
Keypoint-based Progressive Chain-of-Thought Distillation for LLMs

Kaituo Feng 1 Changsheng Li 1 Xiaolu Zhang 2 Jun Zhou 2 Ye Yuan 1 Guoren Wang 1 3

Abstract
Chain-of-thought distillation is a powerful tech-
nique for transferring reasoning abilities from
large language models (LLMs) to smaller stu-
dent models. Previous methods typically require
the student to mimic the step-by-step rationale
produced by LLMs, often facing the following
challenges: (i) Tokens within a rationale vary in
significance, and treating them equally may fail
to accurately mimic keypoint tokens, leading to
reasoning errors. (ii) They usually distill knowl-
edge by consistently predicting all the steps in a
rationale, which falls short in distinguishing the
learning order of step generation. This diverges
from the human cognitive progression of starting
with easy tasks and advancing to harder ones, re-
sulting in sub-optimal outcomes. To this end, we
propose a unified framework, called KPOD, to
address these issues. Specifically, we propose a
token weighting module utilizing mask learning
to encourage accurate mimicry of keypoint tokens
by the student during distillation. Besides, we de-
velop an in-rationale progressive distillation strat-
egy, starting with training the student to generate
the final reasoning steps and gradually extending
to cover the entire rationale. To accomplish this, a
weighted token generation loss is proposed to as-
sess step reasoning difficulty, and a value function
is devised to schedule the progressive distillation
by considering both step difficulty and question
diversity. Extensive experiments on four reason-
ing benchmarks illustrate our KPOD outperforms
previous methods by a large margin.

1. Introduction
Large language models (LLMs) have demonstrated re-
markable reasoning capabilities via chain-of-thought (CoT)
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prompting (e.g., “Let’s think step-by-step”), which prompts
LLMs to generate a step-by-step rationale to help reasoning
(Kojima et al., 2022; Wei et al., 2022). However, such abil-
ities usually emerge in extremely large models, especially
those with over 100 billion parameters (Fu et al., 2023; Hoff-
mann et al., 2022) , such as 175B GPT-3 (Brown et al., 2020)
and 540B PaLM (Chowdhery et al., 2023). The substantial
amount of parameters unavoidably leads to high inference
costs and makes it challenging to deploy LLMs in environ-
ments with limited computational resources (Hsieh et al.,
2023). To tackle with this, a recent surge of works, known as
CoT distillation, has arisen as a promising avenue to distill
reasoning capabilities of LLMs to smaller student models
(Li et al., 2023; Wang et al., 2023b; Fu et al., 2023). The
core idea of these methods is to require the student model
to mimic the step-by-step rationale generated by LLMs in
response to a question.

However, current CoT distillation methods often encounter
the following two issues: First, in a rationale, each token car-
ries different levels of importance in the reasoning process.
Certain keypoint tokens play a pivotal role in reasoning,
while other tokens are of less importance or even irrelevant
to the reasoning process. For instance, consider a step in a
rationale: “Next, we just need to simply add up the calories
from the lettuce and cucumber: 30 + 80 = 110”. Here, terms
like “just”, “simply” are reasoning-irrelevant, whereas the
calculation “30 + 80 = 110” stands out as the keypoint for
reasoning. The reasoning-irrelevant tokens can be replaced
without negative effects, but even a slight deviation from the
keypoint token could result in errors in reasoning. There-
fore, it’s crucial for the student model to focus on the precise
mimicry of these keypoint tokens. Nevertheless, previous
CoT distillation methods usually treat all tokens equally
during distillation (Li et al., 2023; Wang et al., 2023b).

The second issue stems from the fact that previous ap-
proaches usually demand the student model to consistently
learn all the steps in a rationale throughout the distillation
process, without distinguishing the learning order of step
generation. This distillation strategy diverges from the hu-
man cognitive pattern that progresses from easier tasks to
more challenging ones. This deviation might lead to sub-
optimal outcomes. In the process of human or biological
agent learning, ability acquisition doesn’t simply stem from
random tasks (Molina & Jouen, 1998). Instead, there is an
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organized progression from easy tasks to hard tasks for them
to acquire capabilities, especially for complex skills such as
reasoning (Peterson, 2004; Krueger & Dayan, 2009; Benoit
et al., 2013). In the field of machine learning, this ordered
learning paradigm is regarded as curriculum learning (Ben-
gio et al., 2009). Inspired by this, we intend to develop a
progressive CoT distillation strategy to facilitate the student
model acquire reasoning ability from easy to hard. However,
directly applying previous curriculum learning strategies to
CoT distillation could be inferior because of the following
two reasons: (i) They overlook the step-by-step reasoning
nature where each reasoning step within a rationale may pos-
sess varying reasoning difficulty, resulting in sub-optimal
difficulty assessment. (ii) As aforementioned, a step in the
rationale might contain many tokens that are not crucial to
the reasoning process. When assessing the difficulty of step
generation, it may be dominated by these inessential tokens,
thereby inaccurately reflecting the challenge of obtaining
the expected outcome for a reasoning step.

In this paper, we propose Keypoint-based Progressive CoT
Distillation for LLMs dubbed KPOD, with the goal of ad-
dressing the above two issues in a unified framework. First,
we propose a rationale token weighting module to determine
the token significance for distillation. It learns to generate
masks for inessential tokens to the reasoning process via
two distinctive loss functions: An answer prediction loss
is introduced to encourage the module to utilize the ques-
tion with the masked rationale to derive the answer, while a
mask ratio loss is designed to maximize the ratio of masked
tokens in the rationale. By doing so, the obtained proba-
bility of not masking a token can serve as an indicator of
its significance weight. Second, we develop an in-rationale
progressive distillation strategy that orders the learning se-
quence from easy reasoning to hard reasoning within the
rationale of a question. This strategy begins by training the
student model to generate the last few reasoning steps of
the rationale, given the question with preceding steps of this
rationale as input. Subsequently, it progressively extends
to generate the entire rationale using only the question as
input. To precisely assess each step’s reasoning difficulty,
we propose a token generation loss based on the derived
token significance, aiming to eliminate the negative effects
of reasoning-irrelevant tokens. Finally, we design a value
function to dynamically determine the number of steps taken
as input at each stage, thereby automatically adjusting their
learning difficulty. Meanwhile, we leverage the value func-
tion to select diverse questions, so as to prevent over-fitting
(Jiang et al., 2014; Liang et al., 2021).

Our contributions can be summarized as: 1) We propose
a general and principled framework for CoT distillation,
which simultaneously considers token significance and rea-
soning difficulty within a rationale during distillation. 2) We
design a rationale token weighting module through mask

learning to determine the token significance for reasoning.
This allows the student to concentrate more on keypoint
tokens. 3) We devise an in-rationale progressive CoT distil-
lation strategy to schedule the learning order of reasoning
steps within a rationale. This enables the student to progres-
sively acquire reasoning abilities in an easy-to-hard manner.
4) Extensive experiments on four reasoning benchmarks val-
idate the effectiveness of our KPOD, showcasing significant
performance improvements compared to baselines.

2. Related Works
Chain-of-Thought Reasoning. The concept of employing
step-by-step language rationales to aid in solving reason-
ing problems can be traced back to pioneering works (Ling
et al., 2017). Inspired by this, chain-of-thought prompting
(Wei et al., 2022) has been proposed to enable LLMs to gen-
erate intermediate reasoning steps that contribute to the final
answer via few-shot CoT demonstrations. This prompting
approach has illustrated remarkable performance gain for
LLMs in reasoning related tasks (Zhang et al., 2022; Wang
et al., 2023a). In addition, researchers find that LLMs can
also obtain impressive reasoning performance by zero-shot
CoT (Kojima et al., 2022) without task-related demonstra-
tions. This is achieved by only using a single sentence “Let’s
think step by step” for prompting. Recently, a number of
CoT prompting methods have demonstrated effectiveness in
enhancing the reasoning performance of LLMs (Diao et al.,
2023; Yang et al., 2023), such as SC-CoT (Wang et al.,
2022), Auto-CoT (Zhang et al., 2022), Multimodal-CoT
(Zhang et al., 2023), etc. However, the emergence of CoT
reasoning capabilities in LLMs typically requires models
with more than 100 billion parameters (Wei et al., 2022; Fu
et al., 2023), making it resource-consuming for deployment.

CoT Distillation. Knowledge distillation has been widely
studied for model compression across various fields (Mag-
ister et al., 2023; Feng et al., 2024). Recently, CoT Distil-
lation has emerged as a promising avenue to transfer the
step-by-step reasoning capabilities of LLMs to smaller stu-
dent models (Hsieh et al., 2023; Ho et al., 2023). The key
idea of CoT distillation is to make the student model mimic
the step-by-step rationale generated by LLMs in response to
a question. In this context, the rationale can be interpreted as
the LLMs’ explanation of how to derive the final answer of
a question, akin to the soft label used in conventional knowl-
edge distillation (Hinton et al., 2015; Feng et al., 2022). The
representative works of CoT distillation include: SCoTD (Li
et al., 2023) introduces a symbolic CoT distillation method
that enables smaller models to self-rationalize for reasoning
via learning rationales from LLMs. Specialized KD (Fu
et al., 2023) is proposed to train a small language model spe-
cialized for reasoning in four distinct in-context scenarios.
MCC-KD (Chen et al., 2023) adopts diverse rationales for
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distillation and attempts to ensure their consistency. SCOTT
(Wang et al., 2023b) designs a faithful CoT distillation strat-
egy to make the student reason faithfully via counterfactual
training. However, these methods fail to consider the reason-
able learning order of the reasoning steps within a rationale,
leading to sub-optimal performance.

Curriculum Learning. Early researches in cognitive sci-
ence emphasize the significance of the easy-to-hard learning
pattern to acquire knowledge (Elman, 1993). Inspired by
this, the pioneer work (Bengio et al., 2009) introduces the
concept of curriculum learning (CL) to the machine learn-
ing field by gradually including samples from easy to hard
for training. In recent years, a variety of CL methods have
been proposed to enhance the model performance (Kong
et al., 2021; Wang et al., 2021). For instance, Adaptive CL
(Kong et al., 2021) proposes to utilize the loss of the model
to dynamically adjust the difficulty score of each sample.
SPL (Wan et al., 2020) introduces the curriculum learning
to the neural machine translation domain via introducing
the token-level and sentence-level confidence score. ICL
(Jia et al., 2023) devises a curriculum learning method that
organizes the curriculum within the token sequence of a
sample for natural language generation tasks. However, as
aforementioned, applying these CL methods directly to CoT
distillation could yield inferior performance.

3. Proposed Method
3.1. Preliminaries and Problem Setting

The goal of CoT distillation is to transfer the reasoning ca-
pability of large language models (LLMs) to smaller student
models via distilling the rationales produced by LLMs. We
denote the dataset as D = {(x(i), y(i))}, where x(i) is the
i-th reasoning question and y(i) is the corresponding answer.
Following previous CoT distillation works (Ho et al., 2023;
Chen et al., 2023) , we adopt zero-shot CoT (Kojima et al.,
2022) to prompt the teacher LLMs to generate step-by-step
rationale r(i) for each question x(i). The reasoning template
takes the following format: “Q: <x(i)> A: <p> <r(i)>
Therefore, the answer is <y(i)>”, where <p> is the zero-
shot CoT prompt such as “Let’s think step by step”. Then,
the student is trained to generate the concatenated sequence
of rationale tokens r(i) and answer tokens y(i), given the
question x(i) as input. The standard negative log-likelihood
loss for training the student model can be formulated as:

L= −
∑
i

∑
j

logP (r
(i)
j |r(i)<j , x

(i); θs)

−
∑
i

∑
j

logP (y
(i)
j |y(i)<j , r

(i), x(i); θs), (1)

where r
(i)
j and y

(i)
j represent the j-th token in the rationale

sequence r(i) and the answer sequence y(i), respectively.

θs denotes the parameters of the student model. The first
term of Eq.(1) enables the student to mimic the rationale
produced by LLMs, while the second term aims to train the
student to output the final answer based on the rationale. By
minimizing this loss, the student model can learn to generate
the step-by-step rationale for deriving the final answer.

3.2. Framework Overview

As aforementioned, there are two key issues for CoT distilla-
tion methods: (i) Equally treating each token for distillation
may make the student fail to mimic keypoint tokens accu-
rately, leading to reasoning errors. (ii) Distilling the steps
within a rationale without explicitly considering the learning
order of step generation might lead to sub-optimal outcomes.
To tackle these two issues, we propose a new CoT distil-
lation framework KPOD, as illustrated in Figure 1. Our
framework mainly consists of two components: a rationale
token weighting component based on mask learning is pro-
posed to determine the token significance for distillation.
This encourages the student to faithfully replicate the cru-
cial keypoint tokens; A progressive distillation component
within the rationale is designed to establish a structured
learning order for the reasoning steps. This guides the stu-
dent model to progressively develop its reasoning abilities
from simpler to more complex tasks, aligning with the profi-
ciency of teacher LLMs. It’s worth noting that the obtained
token significance weight fulfills two distinct functions in
our framework: firstly, it encourages precise mimicry of key-
point tokens during distillation, and secondly, it mitigates
the negative effects of inessential tokens when assessing step
difficulty. Next, we will primarily delve into the detailed
introduction of the two components in our framework.

3.3. Rationale Token Weighting

In this section, we introduce our rationale token weighting
module, which determines the significance of each token
via learning to mask reasoning-irrelevant token.

Weight Generation. First, we intend to generate distinct
significance weights for different tokens by leveraging their
embeddings. This facilitates the estimation of their impor-
tance according to their characteristics. To achieve this, we
feed the rationale tokens into a pre-trained input embedding
layer, followed by a self-attention layer to encode in-context
information. This process is formulated as:

e(i) = Att(Emb(r(i))), (2)

where Emb and Att denote the input embedding layer and
the self-attention layer, respectively. e(i) is the embedding
matrix containing the embeddings for each token in r(i).
Subsequently, the embedding e

(i)
j of each token is fed into a

weight generator, producing the significance weight as:

w
(i)
j = σ(fw(e

(i)
j )), (3)
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Question
A club opens up ...James 

2 rounds...  costs $14.  
How much did he spend?
Let’s think step-by-step.

Teacher LLM

Rationale
Step 1: He buys 2*5=10 drinks.

……

Step 4: The tip… 110*.3=33.

Step 5: So … 20+110+33=$163.

Therefore, the answers is 163.

Smaller
Student 
Model
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Weight
Generator

mask mask mask
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Figure 1. An illustration of our KPOD framework. KPOD first determines the keypoint tokens for distillation through designing a
rationale token weighting module based on mask learning. Then, an in-rationale progressive distillation strategy is devised to organize the
learning order within rationale, so as to enable the student to acquire the reasoning capabilities in an easy-to-hard manner.

where w
(i)
j is the probability of the j-th token not being

masked, serving as an indicator of its significance level.
fw is the weight generator and σ is the sigmoid activation
function (Narayan, 1997). In this paper, we employ a simple
two-layer MLP as the weight generator.

Reasoning-irrelevant Mask Learning. To optimize the
weight generator, we formulate two loss functions: an an-
swer prediction loss that encourages the module to utilize
the question with the masked rationale for answer deriva-
tion, and a mask ratio loss aiming to maximize the ratio of
masked tokens in the rationale. This allows the weight gen-
erator to generate low values of w(i)

j for tokens irrelevant
to reasoning and high values for keypoint tokens. Next, we
will introduce these two losses in detail.

Firstly, considering that sampling the discrete mask pol-
icy m

(i)
j ∈ {0, 1} from the distribution of w

(i)
j is non-

differentiable, we adopt the Gumbel-Softmax sampling
(Jang et al., 2016) to avoid this issue:

m
(i)
j = GumbelSoftmax(w

(i)
j ), (4)

where GumbelSoftmax represents the Gumbel-Softmax
sampling (Jang et al., 2016). m(i)

j = 0 denotes that the j-th

token is masked, while m(i)
j = 1 denotes that the j-th token

is not masked. By applying the mask m
(i)
j to each token

r
(i)
j in rationale r(i), we can obtain the masked rationale,

denoted as r[m]
(i).

Then, we input r[m]
(i) into the transformer layers, with the

goal of obtaining the correct answer by using the masked
rationale. Here we initialize the transformer layers using the

pre-trained FlanT5-Large (Chung et al., 2022). Considering
that certain steps of the rationale sometimes contain the
reasoning results of previous steps, shortcuts may be taken
for the answer prediction via neglecting previous steps. To
eliminate this phenomenon, we expect the transformer to
predict the answer based on the question with any prefix
of the masked rationale. The answer prediction loss Lp for
question x(i) can be written as:

Lp = −
∑
k

∑
j

logP (y
(i)
j |y(i)<j , r[m]

(i)
<k, x

(i); θw), (5)

where y(i) is the answer and x(i) is the question. θw repre-
sents the parameters of this rationale token weighting mod-
ule. r[m]

(i)
<k represents the preceding k tokens of the masked

rationale r[m]
(i). By optimizing Lp, the transformer can

be used to predict the answer by taking as input the ques-
tion and the prefix of the masked rationale. Meanwhile, the
weight generator is encouraged to generate large weights for
the keypoint tokens, preventing them from being masked to
facilitate the answer prediction.

Moreover, to eliminate redundant tokens for reasoning, a
mask ratio loss Lm is presented as:

Lm =
∑
j

m
(i)
j . (6)

By optimizing Lm, we enable the weight generator to iden-
tify the insignificant tokens in the reasoning process and
generate lower weights for them.

Finally, the overall loss function for training this module
can be expressed as:

Lk = Lp + αLm, (7)
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where α is a balancing hyper-parameter. By optimizing
Lk, we can achieve the goal of determining the significance
weight w(i)

j for each token within a rationale.

3.4. In-rationale Progressive Distillation

In this section, we elaborate our proposed in-rationale pro-
gressive distillation strategy, which schedules the learning
order within a rationale.

Step Difficulty Assessment. Firstly, we assess the difficulty
of each reasoning step in the rationale, so as to facilitate
the learning order scheduling. In this work, we utilize the
symbol “.” to separate steps in a rationale. As mentioned
above, there could exist many reasoning-irrelevant tokens,
and it is crucial to ensure that the difficulty evaluation is
not influenced by them. Therefore, we propose a weighted
token generation loss to calculate the difficulty value d(i)k of
the k-th reasoning step in the rationale r(i) as:

d
(i)
k = −

qk∑
j=pk

ŵ
(i)
j logP (r

(i)
j |r(i)<j , x

(i); θs), (8)

where pk and qk denote the start position and end posi-
tion of the k-th step in the rationale, respectively. Here we
directly use the pre-trained student model θs (e.g., LLaMA-
7B (Touvron et al., 2023)) before distillation to evaluate
the generation probability P (r

(i)
j |r(i)<j , x

(i); θs). ŵ
(i)
j =

softmax(w
(i)
j ) represents the significance weight normal-

ized by softmax (Bridle, 1989) within the token weights in
the k-th step. In this way, the obtained step difficulty can be
more concentrated on the difficulty of generating keypoint
tokens, providing a more faithful reflection of the difficulty
in deriving the correct outcome of each reasoning step.

Progressive Distillation. Based on the step difficulty scores,
we devise an in-rationale progressive distillation strategy
to guide the student model learning each rationale in an
easy-to-hard fashion. This strategy initiates with training
the student model to generate the final few reasoning steps
of the rationale using previous steps combined with the
question as input, and progressively expands to produce the
complete rationales. Supposed that we schedule the student
model to output the last ni − ci(t) steps of the i-th rationale
at stage t, The difficulty hi(S(t)) of generating these steps
can be formulated as:

hi(S(t)) =

ni∑
j=ci(t)+1

d
(i)
j , (9)

where ni is the total number of steps in the i-th rationale
r(i) and ci(t) is the scheduled number of input steps of r(i)

at stage t. d(i)j is the difficulty of the j-th step in r(i). S(t)
is used to decide the value of ci(t) at stage t, which will be
introduced later. In this paper, we treat each training epoch
as a stage.

To facilitate selecting diverse questions to increase difficulty
at each stage, we configure an overall learning difficulty
D(t) for stage t rather than a hard threshold for each ques-
tion. This means that the difficulty sum of all questions
should not exceed D(t) at stage t. We set the growth rate
of D(t) to be dD(t)

dt = utp, where p > 0 and u > 0 are the
parameters to control the growth rate. By integrating the
growth rate with respect to t, we can derive D(t) as:

D(t) =
utp+1

p+ 1
+ C0, (10)

where C0 represents the initial overall learning difficulty at
stage 0. By letting D(t) achieve the maximum difficulty
B of the dataset at stage T : D(T ) = B =

∑
i

∑ni

j=1 d
(i)
j ,

we can derive u = (B−C0)(p+1)
Tp+1 , where p and C0 are the

pre-defined hyper-parameters.

When entering stage t from stage t − 1, it’s required to
select a set of questions to increase difficulty. We achieve
this by reducing a number of input steps ∆s for the selected
questions as:

ci(t) = ci(t− 1)− qi(t) ·∆s, s.t.∆H(S(t)) ≤ ∆D(t),
(11)

where ci(t) is the scheduled number of input steps of the
i-th question at stage t. Let S(t) denote the selected
question set for increasing difficulty at stage t. Then,
qi(t) ∈ {0, 1} represents whether i belongs to S(t). If
i ∈ S(t), then qi(t) = 1; otherwise, qi(t) = 0. ∆s is the
pre-defined number for reducing input steps. ∆H(S(t)) =∑

i hi(S(t))−
∑

i hi(S(t− 1)) is the sum of the increased
difficulty and ∆D(t) = D(t) −

∑
i hi(S(t − 1)) is the

ceiling magnitude for the increased difficulty.

Then, in order to determine whether a question should in-
crease difficulty, we design a value function F . The goal of
this value function is two-fold: One is to align the increased
difficulty as closely as possible with the defined magnitude,
and the other is to ensure a diverse set of questions for es-
calating difficulty to prevent overfitting (Jiang et al., 2014).
The value function F is designed as:

F (S(t)) = −(∆D(t)−∆H(S(t)))+β

K∑
k=1

√
|Ck∩S(t)|,

(12)
where β is a trade-off hyper-parameter. The first term mea-
sures the closeness of ∆H(S(t)) to ∆D(t) and the second
term measures the diversity of selected question set based
on clustering. Specifically, Ck is the question set of the k-th
cluster and K is the number of clusters. In this paper, we
conduct K-means clustering (Bradley et al., 2000) to cluster
the question based on its embedding, which is calculated
by the average of the GloVe (Pennington et al., 2014) word
embedding. S(t) is the selected question set. By using the
square root operation, our aim is to promote a balanced
distribution of questions within each cluster in the selected
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question set. This approach ensures that the diversity of the
chosen question set is maintained.

The optimization of F (S(t)) can be formulated as:

max
S(t)

F (S(t)), s.t.∆H(S(t)) ≤ ∆D(t). (13)

By maximizing F (S(t)), we can achieve the goal of se-
lecting diverse questions to increase difficulty with close
proximity to ∆D(t). However, this is a combination opti-
mization problem subject to the knapsack constraint, and
solving it is known to be NP-hard. Fortunately, we can
prove that F (S(t)) satisfies the condition of monotone and
submodular. Therefore, it can be approximately solved by a
submodular maximization algorithm FTGP (Li et al., 2022)
in linear time with an approximation ratio guarantee, as
formulated in Proposition 3.1. The proof of Proposition 3.1
can be found in Appendix D.

Proposition 3.1. The optimization of maxS(t) F (S(t)) sub-
ject to the knapsack constraint ∆H(S(t)) ≤ ∆D(t) can
be approximately solved in O(nϵ−1 log ϵ−1) time complex-
ity with a 1

2 − ϵ approximation ratio guarantee, where n
represents the scale of the data.

After obtaining the scheduled input step ci(t) by solving
Eq.(13), the rationale distillation loss at stage t can be for-
mulated as:

Lr(t) = −
∑
i

qni∑
j=pci(t)+1

logP (r
(i)
j |r(i)<j , x

(i); θs), (14)

where pci(t)+1 is the start position of the (ci(t) + 1)-th step
in the rationale r(i), and qni is the end position of the last
step in the rationale r(i). For each rationale, ni is fixed and
ci(t) is gradually decreased to 0. In this way, the student
model could learn the rationale of each question in an easy-
to-hard manner.

3.5. Training Procedure

To train our whole framework, we first optimize the rationale
token weighting module by Eq.(7) to determine the token
significance. Then, we assess the step difficulty and derive
the progressive distillation strategy by solving Eq.(13). Fi-
nally, by integrating these two modules, the overall loss for
distilling the rationale at stage t can be written as:

Lo(t) = −
∑
i

qni∑
j=pci(t)+1

w
(i)
j · logP (r

(i)
j |r(i)<j , x

(i); θs).

(15)
By optimizing Lo(t), the student model is encouraged to
mimic the keypoint tokens precisely, as well as acquiring
reasoning capabilities in an easy-to-hard manner. Note that
we have omitted the inclusion of the prediction loss term for
y(i) (referring to the second term in Eq. (1)), for the sake
of clarity, as it remains constant. The pseudo-code of our
training procedure is listed in Appendix B.

4. Experiments
4.1. Experiment Setup

In this section, we introduce our experiment settings. The
implementation details can be found in Appendix A.

Datasets. We evaluate our method on both mathematical
reasoning tasks and commonsense reasoning tasks, follow-
ing (Hsieh et al., 2023; Fu et al., 2023). For mathematical
reasoning, we adopt three benchmark datasets for evaluation:
GSM8K (Cobbe et al., 2021), ASDiv (Patel et al., 2021)
and SVAMP (Miao et al., 2021). For commonsense reason-
ing, CommonsenseQA benchmark (Talmor et al., 2019) is
employed to evaluate our method. Additionally, we con-
duct out-of-distribution (OOD) evaluation via training our
method on GSM8K while testing it on ASDiv and SVAMP,
following (Fu et al., 2023). The dataset splits can be found
in Appendix A.

Models and Baselines. We adopt GPT-3.5-Turbo (Ye et al.,
2023) as the teacher model to generate the rationale for each
question in the dataset via zero-shot CoT prompting (Kojima
et al., 2022), following (Chen et al., 2023). This is accessed
via the OpenAI’s public API for ChatGPT. As for the student
model, we adopt three widely-used pretrained language
models of different architectures: LLaMA-7B (Touvron
et al., 2023), FlanT5-XL (Chung et al., 2022) and FlanT5-
Large (Chung et al., 2022), similar to (Fu et al., 2023; Chen
et al., 2023). The parameter counts of LLaMA-7B, FlanT5-
XL, FlanT5-Large are 7B, 3B, 760M respectively. As for
baselines, we employ four state-of-the-art CoT distillation
methods for comparison: Specialized KD (Fu et al., 2023),
SCOTT (Wang et al., 2023b), SCoTD (Li et al., 2023), MCC-
KD (Chen et al., 2023). Following previous works (Fu et al.,
2023), we use the accuracy (%) metric for evaluating the
performance of our method and baselines.

4.2. Overall Performance

In this section, we evaluate the overall performance of our
method. We compare our method with four recent state-
of-the-art CoT distillation methods as mentioned before.
The GPT-3.5-Turbo serves as the teacher model. Table 1
illustrates the results. The symbol “-” denotes the model
without using CoT distillation methods. First, we can ob-
serve that CoT distillation methods consistently boost the
performance of smaller student models on reasoning tasks,
underscoring the effectiveness of distilling rationales. In
addition, it’s evident that our proposed KPOD outperforms
previous methods by a large margin. For example, compared
to MCC-KD, achieving the second best results when using
LLaMA-7B as the student model, our approach achieves
5.16%, 5.26%, 4.00%, 1.48% performance gains on the
GSM8K, ASDiv, SVAMP, CommonsenseQA datasets, re-
spectively. This highlights the effectiveness of promoting
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Table 1. Performance comparison of our method and baselines.

Models # Params. Distillation Methods Datasets

GSM8K ASDiv SVAMP CommonsenseQA

GPT-3.5-Turbo unknown - 73.98 79.64 75.14 74.35

LLaMA-7B 7B

- 11.00 40.20 32.80 33.90
SCoTD 38.54 63.38 62.67 71.33

Specialized KD 39.15 64.01 63.33 72.32
SCOTT 40.97 62.74 61.33 74.45

MCC-KD 41.58 65.76 64.67 76.41
KPOD (ours) 46.74 71.02 68.67 77.89

FlanT5-XL 3B

- 13.50 20.70 17.70 72.70
SCoTD 21.85 25.16 26.67 79.61

Specialized KD 23.22 28.03 25.33 81.16
SCOTT 21.09 25.48 24.67 83.62

MCC-KD 24.28 31.35 30.00 82.88
KPOD (ours) 25.19 33.76 34.67 88.04

FlanT5-Large 760M

- 6.90 10.10 6.80 67.60
SCoTD 19.42 20.06 19.33 76.58

Specialized KD 20.03 23.25 20.67 77.23
SCOTT 18.21 21.66 18.67 77.48

MCC-KD 18.36 23.89 21.33 78.13
KPOD (ours) 22.46 27.39 25.33 81.41

Table 2. Ablation study of our method.

Models Settings Datasets

GSM8K CommonsenseQA

LLaMA-7B

KPOD-w.o.-sig 42.64 75.18
KPOD-w.o.-sig-dif 44.01 76.49
KPOD-w.o.-prog 43.25 74.61
KPOD-w.o.-div 44.16 75.76

KPOD-ACL 43.55 75.51
KPOD-SPL 42.94 75.84
KPOD-ICL 43.85 75.35

KPOD 46.74 77.89

FlanT5-XL

KPOD-w.o.-sig 22.46 85.26
KPOD-w.o.-sig-dif 23.82 86.08
KPOD-w.o.-prog 23.22 84.28
KPOD-w.o.-div 23.98 86.73

KPOD-ACL 23.52 86.40
KPOD-SPL 22.76 85.59
KPOD-ICL 22.91 85.83

KPOD 25.19 88.04

precise mimicry of keypoint tokens and implementing a
learning schedule that progresses from easy to challeng-
ing tasks. Such an approach facilitates the acquisition of
reasoning capabilities by the student model.

4.3. Ablation Study

We conduct ablation study to verify the effectiveness of
the components in our proposed method. Specifically, we

design several variants of our proposed KPOD: KPOD-w.o.-
sig denotes our method wherein each token is treated equally,
without incorporating the token significance weight for dis-
tillation. KPOD-w.o.-sig-dif represents our method without
using the token significance weight for calculating the step
difficulty. KPOD-w.o.-prog means our method without us-
ing the proposed progressive distillation strategy. KPOD-
w.o.-div denotes our method without using the diversity
term in the value function to select the question set.

Besides, we compare our method with three representa-
tive curriculum learning methods: Adaptive CL (Kong
et al., 2021), SPL (Wan et al., 2020) and ICL (Jia et al.,
2023). We design three variants of our method: KPOD-
ACL, KPOD-SPL, KPOD-ICL respectively denote replac-
ing our in-rationale progressive distillation strategy by Adap-
tive CL, SPL and ICL. The results are listed in Table 2.

As shown in Table 2, KPOD-w.o.-sig obtains inferior per-
formance than KPOD, illustrating the effectiveness of em-
phasizing the precise mimicry of keypoint tokens in our
method. Besides, KPOD outperforms KPOD-w.o.-sig-dif.
This shows that it’s essential to utilizing the token signifi-
cance weight for the step difficulty calculation. The perfor-
mance of KPOD-w.o.-prog is worse than KPOD, illustrating
the effectiveness of scheduling an easy-to-hard learning or-
der for CoT distillation. Moreover, KPOD obtains better
performance than KPOD-w.o.-div. This demonstrates that
ensuring a diverse question set to increase difficulty is effec-
tive. Finally, we can find that KPOD surpasses KPOD-ACL,
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Table 3. OOD performance of our method and baselines.

Model Methods In-distribution OOD

GSM8K ASDiv SVAMP

LLaMA-7B

SCoTD 38.54 55.09 45.33
Specialized KD 39.15 53.82 38.67

SCOTT 40.97 53.50 42.00
MCC-KD 41.58 57.64 41.00

KPOD (ours) 46.74 57.96 47.33

FlanT5-XL

SCoTD 21.85 25.48 22.67
Specialized KD 23.22 26.11 24.67

SCOTT 21.09 25.20 25.33
MCC-KD 24.28 28.98 26.67

KPOD (ours) 25.19 32.48 29.33

KPOD-SPL and KPOD-ICL, showing the superiority of our
in-rationale progressive distillation strategy compared to
previous curriculum learning methods.

4.4. OOD Performance

Following (Fu et al., 2023), we examine the out-of-
distribution (OOD) generalization ability of the student
model trained by our method and baselines. We use the
in-distribution mathematical dataset GSM8K for training
and adopt OOD mathematical datasets ASDiv, SVAMP for
testing, similar to (Fu et al., 2023; Chen et al., 2023). As
shown in Table 3, our proposed KPOD consistently obtains
superior performance compared to the baselines, indicating
that the student model trained by our method has stronger
OOD generalization capabilities.

4.5. Visualizations

In this section, we visualize the token significance weight
w

(i)
j generated by the weight generator, to intuitively show

the effectiveness of the rationale token weighting module.
Figure 2 illustrates the visualization results on the GSM8K
dataset. First, we can find that the digit tokens and oper-
ation tokens obtain the highest weights. This is because
these tokens are usually of vital importance in the reasoning
process, where even a slight deviation could cause errors.
Additionally, several tokens that contribute significantly to
the reasoning also exhibit relatively high weights. Tokens
such as “twice”, “total”, “adding”, and “dividing” provide
instructional cues for the reasoning steps. Besides, meaning-
ful subjects like “Mark” and “Jennifer” can play a crucial
role in reasoning, as their relationships should be consid-
ered during the reasoning process. Furthermore, it could
be observed that some tokens of less importance for the
reasoning are given low weights, such as “can”, “say”, “fit”,
“received”, “got”, etc. These visualizations demonstrate our
rationale token weighting module can effectively determine
the significance of rationale tokens, thereby facilitating the
student to accurately mimic crucial keypoint tokens.

If Tony got twice of what Ken received , then Tony
received 2 *$ 1 7 5 0 = $ 3 5 0 0 The total amount
shared is $ 3 5 0 0 +$ 1 7 5 0 = $ 5 2 5 0 .

If two students can fit on each of a hotel ’ s two
queen size b eds , then the total number of students
that can fit in one room is 2 + 2 = 4 students .
Add ing one student sleep ing on the pull - out c
ouch , we can say that one room can fit a maximum
of 4 + 1 = 5 students . D ivid ing the number
of students in the class by the number of students
that can fit in one room , we get 3 0 / 5 = 6 .

If Mark purchased 5 0 can s of milk , the total
number of can s of milk that Jenn ifer purchased
before meeting Mark is 4 0 . Then , Jenn ifer
bought 6 can s for every 5 can s Mark bought ,
so she bought 6 / 5 * 5 0 = 6 0 can s of milk .

Figure 2. Visualizations of token significance weights produced
by the weight generator. The intensity of red corresponds to the
significance weight assigned to each token, with a deeper red
indicating higher weight.

(a) performance with varying α (b) performance with varying β
Figure 3. Parameter sensitivity study of α and β.

4.6. Parameter Sensitivity Analysis

We perform experiments to analyze the effect of two impor-
tant hyper-parameters α and β in our method on GSM8K
with LLaMA-7B as the student model. Figure 3 shows the
results. First, we analyze the effect of hyper-parameter α in
the mask ratio loss. We can observe that the performance of
our method is not sensitive to α in a relatively large range.
Second, we study the influence of hyper-parameter β in
the diversity term for question set selection. Similarly, our
method is not sensitive to β in a relatively large range. Thus
it’s easy to set them in practice. We analyze the sensitivity
of other hyper-parameters in Appendix C.

5. Conclusion
In this paper, we proposed a keypoint-based progressive
chain-of-thought distillation framework for LLMs. Specif-
ically, we devised a rationale token weighting module to
encourage the student model to accurately mimic keypoint
tokens during the distillation process. Besides, we proposed
an in-rationale progressive distillation strategy to enable the
student model to acquire reasoning capabilities from the
teacher LLMs in an easy-to-hard manner. Extensive experi-
ments validated the effectiveness of our proposed method.
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A. Implementation Details
We perform our experiments using GeForce RTX 3090 GPUs. In order to accelerate training, we employ LoRA (Hu et al.,
2021) to train the student model. Following previous CoT distillation works (Chen et al., 2023), the rank of LoRA is set to
64 for LLaMA-7B and 128 for FlanT5-XL. We use Adam optimizer for optimization with a learning rate of 1× 10−5 for
LLaMA-7B and 5× 10−5 for FlanT5 models. The batch size is set to 4. In terms of LLaMA-7B, the epoch number for
training the student model is set to 20 for the GSM8K, CommonsenseQA datasets, and 40 for the ASDiv, SVAMP datasets.
As for FlanT5 models, the epoch number is set to 100 because they require more optimization steps for convergence. The
input embedding layer in this module aligns with the pretrained student model’s input embedding layer for the consistency
of tokenizer. The hyper-parameters α that balances the answer prediction loss and mask ratio loss is set to 0.5. As for the
progressive distillation strategy, we simply treat each epoch as a training state in this paper. The stage T that achieves
the maximum difficulty is set as half of the epoch number. The initial overall learning difficulty C0 is set to 30% of the
maximum difficulty B. We set exponential p = 0.5 in D(t) that controls the growth rate of the learning difficulty. The
hyper-parameter β of the diversity term in the question set selection is set to 12. The number of clusters is set as 5 for
clustering the question.

We follow previous CoT distillation works to split the datasets (Chen et al., 2023; Fu et al., 2023), the datasets statistics are
summarized in Table 4.

Table 4. Dataset statistics.
Datasets Train Size Validation Size Test Size

GSM8K 7473 660 659
ASDiv 1462 313 314

SVAMP 700 150 150
CommonsenseQA 8520 1221 1221

B. Training Pseudo-code
Algorithm 1 outlines the training procedure of our KPOD. Initially, we employ the CoT prompt (Kojima et al., 2022) to
instruct the teacher LLM to generate step-by-step rationales for each question in the dataset. Subsequently, the rationale
token weighting module receives these rationales as input and is trained to determine the significance weights for each token.
Following this, we compute the difficulty of each step in the rationale based on these weights. We then utilize the FTGP
algorithm (Li et al., 2022) to maximize Eq.(13) to schedule the question set for increasing difficulty at each stage. Once
scheduled, we train the student model using Eq.(15) based on the established learning order and token significance weights.
Before epoch T , we progressively escalate the learning difficulty to the maximum difficulty. Post-epoch T , the student is
trained to generate the complete rationale for each question. This approach allows the student model to precisely mimic the
keypoint tokens while progressively acquiring reasoning capabilities in an easy-to-hard fashion.

Algorithm 1 The training procedure of KPOD

Input: a teacher LLM, dataset D = {(x(i), y(i))}, epoch number Ne for training student, epoch number T for achieving
the maximum difficulty, hyper-parameter settings;

Output: a trained smaller student model θs;
prompt the teacher LLM to generate rationale for each question x(i) in D;
optimize the rationale token weighting module by Eq.(7) to obtain the token significance weight w(i)

j ;

calculate the step difficulty based by Eq.(8) based on w
(i)
j ;

run FTGP algorithm (Li et al., 2022) to solve Eq.(13) to derive S(t) for each stage.
for each epoch e from 1 to Ne do

Let ci(t) = 0 for every sample;
if e ≤ T then

obtain ci(t) by Eq.(11) based on S(t);
end if
train the student model θs to generate the rationale by Eq.(15) based on w

(i)
j and ci(t);

end for
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(a) performance with varying p (b) performance with varying K (c) performance with varying C0

Figure 4. Parameter sensitivity study of p, K and C0 on GSM8K.

C. Additional Experiments
We additionally analyze the sensitivity of three hyper-parameters of p, K and C0. Figure 4 (a)(b)(c) show the performance
of LLaMA-7B on GSM8K with varying p, K, C0 respectively. First, we analyze the effect of p that controls the growth
rate the learning difficulty. We can find that the performance of our method is relatively stable to this hyper-parameter.
Besides, we study the influence of the number of clusters K for clustering the questions. It can be observed that our method
is not sensitive to K in a relatively large range. In addition, we investigate the sensitivity of C0 which is the initial learning
difficulty. In Figure 4(c), r% denotes setting C0 to r percentage of the maximum difficulty B. Our method is still not
sensitive to this hyper-parameter.

D. Proof
In this section, we prove the Proposition 3.1. First, we introduce Theorem D.1 proposed in FTGP algorithm (Li et al., 2022).

Theorem D.1. If a function f : 2N → R is monotone and submodular. Then, the optimization of maxS F (S) that subjects
to a knapsack constraint can be approximately solved in O(nϵ−1 log ϵ−1) time complexity by FTGP algorithm (Li et al.,
2022) with an approximation ratio guarantee, where n represents the scale of the data and ϵ is a hyper-parameter. If Sopt is
the optimal solution and Ŝ is the approximate solution of FTGP, then F (Ŝ) ≥ ( 12 − ϵ)F (Sopt) holds.

According to Theorem D.1, if we could prove that our value function F is monotone and submodular, then Proposition 3.1
is proved. In the next, we will prove that our value function F satisfies these two conditions.

Definition 1. (Monotonicity) A function f : 2N → R is monotone if for ∀A ⊆ B ⊆ N where N is the universal set of all
elements, it holds that F (A) ≤ F (B).

Lemma 1. Our value function F in Eq.(13) is monotone.

Proof. We define two question sets A(t), B(t) for increasing difficulty at stage t that satisfy A(t) ⊆ B(t) ⊆ N . Let
∆ = F (B(t))− F (A(t)). We have:

∆ = −(D(t)−D(t)) + ∆H(B(t))−∆H(A(t)) + β

K∑
k=1

√
|Ck ∩B(t)| − β

K∑
k=1

√
|Ck ∩A(t)|

≥ β

K∑
k=1

√
|Ck ∩B(t)| − β

K∑
k=1

√
|Ck ∩A(t)|

= β

K∑
k=1

(
√

|Ck ∩B(t)| −
√

|Ck ∩A(t)|)

≥ 0

Thus, we have:

∆ = F (B)− F (A) ≥ 0. (16)

13
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⇒ F (A) ≤ F (B). (17)

Definition 2. (Submodularity) A function f : 2N → R is submodular if for ∀A ⊆ B ⊆ N and ∀x ∈ N\B, it holds that
F (A ∪ {x})− F (A) ≥ F (B ∪ {x})− F (B).

Lemma 2. Our value function F in Eq.(13) is submodular.

Proof. We define two triad sets A,B that satisfy A ⊆ B ⊆ N . Let T = B\A. Define ∆ = (F (A ∪ {x}) − F (A)) −
(F (B ∪ {x})− F (B)). Then we have:

∆ = (∆H(A(t) ∪ {x})−∆H(A(t)))− (∆H(B(t) ∪ {x})−∆H(B(t)))

+ (β

K∑
k=1

√
|Ck ∩ (A(t) ∪ {x})| − β

K∑
k=1

√
|Ck ∩A(t)|)− (β

K∑
k=1

√
|Ck ∩ (B(t) ∪ {x})| − β

K∑
k=1

√
|Ck ∩B(t)|)

= ∆H({x})−∆H({x})

+ (β

K∑
k=1

√
|Ck ∩ (A(t) ∪ {x})| − β

K∑
k=1

√
|Ck ∩A(t)|)− (β

K∑
k=1

√
|Ck ∩ (B(t) ∪ {x})| − β

K∑
k=1

√
|Ck ∩B(t)|)

= (β

K∑
k=1

√
|Ck ∩ (A(t) ∪ {x})| − β

K∑
k=1

√
|Ck ∩A(t)|)− (β

K∑
k=1

√
|Ck ∩ (B(t) ∪ {x})| − β

K∑
k=1

√
|Ck ∩B(t)|).

(18)

Given that x ∈ N\B and A ⊆ B, it follows that x /∈ A and x /∈ B. Then, we have:

∆ = (β

K∑
k=1

√
|Ck ∩A(t)|+ |Ck ∩ {x})| − β

K∑
k=1

√
|Ck ∩A(t)|)

− (β

K∑
k=1

√
|Ck ∩B(t)|+ |Ck ∩ {x})| − β

K∑
k=1

√
|Ck ∩B(t)|). (19)

For convenience, we denote xk = |Ck ∩A(t)|, yk = |Ck ∩B(t)|, zk = |Ck ∩ {x})|. Then, we have:

∆ = β

K∑
k=1

((
√
xk + zk −

√
xk)− (

√
yk + zk −√

yk))

= β

K∑
k=1

(
(
√
xk + zk −√

xk)− (
√
yk + zk −√

yk)(
√
xk + zk +

√
xk) + (

√
yk + zk +

√
yk)

(
√
xk + zk +

√
xk) + (

√
yk + zk +

√
yk)

)

= β

K∑
k=1

(
xk + zk − xk − (yk + zk) + yk + 2

√
xk + zk

√
yk − 2

√
xk

√
yk + zk

(
√
xk + zk +

√
xk) + (

√
yk + zk +

√
yk)

)

= β

K∑
k=1

(
2
√
xk + zk

√
yk − 2

√
xk

√
yk + zk

(
√
xk + zk +

√
xk) + (

√
yk + zk +

√
yk)

)

= β

K∑
k=1

(
2
√
xkyk + ykzk − 2

√
xkyk + xkzk

(
√
xk + zk +

√
xk) + (

√
yk + zk +

√
yk)

)

Since A ⊆ B, it’s evident that yk = |Ck ∩B(t)| ≥ |Ck ∩A(t)| = xk. Therefore, we conclude:

∆ = β

K∑
k=1

(
2
√
xkyk + ykzk − 2

√
xkyk + xkzk

(
√
xk + zk +

√
xk) + (

√
yk + zk +

√
yk)

)

14
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≥ β

K∑
k=1

(
2
√
xkyk + xkzk − 2

√
xkyk + xkzk

(
√
xk + zk +

√
xk) + (

√
yk + zk +

√
yk)

) = 0

Then, we can derive:

∆ = (F (A ∪ {x})− F (A))− (F (B ∪ {x})− F (B)) ≥ 0. (20)
⇒ F (A ∪ {x})− F (A) ≥ F (B ∪ {x})− F (B). (21)
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