
Privacy Backdoors: Stealing Data with Corrupted Pretrained Models

Shanglun Feng 1 Florian Tramèr 1

Abstract
Practitioners commonly download pretrained ma-
chine learning models from open repositories and
finetune them to fit specific applications. We show
that this practice introduces a new risk of pri-
vacy backdoors. By tampering with a pretrained
model’s weights, an attacker can fully compro-
mise the privacy of the finetuning data. We show
how to build privacy backdoors for a variety of
models, including transformers, which enable an
attacker to reconstruct individual finetuning sam-
ples, with a guaranteed success! We further show
that backdoored models allow for tight privacy
attacks on models trained with differential privacy
(DP). The common optimistic practice of training
DP models with loose privacy guarantees is thus
insecure if the model is not trusted. Overall, our
work highlights a crucial and overlooked supply
chain attack on machine learning privacy.

1. Introduction
Sharing and finetuning of large pretrained models has be-
come a common practice, enabling rapid prototyping and
development of new applications across various domains.
Platforms like Huggingface currently host nearly 500,000
models, shared by various companies, researchers, and other
users. This trend brings to light new security concerns, par-
ticularly in the form of supply chain attacks. Prior work has
recognized the impact of such attacks on model integrity,
where a backdoor is planted into a model to hijack its down-
stream behavior (Gu et al., 2017; Liu et al., 2018).

In this work, we shift the focus from integrity to privacy
vulnerabilities, and introduce privacy backdoors, where
a malicious model provider tampers with model weights
to compromise the privacy of future finetuning data. Our
backdoor attacks create “data traps” that directly write some

1Department of Computer Science, ETH Zurich, Zurich,
Switzerland. Correspondence to: Florian Tramèr <flo-
rian.tramer@inf.ethz.ch>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

data points to the model weights during finetuning. The
trapped data can then be extracted by reading from the fine-
tuned model’s weights. Compared to prior related attacks
in Federated Learning (Boenisch et al., 2023; Fowl et al.,
2021) that steal data points in a single training step, our data
traps have to survive an entire finetuning run, with multiple
training epochs and thousands of update steps.

We thus propose a new backdoor design that is single-use:
once our backdoor activates and a data point is written to the
model’s weights, the backdoor becomes inactive, thereby
preventing further alteration of those weights during training.
Our backdoor thus acts a bit like a latch, the logic circuit
underlying digital memory: once the backdoor is set and
the data is written to memory (i.e., to the model weights), it
“latches” on until the end of training.

By design, our attacks capture individual training examples
with high probability, with minimal impact on the pretrained
model’s utility. We apply these attacks to MLPs and pre-
trained transformers (ViT (Dosovitskiy et al., 2020) and
BERT (Devlin et al., 2019)) and reconstruct dozens of fine-
tuning examples across various downstream tasks.

We then consider a stronger black-box threat model, where
the attacker only has query access to the finetuned model.
By adapting techniques from the model extraction litera-
ture (Tramèr et al., 2016; Carlini et al., 2020), we show that
even a black-box attacker can recover entire training inputs.
We further show that our backdoors enable simpler, perfect
membership inference attacks, which infer with 100% ac-
curacy whether a data point was used for training. We use
these backdoors to build the first tight end-to-end attack on
the seminal differentially private SGD algorithm of Abadi
et al. (2016). That is, the privacy leakage observable by our
adversary nearly matches the provable upper-bound from
the algorithm’s privacy analysis. Our result thus challenges
the common assumption that the privacy guarantees of DP-
SGD are overly conservative in practice. This has led to
the adoption of loose privacy budgets (e.g., ε ≥ 9 in (Ra-
maswamy et al., 2020)), which we show to be insecure in
the presence of backdoored models.

Overall, our results bring to light a new attack vector in the
modern machine learning supply chain, and emphasizes the
need for more stringent privacy protections when operating
with untrusted shared models.

1

Privacy Backdoors: Stealing Data with Corrupted Pretrained Models

Code to reproduce our experiments is at https:
//github.com/ShanglunFengatETHZ/
PrivacyBackdoor.

2. Related Work
Privacy attacks. Neural networks memorize training data.
Attackers can exploit this to launch membership inference
attacks (Shokri et al., 2017) or data extraction attacks (Car-
lini et al., 2021; 2023). These attacks can be strengthened
by an attacker who poisons the model to increase memo-
rization (Tramèr et al., 2022; Panda et al., 2023). Song et al.
(2017) show that an attacker who tampers with the training
code can cause the model to exfiltrate training data.

Backdoor attacks. Gu et al. (2017); Liu et al. (2018) show
how to tamper with a pretrained model to inject malicious
targeted behaviors that compromise the model’s integrity.
Hong et al. (2022) show that such backdoors can be hand-
crafted by directly editing the weights of a pretrained model.

Data stealing in Federated Learning. A malicious server
in Federated Learning can tamper with the model so that
clients’ gradients leak training data (Zhao et al., 2023; Fowl
et al., 2021; 2022; Boenisch et al., 2023; Wen et al., 2022;
Phong et al., 2018). We extend the attack of Fowl et al.
(2021), which creates sparse activations in a linear layer, so
that the gradient encodes training inputs.

Privacy backdoors in pretrained models. Concurrent
work by Wen et al. (2024) and Liu et al. (2024) also intro-
duces privacy backdoors for pretrained models, but with a
different focus than ours. They consider weaker attacker
goals (respectively membership inference or extraction with-
out success guarantees), but also a weaker attacker (with
only black-box access to the finetuned model). Their attacks
are thus incomparable to ours: they are easier to mount, but
also less devastating than ours.

Tightness of DP-SGD. The DP-SGD algorithm (Abadi
et al., 2016) trains models with differential privacy (Dwork
et al., 2006). The algorithm’s worst-case analysis assumes
that one model weight is updated if and only if a target input
is present. This analysis is tight for a strong attacker who
can observe all training steps (Nasr et al., 2021), but it is pre-
sumed to be loose for a more realistic “end-to-end” attacker
who only observes the final model. Privacy parameters are
thus often set very optimistically in practice.

3. Threat Model
In contrast to prior attacks on Federated Learning, we as-
sume a weaker attacker who cannot observe individual gradi-
ent updates. Instead, our attacker tampers with a pretrained
model once, before sending it to the victim.

We assume the victim finetunes the backdoored model on
a classification task using SGD for multiple epochs. The
victim adds a new linear layer to the backdoored model and
then finetunes the entire model (“full finetuning”). We leave
an extension to other types of finetuning (e.g., LoRA (Hu
et al., 2021)) for future work.

We consider two types of attackers, with white-box or
black-box access to the finetuned model. A white-box at-
tacker can inspect the finetuned model’s weights, while the
black-box attacker can query the model on arbitrary inputs.
White-box access is a stronger assumption, which enables
our most powerful data extraction attacks. We show that the
weaker black-box setting allows for perfect membership in-
ference attacks, as well as data extraction attacks for simple
models.

4. Warmup: White-box Data Stealing in
MLPs

4.1. Attack Description

In order to illustrate our approach, we start with the simplest
case of backdooring a linear unit (i.e., one element of a
linear layer), as in (Fowl et al., 2021):

h = ReLU
(
w>x + b

)
, (1)

where x ∈ Rm is the unit’s input, and w ∈ Rm, b ∈ R are
the unit’s weight and bias.

As described in Fowl et al. (2021), we can set the parameters
w, b to ensure that, with high probability, a single input x
in a training batch activates the neuron (i.e., h > 0). If we
backpropagate the training loss L, we then get:

∇wL =
∂L
∂h
· x, ∇bL =

∂L
∂h

. (2)

Dividing ∇wL by the scalar∇bL recovers the input x.

In a Federated Learning setting, we are done since the at-
tacker gets to see these gradient updates directly. But in
our case, the gradient updates are simply added to the pa-
rameters and training continues. The attacker only sees the
final model. This introduces a new challenge: we need the
captured inputs to “survive” the entire training run, without
being mixed with other inputs captured in subsequent train-
ing steps. We thus propose to build a backdoored unit with
a stronger “single-use” property: Once the backdoor has
been activated, it will never be active again afterwards.

We call such a backdoor a data trap. To design a data trap,
we need the gradient update to “shut down” the backdoor.
Assume the backdoor activates on input x̂, and we update the
weights using SGD with learning rate η (with the gradients
in (2)). The updated backdoor’s output on a new input x is:

h′ = w′>x+b′ = (w>x+b)−η · ∂L
∂h
·
(
x̂>x + 1

)
. (3)

2

https://github.com/ShanglunFengatETHZ/PrivacyBackdoor
https://github.com/ShanglunFengatETHZ/PrivacyBackdoor
https://github.com/ShanglunFengatETHZ/PrivacyBackdoor

Privacy Backdoors: Stealing Data with Corrupted Pretrained Models

h h′ z1

z2

...

zC

s1

s2

...

sC

w
(1)
1 w

(2)
1

w
(2)
C

softmax

Figure 1. Illustration of the output of a data trap (h =
ReLU

(
w>x+ b

)
) connected to the model’s output. The weights

of the classification head (in red) are typically not under the control
of the attacker, and randomly initialized before finetuning.

A sufficient condition for the backdoor to shut down (i.e.,
h′ ≤ 0 for all x) is that:

1. x̂>x + 1 > 0.

2. ∂L
∂h is positive and large enough.

The first condition, x̂>x+ 1 > 0, depends only on the input
of the backdoor unit, and the attacker can ensure the inputs
satisfy this (e.g., by mapping inputs to [0, 1]m).

The second condition, that ∂L∂h is positive and large, requires
more work. Our construction is illustrated in Figure 1. We
connect the backdoor’s output h to a hidden unit h′, with
weight w(1)

1 , i.e., h′ = ReLU
(
w

(1)
1 h

)
. The unit h′ then

connects to the model’s logit layer z with weights w(2), and
the logits are passed through a softmax before computing the
cross-entropy loss. A standard gradient calculation gives:

∂L
∂h

=
∂L
∂h′
· ∂h

′

∂h
=
(C∑
i=1

(si − yi) · w(2)
i

)
· w(1)

1 , (4)

where C is the number of classes, si is the softmax score
for the i-th class, and yi is one if the input belongs to the
i-th class, and zero otherwise.

Recall that we want this derivative to be positive and large.
The “large” part is easy: we just set w(1)

1 to be large. The
sign of the derivative depends on the ground-truth class of
the captured input (i.e, si − yi is negative for the index of
the true class). It turns out that setting w(1)

1 to be large
guarantees that the derivative is positive with probability
1− 1/C (e.g., 99.9% for ImageNet classification). Indeed,
if w(1)

1 is large enough the logits z are essentially random
(the benign part of the model has negligible influence). The
softmax scores then concentrate on the class j with the
highest weight w(2)

j , and the sum in (4) is positive if j is a
wrong class. So we get a large positive gradient as desired!

In conclusion, if our backdoor fires on a misclassified input,
it shuts down and is inactive for the rest of training. If we are
unlucky and we get a negative gradient into the backdoor,
i.e., ∂L

∂h < 0, the backdoor does not shut and activates
again on future inputs. This is the main challenge we have
to tackle when scaling our backdoor construction to large

transformers, which we discuss in Section 5.

4.2. Multiple Backdoor Units

So far, we described a single backdoor unit that captures
one training input. We can simply replicate this construction
above for multiple linear units, and initialize the backdoor
weights so that they activate on different inputs.

The finetuning data induces a distribution over the values
w>x, and we set the bias b so that a small fraction of inputs
give positive activations. To capture diverse inputs in differ-
ent backdoors, we select weights w that align with different
subsets of the training data (in practice, we simply sample
the weights from a uniform distribution over the sphere).

The biases can be set independently for each backdoor. If
the bias is too large, multiple inputs in a batch might trigger
the same backdoor which makes reconstruction difficult. If
the bias it too small, some backdoors may never fire on any
training input. For a dataset of size D and batch size of B,
we thus want the fraction of training inputs p that activate
a backdoor to satisfy p > 1/D and p � 1/B. For typical
finetuning setups (where B � D), the range of allowable
biases is large, so the attacker only needs to know a loose
approximation of the distribution w>x.

Note that each backdoor can fail independently with proba-
bility 1− 1/C, if the captured input is correctly classified.
With k perfectly calibrated backdoors, we thus expect to
capture k · (1− 1/C) inputs.

4.3. Experiments

We evaluate our backdoor construction on a MLP model
trained on CIFAR-10. We implement a 3-layer backdoored
perceptron as shown in Figure 1. The model’s layers have
256 hidden units, 64 of which are used for backdoors. Input
images are scaled and flattened to the range [0, 1]3072.

Figure 2 shows reconstructed images from this toy MLP
model, most of which are indistinguishable from their cor-
responding ground truth images. The attack can fail in two
orthogonal cases. If the backdoor gets a negative gradient
signal (because the captured input is correctly classified),
the backdoor fails to shut and is re-activated many times in a
subsequent batch. This typically results in an unrecoverable
backdoor (e.g., top row, fourth from the left). A more be-
nign failure case is when multiple inputs in a batch activate
the backdoor, in which case our attack recovers a mixture of
the captured inputs (e.g., top row, second from the right).

5. Privacy Backdoors in Transformers
In the previous section, we designed data traps for simple
MLPs. To illustrate the general applicability of privacy back-
doors, we now extend our study to real transformer models

3

Privacy Backdoors: Stealing Data with Corrupted Pretrained Models

Figure 2. Reconstructed images from a backdoored MLP model.
Top: Reconstruction; Middle: Ground truth, or a gray image if the
backdoor failed to capture a unique input (see Appendix D.1 for
details); Bottom: Ground truths for failed backdoors that captured
a mix of two inputs (left corresponds to row 2, column 4; right
corresponds to row 1, column 15).

for both vision and text. The transformer architecture un-
derlies most foundation models in use today, and is thus a
natural candidate for a backdoored pretrained model.

We assume victims finetune the entire backdoored model
for classification (i.e., full finetuning). We leave the study of
parameter-efficient methods like LoRA (which are popular
in computationally constrained settings) to future work.

Transformers. A transformer (Vaswani et al., 2017) takes
as input a sequence of tokens, each mapped to an embedding
vector. For vision transformers (Dosovitskiy et al., 2020),
the tokens are patches from the input image that are mapped
to embeddings using a convolutional layer. For text trans-
formers, tokens are (sub-)words in the input sentence that
are mapped to embedding vectors using a dictionary. Each
token embedding is augmented with a position embedding,
which encodes the index of the token in the input sequence.

We focus on ViT (Dosovitskiy et al., 2020) and BERT (De-
vlin et al., 2019), whose embeddings have 768 dimensions.
The transformer’s input is thus a k× 768 matrix, where k is
the number of tokens in an input (padded to a fixed length).

The transformer encoder then consists of a number of blocks,
which apply a dimension-preserving function f : Rk×768 →
Rk×768. These blocks combine the following operations:

• MLPs: One or two linear layers with a non-linear acti-
vation (typically a GELU (Hendrycks & Gimpel, 2016))
are applied to each of the k feature vectors.

• Attention layers: A layer that computes dependencies
between the k token vectors, and reweighs them.

• Shortcut connections: A block’s input is typically added
to its output, to facilitate learning (He et al., 2016).

• Layer normalizations: Each feature vector is normalized
to zero mean and unit variance, followed by a learned
affine transform.

The model outputs features of dimension k × 768. To fine-
tune a classifier, we add a linear layer to the features of the
first token (a special [CLS] token prepended to the input).

5.1. Challenges

Maintaining model utility. If the attacker wants the back-
doored model to be used, it should be useful for finetuning.
So the attacker needs to ensure the backdoored model retains
a “benign” part that acts as a useful feature extractor.

For simplicity, we do not retrain existing transformers to
accommodate backdoors. We start from benign pretrained
transformers (ViT (Dosovitskiy et al., 2020) and BERT (De-
vlin et al., 2019)), and remove a fraction of the model’s
feature representations and encoder blocks for our backdoor
construction (see Appendix D.2 for details about model pre-
processing). Our design then aims to minimize interference
between the benign and backdoor portions of the model.

Moving beyond linear layers. Transformers are more
complex than MLPs! In addition to linear layers (which
are useful for building data traps), they have attention layers,
layer normalizations, and more complex activations than
ReLUs. We will need additional tricks to ensure that all
these layers propagate the backdoor activations and gradi-
ents properly without destroying the model’s utility.

Capturing all tokens in an input. If we apply the con-
struction from Section 4 to capture multiple input vectors of
a transformer, we would capture individual tokens. These
tokens would likely belong to different input sequences (i.e.,
we might capture just one word from many different sen-
tences). Instead, we would like to capture a few full inputs.
This will require designing a family of backdoors that fire
in tandem for all tokens in an input sequence, or not at all.

Building robust backdoors. Our backdoors for MLPs in
Section 4 only required setting adversarial weights in two
layers. These weights are only updated when the backdoor
first activates, and are unused after that. In contrast, our
backdoors for transformers are much more complex and
combine a number of modules (as described in Section 5.2).

One challenge is that the initial weights in these modules
shift during training, as gradients will flow into them. This
will disrupt the adversarial behavior that these modules were
designed to implement and risks destroying the backdoor.
Another challenge is maintaining the model’s utility in the
presence of “failing” backdoors, where a correctly classified
input activates the backdoor and causes negative gradients
to further open the backdoor. The backdoor then fires many

4

Privacy Backdoors: Stealing Data with Corrupted Pretrained Models

incoming samples

key

ft
(in)

key

act
(init.)

ft
(in)

key

act

ft
(in)

act

ft
(out)

act

ft
(out)

act
(avg.)

output logits

×𝑛
FC

shortcut connection:

reconstructions:

selectors

FC

encoder classification head

ft
(in)

⋮

Figure 3. The logical architecture of a backdoored transformer. ft: benign features inheriting the utility of the pretrained weights. key:
the features for selectively activating a backdoor, and the data to be captured. act: activation signals, i.e., outputs from backdoor units.
From left to right, our backdoor construction consists of: an input module that creates the logical feature separation x = [ft,key,0]; the
main backdoor module () that captures inputs in a linear layer; an amplifier module () that increases backdoor activation signals; an
erasure module () that wipes out unneeded features; n signal propagation modules () that compute standard benign features ft while
carrying the backdoor outputs act; and an output module () that averages all features onto the class token for finetuning.

times in subsequent steps, which leads to large gradients. In
a MLP, this is inconsequential since a backdoor’s gradients
cannot impact other benign weights in the model. But with
transformers, we cannot avoid small interferences between
backdoor features and benign features. Ensuring the robust-
ness of our backdoor construction, and of the model’s utility
thus requires more careful tuning (see Appendix C.4).

5.2. Overview of our Approach

In this section we give an overview of our techniques for
inserting data traps into transformers. For ease of exposition,
we leave many technical details to Appendix C. We also
release codeto reproduce all our experiments.

The architecture of our attack is illustrated in Figure 3. We
maintain an invariant that the transformer’s internal features
(a vector of size d = 768) are split into three components

[ft,key,act] .

The first part, ft, is used for the transformer’s benign fea-
tures for downstream applications. The second part, key,
stores information to be captured by the backdoor. The third
part, act, propagates the output activations of the backdoors
all the way to the model’s last layer, and amplifies them to
ensure that gradient signals will shut down the backdoor.
Details about how we divide feature vectors into these three
components are in Table 2 in Appendix C.

The backdoor construction combines different modules, de-
scribed below. We further employ a number of numerical
tricks to deal with the complexity of the model and training
process, which we discuss at the end of this section.

Input module. This module maps the input tokens to em-
beddings of the form [ft,key,0]. The benign features sim-

ply contain a truncated part of the original embeddings. For
the ViT, the backdoor input to be captured is a downscaled
and grayscaled version of the original 32 × 32 patch. For
BERT, we capture a sub-vector of the token embedding,
which is sufficient to recover the underlying token.

As described above, one of the key challenges with trans-
formers is to capture entire inputs (i.e., a sequence of to-
kens), rather than simply capturing individual tokens from
different inputs. We achieve this by enhancing our back-
doors with sequence and position selectors.

We further split the backdoor input key into three parts
key = [tok,pos, seq]. The first part, tok, is the token in-
formation to be captured. The second part, pos, encodes the
token’s position in the input. The third part, seq, contains
features that identify the sequence of input tokens (i.e., a
sentence or an image). We obtain these features by making
the model’s first attention layer compute an average across
all input tokens (Fowl et al. (2022) use a similar idea in
their Federated Learning attack). As we describe below, by
setting the backdoor weights appropriately, we can ensure
that with high probability all captured inputs correspond to
tokens at different positions in the same input sequence.

Backdoor module. In the first encoder block, we use the
MLP to implement multiple backdoors that capture the input
features key, with the same design as in Section 4. That
is, we map the full input vector [ft,key,0] to the output
[0,0, {(w(i))> · key + b(i)}ki=1], where k is the number of
backdoors. The weights and biases are chosen so that the
backdoor output is positive for a small fraction of inputs.
After the block’s shortcut connection, we get the block’s
final output of the form [ft,key, {(w(i))> ·key+b(i)}ki=1].

To capture all tokens in an input, we design “keyed” back-

5

Privacy Backdoors: Stealing Data with Corrupted Pretrained Models

doors that activate only for tokens at a specific position in
one input sequence. In more detail, the backdoor weights
are of the form w(i) = [0,pos(i),wseq]. The position fea-
tures pos(i) are designed to be close to orthogonal, i.e.,
(pos(i))> · pos(j) is small if i 6= j. The bias b(i) is set
to a high quantile of the expected distribution of values
‖pos(i)‖2 + wseq

> · seq over the finetuning set. This en-
sures that the backdoor will only activate on a token in the
i-th position of a sequence with a key seq similar to wseq.

Amplifier module. Recall from Section 4 that we need
the activations from the backdoor to become large so that
they contribute a large enough (positive) gradient signal to
shut down the backdoor. As in the case of a simple MLP, we
do this by multiplying the backdoor output, act, by a large
constant in the first MLP module that follows the backdoor.

Erasure module. After the backdoor, we do not need
the key features anymore. To make our lives easier when
dealing with the rest of the model, it is easiest to remove
these features. But because of the layer normalization, we
have to be careful how we do this. For BERT, the layer
normalization is at the end of the encoder block (after the
linear layers) and so we can just use this layer to set all
outputs corresponding to the key features to zero. In a
ViT, the layer normalization (LN) comes before the linear
layers so things are more complicated. Here, we use a
combination of two MLP layers to erase the unused features
(see Appendix C.2 for details).

Signal propagation modules. We now just have to en-
sure that the amplified backdoor outputs propagate all the
way to the end of the network, without interacting (too
much) with the benign features ft. For the ViT (where each
module’s layer-normalization occurs before the shortcut
connection), we can simply set all weights of the backdoor
components act and key to zero, so that these activations
are propagated solely via the shortcut connection. For BERT,
the layer-normalization occurs at the end of each module,
and so we need some extra care (see Appendix C.3 for de-
tails). For both ViT and BERT, we maintain the pretrained
transformer’s weights for the benign features ft, so that the
model extracts meaningful features for downstream tasks.

Output module. At the last layer of the transformer, we
aggregate the activation outputs act from all tokens onto
the special CLS token that is used for classification during
finetuning. We do this by rewiring the attention module in
the last layer, to simply average all act features.

The features [ft,0,act] from the CLS token are passed
through a final linear layer (randomly initialized prior to
finetuning) that maps to C classes. Following the same
argument as in Section 4, an input that activates a backdoor

will be misclassified with probability 1 − 1/C (since the
large activations from the backdoor will boost an arbitrary
class), and this will result in a large positive gradient that
flows all the way back to the backdoor module and shuts it.

5.3. Numerical Tricks

Our backdoor construction above ignores some technical
challenges that arise due to architectural specificities of
transformer models, in particular the use of GELU activa-
tions and layer normalizations. These require some addi-
tional numerical tricks to ensure that backdoor signals do
not vanish or blow-up during training.

We note that these issues could be sidestepped by making
small architectural changes to the pretrained model (specifi-
cally, using ReLU activations and applying layer normaliza-
tions only to the benign features ft). But this might make
the backdoor attack too obvious.

Stabilizing layer normalization. Layer normalization is
an important architectural component in modern transform-
ers, but it serves no functional purpose for our backdoor
construction (in fact, its presence complicates things drasti-
cally). A layer normalization applies an almost linear trans-
formation: LN(x) ≈Wx+b, except that the magnitude of
the weight matrix W scales inversely with that of the input
x. These layers can be problematic for two reasons: they ap-
ply an input-dependent rescaling, and they introduce strong
dependencies between different components of the features
vector. The data-dependent rescaling of inputs introduces a
number of challenges: during the forward pass, rescaling of
the backdoor inputs key can mess up subsequent modules
(e.g., the erasure module of the ViT, see Appendix C.2.3).
In the backward pass, the rescaling can lead to very small
gradients for large backdoor outputs.

We deal with both issues simultaneously by “virtually” split-
ting the normalization function. Specifically, given a feature
vector with two components [xL,xR], we add a large con-
stant C to one component, [xL,xR + C], and then rescale
the layer’s output accordingly. In Appendix A.1, we show
that for a large enough C, the dependencies between the two
feature components are removed, and the layer no longer
applies an input-dependent scaling.

Dealing with GELUs. In contrast to ReLUs, GELU acti-
vations (Hendrycks & Gimpel, 2016) can not be fully “shut
down”, as their output is non-zero for all inputs. But for
large enough inputs (in absolute value), a GELU is near-
identical to a ReLU. We could thus simply re-scale all
GELU inputs by a large constant. This requires some care
though, because we will always get some “unintended” gra-
dients flowing through the backdoor (i.e., non-zero gradients
when the activation output is negative). To deal with this

6

Privacy Backdoors: Stealing Data with Corrupted Pretrained Models

Figure 4. Reconstructed complete images from a backdoored ViT-
B/32 with GELU activations (finetuned on Caltech 101). Top:
Reconstruction; Bottom: Ground truth, when it is unambiguous.

issue, we use the MLP that follows each GELU to dampen
small activation outputs, thereby reducing the impact of the
unintended gradients (see Appendix A.2 for details).

5.4. Experiments

We carry out our data-stealing attack on popular pretrained
transformers and verify that the backdoored models still
perform well on the downstream tasks. We use a pretrained
ViT-B/32 from Torchvision and BERT-base from Hugging-
Face, and finetune on small downstream datasets for illustra-
tion: Oxford-IIIT Pet, Caltech 101, and TREC. More details
about the finetuning setup are in Appendix D.

Figure 4 shows reconstructed images from the ViT on Cal-
tech 101. The reconstructions are grayscale as we applied
this transformation to make the backdoors more space-
efficient. Individual patches also have slight mismatches
in brightness—an artifact of layer normalizations—but our
attack clearly succeeds in recovering recognizable images.

Some selected reconstructed examples from BERT fine-
tuned on TREC-50 are in Table 1. These reconstructions
are near-perfect, except for some rare spurious suffix tokens
(this occurs when a short sentence fails to activate all back-
doors, and these backdoors later capture other tokens). The
full lists of reconstructed inputs for ViT and BERT are in
Appendix F. We also provide additional results using trans-
formers with ReLU activations, where backdoors are more
robust and therefore more successful at capturing inputs.

A notable challenge with transformers is that backdoors that
fail to shut down risk destroying the model’s benign utility
(due to overly large gradient flows in subsequent batches).
To mitigate this risk, our experiments focus on settings
where the number of backdoors is smaller than the number

Table 1. Selected reconstructed sentences from a backdoored
BERT model finetuned on the TREC-50 dataset. We highlight
tokens which match a ground truth sentence in the dataset. The
complete list of reconstructions is in Table 11.

what must a las vegas blackjack dealer do when he reaches 16?
which two states enclose chesapeake bay?ruplets??
how is easter sunday’s date determined?
what do the letters d. c. stand for in washington, d. c.?np.
what schools in the washington, dc nn nn vbp nn nn nn nn.
why do heavier objects travel downhill faster? go to college?

of output classes (so that all backdoors shut down with high
probability). The results we report here are for finetuning
runs where the model’s benign utility did not break down (in
practice, a victim would presumably notice if the finetuning
failed and retry with other hyperparameters).

Our ViT model reaches 83% test accuracy on Caltech 101,
and our BERT model reaches 78% test accuracy on TREC-
50. While the backdoor does reduce test accuracy (see
Appendix D.2), this could be compensated by releasing a
larger, more capable backdoored model.

6. Black-box Attacks
So far we considered an attacker with white-box access to
the finetuned model, who can read-off captured inputs from
model weights. In this section, we consider a weaker black-
box attacker with query-only access to the final model.

We first show in Section 6.1 that in this highly practical
setting, an attacker can mount perfect membership inference
attacks, to determine with certainty if a data point was used
for finetuning. This result has surprising implications for the
tightness of the DP-SGD algorithm of Abadi et al. (2016).

In Section 6.2, we explore black-box data extraction attacks.
We show that techniques from the model stealing litera-
ture can be used to reconstruct backdoor weights (and thus
captured inputs) using a few thousand model queries.

6.1. Black-box Membership Inference and
Applications to Differential Privacy

Implementing a backdoor that yields perfect membership
inference is simple. We set the model’s weights so that the
activations h = [h1, . . . , hn] in the 2nd-to-last layer satisfy:

• h = [C, 0, . . . , 0] for the target x, for a large C.
• h1 = 0 for all other inputs.

The targeted input x thus only activates the first unit in the
layer (with a large value), and that unit is not activated by
any other input. During training, the weights connected to
the backdoor unit h1 are only updated if the target x is in the
training set. After training, the attacker can query the model
on the target x and observe whether there is a significant
change in the logits compared to before training.

7

Privacy Backdoors: Stealing Data with Corrupted Pretrained Models

Figure 5. Empirical privacy for backdoored models for an end-
to-end attacker, compared to DP-SGD’s provable upper bound.
The estimation in orange is a conservative lower bound of the
empirical privacy budget, to account for the target gradients not
fully concentrating on the backdoor weights.

Such backdoors have important implications for the tight-
ness of the DP-SGD algorithm of Abadi et al. (2016). DP-
SGD ensures privacy by bounding each training data’s in-
fluence on the model weights. The algorithm’s analysis
assumes a worst-case where: (1) one weight has a large
gradient if and only if some input is in the training set; and
(2) the attacker sees all noisy gradient updates. This analysis
is presumed to be pessimistic, which leads to the adoption
of loose privacy guarantees.1 Yet, we show that our back-
door construction leads to a near-tight privacy leakage for
an end-to-end attacker who only observes the final model.

In more detail, in DP-SGD each input’s gradient is clipped
to norm C (we can assume C = 1), and Gaussian noise
N (0, σI) is added to the batch gradient. The privacy analy-
sis of Abadi et al. (2016) assumes a worst-case where the
gradient at some position i is 1 on input x and 0 otherwise,
and the adversary sees all noisy gradient updates.

Our backdoor above ensures this worst-case scenario occurs
in every training step: since the unit h1 is large, the clipped
gradient concentrates on the weights of h1. Our black-box
attack then compares the logits before and after finetuning,
to infer whether the target was present or not. As we show in
Appendix E, an end-to-end black-box attacker who can only
interact with the final model gives a privacy lower-bound
that is close to the provable guarantee.

To illustrate, we consider backdoored CNN models with a
frozen backbone (keeping some weights frozen simplifies
the backdoor design and analysis). Figure 5 shows that the
empirical privacy budget for our attack is close to the theo-
retical bound from the DP-SGD analysis. Our experiment
has two important consequences: (1) loose privacy budgets
considered in the literature (e.g., ε > 8 in the production

1Nasr et al. (2021) show that when the attacker can observe all
intermediate steps, the analysis is empirically tight. But for more
realistic end-to-end attackers, their approach yields loose bounds.

x0
0.0

0.5

1.0

1.5

lo
gi
ts

1e16
−b/w0

(a) Our black-box attack extracts cap-
tured inputs pixel-by-pixel, by recovering
the critical point where each backdoored
unit activates.

black-box original

(b) A CIFAR-10 image
recovered from a back-
doored MLP using our
black-box attack.

Figure 6. Black-box data reconstruction using partial model steal-
ing. By finding the critical points of the backdoored ReLU units
(left), we can reconstruct a captured input (right).

Federated Learning system of Ramaswamy et al. (2020))
are unsafe if the model provider is untrusted; (2) attempts at
a tighter end-to-end privacy bound for DP-SGD (e.g., as in
(Chourasia et al., 2021; Feldman et al., 2018)) must make
assumptions about the model to rule out backdoors.

6.2. Towards Black-box Data Reconstruction

Finally, we consider the challenging problem of black-box
data extraction. Our insight is that this problem can be
reduced to model stealing (Tramèr et al., 2016; Carlini et al.,
2020; Rolnick & Kording, 2020; Shamir et al., 2023): if
the attacker can recover the backdoored weights using only
black-box queries, then they can recover the captured inputs.

Existing (exact) model stealing attacks exploit the piece-
wise linearity of ReLU networks to extract weights layer-by-
layer. But they only work for small models, and require
high-precision outputs (typically double precision). Luck-
ily, our problem is simpler for three reasons: (1) we only
need to recover the weights of the first layer; (2) we do not
require high precision recovery; (3) the backdoor units are
connected to a very large weight.

These properties enable a simple and efficient attack. Con-
sider a backdoor unit h = w>x + b as in Section 4. By
querying the model on inputs of the form x = [c, 0, . . . , 0],
the attacker can find values of c that activate the unit h
(we assume the attacker can make arbitrary queries in Rm).
Since h is connected to a large weight, the model’s out-
put behaves approximately like a ReLU (see Figure 6a). A
black-box attacker can find the critical point c = −b/w0

of this function (with just two queries as in (Carlini et al.,
2020)). Repeating this procedure for each input coordinate
recovers the full weight w up to a constant. From this, the
attacker can read off the captured input. An example is in
Figure 6b, for a backdoored MLP trained on CIFAR-10.
The full attack requires under 10,000 queries.

8

Privacy Backdoors: Stealing Data with Corrupted Pretrained Models

7. Conclusion
Thousands of developers implicitly trust that foundation
models shared online (e.g., on hubs like HuggingFace) have
not been tampered with to embed malicious functionality.
Our work shows that model backdoors can not only com-
promise model integrity, but also privacy. By manipulating
a pretrained model’s weights, an attacker can recover entire
training inputs from finetuned models. Our work expands
the scope of supply chain attacks on the machine learning
pipeline, and shows we must account for worst-case weights
when reasoning about the privacy of a deployed model.

Impact Statement
Our paper introduces a new attack vector in the machine
learning supply chain. There is of course a risk that pub-
lishing this attack technique could lead to it being exploited.
But as is standard in computer security research, we believe
the benefit from raising awareness of these attack vectors
outweighs these risks. Our work reinforces the necessity for
more robust trust mechanisms for shared machine learning
resources.

References
Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B.,

Mironov, I., Talwar, K., and Zhang, L. Deep learning
with differential privacy. In Proceedings of the 2016 ACM
SIGSAC conference on computer and communications
security, pp. 308–318, 2016.

Boenisch, F., Dziedzic, A., Schuster, R., Shamsabadi, A. S.,
Shumailov, I., and Papernot, N. When the curious aban-
don honesty: Federated learning is not private. In 2023
IEEE 8th European Symposium on Security and Privacy
(EuroS&P), pp. 175–199. IEEE, 2023.

Carlini, N., Jagielski, M., and Mironov, I. Cryptanalytic
extraction of neural network models. In Annual Inter-
national Cryptology Conference, pp. 189–218. Springer,
2020.

Carlini, N., Tramer, F., Wallace, E., Jagielski, M., Herbert-
Voss, A., Lee, K., Roberts, A., Brown, T., Song, D.,
Erlingsson, U., et al. Extracting training data from large
language models. In 30th USENIX Security Symposium
(USENIX Security 21), pp. 2633–2650, 2021.

Carlini, N., Hayes, J., Nasr, M., Jagielski, M., Sehwag,
V., Tramer, F., Balle, B., Ippolito, D., and Wallace, E.
Extracting training data from diffusion models. In 32nd
USENIX Security Symposium (USENIX Security 23), pp.
5253–5270, 2023.

Chourasia, R., Ye, J., and Shokri, R. Differential privacy dy-
namics of langevin diffusion and noisy gradient descent.

Advances in Neural Information Processing Systems, 34:
14771–14781, 2021.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT:
Pre-training of deep bidirectional transformers for lan-
guage understanding, 2019.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., et al. An image is worth 16x16
words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

Dwork, C., McSherry, F., Nissim, K., and Smith, A. Cal-
ibrating noise to sensitivity in private data analysis. In
Theory of Cryptography: Third Theory of Cryptography
Conference, TCC 2006, New York, NY, USA, March 4-7,
2006. Proceedings 3, pp. 265–284. Springer, 2006.

Dwork, C., Roth, A., et al. The algorithmic foundations of
differential privacy. Foundations and Trends® in Theo-
retical Computer Science, 9(3–4):211–407, 2014.

Feldman, V., Mironov, I., Talwar, K., and Thakurta, A. Pri-
vacy amplification by iteration. In 2018 IEEE 59th Annual
Symposium on Foundations of Computer Science (FOCS),
pp. 521–532. IEEE, 2018.

Fowl, L., Geiping, J., Czaja, W., Goldblum, M., and Gold-
stein, T. Robbing the fed: Directly obtaining private
data in federated learning with modified models. arXiv
preprint arXiv:2110.13057, 2021.

Fowl, L., Geiping, J., Reich, S., Wen, Y., Czaja, W., Gold-
blum, M., and Goldstein, T. Decepticons: Corrupted
transformers breach privacy in federated learning for lan-
guage models. arXiv preprint arXiv:2201.12675, 2022.

Glorot, X. and Bengio, Y. Understanding the difficulty
of training deep feedforward neural networks. In Pro-
ceedings of the thirteenth international conference on
artificial intelligence and statistics, pp. 249–256. JMLR
Workshop and Conference Proceedings, 2010.

Gu, T., Dolan-Gavitt, B., and Garg, S. BadNets: Identify-
ing vulnerabilities in the machine learning model supply
chain. arXiv preprint arXiv:1708.06733, 2017.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Hendrycks, D. and Gimpel, K. Gaussian error linear units
(GELUs). arXiv preprint arXiv:1606.08415, 2016.

Hong, S., Carlini, N., and Kurakin, A. Handcrafted back-
doors in deep neural networks. Advances in Neural Infor-
mation Processing Systems, 35:8068–8080, 2022.

9

Privacy Backdoors: Stealing Data with Corrupted Pretrained Models

Hovy, E., Gerber, L., Hermjakob, U., Lin, C.-Y., and
Ravichandran, D. Toward semantics-based answer
pinpointing. In Proceedings of the First Interna-
tional Conference on Human Language Technology Re-
search, 2001. URL https://www.aclweb.org/
anthology/H01-1069.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y.,
Wang, S., Wang, L., and Chen, W. LoRA: Low-rank
adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Jagielski, M., Ullman, J., and Oprea, A. Auditing differ-
entially private machine learning: How private is private
SGD? Advances in Neural Information Processing Sys-
tems, 33:22205–22216, 2020.

Kairouz, P., Oh, S., and Viswanath, P. The composition the-
orem for differential privacy. In International conference
on machine learning, pp. 1376–1385. PMLR, 2015.

Krizhevsky, A. Learning multiple layers of features from
tiny images. Technical report, 2009.

Li, X. and Roth, D. Learning question classifiers. In
COLING 2002: The 19th International Conference on
Computational Linguistics, 2002. URL https://www.
aclweb.org/anthology/C02-1150.

Liu, R., Wang, T., Cao, Y., and Xiong, L. Precurious: How
innocent pre-trained language models turn into privacy
traps. arXiv preprint arXiv:2403.09562, 2024.

Liu, Y., Ma, S., Aafer, Y., Lee, W.-C., Zhai, J., Wang, W.,
and Zhang, X. Trojaning attack on neural networks. In
25th Annual Network And Distributed System Security
Symposium (NDSS 2018). Internet Soc, 2018.

Mironov, I., Talwar, K., and Zhang, L. Renyi differential pri-
vacy of the sampled gaussian mechanism. arXiv preprint
arXiv:1908.10530, 2019.

Nasr, M., Songi, S., Thakurta, A., Papernot, N., and Carlin,
N. Adversary instantiation: Lower bounds for differen-
tially private machine learning. In 2021 IEEE Symposium
on security and privacy (SP), pp. 866–882. IEEE, 2021.

Panda, A., Zhang, Z., Yang, Y., and Mittal, P. Teach GPT
to phish. In The Second Workshop on New Frontiers in
Adversarial Machine Learning, 2023.

Parkhi, O. M., Vedaldi, A., Zisserman, A., and Jawahar,
C. V. Cats and dogs. In IEEE Conference on Computer
Vision and Pattern Recognition, 2012.

Phong, L. T., Aono, Y., Hayashi, T., Wang, L., and Moriai,
S. Privacy-preserving deep learning via additively homo-
morphic encryption. IEEE Transactions on Information
Forensics and Security, 13(5):1333–1345, 2018.

Ramaswamy, S., Thakkar, O., Mathews, R., Andrew, G.,
McMahan, H. B., and Beaufays, F. Training production
language models without memorizing user data. arXiv
preprint arXiv:2009.10031, 2020.

Rolnick, D. and Kording, K. Reverse-engineering deep
relu networks. In International Conference on Machine
Learning, pp. 8178–8187. PMLR, 2020.

Shamir, A., Canales-Martinez, I., Hambitzer, A., Chavez-
Saab, J., Rodrigez-Henriquez, F., and Satpute, N. Poly-
nomial time cryptanalytic extraction of neural network
models. arXiv preprint arXiv:2310.08708, 2023.

Shokri, R., Stronati, M., Song, C., and Shmatikov, V. Mem-
bership inference attacks against machine learning mod-
els. In 2017 IEEE symposium on security and privacy
(SP), pp. 3–18. IEEE, 2017.

Song, C., Ristenpart, T., and Shmatikov, V. Machine learn-
ing models that remember too much. In Proceedings
of the 2017 ACM SIGSAC Conference on computer and
communications security, pp. 587–601, 2017.

Steinke, T., Nasr, M., and Jagielski, M. Privacy au-
diting with one (1) training run. arXiv preprint
arXiv:2305.08846, 2023.

Tramer, F. and Boneh, D. Differentially private learning
needs better features (or much more data). arXiv preprint
arXiv:2011.11660, 2020.

Tramèr, F., Zhang, F., Juels, A., Reiter, M. K., and Risten-
part, T. Stealing machine learning models via prediction
{APIs}. In 25th USENIX security symposium (USENIX
Security 16), pp. 601–618, 2016.

Tramèr, F., Shokri, R., San Joaquin, A., Le, H., Jagielski,
M., Hong, S., and Carlini, N. Truth serum: Poison-
ing machine learning models to reveal their secrets. In
Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security, pp. 2779–2792,
2022.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Wen, Y., Geiping, J., Fowl, L., Goldblum, M., and Gold-
stein, T. Fishing for user data in large-batch feder-
ated learning via gradient magnification. arXiv preprint
arXiv:2202.00580, 2022.

Wen, Y., Marchyok, L., Hong, S., Geiping, J., Goldstein,
T., and Carlini, N. Privacy backdoors: Enhancing mem-
bership inference through poisoning pre-trained models,
2024.

10

https://www.aclweb.org/anthology/H01-1069
https://www.aclweb.org/anthology/H01-1069
https://www.aclweb.org/anthology/C02-1150
https://www.aclweb.org/anthology/C02-1150

Privacy Backdoors: Stealing Data with Corrupted Pretrained Models

Xu, J., Sun, X., Zhang, Z., Zhao, G., and Lin, J. Under-
standing and improving layer normalization. Advances
in Neural Information Processing Systems, 32, 2019.

Yousefpour, A., Shilov, I., Sablayrolles, A., Testuggine, D.,
Prasad, K., Malek, M., Nguyen, J., Ghosh, S., Bharadwaj,
A., Zhao, J., Cormode, G., and Mironov, I. Opacus: User-
friendly differential privacy library in PyTorch. arXiv
preprint arXiv:2109.12298, 2021.

Zhao, J. C., Sharma, A., Elkordy, A. R., Ezzeldin, Y. H.,
Avestimehr, S., and Bagchi, S. Loki: Large-scale data
reconstruction attack against federated learning through
model manipulation. In 2024 IEEE Symposium on Secu-
rity and Privacy (SP), pp. 30–30. IEEE Computer Society,
2023.

11

Privacy Backdoors: Stealing Data with Corrupted Pretrained Models

A. Common Modules and Tricks For Transformer Backdoors
In this appendix, we provide more details on some common modules and numerical tricks we use to implement privacy
backdoors in transformer models. In Appendix C, we then describe how we combine these modules for ViT and BERT
models.

A.1. Stabilizing Layer Normalization

Layer normalization is a critical component of the transformer architecture, which enables smoother gradients, faster training,
and better accuracy (Xu et al., 2019). However, it brings no direct benefit to our backdoor construction.

In fact these layers are quite problematic because they cause a strong coupling between different features, and they rescale
inputs according to their magnitude. The coupling of features is challenging because we want different portions of the
feature vector to be used for different purposes (e.g., for benign features, or for backdoor inputs and outputs). The rescaling
effect of layer normalization can attenuate gradients, which risks recovering illegible mixtures.

To mitigate these issues, we show how to “decouple” two parts of a feature vector, so that the layer normalization acts
(nearly) independently on both parts. As a by-product, our approach also gets rid of the layer’s input-dependent rescaling
effect!

A layer normalization module with learned parameters γγγ,βββ implements the following operation:

LN [x] = z ∗ γγγ + βββ, where z =
x− µ
σ

.

Here µ and σ are the sample average and standard deviation of x, ∗ is a coordinate-wise product, and for simplicity we omit
the numerical stability correction that ensures that the standard deviation is non-zero.

Let m be the dimension of x. The gradient of the normalization operations satisfies:

∂zj
∂xj

=
(1− 1

m)− (xj−µ)2

mσ2

σ
∀j ∂zi

∂xj
=
− 1
m −

(xj−µ)(xi−µ)
mσ2

σ
∀i 6= j . (5)

If the input is amplified as x→ x′ = c · x for c� 1, the gradient becomes smaller. Unlike in a MLP layer, the gradient
flowing back to the input is thus input-dependent. Moreover, the gradient for coordinate xj depends on the value of all other
input coordinates.

To stabilize a layer normalization, we consider a special case where the input is partitioned as x → (xL,xR). We then
modify the input as (xL,xR + C), where C is a vector of stabilizer constants and C � maxx‖x‖∞. We denote the
respective dimensions of xL and xR as mR and mL (with mR + mL = m), and their respective means and standard
deviations as µR, µL, σL, σR.

Asymptotically in C, we can then write the forward pass as:

(zL)j =
(xL)j − µL − mR

m C√
mLmR

m2 C
(zR)j =

(xR)j − µR + mL

m C√
mLmR

m2 C
.

Similarly, the asymptotic behavior of the gradients is:

∂(zL)i
∂(xL)i

=
1− 1

mL

C
√

mLmR

m2

,
∂(zL)i
∂(xL)j

=
− 1
mL

C
√

mLmR

m2

∂(zL)i
∂(xR)j

= − 1

m

[
m
mR

((xL)i − µ)− m
mL

((xR)j − µ)− 2(µR − µL)
]

C2
√

mLmR

m2

∂(zR)i
∂(xR)i

=
1− 1

mR

C
√

mLmR

m2

,
∂(zR)i
∂(xR)j

=
− 1
mR

C
√

mLmR

m2

∂(zR)i
∂(xL)j

= − 1

m

[
m
mR

((xL)j − µ)− m
mL

((xR)i − µ)− 2(µR − µL)
]

C2
√

mLmR

m2

.

12

Privacy Backdoors: Stealing Data with Corrupted Pretrained Models

We have thus achieved two things: (1) the gradients of the left and right outputs with respect to the corresponding input no
longer depend on the input; (2) the “cross-term” gradients between the left output and right input (and vice-versa) decay
quadratically faster with C.

Then we just rescale the outputs properly. To this end, we define a special module

StabLN(x;J ;γγγL,βββL, γγγR,βββR;C) ,

implemented by the layer normalization module. Here J ⊆ {1, . . . , d} is a subset of the feature coordinates in x, and J̄ is
its set complement. The forward pass of this module satisfies:

xL ← xJ xR ← xJ̄

(zL, zR) = norm(xL,xR + C)

x′L = γγγL ∗
√
mLmR

m2
CzL + γγγL ∗

mR

m
C + βββL = γγγL ∗ (xL − µL) + βββL

x′R = γγγR ∗
√
mLmR

m2
CzR − γγγR ∗

mL

m
C + βββR = γγγR ∗ (xR − µR) + βββR .

This module almost degenerates into a simple one-to-one affine layer. For the entire module, we get the following gradients:

∂(x′L)i
∂(xL)i

= (γL)i

(
1− 1

mL

)
∂(x′L)i
∂(xL)j

= −(γL)i
1

mL

∂(x′L)i
∂(xR)j

= O(1/C)

∂(x′R)i
∂(xR)i

= (γR)i

(
1− 1

mR

)
∂(x′R)i
∂(xR)j

= −(γR)i
1

mR

∂(x′R)i
∂(xL)j

= O(1/C) .

We have thus successfully achieved two effects. First, we have decoupled the two parts of an input vector corresponding to
the indices {J , J̄ }. Second, we got rid of the input-dependent scaling.

A.2. Dealing with GELUs

Modern transformers typically use GELU activations rather than ReLUs. The GELU function (Gaussian Error Linear Unit)
is defined as GELU (x) = xΦ(x), where Φ(x) is the cumulative distribution function for a standard Gaussian distribution. A
straightforward calculation of its derivative shows that

d

dx
GELU (x) = Φ(x) + xφ(x) min

x

{
d

dx
GELU (x)

}
≈ −0.13 ,

where φ(x) is the probability density function of a standard Gaussian distribution. Unlike a ReLU, a GELU can thus have
negative outputs, and negative derivatives. For inputs of large enough magnitude (e.g., |x| > 10), the GELU is essentially
equivalent to the ReLU for our purposes.

GELUs are problematic for two reasons: (1) a backdoor can never be fully shut down, and so a backdoor will continuously
capture small parts of inputs even after its first activation. This reduces the quality of reconstructed inputs; (2) if the backdoor
activates, we get a large gradient flow into the backdoor. If the GELU has a negative gradient, then we get a large negative
gradient into the backdoor, which opens the backdoor further and risks breaking down the model’s behavior in subsequent
batches.

A naive solution is to increase the magnitude of backdoor inputs x→ x′ = c · x for some c� 1. Then, we expect that all
backdoor outputs will fall into the region where the GELU behaves like a ReLU. This scaling also requires to increase the
magnitude of the shutdown term (defined in Appendix A.3) when the backdoor is first activated, thereby helping to keep the
backdoor shut. Unfortunately, this approach is still prone to some problems. In practice, some negative gradient signal into a
backdoor unit is inevitable. By simply increasing the magnitude of inputs, we also amplify the impact of these unintended
negative gradients, which risks breaking the backdoor fully open.

To attenuate these issues we make use of two strategies. First, we set backdoor thresholds somewhat loosely, so that some
backdoor units may effectively be activated multiple times. This makes those backdoors harder to reconstruct, but lowers the
probability of a full model breakdown. Second, we use the MLP directly following each backdoor to ensure that we only

13

Privacy Backdoors: Stealing Data with Corrupted Pretrained Models

get strong gradient signals into the backdoor if the activation output is large (and confirmative) enough (i.e., in the regime
where the GELU acts like a ReLU). Otherwise, the gradient signal will not be amplified by the MLP and thus only have a
negligible impact on the backdoor weights (and the subsequent selective activation process).

A.3. Boosting Shutdown Terms

As we saw in Section 4, when a backdoor has captured an input x̂, the output of the updated backdoor on a new input x is
equal to

w′>x + b′ = (w>x + b)− c · (x̂>x + 1) ,

where c is a positive term.

The term x̂>x determines how easy the backdoor is to shut down, if we keep c fixed. We call this term the “shutdown term”.
Ideally, we would want this term to be as positive as possible. However, simultaneously, we expect to decouple the selective
activation process with the positivity of the shutdown term so that we can have the strongest distinguishability for different
backdoor weights.

We can achieve this by logically splitting the backdoor. Assume that the weight of the backdoor is of the form w = (0,wR),
and an input is similarly split as x = (xL,xR). Then, the activation value only depends on the second half of the input:

h = ReLU
(
w>x + b

)
= ReLU

(
w>RxR + b

)
.

The shutdown term, however, depends on the entire input:

x̂>x =
[
x̂>L , x̂

>
R

] [xL
xR

]
= x̂>LxL + x̂>RxR .

Thus, by boosting the left-hand part x̂>LxL of the input of the backdoor, we can create larger shutdown terms without
changing the backdoor’s selectivity (i.e., which inputs can activate a given backdoor).

Partial input boosting using a layer normalization. We can achieve this boosting of part of the backdoor input using a
(stabilized) layer normalization operation, which directly precedes the MLP modules that implements the backdoor. We
combine these operations into a reusable structure we call SpecLinear:

SpecLinear ([xL,xR], [γγγL, γγγR], [βββL,βββR], [wL,wR], b) :

return [wL,wR]> ·
(

[γγγL, γγγR] ∗ norm([xL,xR]) + [βββL,βββR]
)

+ b

Here, γγγ and βββ are the affine transforms implemented by the layer normalization, norm normalizes the input to zero mean
and unit variance, and ∗ is the coordinate-wise product of two vectors.

A special instantiation of interest is when γγγL = wL = 0L,βββR = 0R. Assuming for simplicity that x is already normalized2,
the module output then simplifies to:

w>R(γγγR ∗ xR) + b ,

and the shutdown term for the backdoor is

‖βββL‖2 + (γγγR ∗ x̂R)>(γγγR ∗ xR) .

Then, we can arbitrarily increase the magnitude of βββL to increase the shutdown term, without any effect on the backdoor
output.

A.4. Aggregating Information across Tokens

As we explain in Section 5.2, a challenge we face with transformers is to capture all tokens in an input sequence, rather than
individual tokens belonging to different inputs.

2In practice, the layer normalization here is always stabilized. The final effect is just like the input has already been normalized.

14

Privacy Backdoors: Stealing Data with Corrupted Pretrained Models

We solve this problem by computing a sequence identifier that is common to all tokens in a sequence, and which we can
later use as a feature to selectively activate backdoors. We implement a sequence identifier using an attention module that
averages features across all tokens in a sequence.

Let X =
[
x(1) x(2) · · · x(k)

]>
be an input sequence consisting of k token embeddings. The output of self-attention

module Z = SelfAttention [X] is then:

Q =
[
W(Q)x(1) + b(Q) W(Q)x(2) + b(Q) · · · W(Q)x(k) + b(Q)

]>
K =

[
W(K)x(1) + b(K) W(K)x(2) + b(K) · · · W(K)x(k) + b(K)

]>
V =

[
W(V)x(1) + b(V) W(V)x(2) + b(V) · · · W(V)x(k) + b(V)

]>
Z =

[
z(1) z(2) · · · z(k)

]>
= Softmax

(
QK>

)
V .

(6)

Let J ⊆ {1, . . . , 768} be a set of coordinates in a token embedding, and ρ > 0 some constant. We then define a module
Syn(X;J ; ρ), which sets the attention weights as follows:

W(Q) = 0 b(Q) = 0

W(K) = 0 b(K) = 0

W
(V)
ij =

{
ρ if i = j ∈ J
0 else

b(V) = 0 .

(7)

The query Q, key K and value V matrices are then:

Q = K = 0

Vij =

{
ρx

(i)
j if j ∈ J

0 else
.

The softmax value is then just a uniform matrix with value 1/k in each entry. Finally, the output Z satisfies:

z
(i)
j =

{
ρ 1
k

∑
1≤l≤k x

(l)
j if j ∈ J

0 else
∀1 ≤ i ≤ k.

In words, we sum up all the token vectors (scaled by some factor ρ/k), and zero-out coordinates that do not belong to the set
J . This averaged input is our sequence key which we will use to selectively activate backdoors.

The same design works for multi-headed attention. For a masked attention module, we can simply take the average only
over the unmasked tokens.

B. Creating Keyed Backdoors
In this section, we describe our main backdoor design for transformers. To capture all individual tokens from a sequence,
we build a family of backdoors so that all backdoors fire only for specific sequence identifiers, and so that each backdoor
fires only for tokens in a specific position.

Creating position identifiers. We use a portion of each token’s feature vector to represent the token’s position in a
sequence (as is done with position embeddings in a benign transformer).

The only difference is that we craft these position identifiers to be near-orthogonal to each other, so that we can use them to
selectively activate different backdoors. Suppose that tokens can be in one of n positions, and that we reserve m coordinates
in the feature vector for a position identifier. We then design these position identifiers u(1), . . . ,u(n) ∈ Rm to satisfy the
following properties:

‖u(j)‖2 = u0 ∀j(
u(j)

)>
u(k) < u+ � u0 ∀j 6= k∑

k

u
(j)
k = 0 ∀j ,

(8)

15

Privacy Backdoors: Stealing Data with Corrupted Pretrained Models

where u+ is a positive threshold determined by the attacker. The first two conditions ensure that the position keys are not
strongly aligned with each other, so that they can selectively activate individual backdoors. The last condition that keys have
zero mean is merely for convenience, to facilitate interactions with a subsequent layer normalization.

Creating sequence identifiers. To create our sequence identifiers, we use the module Syn(X,J , ρ) we defined in
Appendix A.4, where J represents the indices of the token features to sum up to create a sequence key. This sequence key
is then stored in |Jseq| coordinates of each token’s feature representation. We migrate features from the source features to
the target features seq using the projection linear layer of an attention module.

The backdoor design. We can finally present the full keyed backdoor design. This backdoor is implemented in the
transformer’s first MLP module, which maps token features of dimension 768 to hidden units of dimension 3072. For ViT
models, an input sequence consists of 49 tokens, each of which represents a patch of 32× 32 pixels. For BERT, a sequence
consists of 48 token embeddings. We thus want to build a family of backdoors that can capture all these individual tokens.

Denote an input sequence as X =
[
x(1) x(2) · · · x(k)

]
. Each token vector x(i) is split into multiple components:

x(i) = [x(i)

ft
,x(i)

act ,x
(i)
pos ,x

(i)
seq ,x

(i)

tok︸ ︷︷ ︸
x
(i)

key

] , (9)

where x(i)
ft

contains benign features, x(i)
act is used to store backdoor activations, and x(i)

key
contains the features to activate the

backdoor, which are further split into three components: x(i)
pos = u(i) is the token’s position identifier, x(i)

seq = seq is the
sequence identifier which is shared by all tokens in the sequence, and x(i)

tok
contains token features to be captured.

We then build families of backdoors where the j-th backdoor has parameters

w = [0,0, θposu
(j),wseq,0], b = b(j)pos + bseq (10)

Here θposu
(j) is the weight that aligns with tokens in the j-th position, wseq is the backdoor weight that aligns with the

sequence identifier, and b(j)pos and bseq are corresponding thresholds to be set. On an input token x(i), the output of the
backdoor becomes:

h =
(
θpos(u

(j))>x(i)
pos + b(j)pos

)
+
(
w>seqx

(i)
seq + bseq

)
=
(
θpos(u

(j))>u(i) + b(j)pos

)
+
(
w>seqseq + bseq

)
.

By adjusting the thresholds b(j)pos and bseq, we can ensure that the backdoor only activates when both (u(j))>u(i) and w>seqseq
are large. The first term is large for tokens in the j-the position, and the second term follows some distribution over all
training inputs. We set these thresholds so that a token in an incorrect position i 6= j never activates the backdoor, i.e.,

max
x

(w>seqxseq + bseq)� b(j)pos −max
k 6=j

(θpos(u
(j))>u(k)) .

Finally, we apply the trick described in Appendix A.3 to boost the backdoor’s “shutdown” term, to ensure that an activated
backdoor gets a large gradient modifcation that shuts it down.

Specifically, we use a combination of a layer normalization and MLP to implement the module:

SpecLinear

[
xft
xact

]
︸ ︷︷ ︸

xL

,

xpos
xseq
xtok

︸ ︷︷ ︸

xR

 , (0, γγγR) , (βββL,0) ,

[
0
0

]
︸︷︷︸
wL

,

θposu
(j)

wseq
0

︸ ︷︷ ︸

wR

 , b(j)pos + bseq

 ,

Multiple families of backdoors. To capture multiple full inputs, we replicate the above design of a backdoor family, each
time using a different sequence weight wseq and corresponding bias bseq. Since there are 3072 hidden units in the MLP, we

16

Privacy Backdoors: Stealing Data with Corrupted Pretrained Models

could implement many backdoor families. But at the end of the module, we need to fit all the backdoor outputs into a feature
vector of dimension 768. We do this by aggregating the activation signals of an entire backdoor family into a single feature.
That is, assuming that the i-th backdoor family uses the units in positions Ii ⊂ {1, . . . , 3072}, we use the final linear layer
in the MLP module to project all these units onto a single coordinate j of the feature vector:

W
(O)
j,k =

{
θ if k ∈ Ii
0 else

, (11)

where θ is an amplifier coefficient. Using these weights, we ensure that the gradient signal is shared between all backdoors
in a family, so that they all shut down simultaneously when activated.

C. Detailed Description of Transformer Backdoors for ViT and BERT
In this appendix, we provide details about how to craft backdoors for ViT and BERT models, by making use of some of the
common tricks and modules described in Appendix A.

C.1. Structure of a Transformer

In the main body of the paper, we give some high-level overview of the architecture of a transformer, and how we implement
the backdoor into it. Here we provide additional details necessary for describing the backdoor modules.

We begin by looking at the structure of the transformer’s encoder blocks, which combine three operations: a layer
normalization, a MLP, and an attention module. The MLP module x′′ = MLP [x] ,x ∈ R768 is composed of two linear
layers:

x′ = GELU(Wx + b) x′ ∈ R3072

x′′ = W′x′ + b′ x′′ ∈ R768 .
(12)

Note that there are 3072 intermediate units inside a MLP module. A complete attention module Z ′ =
CompleteAttention [X] contains one more projection linear module than the simplified description in Equation (6),
i.e.,

Z =
[
z(1) z(2) · · · z(k)

]T
= SelfAttention [X]

Z ′ =
[
W(O)z(1) + b(O) W(O)z(2) + b(O) · · · W(O)z(k) + b(O)

]T
.

(13)

The three modules are arranged in a different order for ViT and BERT models. For convenience, we set all dropout
probabilities to zero—a reasonable setup for finetuning tasks.

Partitioning features and blocks. We only have limited resources to build a backdoor structure in a transformer. There
are 12 encoder blocks and 768 features. Here we describe how we partition these resources for our backdoor construction.
This partition trades between the utility of the model (i.e., the more features we leave unmodified, the better accuracy we
can achieve on downstream tasks), and the quality of reconstructed images and sentences. Recall that we split a token’s
feature vector as described in Equation (9). When referring to the indices of these different parts of the feature vector we
use the notation Jft, Jkey, etc. We split the encoder blocks into three sets, “prefix”, “propagation” and “suffix”. The prefix
is used to prepare inputs for the backdoor, and run the backdoor. The propagation blocks propagate features to the end
of the transformer. The suffix block prepares the output features. For the ViT model, we consider two designs: one that
captures entire images, and one that simply captures individual patches (i.e., without using any sequence or position keys).
We summarize our partition in Table 2:

17

Privacy Backdoors: Stealing Data with Corrupted Pretrained Models

Table 2. Partition of encoder blocks and features. prefix: backdoor module, amplifier module, erasure module; propagation: signal
propagation module; suffix: output module. ft: benign features for down-stream tasks; key: features for selectively activating a backdoor;
act: backdoor activation outputs. key is further partitioned into pos, seq, tok, where pos are the features used for position keys, seq
are features used for sequence keys, and tok are the features captured by the backdoor.

key

Model Prefix Propagation Suffix ft (total) pos seq tok act

ViT (image) 3 8 1 448 256 128 64 64 64
ViT (patch) 3 8 1 448 256 0 0 256 64
BERT 2 9 1 512 192 64 128 0 64

C.2. ViT

The encoder block of a ViT model, Zout = ViTEncoderBlock [X in] is written as:

x(i) = LN
[
x

(i)
in

]
, for 1 ≤ i ≤ k[

x̃(1) x̃(2) · · · x̃(k)
]T

= CompleteAttention
[[
x(1) x(2) · · · x(k)

]T]
z

(i)
in = x̃(i) + x

(i)
in

z(i) = LN
[
z

(i)
in

]
z̃(i) = MLP

[
z(i)
]

z
(i)
out = z̃(i) + z

(i)
in .

Observe that the features are normalized before being fed into the MLP or attention layer. Besides, a series of two shortcut
connections directly connects the encoder’s input and output.

C.2.1. INPUT MODULE

The first layer of a vision transformer is a convolutional module that extracts embeddings for each input patch. For ViT-B/32
used in our experiments, this layer has 768 kernels with size and stride of 32. The output is thus a feature representation of a
32× 32 patch within the input image. During training, a 3× 224× 224 image is fed into the convolutional module and
produces a 768× 7× 7 vector. This intermediate state is permuted and reshaped to a 49× 768 hidden state, regarded as 49
token vectors with 768 features each. The hidden state is then concatenated with an additional 1× 768 class-token vector,
and added to a (49 + 1)× 768 position embedding. This is the input to the model’s first encoder block.

Since we only get (part of) a 768 feature vector to represent a 32× 32 patch, we need to compress the patch somehow. We
do this by using some convolutional filters to convert each patch to a downscaled and grayscaled version (by selecting and
grayscaling one pixel per patch). 3 The output is of size either 16× 16 = 256 (if we only reconstruct individual patches)
or 8 × 8 = 64 (if we reconstruct entire images). These features are stored in the tok portion of the input feature vector
for each patch. As an additional trick, we ensure that these features have zero mean, which helps for the subsequent layer
normalization.

The kernels that correspond to the benign input positions ft are not modified, so as to keep valuable features from the
pretrained model. If we want to reconstruct entire images, we use the position embeddings to implement a position key as
described in Appendix B. The kernels that map to other parts of the feature vector (i.e., act, seq) are set to zero.

C.2.2. SEQUENCE KEY CREATOR & BACKDOOR MODULE

The first encoder block of the ViT is used to create sequence keys and to implement the backdoor module (as described in
Appendix B).

3We can use a kernel to extract a target grayscaled pixel from each patch. By combining different extractor kernels, we can extract a
downscaled sub-image.

18

Privacy Backdoors: Stealing Data with Corrupted Pretrained Models

To create sequence keys, we first stabilize the layer normalization before the attention module with the module
StabLN(x,J key,1,0,0,0) from Appendix A.1. We then use the attention module to create sequence keys, as described in
Appendix A.4. We use the features in J tok to create sequence keys, and store the keys in the seq positions.

We then implement the backdoor module as described in Appendix B, using the SpecLinear module that combines a layer
normalization with the subsequent MLP. If the target is simply to reconstruct individual patches, rather than complete images,
the backdoor construction is simplified as we just apply the backdoor weight to the whole backdoor key key, without any
regard for position or sequence information.

C.2.3. AMPLIFIER & ERASURE MODULE

The amplifier module is instantiated using the MLP of the second encoder block. The attention part of this encoder block
is skipped using the shortcut connection. The layer normalization before the MLP module is stabilized. Only features
belonging to act are fed into the MLP module. If an activation signal is above a pre-assigned noise threshold, it gets
amplified significantly (we can achieve this conditional amplification using a simple 1-layer MLP). Features that do not
belong to J act skip the whole encoder block through the shortcut connections and remain unchanged.

Note that we could have also used the second layer of the MLP in the first encoder block to amplify activation signals, but
this approach is problematic for GELU transformers because we cannot avoid unexpected gradients (i.e., when the GELU
inputs are close to zero) being amplified. By pushing the amplifier into the next encoder block, we can use additional layers
to ensure that small backdoor outputs gets dampened out, before the amplification.

The erasure module is implemented using the MLP part of the third encoder block. Since the key features have already
played their role, they are wiped out to facilitate signal propagation. The reason this is necessary is because some of the
backdoor inputs (e.g., the sequence keys) have large magnitude and this would distort the benign features and cause an
accuracy drop on downstream tasks.

Hidden states from the second encoder block are directly fed into the MLP module through the shortcut connection. The
layer normalization is stabilized using the module StabLN (x,J key;γγγ,0,0,0), which wipes out any features not belonging
to key. The weights and biases of the MLP module are manipulated to obtain the following forward pass:

xL ← 0 ∗ (key − µkey) = 0 xR ← γγγ ∗ (key − µkey) = γγγ ∗ key stable layer normalization

x′L ← 0 x′R ← GELU(W(1)xR + b(1)) linear layer 1

x′′L ← 0 x′′R ←W(2)x′R + b(2) linear layer 2
zL ← 0 + xL = 0 zR ← x′′R + xR = 0 shortcut connection

s.t. W(2)W(1)γγγ = −1 b(2) = −W(2)b(1) .
(14)

In words, we ensure that the MLP implements a negative identity mapping, so that the shortcut connection wipes out the
features. The above assumes that the input to the GELU is large enough so that it behaves like an identity. We achieve this
by setting b(1) to a large positive value. The choice of weights γγγ,W(1),W(2) is important to guarantee the robustness of
this module. If they are not chosen carefully, this module will drift from its original design after a few gradient updates.

C.2.4. SIGNAL-PROPAGATION & OUTPUT MODULE

The Signal propagation module is implemented on the eight remaining encoder blocks before the final output block. We
want the classification-irrelevant information belonging to key and act to have as little impact on these encoder blocks
as possible. Therefore, all weights and biases connected to these features are set to zero in the layer normalizations,
attention module, and MLP. Then, the backdoor activation signals simply propagate through the entire block by the shortcut
connections.

The output module’s goal is to aggregate activation signals onto the class token CLS. This is implemented in the last encoder
block. The first layer normalization is stabilized in order to avoid any signal attenuation, and we then re-use the same trick
as for sequence keys by using the attention module to aggregate information across all tokens. Specifically, we use the
structure Syn(X,J act; 1) to aggregate all activation signals. The remaining modules in this block are used to implement
identity mappings. At the end of the encoder, the class-token vector is passed to a stabilized layer normalization, which
ensures that the act features are not downscaled or mixed with the benign features.

19

Privacy Backdoors: Stealing Data with Corrupted Pretrained Models

C.3. BERT

The encoder block of a BERT model, Zout = BERTEncoderBlock [Xin] is written as:

[
x̃(1) x̃(2) · · · x̃(k)

]T
= CompleteAttention

[[
x

(1)
in x

(2)
in · · · x

(k)
in

]T]
x(i) = x̃(i) + x

(i)
in , for 1 ≤ i ≤ k

z
(i)
in = LN

[
x(i)
]

z̃(i) = MLP
[
z

(i)
in

]
z(i) = z̃(i) + z

(i)
in

z
(i)
out = LN

[
z(i)
]
.

Thus, in contrast to the ViT, the inputs are not directly connected to the outputs with a shortcut connection. Inputs are thus
necessarily distorted twice by layer normalizations before being output.

C.3.1. INPUT MODULE

The first layer of a BERT model is an embedding layer. Discrete words and positions are converted to 768-entry word and
position embeddings. For a word dj at position j, its word embedding vector ẽ(d) and position embedding vector e(j) are
added together for a complete representation x(d,j) = ẽ(d) + e(j).

We use the approach described in Appendix B to create position identifiers for our backdoors. We add an additional
requirement to Equation (8), to ensure that special tokens (such as the padding token [PAD]) do not activate backdoors. For
this, we ensure that the shared embedding of these special tokens (in the coordinates corresponding to the position key pos)
is some vector u(−) that is negatively aligned with all other position keys u(1), . . . ,u(n).

More precisely, the following operations are done to produce embeddings:

word embedding : ẽ(d)
pos ←

{
0 if d is not a special token
u(−) if d is a special token

; ẽ(d)
seq ← 0, ẽ

(d)
act ← 0, ẽ

(d)
ft ← ẽ

(d)
ft ∀d;

position embedding : e(j)
pos ← u(j); e(j)

seq ← 0, e
(j)
act ← 0, e

(j)
ft ← e

(j)
ft ∀j .

In summary, the entries for benign features ft are not changed to inherit the utility of the pretrained weights. There is a
layer normalization module next to these embedding modules, which is stabilized as StabLN (x,Jft;1,0,1,0). (ft are not
filtered out in order to recover words.)

C.3.2. SEQUENCE KEY CREATOR & BACKDOOR & AMPLIFIER & ERASURE MODULE

The backdoor module follows the design outlined in Appendix B. We use the first encoder’s attention module to create
sequence keys, and the subsequent MLP to implement all our backdoor units. Since the benign features contain both the
word and the position information, the benign features are selected as the source from which sequence keys are generated.
The sequence keys are shared by all unmasked tokens, i.e., non-pad tokens. To prepare for backdoor units, the layer
normalization after the first attention module is stabilized using the structure StabLN(x,J ft;1,βββL,1,0).

The amplifier module is directly realized by the second linear layer of the first MLP using the coefficient θ in Equation (11).
The erasure module is implemented by the last layer normalization module of the first encoder block. After generating
activation signals, position information and sequence keys are useless for the following logical modules. They are wiped out
by assigning weights and biases belonging to key of this LN to zero. This LN is stabilized for convenience and serves as an
almost identity mapping for benign features belonging to ft and activation signals belonging to act. The second encoder
block is used to fuse-in weights from the first encoder’s layer normalization, which were dropped to stabilize this LN. In this
way, we guarantee that the benign features are still computed correctly.

20

Privacy Backdoors: Stealing Data with Corrupted Pretrained Models

C.3.3. SIGNAL-PROPAGATION & OUTPUT MODULE

The signal propagation module uses the nine remaining encoder blocks before the final output block. A total of 512 features
belonging to ft are used for downstream tasks. These encoder blocks strengthen the utility of benign features and propagate
the backdoor activation signals. Yet, it is difficult to propagate the activation signals through dozens of layer normalizations
(here, in contrast to the ViT model, we cannot simply propagate through the shortcut connection). If the activation signals are
too strong, we get some dampening in each LN, which causes too small gradients. In contrast, if the activation signals are too
weak, it is difficult to distinguish them from noise. The easiest solution would be to stabilize each layer normalization using
the trick in Appendix A.1. But this would require changing these layers’ weights, which would break all the benign features
too (unless we retrain the backdoored BERT from scratch). Our simpler solution is to amplify the activation signals in every
encoder’s MLP in order to approximately offset the signal attenuation we will natively get from the layer normalization
(when only using shortcut connections to propagate backdoor outputs). In the MLP, activation signals are amplified if they
are more significant than some noise threshold, i.e,

x′amp = GELU(xact − δ)

x′′act = θpropag · x′amp .

Here δ is a noise threshold and θpropag an amplifier that are heuristically chosen for each encoder block, based on various
finetuning experiments. We use amplifiers between 0.2 and 0.3 and a noise threshold of 0.2. The difficulty of overcoming
the signal attenuation effect increases with the number of layer normalizations. Fortunately, it is affordable for the number
of LNs in the models we experimented with. The unavoidable signal attenuation also brings some benefits for GELU
activations, since only significant enough activation signals and their corresponding gradient signals survive through the
model.

The last encoder block is used to implement the output module, by averaging activation signals across tokens using the
structure Syn(X,J act; 1) from Appendix A.4. On top of the BERT’s encoder is an additional pooling module, which is
essentially a MLP using a tanh activation. In our experiments, we replace this tanh function by a ReLU for convenience,
as this has no impact on downstream performance. The first layer of the pooling module implements an identity mapping
for benign features and an amplifier for signal features. Generally, we find that activation signals are not of much greater
magnitude than the benign features at this point, to the signal attenuation in LNs. By amplifying the activations, we ensure
they receive large enough gradient signals to shut down backdoors.

C.4. Backdoor Robustness

As mentioned in the main body, the finetuned backdoored transformer should be helpful on downstream tasks, with enough
robustness to afford unexpected weight disturbances. In this appendix, we give a more detailed description of robustness,
which is the critical challenge in this work.

Gradients that flow back to shut down a backdoor are always large, to ensure the backdoor gets shut properly. These large
gradients can negatively impact the model’s benign features. To make matters worse, our backdoor construction relies on a
number of reusable modules (e.g., for preparing inputs, or computing sequence keys). The weights in these modules are
necessarily updated when a backdoor fires. A too large deviation could cause these modules to break down, and generate
large random features that negatively impact the downstream performance. Fortunately, these large backdoor gradients occur
rarely, and become acceptable after batch averaging. However, if we are unlucky and such large gradients occur many times
in an optimization step (e.g., because of a negative gradient signal into a backdoor unit that did not shut the backdoor down),
they can cause unrrecoverable damage to the pretrained weights.

In practice, the robustness of a transformer is usually determined by a specific bottleneck module. The robustness of different
modules is correlated: we sometimes need a module to have larger weights than the module preceeding it, but this then
causes large gradients to flow into a module with small weights. We thus have to carefully tune each module’s parameters
(sometimes empirically across multiple finetuning runs) to ensure that the transformer is robust.

Remark. A trivial approach to increase the robustness of a model would be to use a very small learning rate or to freeze
some weights. This would inevitably raise suspicion. In this work, we thus adopt a conventional finetuning setup in which
all parameters are updatable, and the learning rate is reasonable to obtain good downstream performance.

21

Privacy Backdoors: Stealing Data with Corrupted Pretrained Models

C.4.1. ROBUSTNESS ANALYSIS EXAMPLES

The robustness of a backdoored transformer is determined by a few bottleneck modules. In this section we analyze some
typical bottleneck modules as examples. In our experiments, we found that when a module is not robust, a breakdown
usually occur at the first few updates. For simplicity, we thus analyze the robustness issue by looking at the very first update.

Erasure module of ViT. The erasure module generally serves as the bottleneck of a backdoored ViT. Consider the
structure defined in Equation (14), which is supposed to zero out the inputs, and focus on the second linear layer. Given the
backward gradient signal λi := ∂L

∂hi
, i ∈ J act of a backdoor unit, the update of this layer is calculated as:

∆W
(2)
ij =

{
− η
Bλix

′
j if j ∈ J key

0 else
,

where B is the batch size, η is the learning rate. In the next step, the output of the second linear layer is calculated as:

x′′i =
∑

j∈J key

−
(η
B
λix
′
j

)
x′j ≈ −|J key|

η

B
λiδ

2
1 .

In our experiments, η = 10−4, B = 128, |J key| = 256, and δ1 ∼ 10 for GELU. So we have |x′′i | ≈ 0.02λi in all token
vectors. The module thus no longer zeros out inputs exactly. If there is an amplified module after this erasure module, we
thus risk that these non-zero outputs get magnified to the point where they override any benign features (especially for the
token vector).

Sequence key creator. The hyper-parameter ρ of the sequence key creator in Equation (7) is an essential hyper-parameter
for robustness. The sequence key creator module essentially consists of two consecutive linear layers:[

x(1) x(2) · · · x(k)
]
−→[

W(V) 1
k

∑
j x

(j) + b(V) · · ·
]> −→ [

W(O)
(

W(V) 1
k

∑
j x

(j) + b(V)
)

+ b(O) · · ·
]
.

(15)

These weights are assigned using sparse matrices according to Equation (7) and Equation (11), and the later backdoor
thresholds are chosen based on the initial distribution of sequence keys. Unfortunately, this distribution shifts during training:
the initial sparse matrices become fully connected after the very first update due to the non-zero inputs and gradients. Even
though the noise of one single weight is tiny, the accumulated effect of so many weights is significant. If the sequence
keys shift too significantly, they cannot activate their original backdoor families and decrease the number of reconstructed
sequences. Sometimes, worse may happen due to the unpredictability of distribution shifts. This defect can be attenuated by
utilizing a greater hyper-parameter ρ of the attention-based module.

D. Experimental Setup
We implement our backdoor attack using Python 3.10, Pytorch 2.0, and Opacus 1.4. For attackers, weight manipulations and
reconstruction can be executed on a laptop’s CPU within a few seconds. All our models are trained or finetuned on a GPU
within a few minutes.

Datasets. CIFAR-10 (CIFAR-100) (Krizhevsky, 2009) is a 10-class (100-class) object recognition dataset of 50,000
training samples with a size of 32× 32 pixels. Oxford-IIIT Pet (Parkhi et al., 2012) is a 37-class animal recognition dataset
containing 3,680 training samples. Caltech 101 is a 101-class object recognition dataset containing 9,146 images, of varying
sizes of roughly 300× 200 pixels. Since Caltech 101 does not distinguish between the training set and the test set, we divide
two-thirds of the samples into the training set and one-third into the test set. TREC (Hovy et al., 2001; Li & Roth, 2002) is
a question classification dataset containing 5,452 labeled questions in the training set. There are 6 coarse class labels in
TREC, which can be further divided into 50 fine class labels. In the training set, TREC contains short sentences that have at
most 41 tokens.

Data Stealing in MLP. Our toy MLP model in Section 4 is trained on a randomly selected subset of 10,000 samples from
the CIFAR-10 training set. We use a standard SGD optimizer with a batch size 64 and a learning rate of 0.05, and train

22

Privacy Backdoors: Stealing Data with Corrupted Pretrained Models

for 20 epochs. We use quantile thresholds {Q(0.001)} (see Equation (16)) so that ten samples activate each backdoor unit
in our training set. For the second layer of the toy MLP model, we use amplifier coefficients between 500 and 1000. We
replicate the same setup for CIFAR-100.

Data Stealing in ViT. Since Caltech 101 contains more classes than Oxford-IIIT Pet, we use the Oxford-IIIT Pet dataset
when the classification head is handcrafted by the adversary and the Caltech 101 dataset for the harder setting where the
classification head is randomly initialized by the victim. Raw images are normalized before being fed into a model. We apply
a typical finetuning recipe, with a large learning rate for the encoder and a small learning rate for the classification head.
Specially, we use a standard SGD optimizer with a learning rate of (0.2, 10−4) and a batch size of 128. The pretrained model
is finetuned for 12 epochs. We set quantile thresholds {Q(0.001)} (see Equation (16)) when the target is to reconstruct
complete images. When the target is to reconstruct individual patches only, the definition of the quantile threshold is subtle
because an image is cut into 49 patches, which are the actual inputs into a backdoor unit. In this situation, ten patches are
allowed by an artificially assigned threshold to activate each backdoor unit. This threshold causes more backdoors to capture
a mixture of inputs.

Data Stealing in BERT. We use TREC as the downstream task for BERT. We use the coarse class labels of TREC when
the classification head is handcrafted by the adversary, and the fine class labels for the harder setting where the classification
head is randomly initialized by the victim. Since TREC only contains short sentences, the maximum length of the tokenizer
is assigned to 48. We use an SGD optimizer with a learning rate of (0.05, 10−4) and a batch size of 32. The pretrained
model is finetuned for 12 epochs. We set quantile thresholds {Q(0.001)} (see Equation (16)) for the sequence keys.

D.1. Reconstructing and Matching Captured Inputs

Since some backdoors may be activated more than once during training (and GELU transformers always leak small gradients
into the backdoor for all inputs), the reconstructed input may not always match a ground truth exactly.

When presenting the ground truth for our reconstructions, we thus need some criteria to determine that there is a unique
match. One solution could be to check if the reconstructed input is highly similar (under some metric) to one training input.
But similarity metrics for images and text can be error prone, as they often allow for some pathological matches (e.g., two
images with very similar backgrounds). Instead, we measure the strength of the backdoor activations during training, and
mark a training sample as captured if the activation signal exceeds some threshold (a hyper-parameter that we set manually
through experimentation)

For experiments with images, we show the ground truth when a backdoor unit was only strongly activated by a single
training sample during training. Otherwise, we consider the ground truth to be ambiguous and do not report it. For text
models, we report all training sentences that strongly activated the backdoor corresponding to the first word in that sentence.
In some cases, we thus list multiple possible ground truth sentences for a reconstructed sentences. However, in many cases
we find that the signal of one of the captured sentences “dominates” others, and so the backdoor reconstruction is very close
to one of the ground truths.

D.2. Large Model Preprocessing

Initializing Backdoored Transformers Our backdoor constructions require carving out parts of an original transformer’s
weights and features. Specifically, we need to reduce the transformer’s benign capacity both “horizontally” (by reserving
part of the internal feature vectors for propagating backdoor inputs and outputs) and “vertically” (by reserving the first
encoder blocks for the backdoor modules). As a result, we thus embed a shorter and narrower benign transformer inside a
larger backdoored transformer.

Specifically, we start from a pretrained transformer with 12 encoder blocks, and internal features of dimension 768 = 12 · 64.
We reserve the first k blocks for the backdoor construction, and 256–320 features for backdoor signals (see Table 2 for
details). To this end, we shift all transformer blocks upward, keeping only the 12− k first encoder blocks and stacking them
on top of the blocks used for the backdoor. We keep the weights connected to the benign features unchanged, and modify
the rest according to our backdoor construction.

This construction reduces the original transformer’s utility in two ways. First, we now only have 12− k blocks used for
feature extraction. This is thus equivalent to using the original transformer and extracting classification features from the kth

to last layer, rather than the last layer. Second, we have removed part of the transformer’s internal features, which thus leads

23

Privacy Backdoors: Stealing Data with Corrupted Pretrained Models

to sparser and less expressive representations. In Figure 7, we analyze the downstream effect of this approach for a ViT
model finetuned on Oxford-IIIT Pet, as a function of the number of benign blocks and features that are retained.

Figure 7. Accuracy of ViTs on Oxford-IIIT Pet as a function of the number of retained blocks (out of 12) and features (×64, out of
12× 64 = 768).

The ViT we use in our experiments retains 8 blocks and 448 = 7 · 64 features, which results in low downstream performance
out-of-the-box. We thus first finetune this smaller retained transformer on ImageNet before we conduct our backdooring
experiments. For experiments with BERT, we find that the small retained benign transformer still performs well on the
TREC dataset without any need for initial finetuning. Once the small benign transformer has been finalized, we add our
handcrafted backdoor blocks. This yields the final backdoored model that is handed to the victim for finetuning on private
data.

ReLU Transformers. In some of our additional experiments in Appendix F we use transformers with ReLU activations,
as these are easier to backdoor than the original GELU transformers. However, there are no pretrained transformers of this
type. For BERT, we find that directly replacing GELUs with ReLUs still leads to an acceptable performance on the TREC
downstream task. For the ViT, a ReLU-version has poor performance on Caltech 101 and Oxford-IIIT Pet. Therefore, we
first finetune the ReLU-version ViT on ImageNet to improve its utility, starting from the pretrained weights for GELU.

Utility of backdoored transformers. Our backdoored transformer obviously has somewhat worse performance on the
downstream tasks than the original pretrained transformer. Part of this is due to the fact that we only retain a portion of the
original benign weights, as noted above. In addition, gradients from the backdoors can interact with, and harm some of the
model’s benign weights and features during finetuning.

The compound effect of both issues is investigated in Table 3, for a backdoored ViT finetuned on Caltech 101. By comparing
the complete and small model, we observe that the retained benign sub-transformer performs closely to the complete model
for this task (after initial finetuning on ImageNet, as described above).

Table 3. Compare the performance of backdoored ViTs with typical ViTs on the Caltech 101 dataset. G: using GELU activation; R: using
ReLU activation. Complete: a typical pretrained vision transformer downloaded from Torchvision (before preprocessing); Small: the
small benign part of the backdoored transformer (after preprocessing); Malicious: a backdoored transformer for reconstructing complete
images (after manipulating).

Complete Small Malicious

Accuracy GELU ReLU GELU ReLU GELU ReLU

Train 99.7% 99.9% 99.9% 99.9% 88.3% 69.3%
Test 95.0% 95.1% 91.3% 91.9% 82.6% 67.8%

The addition of the full backdoor functionality (“malicious”) does show that the backdoor negatively influences the model’s
utility. With GELU activations, there is an accuracy drop of around ten percent, which could be compensated by backdooring
a larger model, or by more carefully tuning the backdoored model for downstream utility before publishing it.

Figure 8 shows the accuracy of our backdoored BERT model (with GELUs or ReLUs) when finetuned on TREC. The
backdoored model performs well on this fairly easy classification task.

24

Privacy Backdoors: Stealing Data with Corrupted Pretrained Models

(a) TREC-6 (b) TREC-50

Figure 8. Accuracy of backdoored BERTs on the TREC dataset during finetuning.

D.3. Setting Backdoor Parameters

Setting backdoor thresholds. We want to set thresholds for our backdoors so that a small fraction of inputs can trigger
the backdoor. For simplicity, in our experiments we artificially set quantile thresholds Q(p) for each backdoor weight w:

Pr
[
w>x > Q(p)

∣∣∀x ∈ D0] = p , (16)

whereD0 is the set of backdoor inputs computed by passing the finetuning dataset to the backdoor at initialization. Of course,
attackers do not have access to the exact private finetuning dataset. However, they can use a similar dataset (e.g., a public
test dataset) to estimate these quantile thresholds (see (Fowl et al., 2021)). We emulate such a setting in our experiments by
selecting loose quantiles that allow for a small number k > 1 of inputs to trigger the backdoor (typically k ≈ 10).

Targeted backdoors. The backdoor attacks we describe in the main body, and which we use for most of our experiments,
make use of randomly generated backdoor weights. The attacker thus has no control over the type of inputs that might be
captured. However, we know that a backdoor is likely to capture inputs that are similar (i.e., have large inner product with)
to the backdoor weight. An attacker could thus also aim to target specific types of examples by selecting appropriately
similar backdoor weights.

For images, a simple approach for creating targeted backdoor weights is to directly set weights as a targeted image (e.g.,
chosen from some dataset similar to the finetuning set). In Figure 9, we instantiate such an attack and compare the
reconstructed images to the corresponding “bait” images used as weights. As expected, the captured images share close
similarities (e.g., very similar backgrounds) to the backdoor weights.

(a) Reconstruction (b) Weight

Figure 9. Real images can be used as targeted backdoor weights. We finetune a MLP with a random classification head on the CIFAR-10
training set. The backdoor weights are randomly selected from the CIFAR-10 test dataset (with quantile thresholds Q(0.001)).

25

Privacy Backdoors: Stealing Data with Corrupted Pretrained Models

E. Backdoored Models are Nearly Tight for DP-SGD
This appendix contains further details and analysis for our experiments with DP-SGD in Section 6.1.

We recall our overall idea: we aim to build a backdoored model so that some unit in the model activates if and only if some
target data point is in the finetuning set. In turn, this will cause the weights of that unit to be updated only if the target is
present. This is an instantiation of the worst-case scenario considered in the privacy analysis of DP-SGD, except that the
analysis assumes a strong attacker who sees all intermediate noisy gradients. Instead, we will see how tight this worst-case
scenario is for a more realistic “end-to-end” adversary who only sees the final model.

Differential privacy. We start with the standard definition of (ε, δ)-differential privacy (Dwork et al., 2006):

Definition E.1. A randomized mechanism M : D → R is (ε, δ)-differentially private if for all neighboring datasets
D,D′ ∈ D (i.e., datasets that differ in a single element), and any set of outputs S ⊆ R, we have that:

Pr [M(D) ∈ S] ≤ eε · Pr [M(D′) ∈ S] + δ .

When training a machine learning model with differential privacy, the mechanismM is a randomized training algorithm,
and the definition implies that any final model would have been obtained with approximately the same probability if one
training point had been removed.

Differentially private stochastic gradient descent. The DP-SGD algorithm of Abadi et al. (2016) trains machine learning
models that are provably differentially private. The algorithm works as follows:

1. In each training step, we sample a batch by picking each training input uniformly at random with probability q.

2. We compute a gradient g for each element in the batch, and clip each gradient to a maximal `2 norm of C.

3. We sum all clipped gradients, add Gaussian noise N (0, σ2C2 · I), and divide by the expected batch size q · |D|.

4. We take an update step with learning rate η, and repeat.

The privacy analysis of DP-SGD operates roughly as follows:

1. Each noisy gradient step is differentially private (with respect to neighboring batches) by virtue of the Gaussian
mechanism (Dwork et al., 2014).

2. The random sampling of the batch amplifies privacy (Abadi et al., 2016).

3. The combination of all noisy gradient steps is differentially private by applying an advanced composition theo-
rem (Kairouz et al., 2015; Mironov et al., 2019; Abadi et al., 2016).

The first step is tight in the worst-case. An example is when there is one data point with a gradient of the form [C, 0, . . . , 0]
and all other data points have gradients of the form [0, 0, . . . , 0]. Then, observing the change in the model’s first weight
leaks the maximum amount of privacy. The full privacy analysis, however, is only known to be tight if this worst-case
materializes in every single training step, and the attacker observes every intermediate noisy gradient. This analysis is thus
presumed to be quite loose in practice. But we show that a backdoored model can result in a fairly close lower bound.

Lower bounding privacy leakage. Differential privacy can be seen as a bound on the error of any adversary that tries to
distinguish two neighboring databases D and D′, that differ in some example x. By instantiating such an adversary and
recording their empirical success rates, we can get an empirical lower bound on the privacy level ε (see e.g., (Nasr et al.,
2021; Jagielski et al., 2020; Steinke et al., 2023)). Yet, this approach is computationally expensive, especially if we want to
refute large values of ε. Instead, we will analyze our backdoor constructions analytically, and then directly get a DP lower
bound by numerically computing the attacker’s distinguishing power.

26

Privacy Backdoors: Stealing Data with Corrupted Pretrained Models

Concretely, our (ideal) attacker will backdoor the model so that the gradient for some example x concentrates uniformly on
some weight indices I , with |I| = n. That is, the gradient of x is of the form:

gi =

{
±C/

√
n if i ∈ I

0 otherwise .
(17)

Moreover, the gradients of all other training examples are zero at the indices I . Now suppose we have a noisy gradient g̃
where noise N (0, σ2C2) is added to every coordinate, and let

∆(g̃) =
1√
n
·
∑
i∈I

sign(gi) · g̃i . (18)

We then have:

∆(g̃) =

{
C +N (0, σ2C2) if g is the gradient of x
N (0, σ2C2) otherwise .

(19)

So we still get a tight instantiation of the Gaussian mechanism in every batch. Suppose that the attacker knows the original
value of the weights wI before finetuning, and can observe (or infer) the final values w′I after finetuning for T steps. The
attacker can then compute ∆(w′I −wI) and use this as a statistic for their hypothesis test. The value of this statistic will be:

∆(w′I −wI) =

{∑T
j=1 Pr[B(T, q) = j] · N (jC, Tσ2C2) if x is in the dataset

N (0, Tσ2C2) otherwise ,
(20)

where B(T, q) is the binomial distribution with T trials and probability q (which represents the number of times that x is
sampled in a batch across the entire training run).

Let us call this quantity ∆w. Differential privacy provides a direct bound on an adversary’s ability to distinguish between
D and D′ by looking at the value of ∆w (see e.g., (Kairouz et al., 2015)). Suppose the adversary uses the test statistic
{∆w ≥ t} for some threshold t to distinguish D and D′. We can then lower-bound the privacy leakage ε, for a fixed
parameter δ, by the quantity:

ε̃ = max
t

log

[
Pr [∆w ≥ t | x in dataset]− δ
Pr [∆w ≥ t | x not in dataset]

]
. (21)

Note that we can compute this quantity numerically for any value of t: the denominator is simply the complementary CDF
of a Gaussian, while the numerator is the complementary CDF of a mixture of T Gaussians. We search for the maximum by
a grid search over t. Note that compared to prior DP lower bounds such as (Nasr et al., 2021), we do not need to compute
any confidence intervals or guard against multiple comparisons: we are not performing any random sampling here, and
instead directly numerically computing the ratio of two distributions.

We start by showing that such an “end-to-end” attack on DP-SGD can be close to tight, for some choices of parameters. In
Figure 10, we plot the provable privacy guarantee ε (Theoretical) and our lower-bound from Equation (21) (Estimated) for
various choices of DP-SGD’s noise multiplier σ. As the noise multiplier increases, the lower bound becomes increasingly
tight.

E.1. Backdoor Constructions

We now describe our backdoor constructions, that aim to instantiate the worst-case setting described above, where a target’s
gradient solely concentrates on a few weights in every training set. We consider a setting where the victim downloads
a pretrained model and finetunes the top k layers while keeping the bottom layers frozen. This is a common setup for
differentially private transfer learning (Abadi et al., 2016; Tramer & Boneh, 2020).

We consider two cases:

• k = 1: Only the final classification head is trained.
• k > 1: The last k layers of the model form a MLP which is finetuned, with the prior feature extraction layers frozen.

27

Privacy Backdoors: Stealing Data with Corrupted Pretrained Models

Figure 10. The effect of the noise multiplier (σ) on the tightness of our end-to-end lower bound for DP-SGD (privacy budgets are computed
for 30 epochs of DP-SGD, with a sampling rate of q = 0.01).

E.1.1. FINETUNING THE CLASSIFICATION HEAD

Consider the case that a single-layer classification head is finetuned on top of frozen features. Let h denote the model’s final
feature layer, z denote the logits, and s denote the softmax scores. Let h1 be a backdoored unit, with the model’s frozen
weights set so that h1 = 0, except for the target x where the unit is active, h1 � 0.

The logits are then given by:
zj = wj,1 · h1 +

∑
k>1

wj,k · hk + bj (22)

The gradients for the finetuned weights are then:

∂L
∂wj,k

=

{
hk(sj − 1) if j is the correct label
hk · sj else

Since h1 �
√∑

j>1 h
2
j , the weights {wj,1} absorb most of the gradient norm after clipping. Moreover, due to the high

value of h1, we get a sparse softmax vector of the form s ≈ [0, . . . , 0, 1, 0, . . . , 0]. Assume the target input x is of true class
y, and is misclassified as y′. Then, the clipped gradient (assuming C = 1) satisfies:

clip
(

∂L
∂wj,1

; 1

)
=

+ 1√

2
if j = y′

− 1√
2

if j = y

0 else

. (23)

If the target x does not appear, the clipped gradient of {wj,1} is obviously zero. We are thus in the setting of Equation (17).

Stability. The above analysis implicitly assumes that when the target x appears, it will always be misclassified into the
same class y′ 6= y. But the classification weights will change during finetuning. If the target’s classification were to change
during training, we get a different gradient than in Equation (23), and our empirical privacy estimate is wrong. If the attacker
chooses the initial weights in the classification head, we can prevent this by ensuring that one weight dominates all others.

Black-box inference. So far, we have shown how to get a privacy lower-bound for an attacker who can observe the final
value of the finetuned weights. We can turn this into a fully black-box attack by showing that the attacker can infer these
values from query-only access to the finetuned model.

Rearranging Equation (22), we have:

wj,1 =
zj − bj −

∑
k>1 wj,khk

h1
.

We can manipulate the frozen features to ensure that h2 = · · · = hn = 0 for the target x. If we query the finetuned model
on the target x and get logits z, we then have:

wj,1 =
zj − bj
h1

.

28

Privacy Backdoors: Stealing Data with Corrupted Pretrained Models

The value of h1 is known to the attacker, since it is computed by frozen features. The only unknown is thus bj . But since h1

is large (which leads to a large logit zj), the value of bj is negligible here. The attacker can thus query the model before and
after finetuning on the target x to obtain logits zinit and zfinal respectively, and then compute the test statistic

(zfinal
y′ − zinit

y′)− (zfinal
y − zinit

y)
√

2h1

,

which is distributed as in Equation (20) (up to small approximation errors, omitting hyper-parameters of optimization).

E.1.2. FINETUNING MULTIPLE LINEAR LAYERS

We now consider a more complex setting, where multiple final linear layers of a backdoored model are finetuned with
differential privacy.

Figure 11. Backdoor structure based on the MLP part of a CNN. If two units are not shown as connected, the initial weight between them
is assigned to zero.

The backdoor structure is illustrated in Figure 11. The frozen layers compute some features x(in). The MLP to be finetuned
consists of two layers of hidden activations h(1) and h(2), which finally connect to the logits z. We have

h(1) = ReLU(W(0)x(in) + b(0))

h(2) = ReLU(W(1)h(1) + b(1))

z = W(2)h(2) + b(2)

The backdoor units are h(1)
1 and h(2)

1 . We further ensure that at initialization, the backdoor unit connects to an incorrect
class y′ for the targeted input x.

We design the backdoor so that the following conditions are satisfied, throughout the entire training process.

1. h(1)
1 > 0 if and only if the target x appears

2. h(2)
1 > 0 if and only if h(1)

1 > 0

3. [h
(2)
2 , . . . , h

(2)
n] = 0 if h(1)

1 > 0.

In words, the two backdoor units h(1)
1 and h(2)

1 activate only on the target x. Moreover, on the target x the rest of the
penultimate features in h(2) are all zero. To ensure that the above conditions hold throughout training, we can set the
manipulated backdoor weights to some large values� C, so that their clipped gradient updates have a negligible influence.

29

Privacy Backdoors: Stealing Data with Corrupted Pretrained Models

We set the values of the initial weights (both the frozen weights and finetuning weights) to satisfy the following relations:

‖x(in)‖ � 1, ‖h(1)‖ �W
(1)
1,1, |h(1)

1 | �W
(2)
1,1,

√∑
j>1

(
W

(1)
1,j

)2

�W
(1)
1,1 (24)

Analysis. We hope that ∂L
∂b

(0)
1

can be much greater than the norm of all other active parameters’ gradients. We have active

parameters: W(0),b(0),W(1),b(1),W(2),b(2). For an arbitrary weight of a linear unit, its gradient is determined by its
backward gradient and the layer’s input. For an arbitrary bias of a linear unit, its gradient is only determined by the backward
gradient. Specifically, we want W

(1)
1,1 ·W

(2)
1,1 ≈ ‖∇L‖. We can analyze each group of parameters separately:

• W(0): If ‖x‖ is small, the gradient with respect to W(0) is small.

• b(0): We have ∂L
∂b

(0)
j

= ∂L
∂h

(2)
j

W
(1)
1,j . So if W

(1)
1,1 �W

(1)
1,j ∀j 6= 1, the gradient of b(0)

1 will dominate all others.

• W(1): The gradient is proportional to ‖h(1)‖ ·W(2)
1,1, if ‖h(1)‖ is small enough, the gradient into this weight is negligible.

• b(1): We only need to consider b(1)
1 , since the remaining biases are connected to deactivated units. If W

(1)
1,1 � 1, its

gradient is negligible compared to that of b(0)
1 .

• W(2): Similarly, we only need to consider the column W
(2)
j,1 . If h(2)

1 is small enough, this is negligible.

• b(2): This gradient is not influenced by any large weights.

Black-box inference. The attacker knows the initial value of b(0)
1 and wants to infer the value after finetuning by querying

the model. If we query the model (before finetuning) on the target x, the value of the output logit for the predicted (incorrect)
class zy′ is dominated by the quantity:

zy′ ≈W
(2)
1,1 ·W

(1)
1,1 · (W

(0)
1 x(in) + b

(0)
1)

During finetuning, all the weights are modified due to gradients and added noise. Since W
(2)
1,1 and W

(1)
1,1 are large, their

change in value is negligible. And since ‖x(in)‖ � 1, the modifications to W
(0)
1 have negligible influence compared to the

modifications to b(0)
1 . We thus have that after finetuning, the new logit value z′y′ is:

z′y′ ≈ zy′ + W
(2)
1,1 ·W

(1)
1,1 ·∆b ,

where ∆b is the change in the value of b(0)
1 . As the attacker knows z′y′ , zy′ ,W

(2)
1,1 and W

(1)
1,1, we are done.

E.2. Backdoor Stability

Our backdoor constructions ensure that the target gradient concentrates on a fixed set of weights, at initialization. A
challenge we have to consider is that in the course of training with DP-SGD, model weights are updated through training and
through random noise addition. These changes could disrupt the backdoor structure, and cause gradients to concentrate on
other weights (as a notable example, if the classification of the target x ever shifts from some class y′ to a different class y′′

during training, gradients will concentrate on different weights). We thus have to guarantee that the backdoor construction is
stable to small modifications.

If the attacker can control the initialization of all weights in the model (including the classification head), then this is easy:
(1) we assume the model backbone is frozen; (2) we set all backdoor-relevant weights to large enough value to be unaffected
by DP noise (which is bounded by C); (3) we initialize the classification head so that the backdoor is connected to an
incorrect class with a much larger weight than all other classes.

This setting is sufficient to show that the DP-SGD analysis is close-to-tight for end-to-end adversaries. However, in practice
it might also be common for the victim that downloads the pretrained model to initialize the classification head themselves.
In such a case, we need some stronger assumptions to ensure the backdoor is stable. We consider here the case where the
victim only finetunes the classification head (Appendix E.1.1). The issue we have to deal with here is that the classification
of the target x could change during training. To prevent this, we need the initial largest weight wy′,1 to remain the largest

30

Privacy Backdoors: Stealing Data with Corrupted Pretrained Models

weight connected to the backdoor throughout finetuning. Since these weights are typically initialized at random (e.g.,
with Xavier initialization (Glorot & Bengio, 2010)), this amounts to asking that the maximum of a random vector remain
unchanged under coordinate-wise noise η

q·|D|N (0, Tσ2C2), where η is the learning rate and q · |D| the expected batch
size. The probability of this event will depend on the exact settings of the DP-SGD parameters (e.g., learning rate), the
size of the weight vector (the number of classes), and the magnitude of the initialization noise (which depends on the
model architecture). For typical settings, we thus heuristically ignore this failure probability in our experiments by rough
calculation.

E.3. Experimental Setup

We conduct experiments on the CIFAR-10 dataset. A small CNN pretrained on CIFAR-100 is utilized. This CNN is
composed of several convolutional layers and a 3-layer perceptron (hidden size: 128, 64). A standard DP-SGD optimizer
(using the RDP accountant (Mironov et al., 2019)) is utilized in the training recipe with lot size L = 500, gradient norm
C = 1, noise multiplier σ = 1.0, and privacy budget δ = 10−5. The training recipe is implemented based on the Opacus
package (Yousefpour et al., 2021).

Gradient concentration correction. One practical consideration is that with our backdoor constructions, the gradient of
the target x will never fully concentrate exactly on the targeted weights (i.e., there is always some gradient magnitude on all
learnable weights). As a result, we assume a weaker concentration than in Euqation (19) of the form:

∆(g̃) = ρ · C +N (0, σ2C2) ,

where ρ ∈ [0, 1] is some concentration loss that our backdoor construction incurs. We loosely bound this value empirically
(an attacker can measure the concentration factor directly from finetuning experiments), and then use the value ρ · C when
computing our numerical privacy estimate.

E.4. Results and Discussion

We experiment with finetuning either the classification head or the entire MLP on top of frozen features. For the head-only
case, the backdoored model is finetuned for a different number of epochs (with a fixed noise multiplier of σ = 1) to reach
privacy budgets ε = {1, 3, 5, 8}. For the MLP case, we restrict ourselves to the ε = 3 case. All of these experiments are
summarized in Figure 5. We empirically estimate a lower bound of the gradient concentration as ρ = 0.97. In this setting,
the estimated privacy budget is close to the theoretical one. A larger theoretical privacy budget does not necessarily lead to a
larger gap with our lower bound (note that compared to Figure 10, the noise multiplier is constant across these experiments,
and we solely vary the number of steps). We further note that the finetuned backdoored model still performs well on the
downstream task. Details about hyper-parameter selection and performance are summarized in Table 4.

Table 4. Summary of the experiments.

Finetuning Target ε Epochs Learning rate Training acc. Test acc. ε̃/ε (ρ = 1)

Head

1 3 0.5 0.355 0.364 0.64
3 27 0.2 0.417 0.420 0.73
5 69 0.1 0.423 0.427 0.72
8 156 0.05 0.421 0.421 0.72

MLP 3 27 0.2 0.520 0.522 0.72

Recall that we introduce a correction term ρ to account for the fact that our backdoor constructions do not fully concentrate
all of the gradient magnitude onto a small set of weights. In Figure 12, we show that our lower bound is only moderately
influenced by this inefficiency. Even if our backdoor only guarantees that 90% of the gradient magnitude concentrates on
the targeted weights, we still get a strong lower bound on the privacy leakage.

31

Privacy Backdoors: Stealing Data with Corrupted Pretrained Models

Figure 12. The effect of the concentration factor correction (ρ) on our estimated privacy lower bound.

F. Additional Results
This appendix contains additional experiments for white-box data reconstruction attacks on backdoored ViT and BERT
models.

Crafted classification head vs. random head. In the main body, we focused on the standard setting where the attacker
has no control over the final classification head, which is randomly initialized by the victim before finetuning. In some cases,
however, an attacker may be able to control this layer as well. This is the case if the attacker releases a backdoored classifier
for some specific task (e.g., medical image classification, or sentiment analysis) that the victim then further finetunes on
their domain-specific data. The ability to choose the classification head gives the attacker much more control. In particular,
the attacker can wire the classifier so that inputs captured by backdoors are misclassified with high probability, thereby
reducing the risk of negative gradient flows (we assume that attackers can roughly predict one class containing no capturable
samples for a backdoor.) This is particularly useful for classification tasks with few classes, where the risk of a random
correct classification is high.

(a) Reconstruction, crafted head, CIFAR-10 (b) Ground truth, crafted head, CIFAR-10

(c) Reconstruction, random head, CIFAR-100 (d) Ground truth, random head, CIFAR-100

Figure 13. Reconstructed images from backdoored MLP models. There are no unrecoverable backdoors when a crafted head is used,
even though there are only a few classes. When a random head is used, there are fewer unrecoverable backdoors for CIFAR-100 than for
CIFAR-10.

32

Privacy Backdoors: Stealing Data with Corrupted Pretrained Models

Reconstructing images in a ReLU ViT. Figure 14 shows reconstructed images from a backdoored ViT using ReLU
activations rather than GELUs. Backdooring the ReLU version is easier, as we have a lower risk of the model breaking
down due to undesirable gradient flows. The quality of reconstructed images is perceptually similar in both cases though.

(a) Reconstruction (b) Ground truth

Figure 14. Reconstructed images from a backdoored ReLU-version ViT (using a random head). Dataset: Caltech 101.

Reconstructing individual patches in a backdoored ViT. For image transformers, recovering individual tokens (i.e.,
patches) from different inputs could still be a significant privacy violation. For example, one patch might contain an
individual’s face. It is much easier to design backdoors that capture individual patches, without any sequence key or position
key information. The backdoored model is thus likely more robust. Moreover, an attacker can recover (partial) information
from thousands of training samples, rather than a small number of full inputs. Such an attack may be preferable in some
settings (e.g., for images with high redundancy). Figure 15 shows examples of reconstructed grayscale patches for ViT
models finetuned on Oxford-IIIT Pet. While some captured patches contain unrecognizable information, others capture
salient parts of the inputs (e.g., a dog’s face).

(a) Reconstruction, crafted head, Oxford-IIIT Pet, GELU (b) Ground truth, crafted head, Oxford-IIIT Pet, GELU

(c) Reconstruction, crafted head, Oxford-IIIT Pet, ReLU (d) Ground truth, crafted head, Oxford-IIIT Pet, ReLU

Figure 15. Reconstructed patches from backdoored ViTs. While using random backdoor weights, some reconstructed patches reveal
critical information about images. For example, we recognize several informative patches of dogs’ faces from Oxford-IIIT Pet. If attackers
can design backdoor weights carefully, most captured patches may be informative for humans.

33

Privacy Backdoors: Stealing Data with Corrupted Pretrained Models

Reconstruction quality metrics. We compute reconstruction quality metrics (PSNR and SSIM) for our image extraction
methods in Table 5, 6 and 7 for MLPs, ViTs (for patches, and complete images). The results are summarized in Table 8. We
observed that our reconstruction quality is near-perfect for MLPs (except when the backdoor fails obviously), but standard
image quality metrics suggest poor results for ViTs (especially when the target is to reconstruct complete images). However,
by looking at our reconstructed images, it is clear that this is due to an inadequacy of simple image similarity metrics, rather
than an inherent limitation of our attacks. Indeed, our attack on ViTs lead to low PSNR and SSIM primarily due to the
uneven brightness between different recovered patches, even though the full image is clearly recognizable.

Image similarity metrics are also inadequate for the relatively common situation where a backdoor captures two or more
inputs, and we therefore have multiple possible ground truths to compare to. In such cases, we report the largest similarity
metrics among the possible ground truths. We provide an illustrative example in Figure 16. Here, the input captured by the
backdoor (left) is a mixture of ten different inputs that activated the backdoor during fine-tuning. In this case, the example
with the highest similarity (i.e., PSNR or SSIM) to the captured input also seems to have the closest visual similarity.

Table 5. Image similarity metrics for reconstructions from a backdoored MLP in Figure 13a

PSNR

155.00 148.14 133.20 156.54 159.61 158.58 155.72 157.81
24.61 155.96 154.22 24.00 155.79 155.63 136.91 149.64

155.93 20.59 156.18 155.12 22.95 158.77 156.07 155.51
23.97 154.91 156.05 158.21 156.66 158.42 153.28 156.01

156.18 128.09 158.34 156.18 156.08 156.02 157.78 27.39
155.86 139.04 156.24 160.80 161.38 157.17 157.35 155.66
158.04 154.74 157.10 155.96 154.54 155.68 156.66 155.42
158.16 155.86 25.91 25.27 138.70 156.60 157.54 158.94

SSIM

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.52 1.00 1.00 0.56 1.00 1.00 1.00 1.00
1.00 0.59 1.00 1.00 0.50 1.00 1.00 1.00
0.45 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.57
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 0.40 0.57 1.00 1.00 1.00 1.00

Table 6. Image similarity metrics for reconstructions from a backdoored ViT (patches) in Figure 15a

PSNR

24.92 20.11 16.00 23.82 20.58 18.76 14.87 19.40
15.50 15.36 37.00 14.62 21.28 28.08 15.05 23.73
44.80 29.60 45.23 16.47 27.96 18.02 17.26 14.37
14.67 44.70 20.71 15.12 21.95 15.21 25.01 17.27
20.84 25.69 25.74 24.24 14.44 23.86 36.64 23.34
18.62 12.61 13.85 34.71 20.62 20.80 20.05 12.02
23.66 34.99 19.38 22.60 18.36 19.54 27.41 19.06
40.95 13.54 14.47 37.22 19.78 15.31 18.70 16.89

SSIM

0.99 0.97 0.78 0.99 0.97 0.92 0.71 0.96
0.75 0.95 1.00 0.50 0.98 0.99 0.80 0.95
1.00 1.00 1.00 0.71 0.99 0.98 0.97 0.95
0.88 1.00 0.98 0.96 0.98 0.76 0.98 0.95
0.76 0.91 0.98 0.94 0.63 0.95 1.00 0.98
0.97 0.92 0.92 0.97 0.97 0.96 0.99 0.66
0.78 0.98 0.97 0.97 0.92 0.98 1.00 0.93
1.00 0.71 0.64 0.99 0.98 0.60 0.93 0.86

Table 7. Image similarity metrics for reconstructions from a backdoored ViT (complete images) in Figure 4

PSNR

9.09 11.51 9.17 18.03 15.12 14.36 17.61 9.57
11.47 15.03 10.40 16.81 19.70 6.47 12.40 15.14
9.09 12.57 11.65 12.72 14.79 10.15 14.06 8.46

11.08 15.54 14.15 11.06 9.22 9.38 12.99 13.16

SSIM

0.45 0.72 0.59 0.76 0.89 0.81 0.84 0.64
0.57 0.91 0.62 0.9 0.75 0.62 0.62 0.82
0.45 0.67 0.61 0.68 0.89 0.78 0.79 0.46
0.47 0.75 0.72 0.67 0.76 0.78 0.69 0.75

34

Privacy Backdoors: Stealing Data with Corrupted Pretrained Models

Table 8. Aggregate image similarity metrics for the results in Table 5,6,7. The mean value (AVG) and percentiles (PCT(q)) are used as
statistics to reflect the overall recovery quality of a backdoored model.

Metrics PCT(10) PCT(25) PCT(50) PCT(75) PCT(90) AVG

MLP PSNR 26.35 153.99 155.95 157.12 158.40 138.20
SSIM 0.58 1.00 1.00 1.00 1.00 0.94

ViT (patches) PSNR 14.52 15.88 20.08 24.94 36.15 22.30
SSIM 0.71 0.90 0.96 0.98 1.00 0.91

ViT (complete images) PSNR 9.10 10.01 12.49 14.85 16.68 12.56
SSIM 0.48 0.62 0.72 0.78 0.89 0.70

Figure 16. Left: a reconstructed image from a backdoored ViT
(second row and first column of Figure 4); Right: possible
ground truths.

PSNR 8.78 6.70 7.06 7.76 7.93
6.78 6.02 8.96 11.47 7.05

SSIM 0.15 0.01 0.00 0.04 0.10
0.00 0.02 0.05 0.57 0.03

Table 9. Image similarity metrics for the possible ground truths
in Figure 16.

35

Privacy Backdoors: Stealing Data with Corrupted Pretrained Models

Full set of reconstructed sentences from backdoored BERT models. In the figures that follow, we present the complete
lists of reconstructed sentences from backdoored BERT models finetuned on TREC-6 or TREC-50, with either a random or
crafted classification head, and using either ReLU or GELU activations. For each reconstructed sentence, we present one or
more possible training sentences that have activated the backdoor during training. We highlight reconstructed trigrams that
match one of these potential ground truth sentences (we cannot always guarantee that each trigram was indeed captured
from this specific training sentence, so we provide these annotations for illustration purposes). In some cases, the captured
sentence is a mixture of multiple training sentences. In others, a single training sentence’s backdoor signal dominated others
and can be recovered. Overall, we find that ReLU models lead to more faithful reconstructions with fewer failed backdoors.

Table 10. Reconstructed sentences from a backdoored ReLU-version BERT using a crafted head. Dataset: TREC-6. Sentence 5 is an
interesting example of what will happen if there is more than one ground truth sentence for a backdoor family.

ID Reconstructed sample Possible ground truth
1 what war saw battles at parrot’s beak and black virgin? of members clinch the house of

representatives?
what war saw battles at parrot’s beak and black virgin?

2 what causes pneumonia? what causes pneumonia?

3 what films featured the character popeye doyle? what films featured the character popeye doyle?

4 what does a chairbound basophobic fear? what does a chairbound basophobic fear?

5 what two japanese admiral of spelled ocean seas letters k, governor general o all t islands
y might discover, and also granted 10 -?? of all profits of his voyage.

who was named admiral of the ocean seas and viceroy and governor general of all the
islands he might discover, and also granted 10 -?? of all profits of his voyage.

what two japanese cities are spelled with the letters k, o, o, t and y?

6 what crop failure caused the irish famine? for? what crop failure caused the irish famine?

7 is what schools in the washington, dc nn nn vbp nn nn nn nn. 177, and 19? ypy what schools in the washington, dc nn nn vbp nn nn nn nn.

8 what u. s. state lived under six flags? what u. s. state lived under six flags?

9 what piano company claims its product is the ‘ ‘ instrument of the immortals”? what piano company claims its product is the ‘ ‘ instrument of the immortals”?

10 what is the term for the side of the mountain that faces the prevailing winds? windsor? what is the term for the side of the mountain that faces the prevailing winds?

11 the why is indiglo called indiglo? sylate? ig whatssorss thepro the called between? ig
the between differenceprosorpro whatpro is differences micro80sor differencessprosorpro
what

what is the difference between microprocessors & microcontrollers?

why is indiglo called indiglo?

12 what color were their horses?? - what color were their horses?

13 how did jayne mansfield die? how did jayne mansfield die?

14 how do i log on to home page at headquarters u. s. european command? look good”? how do i log on to home page at headquarters u. s. european command?

15 lawrence where is sinn fein’s headquarters?? lawrence how lawrence lawrence lawrence
lawrence lawrence how how how

where is sinn fein’s headquarters?

16 who reports the weather on the ‘ ‘ good morning america” television show? who reports the weather on the ‘ ‘ good morning america” television show?

17 what are amicable numbers? what are amicable numbers?

18 how long were tyrannosaurus rex’s teeth? how long were tyrannosaurus rex’s teeth?

19 who directed ‘ ‘ jaws”? who directed ‘ ‘ jaws”?

20 when did the supercontinent pangaea break up? when did the supercontinent pangaea break up?

21 which gender has bigger thighs? which gender has bigger thighs?

22 what does a collier mine? measure? what does a collier mine?

23 who has won the most super bowls? who has won the most super bowls?

24 what does inuit and eskimo mean? what does inuit and eskimo mean?

25 what do economists do? their spiracles? what do economists do?

26 what does venus retrograde mean? ’mean? where is tornado alley?

what does venus retrograde mean?

what does las vegas mean?

27 killed name a film in which jude law acted. kurt co?? who who who killed co? who who
who? killed kurt who who who who who killed who whobain killed killed whobain? who
killed killed who? killed who who

name a film in which jude law acted.

who killed kurt cobain?

28 what is the largest snake in the world?? what is the largest snake in the world?

29 what meter did shakespeare use in writing : ‘ ‘ to be, or not to be, that is the question...”? what meter did shakespeare use in writing : ‘ ‘ to be, or not to be, that is the question...”?

30 what makes thunder? der publish?? what makes thunder?

31 name 11 famous martyrs. slow down aging? v has danced for? name 11 famous martyrs.

32 what are the most common elements in the earth’s crust? what are the most common elements in the earth’s crust

36

Privacy Backdoors: Stealing Data with Corrupted Pretrained Models

Table 11. Reconstructed sentences from a backdoored GELU-version BERT using a random head. Dataset: TREC-50. This is the
complete list of selected examples in Table 1. Examples with ground truth marked as MANY correspond to cases where a large number
of training examples activated the backdoor.

ID Reconstructed sample Possible ground truth
1 where does the santa fe trail begin and end?? where is guam?

what kentucky city calls itself the horse center of america?

where does the santa fe trail begin and end?

2 where is trinidad? where is trinidad?

3 what causes rust? antarctica? what causes rust?

4 name a gaelic language.? name a gaelic language.

5 what causes ‘ ‘ rolling thunder”? ” mean? MANY

6 where is ocho rios??? what is the immaculate conception?

what is pandoro?

where is ocho rios?

7 what must a las vegas blackjack dealer do when he reaches 16? what must a las vegas blackjack dealer do when he reaches 16?

8 how much does the president get paid??? get daily? what soft drink is most heavily caffeinated?

how much does the president get paid?

9 which two states enclose chesapeake bay? ruplets?? which two states enclose chesapeake bay?

10 how is easter sunday’s date determined? how is easter sunday’s date determined?

11 what do the letters d. c. stand for in washington, d. c.? np.. what do the letters d. c. stand for in washington, d. c.?

12 what schools in the washington, dc nn nn vbp nn nn nn nn. what schools in the washington, dc nn nn vbp nn nn nn nn.

13 why do heavier objects travel downhill faster? go to college? why do heavier objects travel downhill faster?

14 what does ‘ ‘ antidisestablishmentarianism” mean? what does ‘ ‘ antidisestablishmentarianism” mean?

15 what is pasta?? MANY

16 where can i find examples tab legal 1965 about film oscar songs disabilities 12 act where can i find a case on individuals with disabilities education act of 1991?

what film did lee marvin win the 1965 best actor oscar for?

what do i need to do to take my dog with me to live in dominica, west indies for a year?

where can i find correct tabs for third eye blind songs

37

Privacy Backdoors: Stealing Data with Corrupted Pretrained Models

Table 12. Reconstructed sentences from a backdoored GELU-version BERT using a random head (best run). Dataset: TREC-50. This is
the cleanest list of reconstructed sentences among multiple trials.

ID Reconstructed sample Possible ground truth
1 what was paul bunyan’s ox’s name? ”? .? what product does ‘ ‘ mrs. olsen” promote?

2 what does a spermologer collect?? what does a spermologer collect?

3 what son of a 15 - year - old mexican girl and a half - irish father became the world’s most
famous greek?

what son of a 15 - year - old mexican girl and a half - irish father became the world’s most
famous greek?

4 what country’s capital is tirana? what country’s capital is tirana?

5 what u. s. senator once played basketball for the new york knicks? power? inventions? what u. s. senator once played basketball for the new york knicks?

6 what color bottles do good rhine wines come in? what color bottles do good rhine wines come in?

7 what causes the redness in your cheeks when you blush? what causes the redness in your cheeks when you blush?

8 what makes thunder? what makes thunder?

9 what state capital comes last alphabetically? kong alphabet? last comesically? stateically-
icallyically comes? stateically last? last what

what state capital comes last alphabetically?

10 what crop failure caused the irish famine? what crop failure caused the irish famine?

11 how much money are dumbo’s ears insured for? how much money are dumbo’s ears insured for?

12 who invented tornado alley? rabble? who invented the game scrabble?

13 where did woodstock take place? where did woodstock take place?

14 when was hurricane hugo???? when was hurricane hugo?

15 where is hearst castle, built by publisher william randolph hearst?? where is hearst castle, built by publisher william randolph hearst?

16 who invented the toothbrush? iowa?? ledding? bp nn nn nn nn who invented the toothbrush

38

Privacy Backdoors: Stealing Data with Corrupted Pretrained Models

Table 13. Reconstructed sentences from a backdoored GELU-version BERT using a crafted head. Dataset: TREC-6. Most of the
reconstructed sentences match their corresponding ground truth sentences well. Examples with ground truth marked as MANY or NONE
correspond respectively to cases where a large number of training examples, or none, activated the backdoor.

ID Reconstructed sample Possible ground truth
1 what novel inspired the movie bladerunner? william randolph hearst? what novel inspired the movie bladerunner?

2 name 11 famous martyrs. red in photographs? name 11 famous martyrs.

3 a a a female. skater. flying in north carolina a a a a skater a a a female.. name a a a a a a
figure name a a. a. a a. a a name female name a

name four famous cartoon cats.

how do i register a trade name in north carolina?

name a female figure skater.

4 what discovered equity securities? who discovered electricity?

what are equity securities?

5 what enigmatic u. s. vice president was once tried and acquitted for treason in a plot to set
up his own independent empire in the west?

what enigmatic u. s. vice president was once tried and acquitted for treason in a plot to
set up his own independent empire in the west?

6 how many colleges are in wyoming? aids? how many colleges are in wyoming?

7 what do bicornate animals have two of? prep school? MANY

8 how can i find out how much income tax is paid on social security income on the 1998
income tax? and also granted 10 -?? of all profits of his voyage.

how can i find out how much income tax is paid on social security income on the 1998
income tax?

9 what is html? of the religion of islam? art? what is html?

10 what document did president andrew johnson want a copy of placed under his head upon
his burial? project

what document did president andrew johnson want a copy of placed under his head upon
his burial?

11 in the song ‘ ‘ yankee doodle,” why did yankee doodle stick a feather in his cap and call
it macaroni?

NONE

12 what is a nanometer? measure? ”? what is a nanometer?

13 in company sport are these following numbers relevant : 118, 126, 134, 142, 15, 158, 167,
177, and 19?

NONE

14 when reading classified ads, what does eenty : other stand for? toast on a stick? when reading classified ads, what does eenty : other stand for?

15 what sea did the romans call mare nostrum? : ad arma, ad arma. what sea did the romans call mare nostrum?

16 where on the internet can i find a song lyrics database similar to the international lyrics
server?

where on the internet can i find a song lyrics database similar to the international lyrics
server?

17 what causes asthma? maiden?? what causes asthma?

18 name the various super - teams to which the angel has belonged., in 1948? name the various super - teams to which the angel has belonged.

19 what is the name of the chronic neurological autoimmune disease which attacks the pro-
tein sheath that surrounds nerve cells causing a gradual loss of movement in the body?
and untamed they love?

what is the name of the chronic neurological autoimmune disease which attacks the pro-
tein sheath that surrounds nerve cells causing a gradual loss of movement in the body?

20 followed who who who??? followed who followed who followed followed followed cae-
sar followed followed followed caesar who? who followed who? followed? who? who
followed followed caesar followed followed followed followed followed followed fol-
lowed who followed who followed who?

who followed caesar?

21 do what county is chicago in? how how? how how?? do? how how do how??? how how
do?? how how how? do?? how do how do do?? how??? how how

what county is chicago in?

how do clouds form?

22 are ami what whatcable numbers? are what numbers what are are ami numbers what are
are ami numbers? whatcable what arecablecable what ami whatcable? ami? cablecable-
cable? are? what? what numbers numbers whatcable

what are amicable numbers?

23 what is the history of yo - yos? are they? how many url extensions are there? and what are they?

what is the history of yo - yos?

24 NONE

25 who was whitcomb judson? who was whitcomb judson?

26 how do i tie a tie? how do i tie a tie?

27 do how many points make up a perfect fivepin bowling score? do do? do do do work work
how do do do do? doija how do do? work do work do do work do do how? ou do

how many points make up a perfect fivepin bowling score?

28 who graced the airwaves with such pearls as ‘ ‘ do ya lo - o - ove me? get naked, baby
becoming”?? , shouts, etc.?

who graced the airwaves with such pearls as ‘ ‘ do ya lo - o - ove me? get naked, baby!”?

29 what is the name of can president of fly? t u. s. a? s supposed to? MANY

30 how do you ask a total stranger out on a date? how do you ask a total stranger out on a date?

31 why is dudley do - right’s horse’s name? why do some people have two different color eyes?

32 what are the titles of some r - rated sony playstation games? to them, like? they hear a
beautiful piece of music, or see something beautiful, or get aroused by someone they love

why do people get goosebumps when they have something emotional happen to them,
like when they hear a beautiful piece of music, or see something beautiful, or get aroused
by someone they love?

what are the titles of some r - rated sony playstation games

39

