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Abstract

Recently, a noticeable trend has emerged in de-
veloping pre-trained foundation models in the do-
mains of CV and NLP. However, for molecular
pre-training, there lacks a universal model capa-
ble of effectively applying to various categories
of molecular tasks, since existing prevalent pre-
training methods exhibit effectiveness for specific
types of downstream tasks. Furthermore, the lack
of profound understanding of existing pre-training
methods, including 2D graph masking, 2D-3D
contrastive learning, and 3D denoising, hampers
the advancement of molecular foundation models.
In this work, we provide a unified comprehen-
sion of existing pre-training methods through the
lens of contrastive learning. Thus their distinc-
tions lie in clustering different views of molecules,
which is shown beneficial to specific downstream
tasks. To achieve a complete and general-purpose
molecular representation, we propose a novel pre-
training framework, named UniCorn, that inherits
the merits of the three methods, depicting molec-
ular views in three different levels. SOTA perfor-
mance across quantum, physicochemical, and bio-
logical tasks, along with comprehensive ablation
study, validate the universality and effectiveness
of UniCorn.

1. Introduction
Molecular representation learning is pivotal across diverse
drug discovery tasks. One important application is molecu-
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lar property prediction which is promising to enable high-
throughput screening of molecules with desirable proper-
ties. Following the pre-training methods in natural language
processing (NLP) and computer vision (CV), a range of
molecular pre-training methods has emerged to address the
challenge of limited labeled molecular data. Specifically,
they perform self-supervised learning (SSL) on a large num-
ber of unlabeled data, and then fine-tune on specific kinds
of property prediction tasks with labeled data. Existing SSL
methods can be mainly classified into three categories. The
first category involves 2D graph masking (Hu et al., 2020;
Hou et al., 2022; Rong et al., 2020; Xia et al., 2022), where
random parts of the molecular graph are masked and the
model is pre-trained to reconstruct them. The second cat-
egory comprises 2D-3D contrastive learning (Stärk et al.,
2022; Liu et al., 2021; 2023a; Li et al., 2022) that aligns
the representations of 3D conformations and that of their
corresponding 2D graph. The third category is 3D denois-
ing (Zaidi et al., 2022; Feng et al., 2023a; Luo et al., 2023;
Liu et al., 2022; Ni et al., 2024) that adds noise to the con-
formation and trains the model to predict the noise.

Recently, foundation models, such as ChatGPT (OpenAI,
2022), GPT4 (OpenAI, 2023), SAM (Kirillov et al., 2023),
Unified-IO (Lu et al., 2022) , have caused a revolutionary
shift to the field of Artificial Intelligence, which are pre-
trained on large-scale data and are adopted to a broad range
of downstream tasks (Li et al., 2023a). However, there
still lacks a unified model in the molecular domain, that
can learn a universal representation and effectively be ap-
plied to various property prediction tasks. The challenge
firstly lies in that the relationship between the existing SSL
methods is still under study. Moreover, existing methods
are unbalanced for various downstream tasks. Generally,
3D denoising methods favor quantum chemical property
prediction, while 2D graph masking and 2D-3D contrastive
learning prefer biological and physicochemical property pre-
diction. This phenomenon, also manifested in section 5.2, is
hardly discussed by previous studies and the causes are still
unclear. Furthermore, the relationship between the existing
SSL methods is still under study, posing a challenge in lever-
aging their strengths to create a universal model effective
for all three types of property prediction tasks.
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Figure 1. Correspondence between self-supervised learning (SSL) methods, views of molecules, and molecular properties. Different SSL
methods cluster the molecular representations based on different levels of similarity (section 2). These clustering patterns align with the
characteristics of properties at different scales (section 3).

To tackle these challenges, we provide a unified understand-
ing of the three SSL methods through contrastive learning
in section 2. In particular, 2D graph masking, 2D-3D con-
trastive learning, and 3D denoising can be comprehended
as contrastive learning with masking, sampling multiple
conformations of the same molecule, and noise addition as
augmented views, respectively. In the derivation, we first
of all summarize masking and denoising as reconstructive
methods. Then we find the contrastive loss and the re-
constructive loss are mutually upper and lower bounded by
each other, indicating minimizing one loss can guarantee the
other loss to be small under certain conditions and regular-
ization. Lastly, we interpret the representation of contrastive
learning as clustering different views. Therefore, the three
SSL methods lead to clustering patterns in molecular rep-
resentation space at different granularity. Importantly,
clustering patterns at different granularity can exist concur-
rently, suggesting that the three pre-training methods are
compatible, resulting in a multi-grained representation.

Moreover, we reveal that the multi-grained clustering pat-
terns correspond to the inductive biases of different kinds
of molecular properties, as shown in Figure 1. Firstly, 3D
denoising aligns the representations of closely resembled
conformations, in accordance with the characteristics of
quantum chemical properties. Secondly, 2D-3D contrastive
learning learns the invariance of multiple low-energy con-
formations of one molecule, corresponding to the charac-
teristics of physicochemical properties. Thirdly, 2D graph
masking clusters molecules with the same fragments, cap-
turing characteristics of biological properties. Elaborate
elucidation is provided in section 3. This correspondence
highlights the necessity to combine the three pre-training
methods in order to achieve a universal representation.

Consequently, we propose UniCorn, a unified molecular
pre-training framework via contrastive learning, to learn

multi-view molecular representations by amalgamating the
strengths of existing methods into a unified pre-training
framework, naturally capable of tackling quantum chemical,
physicochemical, and biological properties. UniCorn takes
both 2D molecular graphs and 3D molecular conformations
as input, with tailored self-supervised strategies for each
data type. For 2D graphs, we utilize fragments, recognized
as a kind of chemical semantic component, as masking
units to mask the 2D graphs and subsequently recover them.
Regarding the 3D conformations, we employ torsion aug-
mented denoising, which first augments rotatable torsions
of the molecule to sample multiple chemically plausible
3D conformations, then perturbs the coordinate of the aug-
mented molecule and predicts associated coordinate noise.
Finally, cross-modal contrastive learning is introduced to
align the representations of multiple 3D conformations gen-
erated by torsion augmented denoising to their shared 2D
representation and further distill knowledge from 2D to 3D.

Experimental results show that UniCorn is not confined to
achieving merely comparable results on tasks where existing
methods excel but also consistently surpasses them across
all three types of tasks. This not only demonstrates the com-
patibility of each pre-training module in UniCorn but also
highlights their complementarity in achieving a universal
molecular representation. Ablation study and visualization
further validate our comprehension of SSL methods and
their correlation to downstream tasks. Our contributions are
summarized as follows:

• To our best knowledge, we are the first to systemati-
cally summarize existing molecular pre-training meth-
ods and conduct a thorough analysis of their associa-
tions with various downstream molecular tasks.

• Theoretically, we reveal the connection between re-
constructive and contrastive methods and comprehend
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them in a unified perspective through contrastive learn-
ing and representation clustering.

• Practically, we present UniCorn, a unified pre-training
framework designed to learn hierarchical molecular
representations applicable to a wide array of down-
stream tasks.

• Through exhaustive experiments on physicochemical
and biological tasks in MoleculeNet and quantum tasks
including QM9, MD17, and MD22, UniCorn surpasses
existing molecular pre-training methods, showcasing
its superior performance.

2. Unifying Reconstructive and Contrastive
Methods

2.1. Abstraction and Formulation

In general, denoising and masking can be concluded as the
reconstructive method that aims to reconstruct the original
input from the perturbed version containing noise or masked
elements. The introduction of noise or masking provides an
alternative view of the original input, effectively serving as
a form of data augmentation.

Contrastive learning, on the other hand, aims to align rep-
resentations of different views of the input. To this end,
several different families of methods have been raised, as
summarized in Balestriero et al. (2023), including the deep
metric learning family that usually involves negative sam-
ples and a symmetric structure (Chen et al., 2020; Oord et al.,
2018), the self-distillation family that adopts a predictor to
map between representations (Grill et al., 2020; Chen & He,
2021; Caron et al., 2021), and the canonical correlation anal-
ysis family that additionally regularize the covariance of the
representations (Bardes et al., 2022). To show the clear cor-
respondence between contrastive and reconstructive meth-
ods, we discuss the SimSiam like contrastive method (Chen
& He, 2021) in the self-distillation family. The unification
and equivalence between the three contrastive families are
discussed in Tao et al. (2022); Garrido et al. (2023).

To formalize the learning objectives, we introduce X ⊆ RdX ,
X̃ ⊆ RdX to denote the sets comprising raw input data
and the augmented data, respectively. We use p(x) and
p(x̃|x) to denote the distribution of input data x ∈ X and
the probability of generating an augmentation x̃ ∈ X̃ from
x. The representations are situated within a representation
space in RdZ . To facilitate a unified perspective, we define
an encoder function fθ : X → RdZ , an aligner function
hψ : RdZ → RdZ and a continuously differentiable decoder
function gϕ : RdZ → X, for extracting primary features
from the input, aligning representations, and reconstructing
the input from the representations, respectively. Here, θ,
ψ and ϕ denote learnable parameters associated with these

Figure 2. A unified perspective of reconstructive and contrastive
methods.

functions. As a result, the reconstructive loss and contrastive
loss can be expressed as:

LRC = Ep(x)Ep(x̃|x)||gϕ(hψ(fθ(x̃)))− x||2, (1)

LCL = Ep(x)Ep(x̃|x)||hψ(fθ(x̃))− SG(fθ(x))||2, (2)

where || · ||2 represents the L2 norm of vectors. While
the squared L2 norm is conventionally employed, we opt
for the L2 norm for the sake of brevity and clarity in the
proof. This choice does not impact the discussion on loss
functions, as the gradient vectors of these functions align in
the same direction. The notation SG signifies stop gradient.
An illustration of contrastive and reconstructive methods in
a unified perspective is shown in Figure 2.

2.2. Mutual Upper and Lower Bounds

In this section, we demonstrate that, under certain conditions
and regularization techniques, reconstructive and contrastive
losses can serve as mutual upper and lower bounds for each
other. This implies that minimizing one loss inherently
results in the optimization of the other.

Theorem 2.1 (Relations between reconstructive and con-
trastive loss). We introduce an additional loss aimed at
regularizing the decoder to approximate the inverse of the
encoder.

Lreg = Ep(x)||gϕ(SG(fθ(x)))− x||2 (3)

When λmax and λmin are non-zero, we derive the following
conclusions:

① LCL +
1

λmax
Lreg ≥ 1

λmax
LRC (4)

indicating that updating the encoder and aligner via con-
trastive learning and updating the decoder by the regular-
ization loss, guarantees a small reconstructive loss.

② LRC + Lreg ≥ λminLCL, (5)
indicating that updating the entire network through recon-
structive learning and selectively partitioning the decoder
by regularization loss guarantees a small contrastive loss.
Kindly note that the partition of the encoder and decoder
from the entire network does not affect LRC, however it is
crucial for contrastive learning. Therefore, the regulariza-
tion term can be optimized by finding the optimal partition
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of the encoder and decoder from the entire network. And
the contrastive loss is defined by the partitioned encoder
and aligner.

Here, λmax and λmin are constants defined in the proof. The
proof and discussions regarding the condition are elaborated
in appendix B.

2.3. Clustered Representations

Previous studies (Huang et al., 2023; Assran et al., 2023)
have revealed the connection between clustering and sym-
metric contrastive learning methods, such as SimCLR (Chen
et al., 2020) and VICReg (Bardes et al., 2022). However,
the contrastive loss defined in equation 2 exhibits asym-
metry: the two representations to be aligned comprise one
as the direct output of the encoder while the other passes
through an aligner. In essence, equation 2 resembles the
SimSiam contrastive loss up to the square: L(SimSiam)

CL =
Ep(x)Ep(x̃|x)||hψ(fθ(x̃))− SG(fθ(x))||22, where the repre-
sentations are normalized ||fθ(·)||22 = ||hψ(fθ(·))||22 = 1.
An analogy to k-means clustering of the SimSiam con-
trastive loss is discussed in Chen & He (2021), where
they hypothesized hψ(fθ(x̃)) ≈ Ep(x̃|x)fθ(x̃) ≈ fθ(x).
We provide a more explicit relationship between clustering
and the SimSiam loss without incorporating an additional
hypothesis.

Theorem 2.2. Minimizing the contrastive loss guarantees
clustering of the augmentation representations correspond-
ing to the same raw input data.

L(SimSiam)
CL ≥ Lcluster. (6)

Lcluster ≜ Ep(x)Ep(x̃|x)||hψ(fθ(x̃)) − Ep(x̃|x)hψ(fθ(x̃))||22
describes the mean distance between the samples in the
cluster and the cluster center.

The theorem indicates minimizing the SimSiam contrastive
loss guarantees a small clustering loss. The proof is pro-
vided in section B.3. Consequently, we can comprehend
the reconstructive and contrastive methods from a unified
perspective, as they both cluster different views of the input.

3. Delving into the Task-specific Preferences of
Existing Methods

The previously introduced theorems have provided a uni-
fied comprehension of all three molecular SSL methods via
contrastive learning and clustering of the representations. In
molecular pre-training, the pivotal distinction among these
methods lies in data augmentation approaches, which em-
phasize different views of molecules. Overall, we find that
the clustered representations of each SSL method tend to
align with a specific category of downstream tasks, which
is commonly regarded as desirable for better generalization

(Tian et al., 2020; Wang et al., 2022b; HaoChen et al., 2021;
Huang et al., 2023), as well as efficient few-shot transfer
learning (Galanti et al., 2022a;b).

3.1. 2D Graph Masking

In our comprehension of 2D graph masking, the data aug-
mentation is randomly masking atoms, edges, or fragments
in the molecular graph (Hu et al., 2020; Hou et al., 2022;
Rong et al., 2020; Feng et al., 2023c). When similar
molecules share a majority of the same substructures, their
augmentation can overlap by masking non-identical regions
and retaining shared substructures. As a result, these similar
molecules are connected in the augmentation graph and can
be clustered during pre-training (Wang et al., 2022b).

This clustering pattern is consistent with a fundamental
principle in medicinal chemistry: molecules with similar
substructures often exhibit comparable biological activi-
ties (Johnson et al., 1990; Dean, 1995; Willett et al., 1998).
An example in point is the FDA-approved breakthrough
drugs, imatinib (Druker et al., 2001) and nilotinib (Breccia
& Alimena, 2010), shown in Figure 1. Sharing identical
fragments, these two drugs are both orally available, po-
tent, small-molecule inhibitors targeting breakpoint cluster
region-Abelson (BCR-ABL) with some comparable clinical
outcomes, including the overall frequency of adverse events,
ten-year progression-free survival rates, and ten-year overall
survival (Kantarjian et al., 2021). Their shared substructures
contribute greatly to their similar biological properties both
in vitro and in vivo (Manley et al., 2005).

3.2. 2D-3D Contrastive Learning

Recent methods advocate the alignment of 2D and 3D rep-
resentations of the same molecule during pre-training to
effectively leverage both 2D and 3D information (Stärk
et al., 2022; Liu et al., 2021; 2023a; Li et al., 2022), Among
them using multiple conformations of the same molecule
tends to achieve higher performance (Stärk et al., 2022; Liu
et al., 2021). According to a corollary of Theorem 2.2 in
appendix B.4, the cross-modal contrastive learning clus-
ters diverse conformations of the same molecule in the 3D
representation space.

This clustering pattern also aligns with the current under-
standing in the field of chemistry that certain physicochemi-
cal properties of the system are resilient to conformational
changes of a single molecule within. There is an overall sta-
tistical distribution describing the system with molecules in-
terconverting between different conformations (Allen et al.,
1996; Brameld et al., 2008). As illustrated in Figure 1, many
physicochemical properties reflect the features of such dis-
tribution, including water solubility and octanol/water dis-
tribution coefficient, i.e., ESOL and Lipophilicity tasks in
MoleculeNet dataset (Wu et al., 2018) respectively, captur-
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ing the averaged behavior of molecular conformations rather
than individual molecular conformation (Le Questel, 2023).

3.3. 3D Denoising

In our comprehension of 3D denoising, the data augmenta-
tion is adding Gaussian coordinate noise to the molecular
conformation. As a result, 3D denoising clusters the rep-
resentations of the noisy conformations around their equi-
librium input. As demonstrated in Figure 1, this clustering
pattern benefits quantum chemical properties as the small
scale of perturbation ensures that the augmented confor-
mations share similar properties to the raw conformation.
This is because the quantum chemical properties are gen-
erally influenced by the spatial distribution of charges in
molecules (Kauzmann, 2013) , and thus undergo slight alter-
ations when conformational changes are minor. For instance,
the dipole moment in QM9 (Ramakrishnan et al., 2014; Rud-
digkeit et al., 2012) dataset, a common quantum chemistry
property indicating the separation of positive and negative
charges in a molecule, is determined by the sum of products
of charge magnitudes and their location vectors (LANDAU
& LIFSHITZ, 1975). For similar conformations, meaning
their atomic nuclei positions are largely unchanged, the spa-
tial arrangement of the electron cloud exhibits negligible
changes, resulting in similar dipole moments.

4. UniCorn
To learn a complete representation of molecules aimed at
capturing hierarchical clustering patterns essential for cover-
ing molecular task preferences, we propose UniCorn which
contains fragment masking, torsion augmented denoising,
and cross-modal distillation modules that capture different
scales of molecular information, as illustrated in Figure 3.

4.1. Preliminary Notations

A molecule can be either represented as a 2D molecular
graph G = (V, E) or 3D conformation C = (V,X ), where
vertexes V signify the atom types, edges E denote the chem-
ical bonds, and X signify the Cartesian coordinates.

4.2. Fragment Masking Module

To cluster molecules with the same chemically plausible sub-
structures, we conduct Masked Fragment Modeling (MFM)
on the molecular 2D graph. A fragment is typically a small
segment of a large molecule capable of existing indepen-
dently while preserving meaningful chemical properties or
biological functionalities (Erlanson et al., 2016; Murray &
Rees, 2009; Erlanson et al., 2004). Unlike previous methods
that mask atoms, edges, or tokens, We treat fragments as
the basic unit for masking better fitting the characteristic of
biological tasks discussed in section 3.1. Specifically, we

utilize the BRICS (Degen et al., 2008) algorithm to break
down the molecule into a set of fragments denoted as s.
We randomly mask a certain number of fragments, repre-
sented as sm, based on the mask ratio m. We then predict
each atom type within the masked fragments. The masked
fragment loss is defined by the following equation:

Lm = −EG,G\m

∑
sm

log
[
p(gm,f2d)

(
sm|G\m

)]
(7)

where f2d denotes the 2D graph encoder, gm represents
the MLP head for MFM prediction, p(gm,f2d) stands for
the predicted probability of masked fragments, and G\m
signifies the remaining part of the graph after masking.

4.3. Torsion Augmented Denoising Module

To cluster closely resembling conformations, we utilize the
denoising pre-training strategy on 3D conformations. Un-
like traditional denoising (Zaidi et al., 2022) whose unper-
turbed conformations are equilibriums C = (V,X ) that
come from the dataset, we innovatively introduce a torsion
augmentation step before denoising to provide diverse con-
formations of the same molecular graph for the cross-modal
distillation module which is elaborated in the next section.
Specifically, we perturb the torsion angles of the rotatable
single bonds in equilibrium conformation to obtain multiple
conformations for the molecule, denoted as Ca = (V,Xa).
Subsequently, we adopt traditional denoising (Zaidi et al.,
2022) on Ca. We apply Gaussian noise to the coordinates
of each atom and yield conformation C̃ = (V, X̃ ). The
denoising loss is defined as follows:

Ldn = EC̃,Ca
||gd(f3d(C̃))− (X̃ − Xa)||22. (8)

Here, f3d is the 3D encoder, and gd represents the MLP
head utilized for predicting the coordinate noise. Please
note that the target of denoising is to predict the small-
scale Gaussian coordinate noise, i.e. recovering Ca from
C̃, rather than recovering C. Therefore, the addition of tor-
sion augmentations does not alter the fact that 3D denoising
clusters closely resembled conformations. On the other
hand, the torsion augmentation not only efficiently provides
diverse low-energy conformations for the cross-modal distil-
lation module, but also enhances 3D denoising by enlarging
sampling coverage and raising force accuracy, as validated
in (Feng et al., 2023a). Although the combination of the
torsion augmentation and traditional denoising results in the
hybrid noise strategy in fractional denoising (Feng et al.,
2023a), our derivation through augmentation is distinct from
the previous interpretation of force learning.

4.4. Cross-modal Distillation Module

To achieve a hierarchical molecular representation, we em-
ploy cross-modal contrastive learning, distilling knowledge
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Figure 3. The UniCorn architecture we have ultimately reached, after exploring the association between each pre-training method and
downstream tasks, with the goal of approaching unified molecular representations. The Top illustrates the Fragment Masking Module,
wherein a 2D molecular graph is masked by fragments and subsequently recovered. The Bottom showcases the Torsion Augmented
Denoising Module. This module operates in two steps: initially augmenting 3D conformers by perturbing rotatable torsions, and then
introducing Gaussian coordinate noise for denoising. Finally, the Middle introduces the Cross-modal Distillation Module, responsible for
distilling knowledge from 2D to 3D to achieve a hierarchical molecular representation.

from the 2D to 3D. Specifically, the encoded 3D conforma-
tion representation is denoted as zc = hp(f

3d(C̃)), where
hp refers to the alignment head used to align dimensions
with 2D embeddings. C̃ is the noisy conformation intro-
duced in the torsion augmented denoising module. Simulta-
neously, the encoded 2D molecular graph representation is
denoted as zg = f2d(G). The cross-modal contrastive loss
is expressed as

Lcl = −EG,C̃ [log
ecos(zg,zc)/τ∑

zc
j

ecos(zg,zc
j )/τ

+ log
ecos(zc,zg)/τ∑

z
g
j

ecos(zc,z
g
j )/τ

],
(9)

where zcj ∈ Nc ∪ zc and zgj ∈ Ng ∪ zg , Nc and Ng denotes
in-batch negative samples of 2D graphs and 3D conforma-
tions, cos(, ) represents the cosine similarity function, and
τ is the temperature hyperparameter. In different epochs,
the same input (G, C) produces diverse torsion-augmented
conformations Ca that are low-energy conformations largely
different from each other. Therefore, the contrastive learn-
ing clusters dissimilar conformations of the same molecule.

It’s important to highlight that conventional approaches pri-
marily leverage 3D data to assist 2D networks in addressing
2D downstream tasks (Stärk et al., 2022; Liu et al., 2021).
However, to achieve hierarchical clustering representation,
we need to distill 2D knowledge into the 3D network, and
not the other way around. This stems from the fact that the
most fine-grained hierarchy, distinguishing different equi-
libriums, cannot be reflected in 2D inputs. This difference
reflects the uniqueness of our motivation and methodology.

The ultimate loss, denoted as L, is a sum of the three pre-
viously defined losses: L = Ldn + Lm + Lcl. As a result,
the learned 3D representation contains knowledge of three
distinct hierarchical views of molecules, promising to bene-
fit molecular properties at different scales. Therefore after

pre-training, we fine-tune the encoder f3d to adapt it for di-
verse downstream tasks. Pseudocodes and hyperparameter
settings can be found in appendix E and C.3.

5. Experiments
5.1. Settings

We use the pre-trained 3D encoder as the backbone for
downstream tasks, but employing different heads for dif-
ferent tasks, we employ a simple 2-layer MLP head for
MoleculeNet tasks, and use an equivariant head as defined
in (Thölke & De Fabritiis, 2022) for quantum tasks includ-
ing QM9, MD17 and MD22.

Our hyperparameter selection methods are in line with pre-
vious methods. We manually select pre-training and fine-
tuning hyperparameters for QM9, MD17, and MD22 to
ensure a consistent decrease in pre-training loss and optimal
performance on the validation set. For tasks within Molecu-
leNet, we utilize grid search to identify the most suitable
hyperparameters. We provide the selected results and search
space in Appendix C.3.

5.1.1. DATASETS

Our pre-training dataset consists of 15 million molecules
sourced from (Nakata & Shimazaki, 2017; Zhou et al., 2023).
We systematically assess the effectiveness of our model
across two different task categories: quantum mechanical
tasks, including QM9 (Ramakrishnan et al., 2014; Rud-
digkeit et al., 2012), MD17 (Chmiela et al., 2017) as well
as MD22 (Chmiela et al., 2023), and physicochemical and
biological property prediction tasks, focusing on the Molecu-
leNet dataset (Wu et al., 2018). Details about downstream
datasets can be found in appendix C.1. Since we utilize
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the 3D encoder to fine-tune for downstream tasks, we rely
on 3D conformations generated by RDKit for MoleculeNet
data, following previous methods (Yu et al., 2023; Zhou
et al., 2023; Fang et al., 2022).

5.1.2. BASELINES

Our baselines cover three typical categories within molec-
ular pre-training. The first category comprises denoising
methods, including Transformer-M (Luo et al., 2023), SE(3)-
DDM (Liu et al., 2022), 3D-EMGP (Jiao et al., 2023), Co-
ord (Zaidi et al., 2022), Frad (Feng et al., 2023a), and Co-
ord(NonEq) (Wang et al., 2023). The second category con-
sists of multimodal pre-training methods that aim to fusion
molecular 2D graphs and 3D conformations, such as 3D
InfoMax (Stärk et al., 2022), GraphMVP (Liu et al., 2021),
MoleculeSDE (Liu et al., 2023a), MoleBLEND (Yu et al.,
2023), and MoleculeJAE (Du et al., 2023). Notably, 3D In-
foMax, GraphMVP, and MoleculeSDE employ contrastive
learning between 2D graphs and 3D conformations as a pre-
training strategy. The final category encompasses masking
methods, which include AttrMask (Hu et al., 2020), Graph-
MAE (Hou et al., 2022), GROVER (Rong et al., 2020) and
Mole-BERT (Xia et al., 2022). Masking methods typically
take 2D graphs as input and may not be applicable to quan-
tum downstream tasks that require precise conformation.

5.2. Main Experimental Results

5.2.1. QUANTUM TASKS

Table 1 presents the performance of 12 regression tasks in
QM9. Upon comparing various pre-training methods, an
evident observation is that the 3D denoising approach sig-
nificantly outperforms multimodal pre-training methods on
average. This observation confirms our previous conjecture
that the 3D denoising task is more beneficial to quantum
tasks. Further supporting this finding is that denoising holds
a physical interpretation, equivalent to learning an approx-
imate force field for molecules (Zaidi et al., 2022). No-
tably, our methods outperform existing denoising baselines,
achieving the best performance in 10 out of 12 tasks. This
achievement can be attributed to the complementary nature
of chemical bond information in 2D graph to 3D confor-
mation, enhancing the performance of quantum tasks. This
insight is further validated by (Luo et al., 2023; Yu et al.,
2023).

Tables 3 presents the performance results for force predic-
tion tasks on MD17. UniCorn outperforms existing denois-
ing and multimodal methods, establishing a new state-of-the-
art performance on six out of eight molecules. Additionally,
we conduct experiments with UniCorn on more challenging
force prediction tasks in MD22, as detailed in sections A.1,
to demonstrate its universality.

5.2.2. BIOLOGICAL AND PHYSICOCHEMICAL TASKS

Table 2 illustrates the performance of our method across 8
biological classification tasks in MoleculeNet. Impressively,
our approach attains state-of-the-art results in 7 out of the
8 tasks. On average, our method outperforms the second-
best method, MoleBLEND, by a substantial margin (78.4 vs
76.2). Furthermore, Table 4 demonstrates that our method
achieves the best performance across all 3 physicochemical
regression tasks in MoleculeNet.

The improvement observed in our method, as compared to
general masking and multimodal methods, can be attributed
to the intrinsic connection between macroscopic properties
and microscopic quantum properties, which has been thor-
oughly elucidated by (Beaini et al., 2023; Sun et al., 2022).
The quantum properties of molecules, describing internal
electronic motion and atomic nucleus vibrations at the mi-
croscopic level, influence the interaction behavior of the
molecules with others. These interactions, in turn, affect the
physicochemical and biological properties of the molecules.
Therefore, the incorporation of denoising task proves instru-
mental in not only enhancing quantum task performance
but also contributing to the improvement in macroscopic
properties.

In summary, UniCorn surpasses previous state-of-the-art
methods, delivering optimal results across 33 out of 38
molecular tasks that span a wide range of quantum, physic-
ochemical, and biological domains. This superiority not
only emphasizes the compatibility of each pre-training strat-
egy but also highlights their complementary nature, thereby
contributing to the learning of a universal molecular repre-
sentation.

5.3. Ablation Study

5.3.1. LOSS STUDY

To further validate our proposition that distinct pre-training
losses exhibit preferences for specific downstream tasks,
we conduct two sets of experiments. Firstly, we perform
pre-training with and without denoising, followed by fine-
tuning on three QM9 tasks. The results are presented in
Table 5, revealing a significant decline in performance with-
out the denoising loss. This underscores the vital role of
denoising for quantum chemical tasks. Secondly, we pre-
train the model without the masked fragment loss and the
cross-modal distillation loss, followed by fine-tuning on
4 biological and 2 physicochemical tasks in MoleculeNet.
The results, shown in Table 6, demonstrate that incorporat-
ing fragment masking and cross-modal distillation can boost
performance on biological and physicochemical tasks.
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Table 1. Performance (MAE, ↓) on QM9 quantum tasks. The best results are in bold.

Methods Models µ (D) α (a3
0) ϵHOMO

(meV)
ϵLUMO

(meV)
∆ϵ

(meV)
< R2 >

(a2
0)

ZPVE
(meV)

U0

(meV)
U

(meV)
H

(meV)
G

(meV)
Cv

( cal
molK

)

Multimodal

3D InfoMax 0.0280 0.057 25.9 21.6 42.1 0.141 1.67 13.30 13.81 13.62 13.73 0.030
GraphMVP 0.0270 0.056 25.8 21.6 42.0 0.136 1.61 13.07 13.03 13.31 13.43 0.029
MoleculeSDE 0.0260 0.054 25.7 21.4 41.8 0.151 1.59 12.04 12.54 12.05 13.07 0.028
MoleculeJAE 0.0270 0.056 26.0 21.6 42.7 0.141 1.56 10.70 10.81 10.70 11.22 0.029
MoleBLEND 0.0370 0.060 21.5 19.2 34.8 0.417 1.58 11.82 12.02 11.97 12.44 0.031

3D Denoising

Transformer-M 0.0370 0.041 17.5 16.2 27.4 0.075 1.18 9.37 9.41 9.39 9.63 0.022
SE(3)-DDM 0.0150 0.046 23.5 19.5 40.2 0.122 1.31 6.92 6.99 7.09 7.65 0.024
3D-EMGP 0.0200 0.057 21.3 18.2 37.1 0.092 1.38 8.60 8.60 8.70 9.30 0.026
Frad 0.0100 0.037 15.3 13.7 27.8 0.342 1.42 5.33 5.62 5.55 6.19 0.020

UniCorn 0.0085 0.036 13.0 11.9 24.9 0.326 1.40 3.99 3.95 3.94 5.09 0.019

Table 2. Performance (ROC-AUC %, ↑) on MoleculeNet biological classification tasks. The best results are in bold.

Methods Models BBBP Tox21 MUV BACE ToxCast SIDER ClinTox HIV Avg.

Graph
Masking

AttrMask 65.0±2.3 74.8±0.2 73.4±2.0 79.7±0.3 62.9±0.1 61.2±0.1 87.7±1.1 76.8±0.5 72.7
GROVER 70.0±0.1 74.3±0.1 67.3±1.8 82.6±0.7 65.4±0.4 64.8±0.6 81.2±3.0 62.5±0.9 71.0
GraphMAE 72.0±0.6 75.5±0.6 76.3±2.4 83.1±0.9 64.1±0.3 60.3±1.1 82.3±1.2 77.2±1.0 73.9
Mole-BERT 71.9±1.6 76.8±0.5 78.6±1.8 80.8±1.4 64.3±0.2 62.8±1.1 78.9±3.0 78.2±0.8 74.0

Multimodal

3D InfoMax 69.1±1.0 74.5±0.7 74.4±2.4 79.7±1.5 64.4±0.8 60.6±0.7 79.9±3.4 76.1±1.3 72.3
GraphMVP 68.5±0.2 74.5±0.4 75.0±1.4 76.8±1.1 62.7±0.1 62.3±1.6 79.0±2.5 74.8±1.4 71.7
MoleculeSDE 71.8±0.7 76.8±0.3 80.9±0.3 79.5±2.1 65.0±0.2 60.8±0.3 87.0±0.5 78.8±0.9 75.1
MoleBLEND 73.0±0.8 77.8±0.8 77.2±2.3 83.7±1.4 66.1±0.0 64.9±0.3 87.6±0.7 79.0±0.8 76.2

UniCorn 74.2±1.1 79.3±0.5 82.6±1.0 85.8±1.2 69.4±1.1 64.0±1.8 92.1±0.4 79.8±0.9 78.4

Table 3. Performance (MAE, ↓) on MD17 force prediction tasks
(kcal/mol/ Å). The best results are in bold. *: SE(3)-DDM employs
the Benzene dataset from Chmiela et al. (2018), which differs from
the version utilized in our work (Chmiela et al., 2017).

Models Aspirin Benzene Ethanol Malonal
-dehyde

Naphtha
-lene

Salicy
-lic Acid Toluene Uracil

MoleculeJAE 1.289 0.345 0.365 0.613 0.498 0.712 0.480 0.463
MoleculeSDE 1.112 0.304 0.282 0.520 0.455 0.725 0.515 0.447

SE(3)-DDM* 0.453 - 0.166 0.288 0.129 0.266 0.122 0.183
Coord 0.211 0.169 0.096 0.139 0.053 0.109 0.058 0.074
Frad 0.209 0.199 0.091 0.142 0.053 0.108 0.054 0.076

UniCorn 0.168 0.165 0.086 0.152 0.046 0.098 0.052 0.084

Table 4. Performance (RMSE, ↓) on MoleculeNet physicochemi-
cal regression tasks. The best results are in bold.

Models ESOL FreeSolv Lipo
AttrMask 1.112±0.048 - 0.730±0.004
GROVER 0.983±0.090 2.176±0.052 0.817±0.008

3D InfoMax 0.894±0.028 2.337±0.227 0.695±0.012
GraphMVP 1.029±0.033 - 0.681±0.010
MoleBLEND 0.831±0.026 1.910±0.163 0.638±0.004

UniCorn 0.817±0.034 1.555±0.075 0.591±0.016

5.3.2. HIERARCHICAL FEATURE VISUALIZATION

We construct a hierarchical molecular dataset that includes
trajectory-level labels representing adjacent similar confor-

Table 5. Performance (MAE, ↓) on QM9. The top results are in
bold.

QM9 ϵLOMO (meV) ϵHOMO (meV) ∆ϵ(meV)

Train from scratch 16.7 17.6 31.3
UniCorn w/o Denoising 14.7 16.8 31.0
UniCorn 11.9 13.0 24.9

Table 6. Performance (ROC-AUC %, ↑ and RMSE, ↓) on Molecu-
leNet. The top results are in bold. M&C denotes fragment masking
and cross-modal distillation.

MoleculeNet BBBP↑ BACE↑ Tox21↑ ToxCast↑ ESOL↓ Lipo↓

Train from scratch 68.9 (2.4) 83.6 (1.8) 76.1 (0.7) 65.1 (0.1) 1.083(0.030) 0.730(0.016)
UniCorn w/o M&C 69.3 (0.9) 81.4 (0.5) 77.8 (1.4) 65.8 (0.7) 0.825(0.036) 0.623(0.009)
UniCorn 74.2 (1.1) 85.8 (1.2) 79.3 (0.5) 69.4 (1.1) 0.817(0.034) 0.591(0.016)

mations within the same molecular dynamic trajectory, as
well as molecule-level labels denoting multiple trajectories
share the same molecule, and scaffold-level labels indicat-
ing similar molecules have the same scaffold. A detailed
description of the dataset construction process is provided
in section C.2. Subsequently, we employ t-SNE (Van der
Maaten & Hinton, 2008) for visualizing their UniCorn rep-
resentations.

The clustering results are illustrated in Figure 4. Moving
from left to right, we present the trajectory-level, molecule-
level, and scaffold-level clustering results. Given that these
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Figure 4. The visualization showcases hierarchical molecular rep-
resentations learned by UniCorn, illustrating its ability to achieve
effective clustering across different levels.

levels involve clustering at different resolutions, we have
chosen specific areas for a closer examination in the figure.
At the scaffold level, all five scaffolds are well-separated in
general. Notably, heterocycles with similar properties have
closer interclass distances, such as non-aromatic rings be-
ing situated on the left while aromatic rings are positioned
on the right. Zooming into the molecular level, we find
the conformations of different molecules are well-clustered.
Moreover, when focusing on specific molecules’ confor-
mations, we find that similar conformations tend to have
closely positioned representations. As a result, UniCorn’s
molecular representation demonstrates clustering at various
levels, affirming the compatibility of the three pre-training
modules and their successful realization of multi-view rep-
resentations.

We also visualize the representations pre-trained by Uni-
Corn and other SSL models across various downstream
tasks in section A.2. It’s important to note that these repre-
sentations are not fine-tuned, directly reflecting the efficacy
of pre-training methods. Once again, the results validate
the task-specific preference of existing methods and high-
light UniCorn’s consistent competence across diverse down-
stream tasks.

6. Conclusion
To address the lack of effective unified models in molec-
ular pre-training, we begin with a theoretical unification
of three primary SSL methods: masking, denoising, and
contrastive learning, from a contrastive perspective. This
comprehension enables us to interpret the three categories of
pre-training methods as clustering molecular views at differ-
ent levels. Subsequently, we expound on how these different
levels of views align with specific downstream tasks, thereby
elucidating the task-specific preferences of existing methods.
Finally, in pursuit of a universal representation beneficial for
diverse downstream tasks, we introduce UniCorn, a novel
approach capable of comprehending molecular views at mul-
tiple levels. UniCorn demonstrates superior performance
compared to existing SSL methods across all three types of
tasks. Ablation and visualization analyses further illustrate

the compatibility, complementarity, and universality of the
multi-view molecular representation learned by UniCorn.

Our work has opened avenues for further exploration in
several directions. Firstly, beyond property prediction tasks,
whether the UniCorn representation can enhance generation
tasks is worth studying. Secondly, our comprehensive un-
derstanding of SSL methods offers a distinctive perspective
for elucidating denoising and masking techniques, poten-
tially inspiring advancements in noise addition and masking
strategies. Thirdly, various SSL methods have emerged
in other closely related domains (Yang et al., 2022; Wang
et al., 2022a; Zhang et al., 2022b; Rives et al., 2021), yet
their understanding and relevance to downstream tasks re-
main unclear. We aspire that our work can stimulate efforts
to establish the connection between pre-training methods
and downstream tasks, thereby fostering the development
of new foundational models in these domains.
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A. More Experimental Results
A.1. MD22

In Table 7, we present the performance results for force prediction tasks on MD22. UniCorn consistently outperforms the
best results across all seven tasks, which include larger molecules with more complex structures, highlighting the broad
application and generalization capabilities of our approach.

Table 7. Performance (MAE, ↓) on MD22 force prediction tasks(kcal/mol/ Å). The best results are in bold.

Models Ac-Ala3-NHMe DHA AT-AT Staychose AT-AT -CG-CG Buckyball Double -walled
Coord(NonEq) 0.102 0.135 0.288 0.673 0.657 1.751 2.515
Frad 0.073 0.078 0.233 0.231 0.308 0.430 0.729
UniCorn 0.056 0.051 0.134 0.127 0.181 0.249 0.473

A.2. Downstream Tasks Feature Visualization

Figure 5. The clustering results of unfine-tuned molecular representations by three distinct methods, across three diverse tasks: BBBP
(biological task), Freesolv (physicochemical task), and homo from QM9 (quantum task). The color indicates the labels of the downstream
tasks—discrete binary labels for the BBBP task and continuous labels for Freesolv and QM9. Below each subfigure we present
Davies–Bouldin Index to evaluate the performance of clustering results(smaller is better). While the Masking and Denoising methods
exhibit a preference for biological and quantum tasks respectively, UniCorn demonstrates the capability to achieve significant clustering
results across all types of tasks.

To illustrate the correlation between different pre-training methods and various types of downstream tasks analyzed in
the previous section 3, we employed t-SNE to visualize the unfine-tuned features pre-trained by UniCorn, and other two
representative methods: Coord (Zaidi et al., 2022) representing for denoising method, and AttrMask (Hu et al., 2020)
representing for masking approach, on three typical downstream tasks: the biological task BBBP, the physical chemistry
task Freesolv, and the quantum task homo from QM9. The color in the visualization denotes the ground-truth discrete or
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continuous labels in downstream tasks. The clustering results are presented in Figure 5. In addition, we quantitatively
calculate the Davies–Bouldin Index (Davies & Bouldin, 1979), a metric employed to assess clustering results, with lower
values indicating better performance, and present these values below each corresponding subfigure.

From Figure 5, two key insights emerge. Firstly, the first row demonstrates that our methods yield meaningful clustering
results across all types of tasks, where samples with the same or similar labels are clustered together. This indicates that
our pre-training tasks are neither conflicting nor redundant but rather complementary. Secondly, examining the second and
third rows, it is obvious that 3D denoising is more advantageous for quantum tasks compared to biological tasks, while the
masking method exhibits the opposite trend: it is helpful for biological tasks but not as effective for quantum tasks. This
observation serves as a solid validation of our earlier theoretical analyses concerning various pre-training tasks.

B. Missing Proofs and Analysis
B.1. Proof of Theorem 2.1

As introduced in section 2, we formalize the reconstruction loss and contrastive loss as follows:

Definition B.1 (Reconstruction loss).

LRC = Ep(x)Ep(x̃|x)||gϕ(hψ(fθ(x̃)))− x||2 (10)

Definition B.2 (Contrastive loss).

LCL = Ep(x)Ep(x̃|x)||hψ(fθ(x̃))− SG(fθ(x))||2 (11)

We also introduce two auxiliary losses to bridge the reconstructive and contrastive targets.

Definition B.3 (Regularization loss).
Lreg = Ep(x)||gϕ(SG(fθ(x)))− x||2 (12)

Definition B.4 (Modified reconstruction loss).

LRC2 = Ep(x)Ep(x̃|x)||gϕ(SG(fθ(x)))− gϕ(hψ(fθ(x̃)))||2 (13)

The proof of Theorem 2.1 relies on the following two lemmas.

Lemma B.5. The contrastive loss and the modified reconstruction loss are upper and lower bounded by each other when
λmax and λmin are non-zero.

λmaxLCL ≥ LRC2 ≥ λminLCL, (14)

where λmax and λmin are non-negative constants defined in the proof.

Proof. Denote vectors a ≜ fθ(x) ∈ RdZ and b ≜ hψ(fθ(x̃)) ∈ RdZ . Since gϕ is continuously differentiable, by the mean
value formula of multivariant real-valued function (Zorich, 2015), ∀j = 1, · · · , dX, ∃ξj in the interval of a and b, s.t.
gϕ,j(a) − gϕ,j(b) = g′ϕ,j(ξj)

⊤(a − b), where gϕ,j is the j th output dimenstion of gϕ and g′ϕ,j(ξj) denotes the gradient
with respect to ξj . Denote G(x, x̃) = (g′ϕ,1(ξ1), · · · , g′ϕ,dX(ξdX))

⊤ ∈ RdX×dZ , gϕ(a)− gϕ(b) = G(x, x̃)(a− b). Then the
modified reconstruction loss for the specific sample and its augmentation is

lRC2(x, x̃) ≜ ||gϕ(SG(fθ(x)))− gϕ(hψ(fθ(x̃)))||2

=
{
[SG(fθ(x))− hψ(fθ(x̃))]

⊤G(x, x̃)⊤G(x, x̃)[SG(fθ(x))− hψ(fθ(x̃))]
}1/2 (15)

The matrix G⊤(x, x̃)G(x, x̃) is symmetric semi-positive definite matrix, thus its largest and smallest eigenvalue is non-
negative and can be denoted as λ̂2max(x, x̃) and λ̂2min(x, x̃), where λ̂max and λ̂min are also non-negative. We use lCL(x, x̃) to
denote ||SG(fθ(x))− hψ(fθ(x̃))||2. Then

λminlCL(x, x̃) ≤ λ̂min(x, x̃)lCL(x, x̃) ≤ lRC2(x, x̃) ≤ λ̂max(x, x̃)lCL(x, x̃) ≤ λmaxlCL(x, x̃), (16)

where λmin = infx,x̃ λmin(x, x̃), λmax = supx,x̃ λmax(x, x̃) are constants independent on x and x̃. After taking expectation
with respect to p(x, x̃) to the terms in the inequality, we obtain the inequality of loss functions in equation 14.
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Lemma B.6.
LRC2 + Lreg ≥ LRC ≥ LRC2 − Lreg (17)

Proof. This is a straightforward application of the triangle inequality with the L2 distance. Denote vectors c ≜ gϕ(fθ(x)) ∈
RdX , d ≜ gϕ(hψ(fθ(x̃))) ∈ RdX . Utilizing the Minkowski inequality, we derive ||c−d||2+||x−c||2 ≥ ||(c−d)+(x−c)||2 =
||x− d||2. This implies LRC2 + Lreg ≥ LRC. Analogously, we establish LRC + Lreg ≥ LRC2.
By employing Lemma B.5 and Lemma B.6, we establish that λmaxLCL+Lreg ≥ LRC2+Lreg ≥ LRC. When λmax > 0, dividing
both sides of the inequality by λmax concludes the proof of equation 3. Conversely, we have LRC +Lreg ≥ LRC2 ≥ λminLCL,
thus completing the proof of equation 4.

B.2. Discussing the Non-zero Conditions of Theorem 2.1

Concerning λmax, it equals zero if and only if G(x, x̃) = 0 for all x and x̃. In this case, gϕ,j(fθ(x)) = gϕ,j(hψ(fθ(x̃))) for
all j, x and x̃, indicating a collapsed decoder that maps all features to a constant vector. This case is avoided by optimizing
Lreg or LRC.

As for λmin, it is non-zero if and only if dZ ≤ dX and G(x, x̃) is full column rank for all x and x̃. The dimension condition
is usually satisfied in practice since the input of the encoder is usually high-dimensional embeddings. We can gain more
insights in the linear decoder case, where G is exactly the linear decoder matrix. Denote the feature and the reconstructed
output as z and x̂ respectively. Then we have x̂ = Gz =

∑dZ
k=1G:,kzk, where G:,k, k = 1, · · · dZ are the column vectors of

G. Full column rank means G:,k is linearly independent, indicating there are no redundant dimensions in the feature for
reconstruction. Otherwise, there exists an elementary matrix P s.t. GP has at least one column vector (GP ):,l is a zero
vector. Then (P−1z)l is redundant in the sense that it does not affect the reconstruction.

B.3. Proof of Theorem 2.2
Proof.

L(SimSiam)
CL = Ep(x)Ep(x̃|x)||hψ(fθ(x̃))− SG(fθ(x))||22 , where the representations are normalized.

= 2− 2Ep(x)Ep(x̃|x)fθ(x)⊤hψ(fθ(x̃))

= 2− Ep(x)2fθ(x)⊤
(∫

p(x̃|x)hψ(fθ(x̃))dx̃
)

≥ 2− Ep(x)

[
||fθ(x)||22 +

(∫
p(x̃|x)hψ(fθ(x̃))dx̃

)⊤ (∫
p(x̃|x)hψ(fθ(x̃))dx̃

)]

= 1−
∫ ∫

Ep(x)p(x̃|x)p(x̃′|x)hψ(fθ(x̃))⊤hψ(fθ(x̃′))dx̃dx̃′.

(18)

Denote ω(x̃, x̃′) ≜ Ep(x)p(x̃|x)p(x̃′|x) to establish a probability of generating two augmentations x̃ and x̃′ from the
same input, and it is normalized

∫ ∫
ω(x̃, x̃′)dx̃dx̃′ = Ep(x)

∫
p(x̃|x)dx̃

∫
p(x̃′|x)dx̃′ = 1. A similar concept is initially

introduced in (HaoChen et al., 2021) as the weight of the augmentation graph.

L(SimSiam)
CL ≥ 1− Eω(x̃,x̃′)hψ(fθ(x̃))

⊤hψ(fθ(x̃
′))

=
1

2
Eω(x̃,x̃′)||hψ(fθ(x̃))− hψ(fθ(x̃

′))||22 ≜
1

2
Lsymm

(19)

Therefore, the SimSiam loss can serve as an upper bound for the symmetric contrastive loss that aligns the positive pairs.
Then we convert the pairwise alignment into the centered clustering formulation.

Lcluster = Ep(x)Ep(x̃|x)||hψ(fθ(x̃))− Ep(x̃|x)hψ(fθ(x̃))||22
=Ep(x)

(
Ep(x̃|x)||hψ(fθ(x̃))||22 −

(
Ep(x̃|x)hψ(fθ(x̃))

)⊤ (
Ep(x̃|x)hψ(fθ(x̃))

))
=
1

2
Ep(x)Ep(x̃|x)Ep(x̃′|x)||hψ(fθ(x̃))− hψ(fθ(x̃

′))||22

=
1

2
Eω(x̃,x̃′)||hψ(fθ(x̃))− hψ(fθ(x̃

′))||22 =
1

2
Lsymm ≤ L(SimSiam)

CL

(20)
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B.4. Corollary of Theorem 2.2

Corollary B.7 ( Relations between cross-modal contrastive learning and clustering). Theorem 2.2 still holds when the input
and its augmentations employ distinct encoders or parameters, for example in the case of cross-modal contrastive learning.

L(SimSiam)
CL,cross-modal ≜ Ep(x)Ep(x̃|x)||hψ(fθ(x̃))− SG(f ′θ′(x))||22 ≥ Lcluster, (21)

where the representations are defined to be normalized: ||f ′θ′(·)||22 = ||hψ(fθ(·))||22 = 1. Lcluster ≜ Ep(x)Ep(x̃|x)
||hψ(fθ(x̃))−Ep(x̃|x)hψ(fθ(x̃))||22 describes the mean distance between the samples in the cluster and the cluster center in
the representation space of augmentations.

Proof. The heterogeneous encoders do not alter the result of equation 18 since the encoder of the input f ′θ′ will diminish as
long as the representation is normalized.

L(SimSiam)
CL,cross-modal = Ep(x)Ep(x̃|x)||hψ(fθ(x̃))− SG(f ′θ′(x))||22
= 2− 2Ep(x)Ep(x̃|x)f ′θ′(x)⊤hψ(fθ(x̃))

= 2− Ep(x)2f ′θ′(x)⊤
(∫

p(x̃|x)hψ(fθ(x̃))dx̃
)

≥ 2− Ep(x)

[
||f ′θ′(x)||22 +

(∫
p(x̃|x)hψ(fθ(x̃))dx̃

)⊤ (∫
p(x̃|x)hψ(fθ(x̃))dx̃

)]

= 1−
∫ ∫

Ep(x)p(x̃|x)p(x̃′|x)hψ(fθ(x̃))⊤hψ(fθ(x̃′))dx̃dx̃′.

(22)

Hence, we reach an identical result as expressed in Equation equation 18. The remaining proof aligns precisely with those
presented in the proof of Theorem 2.2.

C. Experimental Details
C.1. Dataset Description

QM9 (Ramakrishnan et al., 2014; Ruddigkeit et al., 2012) is a quantum chemistry dataset that offers a single equilibrium
conformation along with 12 labels covering geometric, energetic, electronic, and thermodynamic properties for 134,000
stable small organic molecules comprised of CHONF atoms. The dataset is split following typical settings, resulting in a
training set of 110,000 samples, a validation set of 10,000 samples, and a test set containing the remaining 10,831 samples.

MD17 (Chmiela et al., 2017) comprises molecular dynamics trajectories for 8 small organic molecules. Each molecule in
the dataset is associated with 150k to almost 1M conformations, and includes total energy and force labels. Our focus lies
on the challenging task of force prediction. In accordance with a standard limited data setting, the model undergoes training
on a subset of 1000 samples, with 50 allocated for validation, while the remaining data is employed for testing.

MD22 (Chmiela et al., 2023) consists of molecular dynamics trajectories covering 7 molecules from four major classes
of biomolecules and supramolecules, ranging from a 42-atom peptide to a double-walled nanotube containing 370 atoms.
The dataset provides labels for both total energy and force. Our focus lies on the challenging task of force prediction. The
dataset is split by a ratio of 8:1:1 into the train, validation, and test sets.

MoleculeNet (Wu et al., 2018) is widely recognized as a benchmark for predicting a range of molecular properties. It
covers biological tasks such as BBBP, SIDER, ClinTox, Tox21, Toxcast, BACE, HIV, and MUV, as well as physicochemical
challenges, including FreeSolv, ESOL, and Lipophilicity. Each dataset is split into training, validation, and test sets following
an 8:1:1 ratio, implemented through the scaffold method.

C.2. Construction of Hierarchical Data

The construction of the dataset utilized in 5.3.2 begins with the selection of five common heterocyclic scaffolds, each
possessing different chemical properties but exhibiting a similar structure to make the clustering more difficult. Subse-
quently, we randomly sample 128 molecules for each scaffold and conduct molecular simulations on each molecule using
OpenMM (Eastman et al., 2013), generating four molecular dynamics trajectories. From each trajectory, we randomly
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select four adjacent conformations, resulting in approximately 16 conformations per molecule. In total, this meticulously
constructed dataset consists of around 10,000 conformations.

C.3. Hyperparameter Settings

Table 8. Hyperparameters for pre-training.

Parameter Value or description

Batch size 256
Optimizer AdamW
Adam betas (0.9, 0.999)
Max Learning rate 0.0004
Warm up steps 10000
Learning rate decay policy Cosine
Learning rate factor 0.8
Training steps 1500000

3D encoder layers number 8
3D encoder attention head number 8
3D encoder embedding dimension 256

2D encoder layers number 12
2D encoder attention head number 32
2D encoder embedding dimension 512

In our pre-training stage, we employ TorchMD-NET (Thölke & De Fabritiis, 2022) as the 3D encoder backbone and
Graphormer (Ying et al., 2021) as the 2D encoder. The loss weights for fragment masking loss, denoising loss, and
cross-modal distillation loss are set at a ratio of 1:1:1. Within the masking task, the masking ratio is configured to be 0.2.
For the denoising task, the standard deviations of torsion Gaussian noise and coordinate Gaussian noise are set to 2 and 0.04,
respectively. The temperature τ is set to 0.5 for the cross-modal distillation task. Additional hyperparameters associated
with the network structure and pre-training process can be found in Table 8.

In line with previous methods, we employ grid search to find the optimal hyperparameters for tasks in MoleculeNet. The
specific search space for each task is detailed in Table 9.

The hyperparameters for fine-tuning on QM9, MD17, and MD22 are outlined in Tables 10, 11 and 12. When performing
fine-tuning, we incorporate the Noisy Node task, following the approach in (Godwin et al., 2021; Feng et al., 2023b). The
loss weight for this task is set to 0.1.

C.4. The Impact of Data Accuracy and Diversity

Both the accuracy and diversity of 3D pre-training data have an impact on downstream task results. While we do not have a
definitive conclusion, we have observed some phenomena that offer valuable insights for the community.

From the perspective of accuracy and diversity of 3D conformers, our pre-training data can be categorized into two
distinct types. The first type comprises data sourced from the PubChemQC Project (Nakata & Shimazaki, 2017), where
conformations are calculated using the DFT method, ensuring high quality. However, due to the substantial computational
costs involved, this dataset contains a limited number and variety of molecules, resulting in less diversity. The second type
consists of data collected from various sources via the Uni-Mol (Zhou et al., 2023), utilizing RDKit to generate conformers
more efficiently. Consequently, this dataset encompasses a broader range of molecules, enhancing diversity.

Through comprehensive experiment and analysis, we conclude that the denoising task prefers accurate conformation.
Conversely, for masking and contrastive learning tasks, the diversity of the dataset plays a more critical role. As demonstrated
by previous 3D denoising methods (Zaidi et al., 2022; Feng et al., 2023a), the denoising task relies on highly accurate
equilibrium conformations as input. As observed in Table 13, pre-training UniCorn solely with DFT-calculated data achieves
comparable performance on QM9 compared with UniCorn which uses additional RDKit data. Since quantum tasks such
as QM9 and MD17 primarily involve small and simple molecules, the accuracy of the data may be more important than
its diversity in the denoising task. Data diversity is more important in the context of masking and 2D-3D contrastive
learning pre-training tasks, because their corresponding downstream tasks in MoleculeNet contain more complex and diverse
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Table 9. Search space for MoleculeNet dataset, where [...] represents continuous interval, {...} denotes discrete candidate values.

Parameter Classification tasks Regression tasks
Learning rate [1e-4,1e-3] [1e-4,1e-3]
Batch size {16,32,64} {8,16,32}
Epochs {5,10,25,50} {25,50}
Weight decay {0,1e-5} {0,1e-5}

Table 10. Hyperparameters for fine-tuning on QM9.

Parameter Value or description

Train/Val/Test Splitting 110000/10000/remaining data
Batch size 128

Optimizer AdamW
Warm up steps 10000
Max Learning rate 0.0004
Learning rate decay policy Cosine
Learning rate factor 0.8
Cosine cycle length 300000 (500000 for tasks α, ZPV E, U0, U , H , G)

molecules covering a border range of biological properties that don’t need highly accurate conformation. Moreover, more
diverse 3D conformations of one molecule are also beneficial for 2D-3D contrastive learning as demonstrated by GraphMVP
and 3D InfoMax. As depicted in Table 14, reveals that UniCorn pre-trained with additional RDKit data outperforms UniCorn
solely pre-trained with DFT data on biological and physicochemical tasks.

D. Related Work
D.1. Unified Molecular Pre-training Methods

Recently, several unified pre-training methods have been proposed to be adopted for a diverse range of molecular tasks. Zhou
et al. (2023) and Fang et al. (2022) develop pre-training tasks centered around the molecular 3D structure. involving the
prediction of geometry information and 3D denoising. Other multimodal pre-training methods focus on integrating molecular
2D graphs and 3D structures. Luo et al. (2023) designs a versatile Transformer structure capable of accommodating both
2D and 3D inputs, engages in denoising and quantum property prediction as pre-training tasks. Liu et al. (2023a) and
Li et al. (2023a) take a unique approach by incorporating molecular 2D and 3D information into the diffusion process
for representation learning. Yu et al. (2023) merges atom relations involving different modalities, into a unified relation
matrix, then predicts 2D graph and 3D structure information separately. However, previous methods have fallen short in
comprehending the in-depth relationship between pre-training methods and downstream tasks, and struggle to achieve
satisfactory results across both microscopic and macroscopic tasks.

D.2. Unifying Masking and Contrastive Learning in Other Fields

Recently, some theoretical works have studied masking and contrastive learning in other fields. In the field of computer
vision, Zhang et al. (2022a) investigates in the mask image modeling setting and lower bound the masking loss by a type
of contrastive loss that aligns the mask-induced positive pairs. Qi et al. (2023) provides a unified view of masking and
contrastive learning through the student-teacher paradigm. In the field of graph representation learning, Li et al. (2023b)
analyzes masking graph modeling in an information-theoretic view. They first prove that graph autoencoder and contrastive
learning have asymptotic equivalent solutions and then explain the benefit of graph masking by reducing redundancy
between views.

E. Pseudocode for Pre-training and Fine-tuning Algorithms
We provide Algorithm 1 and Algorithm 2 presenting the pseudocode for the pre-training and fine-tuning processes of
UniCorn, respectively.
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Table 11. Hyperparameters for fine-tuning on MD17.

Parameter Value or description

Train/Val/Test Splitting 950/50/remaining data
Batch size 8

Optimizer AdamW
Warm up steps 1000
Max Learning rate 0.0005
Learning rate decay policy ReduceLROnPlateau (Reduce Learning Rate on Plateau) scheduler
Learning rate factor 0.8
Patience 30
Min learning rate 1.00E-07

Force weight 0.8
Energy weight 0.2

Table 12. Hyperparameters for fine-tuning on MD22.

Parameter Value or description

Train/Val/Test Splitting 80%/10%/10% split same with (Wang et al., 2023)

Batch size
4 for double-walled-nanotube

16 for Ac-Ala3-NHMe and DHA
8 for the other 4 tasks

Optimizer AdamW
Epochs 50
Max Learning rate 0.001
Learning rate decay policy Cosine
Warm up steps 30% steps of the first training epoch
Patience steps 70% steps of the first training epoch
Min learning rate 1.00E-07

Force weight 0.8
Energy weight 0.2

Table 13. Performance (MAE, ↓) on QM9 quantum tasks. The best results are in bold.

QM9 ϵHOMO (meV) ϵLOMO (meV) ∆ϵ(meV) AVG

UniCorn (DFT) 13.2 12 25.1 16.7
UniCorn (DFT + RDkit) 13 11.9 24.9 16.6

Table 14. Performance (ROC-AUC%, ↑; RMSE, ↓) on MoleculeNet tasks. The best results are in bold.

Models BBBP↑ BACE↑ ClinTox↑ Tox21↑ ToxCast↑ SIDER↑ FreeSolv↓ Lipo↓

UniCorn(DFT) 73.0(0.9) 83.6(0.2) 88.5(1.4) 79.2(1.8) 68.6(0.3) 63.1(0.7) 1.831(0.189) 0.589(0.008)
UniCorn(DFT + RDKit) 74.2(1.1) 85.8(1.2) 92.1(0.4) 79.3(0.5) 69.4(1.1) 64.0(1.8) 1.555(0.075) 0.591(0.016)

F. The Relationship between Pre-training Methods and Data Modalities
In this section, we discuss the relationship between pre-training methods and data modalities, although we did not explicitly
refer to this in the main text. We select data modalities that are best suited for these utilized pre-training methods and focus
primarily on the relationship between pre-training methods and downstream tasks. However, understanding the connection
between pre-training methods and data modalities is crucial for comprehensively understanding the proposed methods.

Different pre-training strategies have certain preferences for specific modalities. For instance, previous 3D denoising
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Algorithm 1 Applying UniCorn to pre-training
Require:

f2d: 2D encoder
f3d: 3D encoder
gm: MLP head for 2D masking
gd: MLP head for 3D denoising
hp: MLP head for feature alignment between 3D and 2D representation
G: 2D molecular graph
C = (V,X ): 3D molecular conformation
m: Mask ratio of 2D fragment masking
X: Unlabeled pre-training dataset
xi: Input sample
T : Training steps

1: while T ̸= 0 do
2: xi = dataloader(X), xi=(G, C) ▷ random sample xi from X , xi contains 2D molecular graph and 3D conformation
3: According to the mask ratio m, randomly mask a specific number of fragments denoted as sm in G, resulting in the

masked 2d graph G\m
4: Lm = −EG,G\m

∑
sm

log
[
p(gm,f2d)

(
sm|G\m

)]
▷ Calculate the masked fragment loss

5: Introduce torsion Gaussian noise to C to obtain Ca = (V,Xa), then add the coordinate Gaussian noise to Ca to
derive C̃ = (V, X̃ )

6: Ldn = EC̃,Ca
||gd(f3d(C̃))− (X̃ − Xa)||22 ▷ Calculate the 3D denoising loss

7: Lcl = −EG,C̃ [log
ecos(zg,zc)/τ∑

zc
j

e
cos(zg,zc

j
)/τ + log ecos(zc,zg)/τ∑

z
g
j

e
cos(zc,z

g
j
)/τ

], where zc = hp(f
3d(C̃)), zg = f2d(G), zcj ∈ Nc ∪ zc and

zgj ∈ Ng ∪ zg , Nc and Ng denotes in-batch negative samples of 2D graphs and 3D conformations ▷ Calculate the
Cross-modal contrastive loss

8: Loss = Ldn + Lm + Lcl
9: Optimise(Loss)

10: T = T − 1
11: end while

methods (Zaidi et al., 2022; Feng et al., 2023a; Ni et al., 2024) are tailored for 3D conformations, as they introduce different
types of noise to the 3D structure and predict the noise aiming to approximately learn the molecular force field. In contrast,
masking and contrastive learning show a slight preference for certain modalities but are generally more versatile. While
masking is typically conducted on the 2D graph by masking the atoms, edges, and fragments (Hu et al., 2020; Xia et al.,
2022; Feng et al., 2023c), it can also applied to masking atoms within 3D structures (Zhou et al., 2023; Zaidi et al., 2022)
and masking tokens for 1D SMILES sequence (Chithrananda et al., 2020; Wang et al., 2019; Zhang et al., 2021). Contrastive
learning is particularly flexible, as it can generally align different modalities. In addition to aligning 2D graphs with 3D
conformations, it can also be used to align molecules with other relevant modalities such as textual descriptions (Liu et al.,
2023b) or binding proteins (Gao et al., 2022). In our analysis, we implicitly take into account the preference for modality,
focusing on one of the most common scenarios: denoising for 3D modality, masking for 2D modality, and contrastive
learning for cross-modality in the main text.

G. Novelty and Limitations
It’s essential to note that the primary novelty of this paper lies in our combination of three prevalent existing methods under
a unified contrastive learning framework for pursuing a universal molecular model. Through rigorous theoretical proof
and domain-expertise-driven analysis, we innovatively establish the necessity of this combination to achieve a universal
representation applicable to all types of downstream tasks—an objective that previous works have failed to attain. In
particular, we demonstrate for the first time that existing methods are naturally suited to different downstream tasks, shedding
light on why current literature is limited to their specific preferred task. Finally, through exhaustive experiments, our
approach marks the first work in the field of molecular representation learning that achieves SOTA results on tasks that span
a wide range of quantum, physicochemical, and biological domains.

21



UniCorn: A Unified Contrastive Learning Approach for Multi-view Molecular Representation Learning

Algorithm 2 Applying UniCorn to fine-tuning
Require:

f3d:Pre-trained 3D encoder
hp: MLP head for property prediction
hd: MLP head for Noisy Nodes
C = (V,X ): 3D molecular conformation
X: Training dataset
xi: Input sample
yi: Label of xi
∆xi ∼ N (0, τ2I3N ), N is atom number of xi
T : Training steps
task: the current fine-tuning downstream task, which may belong to MoleculeNet, QM9, MD17, or MD22
λn: Loss weight of Noisy Nodes

1: while T ̸= 0 do
2: xi, yi = dataloader(X), xi=(C) ▷ random sample xi and corresponding label yi from X

3: ypredi = hp(f
3d(x̃i))

∗

4: Loss = PropertyPredictionLoss(ypredi , yi)
5: if task in QM9, MD17, MD22 then
6: Ld = λn||hd(f3d(x̃i))−∆xi||22

∗
▷ Calculate loss of Noisy Nodes

7: Loss += Ld
8: end if
9: Optimise(Loss)

10: T = T − 1
11: end while

*: For MoleculeNet, x̃i = xi. For QM9, MD17 and MD22, we apply Noisy Nodes regularization and the definition of
x̃i follows (Feng et al., 2023a).

We anticipate potential limitations with UniCorn concerning its data requirements. Firstly, as UniCorn aims to capture
multi-grained molecular representation and involves denoising, it relies on 3D equilibrium structures as pre-training inputs,
which are relatively scarcer than 2D molecular data in existing datasets. Secondly, since the 3D encoder is utilized for
various downstream tasks, the necessity of 3D conformation as input may require additional 3D generation during processing.
Thirdly, the accuracy of 3D inputs or failure of 3D generation could impact the outcomes of downstream tasks. However, as
3D datasets expand and 3D generation capabilities improve, we expect the limitation of data requirements for our approach
as well as similar previous works like Uni-Mol (Zhou et al., 2023), GEM (Fang et al., 2022), and MoleBLEND (Yu et al.,
2023), to be mitigated in the future.
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