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Abstract
Much of the world’s most valued data is stored in
relational databases and data warehouses, where
the data is organized into tables connected by
primary-foreign key relations. However, build-
ing machine learning models using this data is
both challenging and time consuming because no
ML algorithm can directly learn from multiple
connected tables. Current approaches can only
learn from a single table, so data must first be
manually joined and aggregated into this format,
the laborious process known as feature engineer-
ing. This position paper introduces Relational
Deep Learning (RDL), a blueprint for end-to-end
learning on relational databases. The key is to
represent relational databases as temporal, hetero-
geneous graphs, with a node for each row in each
table, and edges specified by primary-foreign key
links. Graph Neural Networks then learn repre-
sentations that leverage all input data, without any
manual feature engineering. We also introduce
RELBENCH, and benchmark and testing suite,
demonstrating strong initial results. Overall, we
define a new research area that generalizes graph
machine learning and broadens its applicability.

1. Introduction
The information age is driven by data stored in ever-growing
relational databases and data warehouses that have come to
underpin nearly all technology stacks. Relational databases
store information in multiple tables, with entities/rows in
different tables connected using primary and foreign keys
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and managed using powerful query languages such as SQL
(Codd, 1970; Chamberlin & Boyce, 1974). For this rea-
son, they lie at the foundation of today’s large information
systems, including e-commerce, social media, banking sys-
tems, healthcare, manufacturing, and open-source scientific
repositories (Johnson et al., 2016; PubMed, 1996).

Many predictive problems over relational databases have
significant implications for human decision making. A
hospital wants to predict the risk of discharging a patient;
an e-commerce company wishes to forecast future sales
of each of their products; a telecommunications provider
wants to predict which customers will churn; and a music
streaming platform must decide which songs to recommend
to a user. Behind each of these tasks is a rich relational
schema, and many machine learning models are built using
this data (Kaggle, 2022).

However, existing learning paradigms, notably tabular learn-
ing, cannot directly learn across multiple tables. Instead, a
manual feature engineering step is first taken, where domain
knowledge is used to manually join and aggregate tables
into a single table format, where each column represents
a different feature. To illustrate this, consider a simple e-
commerce schema (Fig. 1) of three tables: CUSTOMERS,
TRANSACTIONS and PRODUCTS, where CUSTOMERS and
PRODUCTS are linked to TRANSACTIONS, and the task is to
predict if a customer is going to complete any transactions
in the next k days. In this case, a data scientist would aggre-
gate information from the TRANSACTIONS table to make
new features for the CUSTOMERS table such as: “number of
purchases of a given customer in the last 30 days”, “number
of purchases in the last 14 days”, “number of purchases on
a Sunday”, “number of purchases on a Monday”, and so on.
The new features for each customer are stored in a single
table, ready for tabular machine learning.

There are many issues with with the above approach: (1)
it is a manual, slow and labor intensive process; (2) fea-
ture choices are likely highly-suboptimal; (3) only a small
fraction of the overall space of possible features can be
manually explored; (4) flattening data into a single table
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Figure 1. Relational Deep Learning solves predictive tasks on relational data with end-to-end learnable models. There are three
main steps. (a) A relational database with multiple tables connected by primary-foreign keys is given. (b) A predictive task is specified
and added to the database by introducing an additional training table. (c) Relational data is transformed into its Relational Entity Graph,
and a Graph Neural Network is trained over the graph with the supervision provided by the training table. The predictive task can be node
level (as in this illustration), link level (pairs of nodes), or higher-order.

aggregates data into lower-granularity features, foregoing
valuable fine-grain signal; (5) features are often temporal
and must be recomputed frequently, adding computational
cost and risking time leakage bugs (Kapoor & Narayanan,
2023); (6) features may become obsolete over time and new
features have to be manually reinvented.

Many domains have been in a similar position, including pre-
deep-learning computer vision, where hand-chosen convolu-
tional filters (e.g., Gabor) were used to extract features, fol-
lowed by models such as SVMs or nearest neighbor search
(Varma & Zisserman, 2005). In the case of computer vi-
sion (He et al., 2016; Russakovsky et al., 2015), as in many
other domains, the key was to move from manual feature
engineering and handcrafted systems to fully data-driven,
end-to-end representation learning systems. For relational
data, this transition has not yet occurred.

Here we introduce Relational Deep Learning (RDL), a
blueprint for an end-to-end deep learning paradigm for rela-
tional databses (Fig. 1). Through end-to-end representation
learning, RDL fully utilizes the rich predictive signals avail-
able in relational tables. The core of RDL is to represent a
relational database as a temporal, heterogeneous Relational
Entity Graph, where each row defines a node, columns
define node features, and primary-foreign key links define
edges. Graph Neural Networks (GNNs) (Gilmer et al., 2017;
Hamilton et al., 2017) can then be applied to build end-to-
end data-driven predictive models.

All in all, RDL has four main steps (Fig. 2): Given a pre-
dictive machine learning task, (1) A training table con-
taining supervision labels automatically computed based
on historic data in the relational database, (2) entity-level
features are extracted and encoded from each row in each
table to serve as node features, (3) node representations
are learned through an inter-entity message-passing GNN
that exchanges information between entities with primary-
foreign key links, (4) a task-specific model head produces

predictions, and errors backpropogated through the network.

Crucially, RDL models natively integrate database tempo-
rality by only allowing entities to receive messages from
other entities with earlier timestamps. This ensures that
the learned representation is automatically updated with
new data if a GNN forward pass is run at a later time, and
prevents information leakage and time travel bugs.

This paper advocates for graph-based deep learning on rela-
tional databases. This paper lays the ground for future with
the following main contributions:

• Blueprint. Relational Deep Learning, an end-to-end
learnable approach that ultilizes the predictive signals
available in relational data, and supports temporal pre-
dictions.

• Prototype Implementation. RELBENCH, an open-
source implementation of RDL based on PyTorch
Frame for tabular learning (Hu et al., 2024) and Py-
Torch Geometric for graph neural networks (Fey &
Lenssen, 2019). Preliminary testing suggests signifi-
cant improvements over single-table methods such as
XGBoost.

• Research Opportunities. Outlining a new research
program for Relational Deep Learning, including multi-
task learning, new GNN architectures, multi-hop learn-
ing, and more.

2. Predictive Tasks on Relational Databases
This section outlines our problem scope: predictive tasks
on relational tables. We define relational tables, and how to
specify predictive tasks. This section focuses exclusively on
the structure of data and tasks, laying the groundwork for
Section 3, which presents our GNN-based approach.
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Figure 2. Relational Deep Learning Pipeline. (a) Given relational tables and a predictive task, a training table, containing supervised
label information, is constructed and attached to the entity table(s). (b) Relational tables contain individual entities that are linked by
foreign-primary key relations. (c) Relational data can be viewed as a single Relational Entity graph, which has a node for each entity, and
edges given by primary-foreign key links. (d) Initial node features are extracted from each row in each table using modality-specific
neural networks. Then a message passing graph neural network computes relation-aware node embeddings, a model head produces
predictions for training table entities, and errors are backpropogated.

2.1. Relational Data

A relational database (T ,L) is comprised of a collection
of tables T = {T1, . . . , Tn}, and links between tables L ⊆
T × T (cf. Figure 2a). A link L = (Tfkey, Tpkey) ∈
L between tables exists if a foreign key column in Tfkey
points to a primary key column of Tpkey. Each table is a
set T = {v1, ..., vnT

}, whose elements vi ∈ T are called
rows, or entities (cf. Figure 2b). Each entity v ∈ T , has four
constituent parts v = (pv,Kv, xv, tv):

1. Primary key pv , that uniquely identifies the entity v.

2. Foreign keys Kv ⊆ {pv′ : v′ ∈ T ′ and (T, T ′) ∈ L},
defining links between element v ∈ T to elements
v′ ∈ T ′, where pv′ is the primary key of an entity v′ in
table T ′.

3. Attributes xv , holding the information of the entity.

4. Timestamp An optional timestamp tv, indicating the
time an event occurred.

For example, the TRANSACTIONS table in Figure 2a has
the primary key (TRANSACTIONID), two foreign keys
(PRODUCTID and CUSTOMERID), one attribute (PRICE),
and timestamp column (TIMESTAMP). Similarly, the PROD-
UCTS table has the primary key (PRODUCTID), no foreign
keys, attributes (DESCRIPTION, IMAGE and SIZE), and no
timestamp. The connection between foreign keys and pri-
mary keys is given by black connecting lines in Figure 2.

In general, the attributes in table T contain a tuple of dT
values: xv = (x1v, . . . , x

dT
v ). Critically, all entities in the

same table have the same columns (values may be absent).
For example, the PRODUCTS table from Fig. 2a contains
three different attributes: the product description (text type),
the image of the product (image type), and the size of the
product (numerical type). Each of these types has their own
encoders as discussed in Sec. 3.4.3.

Fact and Dimension Tables. Tables are categorized into
two types, fact or dimension, with complementary roles
(Garcia-Molina et al., 2008). Dimension tables provide
contextual information, such as biographical information,
macro statistics (such as number of beds in a hospital), or
immutable properties, such as the size of a product (as in the
PRODUCTS table in Figure 2a). Fact tables record interac-
tions between other entities, such as all patient admissions
to a hospital, or all customer transactions (as in the TRANS-
ACTIONS table in Figure 2a). Since entities can interact
repeatedly, fact tables often contain the majority of rows in
a relational database. Typically, features in dimension tables
are static over their whole lifetime, while fact tables usually
have timestamped entities.

Temporality as a First-Class Citizen. Relational data
evolves over time as events occur and are recorded. This is
captured by the (optional) timestamp tv attached to each en-
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Figure 3. Predictive Task Definition. A task over relational data is defined by attaching an additional training table to the existing
linked tables. A training table entity specifies (a) ground truth label computed from historical information (b) the entity ID(s) the labels
correspond to, and (c) a timestamp that controls what data the model can use to predict this label.

tity v. For example, each transaction in TRANSACTIONS has
a time stamp. Furthermore, many tasks of interest involve
forecasting future events. For example, how much will a
customer spend in next k days. It is therefore essential that
time is conferred a special status unlike other attributes. Our
formulation, introduced in Section 3, achieves this through
a temporal message passing scheme (similar to (Rossi et al.,
2020)), that only permits nodes to receive messages from
neighbors with earlier timestamps.

2.2. From Task to Training Table

Many practically interesting machine learning tasks defined
over relational databases involve predicting the future state
of the entities of interest. Given a task we wish to solve,
how can we create ground truth labels for model training?

Our key insight is that we can generate training labels using
historical data. For instance, at time t, ground truth labels
for predicting “how much each customer will buy in the next
90 days?” are computed by summing up each customer’s
spending within the interval t and t+ 90 days. Importantly,
as long as t+ 90 is less than the most recent timestamp in
the database, then these ground truth labels can be computed
purely from historical data without any need for external
annotation. Further, by choosing different time points t
across the database time horizon, it is possible to naturally
compute many ground truth training labels for each entity.

To hold the labels for a new predictive task, we introduce
a new table known as a training table Ttrain (Fig. 3). Each
entity v = (Kv, tv, yv) in the training table Ttrain has three
components: (1) A (set of) foreign keys Kv indicating the
entities the training example is associated to, (2) a timestamp
tv, and (3) the ground truth label itself yv. In contrast to
tabular learning settings, the training table does not contain
input data xv. The training table is linked to the main
relational database (T ,L) by updating: (1) the tables to
T ∪ {Ttrain}, and (2) the links between tables to L ∪ LTtrain ,
where LTtrain specifies tables that keys Kv point to.

As discussed in Sec. 2.1, careful handling of what data
the model sees during training is crucial in order to ensure
temporal leakage does not happen. This is achieved using

the training timestamp. When the model is trained to output
target yv for entity v with timestamp tv, temporal consis-
tency is ensured by only permitting the model to receive
input information from entities u with timestamp tu ≤ tv
(see Sec. 3.3 for details on training sampling).

Thus, the purpose of the training table is twofold: to specify
training inputs and outputs of the machine learning model.
First, it provides supervision on the model output by speci-
fying the the entities and their target training labels. Second,
in the case of temporal tasks, the training table specifies
the model input by specifying the timestamp at which each
historical training label is generated. This training table
formulation can model a wide range of predictive tasks on
relational databases:

• Node-level prediction tasks (e.g., multi-class classi-
fication, multi-label classification, regression): The
training table has three columns (ENTITYID, LABEL,
TIME), indicating the foreign key, target label, and
timestamp columns.

• Link prediction tasks: The training table has columns
(SOURCEENTITYID, TARGETENTITYID, LABEL,
TIME), indicating the foreign key columns for the
source/target nodes, target label, and timestamp.

• Temporal and static prediction tasks: Temporal tasks
make predictions about the future (and require a seed
time), while non-temporal tasks impute missing values
(TIME is dropped).

Training Table Generation. In practice, training tables
can be computed using time-conditioned SQL queries from
historic data in the database. Given a query that describes
the prediction targets for all prediction entities, e.g. the sum
of sells grouped by products, from time t to time t + δ in
the future, we can move t back in time in fixed intervals to
gather historical training, validation and test targets for all
entities (cf. Fig. 3b). We store t as timestamp for the targets
gathered in each step.
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Figure 4. Three different kinds of graphs. (a) The schema graph arises from the given relational tables. Each node denotes a table,
and an edge between tables indicates that primary keys in one are foreign keys in the other. (b) The entity graph has one node for each
entity in each table, and edges given by primary-foreign key links. The entity graph is heterogeneous with node and edge types defined by
the schema graph. The nodes have a timestamp (illustrated by arrow-of-time), originating from the timestamp column of the table. (c)
Using a temporal sampling strategy and a task description in form of training table containing different time s, we obtain time-consistent
computation graphs as training examples that naturally respect temporal order and map well to parallel compute.

3. Predictive Tasks as Graph Representation
Learning Problems

Here, we formulate a generic graph neural network archi-
tecture for solving predictive tasks on relational databases.
The following section will first introduce three important
graph concepts, which are outlined in Fig. 4: (a) The schema
graph (cf. Sec. 3.1), table-level graph, where one table cor-
responds to one node. (b) The relational entity graph (cf.
Sec. 3.2), an entity-level graph, with a node for each entity
in each table, and edges are defined via foreign-primary
key connections between entities. (c) The time-consistent
computation graph (cf. Sec. 3.3), which acts as an explicit
training example for graph neural networks. We describe
generic procedures to map between graph types, and finally
introduce our GNN blueprint for end-to-end learning on
relational databases (cf. Sec. 3.4).

3.1. Schema Graph

The first graph in our blueprint is the schema graph (cf.
Fig. 4a), which describes the table-level structure of data.
Given a relational database (T ,L) as defined in Sec. 2, we
let L−1 = {(Tpkey, Tfkey) | (Tfkey, Tpkey) ∈ L} denote its
inverse set of links. Then, the schema graph is the graph
(T ,R) that arises from the relational database, with node set
T and edge setR = L ∪ L−1. Inverse links ensure that all
tables are reachable within the schema graph. The schema
graph nodes serve as type definitions for the heterogeneous
relational entity graph, which we define next.

3.2. Relational Entity Graph

To formulate a graph suitable for processing with GNNs, we
introduce the relational entity graph, which has entity-level
nodes and serves as the basis of the proposed framework.

Our relational entity graph is a heterogeneous graph G =
(V, E , ϕ, ψ), with node set V and edge set E ⊆ V × V and
type mapping functions ϕ : V → T and ψ : E → R, where
each node v ∈ V belongs to a node type ϕ(v) ∈ T and each
edge e ∈ E belongs to an edge type ψ(e) ∈ R. Specifically,
the sets T and R from the schema graph define the node
and edge types of our relational entity graph.

Given a schema graph (T ,R) with tables T =
{v1, ..., vnT

} ∈ T as defined in Sec. 2, we define the node
set in our relational entity graph as the union of all entries
in all tables V =

⋃
T∈T T . Its edge set is then defined as

E = {(v1, v2) ∈ V × V | pv2 ∈ Kv1 or pv1 ∈ Kvv}, (1)

i.e. the entity-level pairs that arise from the primary-foreign
key relationships in the database. We equip the relational
entity graph with the following key information:

• Type mapping functions ϕ : V → T and ψ : E → R,
mapping nodes and edges to respective elements of
the schema graph, making the graph heterogeneous.
We set ϕ(v) = T for all v ∈ T and ψ(v1, v2) =
(ϕ(v1), ϕ(v2)) ∈ R if (v1, v2) ∈ E .

• Time mapping function τ : V → D, mapping nodes
to its timestamp: τ : v 7→ tv (as defined in Sec. 2.1), in-
troducing time as a central component and establishes
the temporality of the graph. The value τ(v) denotes
the point in time in which the table row v became
available or −∞ in case of non-temporal rows.

• Embedding vectors hv ∈ Rdϕ(v) for each v ∈ V ,
which contains an embedding vector for each node in
the graph. Initial embeddings are obtained via multi-
modal column encoders, cf. Sec. 3.4.3. Final embed-
dings are computed via GNNs outlined in Section 3.4.
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An example of a relational entity graph for a given schema
graph is given in Fig. 4b. The graph contains a node for
each row in the database tables. Two nodes are connected if
the foreign key entry in one table row links to the primary
key entry of another table row. Node and edge types are
defined by the schema graph. Nodes resulting from temporal
tables carry the timestamp from the respective row, allowing
temporal message passing, which is described next.

3.3. Time-Consistent Computational Graphs

Given a relational entity graph and a training table
(cf. Sec. 2.2), we need to be able to query the graph at
specific points in time which then serve as explicit training
examples used as input to the model. In particular, we create
a subgraph from the relational entity graph induced by the
set of foreign keys Kv and its timestamp tv of a training
example in the training table Ttrain. This subgraph then acts
as a local and time-consistent computation graph to predict
its ground-truth label yv .

The computational graphs obtained via neighbor sam-
pling (Hamilton et al., 2017) allow the scalability of our
proposed approach to modern large-scale relational data
with billions of table rows, while ensuring the temporal
constraints (Wang et al., 2021). See Appendix B for details.

3.4. Task-Specific Temporal Graph Neural Networks

Given a time-consistent computational graph and its future
label to predict, we define a generic multi-stage deep learn-
ing architecture as follows:

1. Table-level column encoders that encode table row
data into initial node embeddings h(0)

v (cf. Sec. 3.4.3).

2. A stack of L relational-temporal message passing
layers (cf. Sec. 3.4.1).

3. A task-specific model head, mapping final node em-
beddings to a prediction (cf. Sec. 3.4.2).

The whole architecture, consisting of table-level encoders,
message passing layers and task specific model heads can
be trained end-to-end to obtain a model for the given task.

3.4.1. RELATIONAL-TEMPORAL MESSAGE PASSING

A message passing operator in the given relational frame-
work needs to respect the heterogeneous nature as well as
the temporal properties of the graph. We adopt common
hetereogeneous message passing (Gilmer et al., 2017; Fey
& Lenssen, 2019; Schlichtkrull et al., 2018; Hu et al., 2020)
and extend it by a temporal filtering mechanism, as detailed
in Appendix A. Given a relational entity graph, initial node
embeddings {h(0)

v }v∈V and an example specific seed time
t ∈ R (cf. Sec. 2.2), we obtain a set of node embeddings

{h(L)
v }v∈V by L consecutive applications of message pass-

ing, where information flow between nodes can only go
forward in time, ensured by a temporal neighbor sampler.

3.4.2. PREDICTION WITH MODEL HEADS

The model described so far is task-agnostic and simply
propagates information through the relational entity graph
to produce node embeddings. We obtain a task-specific
model by combining our graph with a training table, leading
to specific model heads and loss functions. We distinguish
between (but are not limited to) two types of tasks: node-
level prediction and link-level prediction.

Node-level Model Head. Given a batch of N node level
training table examples {(K, t, y)i}Ni=1 (cf. Sec. 2.2), where
K = {k} contains the primary key of node v ∈ V in the
relational entity graph, t ∈ R is the seed time, and y ∈ Rd

is the target value. Then, the node-level model head maps
node-level embeddings h(L)

v to a prediction ŷ, i.e.

f : Rdv → Rd, f : h(L)
v 7→ ŷ. (2)

Link-level Model Head. Similarly, we can define a link-
level model head for training examples {(K, t, y)i}Ni=1 with
K = {k1, k2} containing primary keys of two different
nodes v1, v2 ∈ V in the relational entity graph. A function
maps node embeddings h(L)

v1 , h(L)
v2 to a prediction, i.e.

f : Rdv1 × Rdv2 → Rd, f : (h(L)
v1 ,h

(L)
v2 ) 7→ ŷ. (3)

A task-specific loss L(ŷ, y) provides gradient signals to
all trainable parameters. The presented approach can be
generalized to |K| > 2 to specify subgraph-level tasks.

3.4.3. MULTI-MODAL NODE ENCODERS

The final piece of the pipeline is to obtain the initial entity-
level node embeddings h

(0)
v from the multi-modal input

attributes xv = (x1v, . . . , x
dT
v ). Due to the nature of tabu-

lar data, each column element xiv lies in its own modality
space such as image, text, categorical, and numerical values.
Therefore, we use pre-trained modality-specific encoders to
embed each attribute into embeddings, and fuse the column-
level embeddeings into a single embedding per row.

4. A New Program for Graph Representation
Learning

Relational Deep Learning has research opportunities at all
levels of the modelling stack, including (pre-)training meth-
ods, GNN architectures, multimodality, new graph structues,
and scaling to large distributed relational databases. Here we
discuss several promising aspects of this research program,
aiming to stimulate the graph machine learning community.
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4.1. Scaling Relational Deep Learning

Relational databases are often vast, with information dis-
tributed across many servers with constrained communica-
tion. Accordingly, there is a need for learning algorithms
that are compatible with the way data is partitioned across
machines. Horizontal partitioning, known as sharding, is
the most common approach. The most common approach
is horizontal partitioning, which splits the overall database
into smaller shards each stored on different computer nodes.
Each shard consists of a unique set of data rows following
the same table schema as the original database. This means
that similar rows from the same table may lie on different
machines, making it difficult to share information.

4.2. Building Graphs from Relational Data

An essential ingredient of Relational Deep Learning is the
relational entity graph (cf. 3.2) which is a graph modelling
individual- and link-level information. Whilst a natural
choice, we do not propose dogmatically viewing entities as
nodes and relations as edges. Instead, the essential property
of the relational entity graph is that it is full-resolution. That
is, each entity and each primary-foreign key link in the
relational database corresponds to its own graph-piece, so
that the relational database is exactly encoded in graph form.
Alternative graph designs can share this property.

Foreign-key Hypergraph. Fact tables often contain en-
tities with a fixed foreign-key pattern (e.g., in Figure 1 a
row in a REVIEW table always refers to a CUSTOMER and a
PRODUCT foreign key). The relational entity graph views
a review as a node, with edges to a customer and prod-
uct. However, another possibility is to view this as a single
hyperedge between review, customer, and product. Alter-
native graph choices may alter (and improve) information
propagation between entities (cf. Sec. 4.3).

4.3. GNN Architectures for Relational Data

Viewing a relational database a graphs leads to graphs with
structural properties that are consistent across databases.

To properly exploit this structure new specialized GNN
architectures are needed.

Expressive GNNs for Relational Data. Relational entity
graphs (cf. Sec. 3.2) obey certain structural constraints.
For example, as nodes correspond to entities drawn from
one of several tables, the relational entity graph is naturally
n-partite, where n is the total number of tables. Unfortu-
nately, recent studies find that many GNN architectures fail
to distinguish biconnected graphs (Zhang et al., 2023). Fur-
ther work is needed to design expressive n-partite graph
models. Relational entity graphs also have regularity in
edge-connectivity. For instance, in Figure 1, entities in
the REVIEW table always refer to one CUSTOMER and one
PRODUCT. Consistent edge patterns are described by the
structure of the schema graph (T ,R) (cf. Sec. 3.1) and may
benefit from modified message passing procedures.

Query Language Inspired Models. SQL operations are
known to be extremely powerful operations for manipulat-
ing relational data. Interestingly, there are close similarities
between key SQL queries and the computation process of
graph neural networks. For instance, a very common way
to combine information across tables T1, T2 in SQL is to
(1) create a table T3 by applying a JOIN operation to table
T1 and T2, by matching foreign keys in T1 to primary keys
in T2, then (2) produce a final table with the same number
of rows as T2 by applying an AGGREGATE operation to
rows in T3 with foreign keys pointing to the same entity
in T2. This process directly mirrors GNN computations of
messages from neighboring nodes, followed by aggregation.
This suggests an opportunity for enhancing architectures by
designing differentiable computation blocks that algorithmi-
cally align (Xu et al., 2020) to other useful SQL operations.

New Message Passing Schemes. New architectures may
also improve information propagation between entities. For
instance, collaborative filtering methods enhance predictions
by identify entities with similar behavior patterns. However,
in the relational entity graph, the two related customers may
not be directly linked. Instead they are indirectly be linked
to one another through links to their respective purchases,
which are linked to a particular shared product ID. This
means that a standard message passing GNN will require
four message passing steps to propagate the information
that customer v1 purchased the same product as customer
v2. New message passing schemes that propagate key in-
formation through the model in fewer iterations may be
desirable. As well as new message passing schemes, there
is also opportunity for new message aggregation methods,
such as time-aware aggregation (Yang et al., 2022).
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4.4. Training Techniques for Relational Data

By its nature, relational data contains highly overlapping
predictive signals and tasks. This interconnectedness is an
opportunity for new neural network training methods.

Multi-Task Learning. Many predictive tasks on relational
data are distinct but related. For example, predicting cus-
tomer lifetime value, and forecasting individual product
sales both involve anticipating future purchase patterns. In
RELBENCH, this corresponds to defining multiple training
tables, one for each task, and training a single model jointly
on all tasks in order to benefit from shared predictive signals.
How to group training tables to leverage their overlap is a
promising area for further study.

Multi-Modal Learning. Entities often have attributes cov-
ering multiple modalities (e.g., products come with images,
descriptions, as well as different categorical and numeri-
cal features). The Relational Deep Learning blueprint first
extracting entity-level features, which are used as initial
node-features for the GNN model. A natural initial entity-
level feature extraction approach is to use state-of-the-art
pre-trained models This maximizes convenience for graph-
focused research, but is likely suboptimal because the entity-
level feature extraction model is frozen. This is especially
relevant in contexts with unusual data—e.g., specialized
medical documentation—that generic pre-trained models
will likely fail to extract important details.

Foundation Models. In practice, new predictive tasks on
relational data are often specified on-the-fly and require fast
responses, precluding costly model training from scratch. To
pre-train models, self-supervised labels can be mined from
historical data, just as with training table construction. How
to specify suitable self-supervised tasks is an important open
question. Furthermore, in order to generalize to entirely new
relational databases, it is also necessary to design inductive
models that can deal with new columns types.

5. Related Work
Statistical Relational Learning. Since the foundation of
the field of AI, researchers sought to design systems capa-
ble of reasoning about entities and their relations, often by
explicitly building graph structures (Minsky, 1974). Each
new era of AI research also brought its own form of rela-
tional learning. A prominent instance is statistical relational
learning (De Raedt, 2008), a common form of which seeks
to describe objects and relations in terms of first-order logic,
fused with graphical models to model uncertainty (Getoor
et al., 2001). These descriptions can then be used to gen-
erate new “knowledge” through inductive logic program-
ming (Lavrac & Dzeroski, 1994). Markov logic networks, a
prominent statistical relational approach, are defined by a

collection of first-order logic formula with accompanying
scalar weights (Richardson & Domingos, 2006). This infor-
mation is then used to define a probability distribution over
possible worlds (via Markov random fields) which enables
probabilistic reasoning about the truth of new formulae. We
see Relational Deep Learning as inheriting this lineage.

Tabular Machine Learning. Tree based methods, notably
XGBoost (Chen & Guestrin, 2016), remain key workhorses
of enterprise machine learning systems due to their scalabil-
ity and reliability. In parallel, efforts to design deep learning
architectures for tabular data have continued (Huang et al.,
2020; Arik & Pfister, 2021; Gorishniy et al., 2021; 2022;
Chen et al., 2023), but have struggled to clearly dominate
tree-based methods (Shwartz-Ziv & Armon, 2022). The vast
majority of tabular machine learning focuses on the single
tables, which we argue forgoes use of the rich interconnec-
tions between relational data. As such, it does not address
the key problem for relational data, which is how to get the
data from a multi-table to a single table representation.

Deep Learning on Relational Data. Proposals to use
message passing neural networks on relational data have
occasionally surfaced within the research community. In
particular, (Schlichtkrull et al., 2018; Cvitkovic, 2019; Šı́r,
2021), and (Zahradnı́k et al., 2023) make the connection be-
tween relational data and graph neural networks and explore
it with different network architectures. Here we focus on
the components needed to establish this new area and attract
broader interest: (1) a clearly scoped design space for neu-
ral network architectures on relational data, (2) a carefully
chosen suite of benchmark databases and predictive tasks
around which the community can center its efforts, (3) stan-
dardized data loading and splitting, so that temporal leakage
does not contaminate experimental results, (4) recognizing
time as a first-class citizen, integrated into all sections of
the experimental pipeline, including temporal data splitting,
time-based forecasting tasks, and temporal-based message
passing, and (5) standardized evaluation protocols to ensure
comparability between reported results.

6. RELBENCH: A Benchmark for
Relational Deep Learning

To validate the effectiveness of relational deep learning, we
build RELBENCH. RELBENCH includes: (1) a general data
loading library intended to make it easy to load relational
databases ready for model training; (2) two initial databases:
Amazon review records, and Stack Exchange, and two pre-
dictive tasks for each database. Additionally, RELBENCH
comes with a GNN implementation for solving these tasks.
Due to space limitations, we outline the main features of
RELBENCH in Appendix C and preliminary GNN results in
Appendix D. Our tests find that RDL produces significant
improvements over single-table methods such as XGBoost.
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Impact Statement
Relational deep learning broadens the applicability of graph
machine learning to include relational databases. Whilst
the blueprint is general, and can be applied to a wide vari-
ety of tasks, including potentially hazardous ones, we have
taken steps to focus attention of potential positive use cases.
Specifically, the beta version of RELBENCH considers two
databases, Amazon products, and Stack Exchange, that are
designed to highlight the usefulness of RDL for driving
online commerce and online social networks. Future re-
leases of RELBENCH will continue to expand the range of
databases into domains we reasonably expect to be positive,
such as biomedical data and sports fixtures. We hope these
concrete steps ensure the adoption of RDL for purposes
broadly beneficial to society.
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Šı́r, G. Deep Learning with Relational Logic Representa-
tions. Czech Technical University, 2021.

Varma, M. and Zisserman, A. A statistical approach to
texture classification from single images. International
journal of computer vision, 62:61–81, 2005.

Wang, Y., Cai, Y., Liang, Y., Ding, H., Wang, C., and Hooi,
B. Time-aware neighbor sampling for temporal graph
networks. In arXiv pre-print, 2021.

Xu, K., Li, J., Zhang, M., Du, S. S., Kawarabayashi, K.-i.,
and Jegelka, S. What can neural networks reason about?
In International Conference on Learning Representations
(ICLR), 2020.

Yang, Z., Ding, M., Xu, B., Yang, H., and Tang, J. Stam:
A spatiotemporal aggregation method for graph neural
network-based recommendation. In Proceedings of the
ACM Web Conference 2022, pp. 3217–3228, 2022.

Zahradnı́k, L., Neumann, J., and Šı́r, G. A deep learning
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A. Temporal, Heterogeneous Message Passing
Message-Passing Graph Neural Networks (MP-GNNs) (Gilmer et al., 2017; Fey & Lenssen, 2019) are a generic com-
putational framework to define deep learning architectures on graph-structered data. Given a heterogeneous graph
G = (V, E , ϕ, ψ) with initial node embeddings {h(0)

v }v∈V , a single message passing iteration computes updated fea-
tures {h(i+1)

v }v∈V from features {h(i)
v }v∈V given by the previous iteration. One iteration takes the form:

h(i+1)
v = f(h(i)

v , {{g(h(i)
w ) | w ∈ N (v)}}), (4)

where f and g are arbitrary differentiable functions with optimizable parameters and {{·}} an permutation invariant set
aggregator, such as mean, max, sum, or a combination. Heterogeneous message passing (Schlichtkrull et al., 2018; Hu et al.,
2020) is a nested version of Eq. 4, adding an aggregation over all incoming edge types to learn distinct message types:

h(i+1)
v = fϕ(v)

(
h(i)
v ,

{{
fR({{gR(h(i)

w ) | w ∈ NR(v)}})
∣∣∣∀R = (T, ϕ(v)) ∈ R

}})
, (5)

where NR(v) = {w ∈ V | (w, v) ∈ E and ψ(w, v) = R} denotes the R-specific neighborhood of node v ∈ V . This
formulation supports a wide range of different graph neural network operators, which define the specific form of functions
fϕ(v), fR, gR and {{·}} (Fey & Lenssen, 2019).

Temporal Message Passing. Given a relational entity graph G = (V, E , T ,R) with attached mapping functions ψ, ϕ, τ
and initial node embeddings {h(0)

v }v∈V and an example specific seed time t ∈ R (cf. Sec. 2.2) , we obtain a set of deep
node embeddings {h(L)

v }v∈V by L consecutive applications of Eq. 5, where we additionally filter R-specific neighborhoods
based on their timestamp, i.e. replace NR(v) with

N≤t
R (v) = {w ∈ V | (w, v) ∈ E , ψ(w, v) = R, and τ(w) ≤ t},

realized by the temporal sampling procedure presented in Sec. 3.3. The formulation naturally respects time by only
aggregating messages from nodes that were available before the given seed time s. The given formulation is agnostic to
specific implementations of message passing and supports a wide range of different operators.

B. Time-Consistent Computation Graphs
Given a number of hops L to sample, a seed node v ∈ V , and a timestamp t induced by a training example, the computation
graph is defined as Gcomp = (Vcomp, Ecomp) as the output of Alg. 1. The algorithm traverses the graph starting from the
seed node v for L iterations. In iteration i, it gathers a maximum of mi neighbors available up to timestamp t, using one of
three selection strategies:

• Uniform temporal sampling selects uniformly sampled random neighbors.

• Ordered temporal sampling takes the latest neighbors, ordered by time τ .

• Biased temporal sampling selects random neighbors sampled from a multinomial probability distribution induced by
τ . For instance, sampling can be performed proportional to relative neighbor time or biased towards specific important
historical moments.

The temporal neighbor sampling is performed purely on the graph structure of the relational entity graph, without requiring
initial embeddings h

(0)
v . The bounded size of computation graph Gcomp allows for efficient mini-batching on GPUs,

independent of relational entity graph size. In practice, we perform temporal neighbor sampling on-the-fly, which allows
us to operate on a shared relational entity graph across all training examples, from which we can then restore local and
historical snapshots very efficiently. Examples of computation graphs are shown in Fig. 4c.

We introduce RELBENCH, an open benchmark for Relational Deep Learning. The goal of RELBENCH is to facilitate
scalable, robust, and reproducible machine learning research on relational tables. RELBENCH curates a diverse set of
large-scale, challenging, and realistic benchmark databases and defines meaningful predictive tasks over these databases.
In addition, RELBENCH develops a Python library for loading relational tables and tasks, constructing data graphs, and
providing unified evaluation for predictive tasks. It also integrates seamlessly with existing Pytorch Geometric and PyTorch
Frame functionalities. In its beta release1, we announce the first two real-world relational databases, each with two curated

1Website: https://relbench.stanford.edu/
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Algorithm 1 Time-Consistent Computation Graph

Input: Relational entity graph G = (V, E), number of hops L, seed node v0 ∈ V , seed time t ∈ R
Input: Neighborhood sizes (m1, ...,mL) ∈ NL

Output: Computation graph Gcomp = (Vcomp, Ecomp)
V0 ← {v0}, E0 ← ∅
for i ∈ {1, ..., L} do

for v ∈ Vi−1 do
Ei ← SELECTmi

({(w, v) ∈ E | τ(v) ≤ t}) ▷ Select a maximum of mi filtered edges
Vi ← {w ∈ V | (w, v) ∈ Ei} ▷ Gather nodes for the sampled edges

end for
end for
Vcomp ←

⋃L
i=1 Vi, Ecomp ←

⋃L
i=1 Ei

predictive tasks.

In the subsequent sections (Sec. C.2 and C.3), we describe in detail the two relational databases and the predictive tasks. For
each database, we show its entity relational diagrams and important statistics. For each task, we define the task formulation,
entity filtering, significance of the task, and also unified evaluation metric. Finally, we demonstrate the usage of the
RELBENCH’s package in Sec. C.

C. RELBENCH Package
The RELBENCH package is designed to allow easy and standardized access to Relational Deep Learning for researchers to
push the state-of-the-art of this emerging field. It provides Python APIs to (1) download and process relational databases
and their predictive tasks; (2) load standardized data splits and generate relevant train/validation/test tables; (3) evaluate
on machine learning predictions. It also provides a flexible ecosystems of supporting tools such as automatic conversion
to PyTorch Geometric graphs and integration with Pytorch Frame to produce embeddings for diverse column types. We
additionally provide end-to-end scripts for training using RELBENCH package with GNNs and XGBoost (Chen & Guestrin,
2016). We temporarily withhold the website link to RELBENCH to preserve anonymity.

C.1. Temporal Splitting

Every dataset in RELBENCH has a validation timestamp tval and a test timestamp ttest. These are shared for all tasks in
the dataset. The test table for any task comprises of labels computed for the time window from ttest to ttest + δ, where the
window size δ is specified for each task. Thus the model must make predictions using only information available up to
time ttest. Accordingly, to prevent accidental temporal leakage at test time RELBENCH only provides database rows with
timestamps up to ttest for training and validation purposes. RELBENCH also provides default train and validation tables. The
default validation table is constructed similar to the test table, but with the time window being tval to tval + δ. To construct
the default training table, we first sample time stamps ti starting from tval − δ and moving backwards with a stride of δ. This
allows us to benefit from the latest available training information. Then for each ti, we apply an entity filter to select the
entities of interest (e.g., active users). Finally for each pair of timestamp and entity, we compute the training label based on
the task definition. Users can explore other ways of constructing the training or validation table, for example by sampling
timestamps with shorter strides to get more labels, as long as information after tval is not used for training.

C.2. rel-amazon: Amazon product review e-commerce database

Database overview. The rel-amazon relational database stores product and user purchasing behavior across Amazon’s
e-commerce platform. Notably, it contains rich information about each product and transaction. The product table includes
price and category information; the review table includes overall rating, whether the user has actually bought the product,
and the text of the review itself. We use the subset of book-related products. The entity relationships are described in Fig. 6.

Dataset statistics. rel-amazon covers 3 relational tables and contains 1.85M customers, 21.9M reviews, 506K products.
This relational database spans from 1996-06-25 to 2018-09-28. The validation timestamp tval is set to 2014-01-21 and the
testing timestamp ttest is 2016-01-01. Thus, tasks can have a window size up to 2 years.
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Figure 6. rel-amazon contains two dimension tables (customers and products) and one fact table (reviews). Each review has a customer
and a product foreign key.

C.2.1. REL-AMAZON-LTV : PREDICT THE LIFE TIME VALUE (LTV) OF A USER

Task definition: Predict the life time value of a user, defined as the total number of products that the user will buy and
review in the next 2 years.

Entity filtering: We filter on active users defined as users that wrote review in the past two years before the timestamp.

Task significance: By accurately forecasting LTV, the e-commerce platform can gain insights into user purchasing patterns
and preferences, which is essential when making strategic decisions related to marketing, product recommendations,
and inventory management. Understanding a user’s future purchasing behavior helps in tailoring personalized shopping
experiences and optimizing product assortments, ultimately enhancing customer satisfaction and loyalty.

Machine learning task: Regression. The target ranges from 0-7922in the given time window in the training table.

Evaluation metric: Mean Absolute Error (MAE).

C.2.2. REL-AMAZON-CHURN : PREDICT IF THE USER CHURNS

Task definition: Predict if the user will not buy any product in the next 2 years.

Entity filtering: We filter on active users defined as users that wrote review in the past two years before the timestamp.

Task significance: Predicting churn accurately allows companies to identify potential risks of customer attrition early on.
By understanding which customers are at risk of disengagement, businesses can implement targeted interventions to improve
customer retention. This may include personalized marketing, tailored offers, or enhanced customer service. Effective
churn prediction enables businesses to maintain a stable customer base, ensuring sustained revenue streams and facilitating
long-term planning and resource allocation.

Machine learning task: Binary classification. The label is 1 when user churns and 0 vice versus.

Evaluation metric: Average precision (AP).

C.3. rel-stackex: Stack exchange question-and-answer website database

Database overview. Stack Exchange is a network of question-and-answer websites on topics in diverse fields, each site
covering a specific topic, where questions, answers, and users are subject to a reputation award process. The reputation
system allows the sites to be self-moderating. In our benchmark, we use the stats-exchange site. We derive from the raw
data dump from 2023-09-12. Figure 7 shows its entity relational diagrams.
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Figure 7. Entity relational diagrams of Stack-Exchange.

Dataset statistics. rel-stackex covers 7 relational tables and contains 333K users, 415K posts, 794K comments,
1.67M votes, 103K post links, 590K badges records, 1.49M post history records. This relational database spans from
2009-02-02 to 2023-09-03. The validation timestamp tval is set to be 2019-01-01 and the testing timestamp ttest is set to be
2021-01-01. Thus, the maximum time window size for predictive task is 2 years.

C.3.1. REL-STACKEX-ENGAGE : PREDICT IF A USER WILL BE AN ACTIVE CONTRIBUTOR TO THE SITE

Task definition: Predict if the user will make any contribution, defined as vote, comment, or post, to the site in the next 2
years.

Entity filtering: We filter on active users defined as users that have made at least one comment/post/vote before the
timestamp.

Task significance: By accurately forecasting the levels of user contribution, website administrators can effectively gauge
and oversee user activity. This insight allows for well-informed choices across various business aspects. For instance,
it aids in preempting and mitigating user attrition, as well as in enhancing strategies to foster increased user interaction
and involvement. This predictive task serves as a crucial tool in optimizing user experience and sustaining a dynamic and
engaged user base.

Machine learning task: Binary classification. The label is 1 when user contributes to the site and 0 otherwise.

Evaluation metric: Average Precision (AP).
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C.3.2. REL-STACKEX-VOTES : PREDICT THE NUMBER OF UPVOTES A QUESTION WILL RECEIVE

Task definition: Predict the popularity of a question post in the next six months. The popularity is defined as the number of
upvotes the post will receive.

Entity filtering: We filter on question posts that are posted recently in the past 2 years before the timestamp. This ensures
that we do not predict on old questions that have been outdated.

Task significance: Predicting the popularity of a question post is valuable as it empowers site managers to predict and
prepare for the influx of traffic directed towards that particular post. This foresight is instrumental in making strategic
business decisions, such as curating question recommendations and optimizing content visibility. Understanding which
posts are likely to attract more attention helps in tailoring the user experience and managing resources effectively, ensuring
that the most engaging and relevant content is highlighted to maintain and enhance user engagement.

Machine learning task: Binary classification. The label is 1 when a post recieves one or more upvote, and 0 otherwise.

Evaluation metric: Average Precision (AP).

D. Preliminary Results
This section reports preliminary results on the four predictive tasks outlined in Appendix C. The aim is to provide a
preliminary proof of concept that our proposed approach can significantly outperform single-table approaches such as
XGBoost.

Baselines. We compare to XGBoost on a single table (i.e., no feature engineering) and to several naive input-independent
baselines. For binary classification tasks we compare to: random: for each entity simply sample a value in [0, 1] to be
the estimated probability of class 1; majority: always predict 1 if over 50% of training targets are 1, and 0 otherwise. For
regression tasks we compare to regression-suitable naive baselines: global zero: always predict zero; global mean: always
predict the mean of the training targets; global median: always predict the median of training targets; entity mean: predict
the mean over all training targets associated to the entity in question (there are multiple per-entity due to multiple timestamps
being used to generate training data); entity median: predict the median over all training targets associated to the entity in
question

Results. Across all tasks we see that the GNN-based method significantly outperforms XGBoost and naive baselines.
We note that two cases, test accuracy is higher for a naive majority vote. This happens when the label distribution is
highly unbalanced, so a majority vote can get good performance by virtue of the unbalancedness. In such cases it is more
appropriate to use AP and ROCAUC metrics to compare models. We include test accuracy nonetheless as an interesting
additional statistic. We emphasize that our XGBoost baseline is on a single table—the entity in question. We do not do any
SQL-based feature engineering. Accordingly the significant difference between the GNN model and XGBoost show the
performance lift in the non-manually feature engineered setting.

Table 1. rel-stackex-engage. XGBoost performed over the user table joined with training table.

Method Test ROCAUC Test AP Test Accuracy

Random 0.4988 0.0589 0.5011
Majority 0.5000 0.0591 0.9408
XGBoost 0.6143 0.1346 0.9380
XGBoost with AR labels 0.8200 0.3215 0.9195
GNN 0.8754 0.4513 0.9479
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Table 2. rel-stackex-votes. XGBoost performed over the posts table joined with training table.

Method Test ROCAUC Test AP Test Accuracy

Random 0.4956 0.1347 0.4999
Majority 0.5000 0.1353 0.8646
XGBoost 0.6213 0.1989 0.8431
XGBoost with AR labels 0.8200 0.3215 0.9195
GNN 0.7086 0.2853 0.8489

Table 3. rel-amazon-churn. XGBoost performed over the user table joined with training table.

Method Test ROCAUC Test AP Test Accuracy

Random 0.4990 0.3199 0.4999
Majority 0.5000 0.3197 0.6802
XGBoost 0.512 0.3295 0.674

GNN 0.6556 0.4536 0.6655

Table 4. rel-amazon-ltv. XGBoost performed over the user table joined with training table.

Method Test MAE Test RMSE

Global Zero 3.8486 13.3635
Global Mean 4.2549 12.7994

Global Median 3.4881 13.1105
Entity Mean 4.2174 11.9572

Entity Median 4.2162 12.0748
XGBoost 3.4881 13.1105

GNN 3.12371 10.6085
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