimating causal parameters on them.

E Causal Inference, Invariance, and Distributional Robustness

E.1 Causal Inference as Risk Minimization

Following Bühlmann (2020), we formalize the derivation of causal quantities from statistical quantities as a worst-case risk
minimization problem. Adopting the notation in Bühlmann (2020), let X and Y denote the covariates and the outcomes, let
Y e and Xe denote the random variable and the random vector corresponding to an observed environment e ∈ E , and let
F ⊇ E denote the union of observed and unobserved environments encompassing the joint distribution of X and Y. The
causal relationship of X and Y is trivially revealed when F = E , hence, without loss of generality, we assume E ⊂ F .

Learning the relationship between X and Y can be described as predicting Y e from Xe based on observations e ∈ E , such
that the prediction is robust under the choice of e ∈ F . To this end, consider a linear model as an example; we can formulate
a causal inference parameter, θcausal, as the worst case regression estimand below, with the constraint that e does not directly
impact the joint distribution of Xe and Y e (Bühlmann, 2020), hereafter referred to by condition C,

θcausal = argmin
b

max
e∈F

E
[(
Y e − (Xe)T b

)2]
. (10)

E.2 Invariance of Causal Models

Invariance of this worst-case risk minimization is a core component behind inferring causality from data. Given a set of
environments G ⊆ F , invariance can be formalized as the existence of a subset of covariate indices S ⊂ {1, . . . , nX}
satisfying AS (G), defined below,
Definition E.1 (Bühlmann (2020)). AS (G) is defined as the property that {L (Y e|Xe

S) |e ∈ G} is a singleton, where Xe
S

denotes the subset of covariates induced by indices in S, and L (Y e|Xe
S) denotes the loss function E

[(
Y e − (Xe

S)
T b

)2]
.

If AS (G) holds, the causal parameter in Equation 10 remains the same under variations in e ∈ G. For causal inference, we
are particularly interested in the invariance assumption AS (G) when G = E for estimating θcausal from the data, or when
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G = F for the more general case of determining causal parameters over the population. Assuming there exists an S for
which AS (F) holds, the problem of causal inference is then to find such S = pa(Y ) ⊂ {1, . . . , nX}, where {Xi}i∈pa(Y )

is the set of direct causal parents of Y . Taking a step towards computation, this problem can be formulated in terms of
structural equation models (SEMs) between X and Y , as finding the set pa(Y ) such that condition C is satisfied (Bühlmann,
2020). This can be formalized as satisfying B (F), where B (G) is,

Definition E.2 (Bühlmann (2020)). B (G) is defined as the property that
{
pϵe |e ∈ G ∧ Y e = f

(
Xe

pa(Y ), ϵ
e
)}

is a
singleton, where f determines the SEM, ϵe is independent of Xe

pa(Y ), and pϵe is the distribution of ϵe.

The assumption B (F) in fact completes the formulation of causal inference problems from the perspective of invariance,
with Proposition 1 in Bühlmann (2020), which states that under B (F), pa(Y ) satisfies Apa(Y ) (F). It follows that an
identification strategy, when computing θcausal over the observed environments, is taking the intersection of all sets S
satisfying AS(E). The main issue, however, is that such an identification mechanism relies on assumption B(F) and
condition C. We next discuss the distributional robustness of an estimator in a regression problem which allows for relaxing
these constraints.

E.3 Distributional Robustness and Causal Inference

One common situation where condition C fails is the presence of hidden confounders. We can use anchor regression
(Rothenhäusler et al., 2021) to relax condition C and allow for hidden confounders. In anchor regression, we consider
an anchor variable A with pa(A) = ∅. We allow A to be a causal parent of the covariates X , outcome Y , and hidden
confounders H , as described in Figure 3 in the core manuscript. The anchor variable could be considered as an environment
that is not constrained by condition C. The corresponding linear SEM is thenXY

H

 = B

XY
H

+ ϵ+MA, (11)

where B and M are unknown constant real matrices and ϵ is the noise vector which satisfies ϵ ⊥⊥ A. This yields the
following anchor regression problem for regressing Y on X ,

Y = XTβ +HTα+AT ξ + ϵY . (12)

Since the anchor variable is a root in the graphical model, the anchor regression estimator minimizes a risk in the column
space of A. Let ΠA be the projection matrix onto the column space of A for the sample, and let PA denote the corresponding
projection operator for the population case. The anchor regression estimand βA(γ) and estimator β̂A(γ) for regressing an
n× 1 outcome Y on an n×m matrix of covariates X, corresponding to Y and X in Equation 12, are given by

βA(γ) = argmin
b

{
E
[(
(I − PA) (Y −XT b)

)2]
+ γE

[(
PA(Y −XT b)

)2]}
, (13)

β̂A(γ) = argmin
b

{
1

n
∥(I −ΠA) (Y −Xb)∥22 +

γ

n
∥ΠA(Y −Xb)∥22

}
, (14)

where the second term in the objective functions encourages the residuals to be orthogonal to A (Bühlmann, 2020). We can
compute β̂A(γ) through the Ordinary Least Square estimator for regressing a transformed outcome variable WγY on the
corresponding transformed covariate WγX , where Wγ := I −

(
1−√γ

)
ΠA. Recall that A captures the influence of what

we previously referred to as the environment, thus encouraging independence of residuals from the environment and leading
to further invariance with respect to the environment.

Consider the system under perturbation by a vector v = Mδ for some δ replacing the anchor term in Equation 11. The SEM
under perturbation can be written as Xv

Y v

Hv

 = B

Xv

Y v

Hv

+ ϵ+ v. (15)

Let us impose δ ⊥⊥ ϵ and constrain the norm of the expected perturbation by the order of a constant γ. That is, we consider a
class of shift perturbations Cγ where the perturbation is generated in the column space of M by a vector δ independent of
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the noise, and where the typical size of the perturbation is O(γ) as γ →∞. Also assume, without loss of generality, that X
and Y are centered at 0. Under these conditions, if E

[
AAT

]
is positive definite, the following proposition holds (Bühlmann,

2020; Rothenhäusler et al., 2021),

Proposition E.3. Given any b ∈ Rm, if A and Y −XT b are uncorrelated, Y v − (Xv)T b in the perturbed system has the
same distribution for all v ∈ span(M).

Proposition E.3 points to what leads to the distributional robustness of the anchor regression estimand. This is due to an
equality between a worst-case residual in the perturbed system and the objective function for the estimand in Equation 13
(Bühlmann, 2020; Rothenhäusler et al., 2021),

Theorem E.4. For any b ∈ Rm

sup
v∈Cγ

E
[(

Y v − (Xv)
T
b
)2

]
= E

[(
(I − PA) (Y −XT b)

)2]
+ γE

[(
PA(Y −XT b)

)2]
.

Corollary E.5, which states that βA(γ) minimizes a worst case risk over the class of shift perturbations Cγ , follows trivially
considering Equation 13:

Corollary E.5. βA(γ) = argminb∈Rm supv∈Cγ
E
[(

Y v − (Xv)
T
b
)2

]
.

Recall that the second term in the objective function of the anchor regression estimand in Equation 13 is essentially a
causal regularization term that encourages the invariance of the residuals with respect to the environment. Theorem E.4 and
Corollary E.5 establish that the anchor regression estimand corresponds to a worst-case risk minimization in a perturbed
system, and simultaneously encourages conditions which bring us closer to a scenario where the assumptions for causal
identification hold. In other words, an estimator that satisfies the criteria for a causal parameter is also a distributionally
robust optimizer.

This concludes our discussion of causal inference as a worst-case risk optimization, establishing the connection between
causal inference and distributional robustness. As mentioned before, to connect causality with geometry via Ricci curvature,
we developed a connection with system robustness. Entropic causal inference, as presented next, opened the door to that.

F Entropic Causal Inference
Entropic causal inference is a framework that aims to learn the causal graph between variables from observational data,
using an Occam’s razor-type principle (Kocaoglu et al., 2017). This approach seeks the information-theoretically simplest
structural explanation of the data to infer causality (Compton et al., 2020). The central claim is that the true causal structural
model is one that yields the minimum entropy (Compton et al., 2022). Under a set of assumptions, this principle is shown
to facilitate correct orientation of the edges in the causal graph in a two-variable setting (Compton et al., 2020); and is
addressed in the more general case of multi-variable causal graphs in Compton et al. (2022), by finding the minimum entropy
coupling between each pair of connected variables.

These results further point to the relationship between Shannon entropy and distributional robustness. Fitting the wrong
model to the data requires a higher entropy than the correct model (Compton et al., 2020; 2022). More precisely, let
Y = f(X,E) be the structural causal model, where E ⊥⊥ X denotes exogenous variables. If the entropy H(E) is
sufficiently small, for the data to fit an alternative structural model X = g(Y, Ẽ), with high probability, the Shannon entropy
of the alternative exogenous variables Ẽ ⊥⊥ Y is bounded from below,

H(X) +H(E)−H(Y ) < H(Ẽ). (16)

Considering the link between entropy and Ricci curvature as described in Section 4, Inequality 16 enables us to prove the
connection we establish between Ricci curvature and causal inference through Theorem 6.1.

G Theorem Details
We now provide the proof of Theorem 6.1, which states the following under the assumptions listed in the appendix Section
G.1: Given Xi and Yi for i ∈ {1, 2}, corresponding to two sets of data with causal models Yi = fi(Xi, Ei), if an alternative
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model Xi = g(Yi, Ẽi) fits the data, having non-negative and negative lower bounds on the Ricci curvatures corresponding
to X2 and X1 implies that for some constant η, the probability that the Shannon entropy of Ẽ2 is greater than η is greater
than or equal to the probability that the entropy of Ẽ1 is lower bounded by η.

Theorem 6.1 allows us to deduce Corollary 6.3, which sheds light on a direct connection between causal identification and
Ricci curvature. In particular, with the setup and assumptions of Theorem 6.1, Corollary 6.3 states that the probability
that the measure of the maximal set over which the causal parameter is point identified is at least as large as a constant υ
is weakly higher in the case with non-negative Ricci curvature than when Ricci curvature is negative. The proof of this
corollary is provided in this appendix following the proof of Theorem 6.1.

G.1 Assumptions

Given the triplets (X1, Y1, E1) and (X2, Y2, E2), with structural causal models Yi = fi(Xi, Ei) for i = 1, 2, we make the
following assumptions:

(Ai) Considering probability measures µX1
and µX2

corresponding to X1 and X2, there exists a pair of measures µ0 and µ1

such that µX1
and µX2

are on the geodesics between µ0 and µ1 in a 2-Wassertein metric space.

(Aii) H(Y1) ≈ H(Y2) and H(E1) ≈ H(E2), where we use ≈ to denote sufficiently close, and H(.) denotes the Shannon
entropy.

(Aiii) The conditions for Conjecture 1 in Kocaoglu et al. (2017) and Compton et al. (2020): X ∼ p(X) and E ∼ p(E),
where p(X) is a uniform random sample from the n-dimensional probability simplex, p(E) is sampled uniformly from
the points in the m-dimensional probability simplex satisfying H(E) ≤ log(n) +O(1), and f is sampled according to
pf satisfying

∥∥∥ pf

pU

∥∥∥
∞
≤ nc for some constant c, where pU is a uniform distribution (Compton et al., 2022).

In assumption (Aii) above, we use the term sufficiently close to refer to the existence of a sufficiently small upper bound on
the distance between the two values.

Assumptions (Ai) and (Aiii) are primarily technical assumptions to ensure applicability of inequalities 2 and 16 used in the
proof. Assumption (Aii) on the other hand, while facilitating steps of the proof, has a conceptual implication, it implies that
the difference in the randomness of the two datasets is primarily due to X1 and X2.

G.2 Proofs

The proof of Theorem 6.1, under the assumptions above, relies on Inequality 2 from Pouryahya et al. (2017) and Lott
& Villani (2009), and the results from Compton et al. (2020) and Compton et al. (2022) leading to Inequality 16. Given
alternative models Xi = g(Yi, Ẽi) for i = 1, 2 with exogenous variables Ẽi, under (Aiii), Inequality 16 gives the following
lower bound on the Shannon entropy of Ẽi,

H(Xi)−H(Yi) +H(Ei) < H(Ẽi). (17)

Suppose
¯
ki < 0 ≤

¯
k2 where

¯
ki is a lower bound on the Ricci curvature corresponding to Xi. Then, by Inequality 2,

assuming (Ai), we have

¯
s2 >

¯
s1, (18)

where
¯
si is a lower bound on the Boltzmann entropy corresponding to Xi. On the other hand, the Boltzmann entropy can be

written as a constant scaling of the Shannon entropy. Thus, given lower bounds
¯
h1 and

¯
h2 on H(X1) and H(X2), Inequality

18 implies
¯
h2 >

¯
h1. Consider a constant h ∈ (

¯
h1,

¯
h2). Since

¯
h2 is a lower bound for H(X2), it holds that P [H(X2) ≥ h] =

1 ≥ P [H(X1) ≥ h], where P(.) denotes the probability. Hence, under assumption (Aii), P [Λ2 > η] = 1 ≥ P [Λ1 > η],
where Λi := H(Xi)−H(Yi) +H(Ei) and η ∈ (

¯
h1 −H(Y1) +H(E1),

¯
h2 −H(Y2) +H(E2)) is a constant. Using the

lower bounds in 17, this implies

P
[
H(Ẽ2) > η

]
≥ P

[
H(Ẽ1) > η

]
, (19)

completing the proof of the theorem, establishing the link between causal inference and curvature.
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Proof of Corollary 6.3. The result from Theorem 6.1 further allows us to prove Corollary 6.3, directly linking causal
identification with Ricci curvature, in light of the formalization of the identified set over a class of unobserved variables
introduced in Section 6. Consider the setup described above and assume the conditions for Theorem 6.1 hold. Let U
be the set of all possible unobserved variables, and define Uη := {U ∈ U : H(U) ≤ η} to be the subset of U with the
entropy at most η, where η is the constant in Inequality 19. Let θi denote the causal parameter that describes the causal
mechanisms between Xi and Yi. Following the notation described in Section 6 leading to Definition 6.2, let FXi,Yi,Ei

denote the true population CDF, while FXi,Yi
= h(FXi,Yi,Ei

) is the corresponding observed CDF, and let ϑ : FX,Y,U → Θ
be the function that maps the population distribution to an expressive causal parameter. Note that an expressive ϑ(.) must be
injective, reflecting differences between input distributions. Hence, given Yi = fi(Xi, Ei) and Xi = gi(Yi, Ẽi) described
by causal parameters θfi ≡ ϑ(FXi,Yi,Ei

) and θgi ≡ ϑ(FXi,Yi,Ei
), as long as FXi,Yi,Ei

̸= FXi,Yi,Ẽi
, we have θfi ̸= θgi , as

reasonably desired. However, since FXi,fi(Xi,Ei) = Fgi(Yi,Ẽi),Yi
, i.e., the distributions of (Xi, Yi, Ei) and (Xi, Yi, Ẽi) are

observationally equivalent, ΘD is not a singleton for any subset D ⊆ U such that
{
Ei, Ẽi

}
⊆ D, as

{
θfi , θ

g
i

}
⊆ ΘD. In

other words, the causal parameter is not point-identified over any set of unobserved variables that contains both Ei and Ẽi.
Let Ūi ⊆ U denote the maximal set of unobserved variables over which θi is point-identified, which means Ẽi /∈ Ūi. Thus,
we can write

P
[
Uη ⊆ Ūi

]
= P

[
Ẽi /∈ Uη

]
≡ P

[
H(Ẽi) > η

]
. (20)

Let, υ := µ(Uη) for a measure µ over the measurable space (U , 2U ). Then Equation 20 implies that P
[
µ
(
Ūi
)
≥ υ

]
=

P
[
H(Ẽi) > η

]
. Hence, it follows immediately from Inequality 19 that P

[
µ
(
Ū2

)
> υ

]
≥ P

[
µ
(
Ū1

)
> υ

]
, as stated in

Corollary 6.3. This completes the proof of this corollary.

H NetEst and f-NetEst
Given a graph G = (V,E) with the adjacency matrix A, features X , observed outcome Y , and treatments T , the NetEst
model (Jiang & Sun, 2022) uses a summary function Z : 2T → [0, 1] to capture the peer effect on unit v ∈ V through
v’s peer exposure, zv = Z({tu}u∈Nv ), where Nv denotes the set of immediate neighbors of the node v. Assuming a
Markov-type property that the peer effect can be learned from the signals received from immediate neighbors, the peer
exposure function is set to be the average treatment of the neighbors, i.e., zv =

∑
u∈Nv

tu/|Nv|. The ITE, τ(xv), for two
treatments t′ and t′′ is then defined as

τ(xv) := E
[
Yv|do(tv = t′, zv = z′)− Yv|do(tv = t′′, zv = z′′)

∣∣xv, {xu}u∈Nv

]
, (21)

which is identified under the assumptions described in Appendix A (Jiang & Sun, 2022).

NetEst consists of four modules: an encoder, two regularizers, and an estimator. The encoder module learns a representation
for the nodes using a graph convolutional network, producing an embedding sv = ϕ(xv, {xu}u∈Nv ) ∈ S for every unit
v ∈ V . The estimator module is trained to estimate the observed outcome from the embeddings {sv}v∈V by minimizing a
mean squared error (MSE) loss. This MSE loss Lm is the potential outcome loss, between m(sv, tv, zv) and the potential
outcome Yv|do(tv, zv), where m : S × {0, 1} × [0, 1]→ Y denotes the estimator, assuming a binary treatment, and Y is
the outcome space. The p(t|x) and p(z|x, t) regularizer modules are used in an adversarial training scheme to resemble
randomized treatment assignment and uniform peer exposure, respectively, minimizing two MSE losses Lt and Lz on
the embeddings and treatments. Hence, NetEst is trained by first training the discriminators in the regularizer modules,
minimzing their respective loss values, then updating the estimator to minimze Lm, and in the end, updating the encoder to
optimize a total loss L = Lm + αtLt + αzLz .

In Section 6.2, we propose a Ricci flow adjustment to improve the accuracy of causal parameter estimation on network data.
Being a preprocessing of the input network structure, this adjustment lends itself to any causal inference method which
takes graph-structured treatment units as its input. Considering the practical success of NetEst and the empirically-relevant
identifiability results shown by Jiang & Sun (2022), we combined our proposed adjustment with NetEst. The pseudocode
for the resulting method, which we refer to by f-NetEst, is included in Algorithm 1. We use f-NetEst as the primary method
to validate our theoretical results and showcase its application in Section 7.
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Algorithm 1 f-NetEst: Ricci Flow Adjustment for NetEst Training and Testing

Input: Graph of treatment units G(V,E), node features X , labels Y for training, number of iterations T .
Output: Predicted labels Ŷ .

1: G0 ← G.
2: for t = 1 to T do
3: KG ← COMPUTERICCICURVATURE(Gt−1)
4: Gt ← RICCIFLOW(Gt−1,KG)
5: M ← TRAINNETESTMODEL(GT , X, Y )
6: Ŷ ← TESTNETESTMODEL(GT , X,M )

procedure COMPUTERICCICURVATURE(G)
for each edge (u, v) ∈ E do

Compute Ricci curvature κuv

return Ricci curvature values KG = {κuv : (u, v) ∈ E}

procedure RICCIFLOW(G,KG)
for each edge (u, v) ∈ E do

Update edge weight wuv = (1− κuv) d(v, u)

return G with updated edge weights

procedure TRAINNETEST(G,X, Y )
Compute peer exposure Z
Initialize NetEst model M
Train M using G, X , Z, and Y
return M

procedure TESTNETESTMODEL(G,X,M )
Predict labels Ŷ using M , G, X , and Z
return Ŷ

I Implementation Parameters and Hardware Specifications
Since the main purpose of our experiments is to inspect the joint distribution of estimation errors and evaluate the impact of
our proposed data preprocessing, we followed the parameters and setup used by Jiang & Sun (2022) for all implementation
and training purposes of NetEst, TARNet, CFR, and NetDeconf. The encoder of NetEst contains 1 graph convolution
layer, the estimator has 3 fully-connected hidden layers of size 32, and the two regularization terms in the total training
loss of the encoder both have weight 0.5. The learning rate is 0.001 for 300 epochs of full batch training using an Adam
optimizer (Kingma & Ba, 2015). The meta learner baselines with GNN encoders, T-learner+GNN and X-Learner+GNN, are
implemented using a graph convolutional network followed by a three-layer multilayer perceptron. All meta learners were
fine tuned with grid search. The system specifications for the experiments are reported in Table 2.

Table 2: System specifications for the experiments.

CPU Intel(R) Xeon(R) CPU @ 2.20GHz
GPU Nvidia V100
OS Ubuntu 22.04.2 LTS
Architecture x86 64

J Data
Validating causal inference methods and theories through experiments often requires data that contain counterfactual
outcomes. To this end, the standard practice in the literature is to use semi-synthetic data, where the features are empirically
observed, while the treatments and potential outcomes are simulated (Guo et al., 2020; Hill, 2011; Jiang & Sun, 2022; Ma
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et al., 2021; Shalit et al., 2017; Veitch et al., 2019). Jiang & Sun (2022) use the BlogCatalog (BC) and Flickr datasets (Guo
et al., 2020; Ma et al., 2021) to evaluate the performance of NetEst. In addition to these two datasets, we supplement our
experiments with additional network datasets used in the geometric deep learning and GNN literature: Cornell, Texas, and
Wisconsin networks from the WebKB dataset 1; Chameleon network from the Wikipedia networks dataset (Rozemberczki
et al., 2021); Cora and CiteSeer networks (Yang et al., 2016); and Actor network (Pei et al., 2019). Table 3 includes
descriptive statistics on these networks. Note that we only use the largest connected component in each network. Following
Jiang & Sun (2022), we split each network data into training, validation and test sets using METIS (Karypis & Kumar, 1998).
The treatments and potential outcomes for all network data are synthesized following the formulation in Jiang & Sun (2022).

Table 3: Descriptive statistics for the networks used in our experiments.

BC Flickr Cornell Texas Wisconsin Chameleon Cora CiteSeer Actor

Nodes 5196 7600 183 183 251 2277 2708 3327 7600
Edges 171743 30019 298 325 515 36101 10556 9104 30019
Features 8189 932 1703 1703 1703 2325 1433 3703 932

K Additional Experiments

K.1 Ricci Curvature and Treatment Effect Estimation Error

In this section we include additional plots showing the joint distributions of the ITE estimation error for each node v ∈ V ,
εITE(v), and the Ricci curvature in the neighborhood of the node, for both Forman and Ollivier Ricci curvatures (this
partially repeated from Figure 4 for completeness and ease of visualization/comparison). The distributions for the nine
networks are shown in Figure 6, with two plots (one per curvature) for each dataset. All ITE estimations in this figure
have been obtained using NetEst (Jiang & Sun, 2022). These distributions and the regression lines marked on the plots
further confirm our theoretical results, which imply that highly negative Ricci curvature makes causal effect estimation more
challenging.

K.2 ITE Error Distribution

In order to obtain a better understanding of how the geometric Ricci flow adjustment impacts ITE estimation for each unit,
we compare the empirical cumulative distribution functions (CDFs) of εITE obtained from f-NetEst and NetEst, in the
two datasets used by Jiang & Sun (2022), as well as seven other networks described in Appendix J. As shown in Figure 7,
the empirical CDF from f-NetEst is uniformly above that from NetEst for low εITE values, which further confirms that
flattening the edges leads to a larger proportion of units with low ITE estimation error.

1http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb/
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Figure 6: Joint distributions of the sum of Forman and Ollivier-Ricci curvatures in the neighborhood of each node and the
estimation error of ITE for that node. The distributions for the nine networks are shown, with two plots (one per curvature)
for each dataset. The regression lines with the corresponding 95% confidence intervals are marked on the plots.
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Figure 7: Empirical CDF of the ITE error, εITE , obtained from NetEst (black) and f-NetEst (green).
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