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Abstract

Graph neural networks are popular architectures
for graph machine learning, based on iterative
computation of node representations of an input
graph through a series of invariant transforma-
tions. A large class of graph neural networks
follow a standard message-passing paradigm: at
every layer, each node state is updated based on
an aggregate of messages from its neighborhood.
In this work, we propose a novel framework for
training graph neural networks, where every node
is viewed as a player that can choose to either ‘lis-
ten’, ‘broadcast’, ‘listen and broadcast’, or to ‘iso-
late’. The standard message propagation scheme
can then be viewed as a special case of this frame-
work where every node ‘listens and broadcasts’ to
all neighbors. Our approach offers a more flexible
and dynamic message-passing paradigm, where
each node can determine its own strategy based on
their state, effectively exploring the graph topol-
ogy while learning. We provide a theoretical anal-
ysis of the new message-passing scheme which is
further supported by an extensive empirical anal-
ysis on synthetic and real-world data.

1. Introduction
Graph neural networks (GNNs) (Scarselli et al., 2009; Gori
et al., 2005) are a class of architectures for learning on graph-
structured data. Their success in various graph machine
learning (ML) tasks (Shlomi et al., 2021; Duvenaud et al.,
2015; Zitnik et al., 2018) has led to a surge of different archi-
tectures (Kipf & Welling, 2017; Xu et al., 2019; Veličković
et al., 2018; Hamilton et al., 2017). The vast majority of
GNNs can be implemented through message-passing, where
the fundamental idea is to update each node’s representation
based on an aggregate of messages flowing from the node’s
neighbors (Gilmer et al., 2017).
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The message-passing paradigm has been very influential in
graph ML, but it also comes with well-known limitations
related to the information flow on a graph, pertaining to
long-range dependencies (Dwivedi et al., 2022). In order to
receive information from k-hop neighbors, a network needs
at least k layers, which typically implies an exponential
growth of a node’s receptive field. The growing amount of
information needs then to be compressed into fixed-sized
node embeddings, possibly leading to information loss, re-
ferred to as over-squashing (Alon & Yahav, 2021). Another
well-known limitation related the information flow is over-
smoothing (Li et al., 2018): the node features can become
increasingly similar as the number of layers increases.

Motivation. Our goal is to generalize the message-passing
scheme by allowing each node to decide how to propagate
information from or to its neighbors, thus enabling a more
flexible flow of information. Consider the example depicted
in Figure 1, where the top row shows the information flow
relative to the node u across three layers, and the bottom
row shows the information flow relative to the node v across
three layers. Node u listens to every neighbor in the first
layer, only to v in the second layer, and to nodes s and r
in the last layer. On the other hand, node v listens to node
w for the first two layers, and to node u in the last layer.
To realize this scenario, each node should be able to decide
whether or not to listen to a particular node at each layer: a
dynamic and asynchronous message-passing scheme, which
clearly falls outside of standard message-passing.

Approach. To achieve this goal, we regard each node as a
player that can take the following actions in each layer:

• STANDARD (S): Broadcast to neighbors that listen and
listen to neighbors that broadcast.

• LISTEN (L): Listen to neighbors that broadcast.
• BROADCAST (B): Broadcast to neighbors that listen.
• ISOLATE (I): Neither listen nor broadcast.

When all nodes perform the action STANDARD, we recover
the standard message-passing. Conversely, having all the
nodes ISOLATE corresponds to removing all the edges from
the graph implying node-wise predictions. The interplay
between these actions and the ability to change them dy-
namically makes the overall approach richer and allows to
decouple the input graph from the computational one and
incorporate directionality into message-passing: a node can
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Figure 1: Example information flow for nodes u, v. Top: information flow relative to u across three layers. Node u listens to
every neighbor in the first layer, but only to v in the second layer, and only to s and r in the last layer. Bottom: information
flow relative to v across three layers. The node v listens only to w in the first two layers, and only to u in the last layer.

only listen to those neighbors that are currently broadcast-
ing, and vice versa. We can emulate the example from
Figure 1 by making u choose the actions ⟨L, L, S⟩, v and w
the actions ⟨S, S, L⟩, and s and r the actions ⟨S, I, S⟩.

Contributions. We develop a new class of architectures,
dubbed cooperative graph neural networks (CO-GNNs),
where every node in the graph is viewed as a player that
can perform one of the aforementioned actions. CO-GNNs
comprise two jointly trained “cooperating” message-passing
neural networks: an environment network η (for solving the
given task), and an action network π (for choosing the best
actions). Our contributions can be summarized as follows:

• We propose a novel message-passing mechanism, which
leads to CO-GNN architectures that effectively explore
the graph topology while learning (Section 4).

• We provide a detailed discussion on the properties of CO-
GNNs (Section 5.1) and show that they are more expres-
sive than 1-dimensional Weisfeiler-Leman algorithm (1-
WL) (Section 5.2), and better suited for long-range tasks
due to their adaptive nature (Section 5.3).

• Empirically, we focus on CO-GNNs with basic action
and environment networks to carefully assess the virtue of
the new message-passing paradigm. We first validate the
strength of our approach on a synthetic task (Section 6.1).
Then, we conduct experiments on real-world datasets, and
observe that CO-GNNs always improve compared to their
baseline models, and yield multiple state-of-the-art results
(Section 6.2 and Appendix C.3).

• We compare the trend of the actions on homophilic and
heterophilic graphs (Section 7.1); visualize the actions
on a heterophilic graph (Section 7.2); and ablate on the
choices of action and environment networks (Section 7.3).
We complement these with experiments related to ex-
pressive power (Appendix C.1), long-range tasks (Ap-
pendix C.2), and over-smoothing (Appendix C.5).

Additional details can be found in the appendix of this paper.

2. Background
Graph Neural Networks. We consider simple, undirected
attributed graphs G = (V,E,X), where X ∈ R|V |×d is a
matrix of (input) node features, and xv ∈ Rd denotes the
feature of a node v ∈ V . We focus on message-passing
neural networks (MPNNs) (Gilmer et al., 2017) that encap-
sulate the vast majority of GNNs. An MPNN updates the
initial node representations h(0)

v = xv of each node v for
0 ≤ ℓ ≤ L−1 iterations based on its own state and the state
of its neighbors Nv as:

h(ℓ+1)
v = ϕ(ℓ)

(
h(ℓ)
v , ψ(ℓ)

(
h(ℓ)
v , {{h(ℓ)

u | u ∈ Nv}}
))

,

where {{·}} denotes a multiset and ϕ(ℓ) and ψ(ℓ) are differ-
entiable update and aggregation functions, respectively. We
denote by d(ℓ) the dimension of the node embeddings at
iteration (layer) ℓ. The final representations h

(L)
v of each

node v can be used for predicting node-level properties or
they can be pooled to form a graph embedding vector z(L)

G ,
which can be used for predicting graph-level properties. The
pooling often takes the form of simple averaging, summa-
tion, or element-wise maximum. Of particular interest to us
are the basic MPNNs:

h(ℓ+1)
v = σ

(
W (ℓ)

s h(ℓ)
v +W (ℓ)

n ψ
(
{{h(ℓ)

u | u ∈ Nv}}
))

,

where W (ℓ)
s and W

(ℓ)
n are d(ℓ)×d(ℓ+1) learnable parameter

matrices acting on the node’s self-representation and on the
aggregated representation of its neighbors, respectively, σ
is a non-linearity, and ψ is either mean or sum aggregation
function. We refer to the architecture with mean aggregation
as MEANGNNs and to the architecture with sum aggrega-
tion as SUMGNNs (Hamilton, 2020). We also consider
prominent models such as GCN (Kipf & Welling, 2017),
GIN (Xu et al., 2019) and GAT (Veličković et al., 2018).

Straight-through Gumbel-softmax Estimator. In our ap-
proach, we rely on an action network for predicting cat-
egorical actions for the nodes in the graph, which is not
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differentiable and poses a challenge for gradient-based opti-
mization. One prominent approach to address this is given
by the Gumbel-softmax estimator (Jang et al., 2017; Mad-
dison et al., 2017) which effectively provides a differen-
tiable, continuous approximation of discrete action sam-
pling. Consider a finite set Ω of actions. We are interested
in learning a categorical distribution over Ω, which can be
represented in terms of a probability vector p ∈ R|Ω| whose
elements store the probabilities of different actions. Let us
denote by p(a) the probability of an action a ∈ Ω. Gumbel-
softmax is a special reparametrization trick that estimates
the categorical distribution p ∈ R|Ω| with the help of a
Gumbel-distributed vector g ∈ R|Ω|, which stores an i.i.d.
sample g(a) ∼ GUMBEL(0, 1) for each action a. Given a
categorical distribution p and a temperature parameter τ ,
Gumbel-softmax (GS) scores can be computed as follows:

GS (p; τ) =
exp ((log(p) + g)/τ)∑

a∈Ω exp ((log(p(a)) + g(a))/τ)

As the softmax temperature τ decreases, the resulting vector
tends to a one-hot vector. Straight-through GS estimator
utilizes the GS estimator during the backward pass only (for
a differentiable update), while during the forward pass, it
employs an ordinary sampling.

3. Related Work
Most of GNNs operate by message-passing (Gilmer et al.,
2017), including architectures such as GCNs (Kipf &
Welling, 2017), GIN (Xu et al., 2019), GAT (Veličković
et al., 2018), and GraphSAGE (Hamilton et al., 2017). De-
spite their success, MPNNs have some known limitations.

First, the expressive power of MPNNs is upper bounded by
1-WL (Xu et al., 2019; Morris et al., 2019). This motivated
the study of more expressive architectures, based on higher-
order structures (Morris et al., 2019; Maron et al., 2019;
Keriven & Peyré, 2019), subgraph (Bevilacqua et al., 2022;
Thiede et al., 2021) or homomorphism counting (Barceló
et al., 2021; Jin et al., 2024), node features with unique
identifiers (Loukas, 2020), or random features (Abboud
et al., 2021; Sato et al., 2021).

Second, MPNNs perform poorly on long-range tasks due
to their information propagation bottlenecks such as over-
squashing (Alon & Yahav, 2021) and over-smoothing (Li
et al., 2018). The former limitation motivated approaches
based on rewiring the graph (Klicpera et al., 2019; Topping
et al., 2022; Karhadkar et al., 2023) by connecting relevant
nodes and shortening propagation distances, or designing
new message-passing architectures that act on distant nodes
directly, e.g., using shortest-path distances (Abboud et al.,
2022; Ying et al., 2021). The over-smoothing problem has
also motivated a body of work to avoid the collapse of node
features (Zhao & Akoglu, 2019; Chen et al., 2020).

Finally, classical message passing updates the nodes in a
fixed and synchronous manner, which does not allow the
nodes to react to messages from their neighbors individually.
This has been recently argued as yet another limitation of
classical message passing from the perspective of algorith-
mic alignment (Faber & Wattenhofer, 2022).

Our approach presents new perspectives on these limitations
via a dynamic and asynchronous information flow (see Sec-
tion 5). This is related to the work of Lai et al. (2020), where
the goal is to update each node using a different number
of layers (over a fixed topology). This is also related to
the work of (Dai et al., 2022), where the idea is to apply
message passing on a learned topology but one that is the
same at every layer. CO-GNNs diverge from these studies
in terms of the objectives and the approach.

4. Cooperative Graph Neural Networks
CO-GNNs view each node in a graph as a player of a multi-
player environment, where the state of each player is given
in terms of the representation (or state) of its corresponding
node. Every node is updated following a two-stage process.
In the first stage, each node chooses an action from the set
of actions given their current state and the states of their
neighboring nodes. In the second stage, every node state
gets updated based on their current state and the states of a
subset of the neighboring nodes, as determined by the ac-
tions in the first stage. As a result, every node can determine
how to propagate information from or to its neighbors.

A CO-GNN (π, η) architecture is given in terms of two
cooperating GNNs: (i) an action network π for choosing the
best actions, and (ii) an environment network η for updating
the node representations. A CO-GNN layer updates the
representations h

(ℓ)
v of each node v as follows. First, an

action network π predicts, for each node v, a probability
distribution p

(ℓ)
v ∈ R4 over the actions {S, L,B, I} that v

can take, given its state and the state of its neighbors Nv:

p(ℓ)
v = π

(
h(ℓ)
v , {{h(ℓ)

u | u ∈ Nv}}
)
. (1)

Then, for each node v, an action is sampled a(ℓ)v ∼ p
(ℓ)
v

using Straight-through GS, and an environment network η
is utilized to update the state of each node in accordance
with the sampled actions:

h(ℓ+1)
v =

{
η(ℓ)

(
h
(ℓ)
v , {{}}

)
, a

(ℓ)
v = I ∨ B

η(ℓ)
(
h
(ℓ)
v ,M

)
, a

(ℓ)
v = L ∨ S

(2)

where M = {{h(ℓ)
u | u ∈ Nv, a

(ℓ)
u = S ∨ B}}.

This is a single layer update, and by stacking L ≥ 1 layers,
we obtain the representations h(L)

v for each node v.
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Figure 2: The input graph H and its computation graphs H(0), H(1), H(2) that are a result of applying the actions: ⟨L, L, S⟩
for the node u; ⟨S, S, L⟩ for the nodes v and w; ⟨S, I, S⟩ for the nodes s and r; ⟨S, S, S⟩ for all other nodes.

In its full generality, a CO-GNN (π, η) architecture can
operate on (un)directed graphs and use any GNN archi-
tecture in place of the action network π and the environ-
ment network η. To carefully assess the virtue of this new
message-passing paradigm, we consider relatively simple ar-
chitectures such as SUMGNNs, MEANGNNs, GCN, GIN
and GAT, which are respectively denoted as

∑
, µ, ∗, ϵ,

and α. For example, we write CO-GNN(Σ, µ) to denote a
CO-GNN architecture which uses SUMGNN as its action
network and MEANGNN as its environment network.

Fundamentally, CO-GNNs update the node states in a fine-
grained manner: if a node v chooses to ISOLATE or to
BROADCAST then it gets updated only based on its previous
state, which corresponds to a node-wise update function.
On the other hand, if a node v chooses the action LISTEN
or STANDARD then it gets updated based on its previous
state as well as the state of its neighbors which perform the
actions BROADCAST or STANDARD at this layer.

5. Model Properties
We analyze CO-GNNs, focusing on conceptual novelty,
expressive power, and suitability to long-range tasks.

5.1. Conceptual Properties

Task-specific: Standard message-passing updates nodes
based on their neighbors, which is completely task-agnostic.
By allowing each node to listen to the information from
‘relevant’ neighbors only, CO-GNNs can determine a com-
putation graph which is best suited for the target task. For
example, if the task requires information only from the
neighbors with a certain degree then the action network can
learn to listen only to these nodes (see Section 6.1).

Directed: The outcome of the actions that the nodes can take
amounts to a special form of ‘directed rewiring’ of the input
graph: an edge can be dropped (e.g., if two neighbors listen
without broadcasting); an edge can remain undirected (e.g.,
if both neighbors apply the standard action); or, an edge
can become directed implying directional information flow
(e.g., if one neighbor listens while its neighbor broadcasts).
Taking this perspective, the proposed message-passing can

be seen as operating on a potentially different directed graph
induced by the choice of actions at every layer (illustrated
in Figure 2). Formally, given a graph G = (V,E), let
us denote by G(ℓ) = (V,E(ℓ)) the directed computational
graphs induced by the actions chosen at layer ℓ, where E(ℓ)

is the set of directed edges at layer ℓ. We can rewrite the
update given in Equation (2) concisely as follows:

h(ℓ+1)
v = η(ℓ)

(
h(ℓ)
v , {{h(ℓ)

u | (u, v) ∈ E(ℓ)}}
)
.

Consider the input graph H from Figure 2: u gets messages
from v only in the first two layers, and v gets messages from
u only in the last layer, illustrating a directional message-
passing between these nodes. This abstraction allows for a
direct implementation of CO-GNNs by simply considering
the induced graph adjacency matrix at every layer.
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Dynamic: In CO-GNNs, each
node interacts with the ‘rele-
vant’ neighbors and does so
only as long as they remain rel-
evant. CO-GNNs do not op-
erate on a fixed computational
graph, but rather on a learned
computational graph, which is
dynamic across layers. In our
running example, the computa-
tional graph is a different one
at every layer (depicted on the right hand side): This is
advantageous for the information flow (see Section 5.3).

Feature and Structure Based: Standard message-passing
is determined by the structure of the graph: two nodes with
the same neighborhood get the same aggregated message.
This is not necessarily the case in our setup, since the action
network can learn different actions for two nodes with dif-
ferent node features, e.g., by choosing different actions for
a red node and a blue node. This enables different messages
for different nodes even if their neighborhoods are identical.

Asynchronous: Standard message-passing updates all
nodes synchronously, which is not always optimal as ar-
gued by Faber & Wattenhofer (2022), especially when the
task requires to treat the nodes non-uniformly. By design,
CO-GNNs enable asynchronous updates across nodes.
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Conditional Aggregation: The action network of CO-
GNNs can be viewed as a look-ahead function that makes
decisions after applying k layers. Specifically, at layer ℓ, an
action network of depth k computes node representations on
the original graph topology, which are (k+ℓ)-layer represen-
tations. Based on these representations, the action network
determines an action for each node, which induces a new
graph topology for the environment network to operate on.
In this sense, the aggregation of environment network at
layer ℓ is determined by (k+ ℓ)-layer representations of the
action network, which can be viewed as a “look-ahead” ca-
pability and the aggregation mechanism of the environment
network is conditioned on this look-ahead capability.

Orthogonal to Attention: The (soft) attention mechanism
on graphs allows for aggregating — based on learnable at-
tention coefficients — a weighted mean of the features of
neighboring nodes. While these architectures can weigh the
contribution of different neighbors, they have certain limita-
tions, e.g., weighted mean aggregation cannot count node
degrees. Moreover, the conditional aggregation mechanism
of CO-GNNs goes beyond the capabilities of attention-
based architectures. The contribution of Co-GNNs is hence
orthogonal to that of attention-based architectures, such
as GATs, and these architectures can be used as base ac-
tion/environment architectures in CO-GNNs. In Section 6.1,
we empirically validate this via a task that GAT cannot solve,
but CO-GNNs with a GAT environment network can.

Mitigates Over-smoothing: In principle, the action net-
work of CO-GNNs can choose the action ISOLATE for
a node if the features of the neighbours of this node are
not informative. As a result, CO-GNNs can mitigate over-
smoothing. We validate this empirically in Appendix C.5,
but we also note that the optimisation becomes increasingly
difficult once the number of layers gets too large.

Efficient: While being more sophisticated, our approach is
efficient in terms of runtime, as we detail in Appendix D.
CO-GNNs are also parameter-efficient: they share the same
action network across layers and as a result a comparable
number of parameters to their baseline models.

5.2. Expressive Power of CO-GNNs

The environment and action networks of CO-GNN archi-
tectures are parameterized by standard MPNNs. This raises
an obvious question regarding the expressive power of
CO-GNN architectures: are CO-GNNs also bounded by
1-WL in terms of distingushing graphs?

Proposition 5.1. Let G1 = (V1, E1,X1) and G2 =
(V2, E2,X2) be two non-isomorphic graphs. Then, for any
threshold 0 < δ < 1, there exists a parametrization of
a CO-GNN architecture using sufficiently many layers L,
satisfying P(z(L)

G1
̸= z

(L)
G2

) ≥ 1− δ.

The explanation for this result is the following: CO-GNN
architectures learn, at every layer, and for each node u, a
probability distribution over the actions. These learned dis-
tributions are identical for two isomorphic nodes. However,
the process relies on sampling actions from these distribu-
tions, and clearly, the samples from identical distributions
can differ. This makes CO-GNN models invariant in expec-
tation, and the variance introduced by the sampling process
helps to discriminate nodes that are 1-WL indistinguishable.
Thus, for two nodes indistinguishable by 1-WL, there is a
non-trivial probability of sampling a different action for the
respective nodes, which in turn makes their direct neigh-
borhood differ. This yields unique node identifiers (Loukas
(2020)) with high probability and allows us to distinguish
any pair of graphs assuming an injective graph pooling func-
tion (Xu et al., 2019). This is analogous to GNNs with ran-
dom node features (Abboud et al., 2021; Sato et al., 2021),
which are more expressive than their classical counterparts.
We validate the stated expressiveness gain in Appendix C.1.

It is important to note that CO-GNNs are not designed for
expressiveness, and our result relies merely on variations
in the sampling process, which is unstable and should be
noted as a limitation. Clearly, CO-GNNs can also use more
expressive architectures as base architectures.

5.3. Dynamic Message-passing for Long-range Tasks

Long-range tasks necessitate to propagate information be-
tween distant nodes: CO-GNNs are effective for such tasks
since they can propagate only relevant task-specific informa-
tion. Suppose that we are interested in transmitting informa-
tion from a source node to a distant target node: CO-GNNs
can efficiently filter irrelevant information by learning to
focus on a path connecting these two nodes, hence max-
imizing the information flow to the target node. We can
generalize this observation towards receiving information
from multiple distant nodes and prove the following:
Proposition 5.2. Let G = (V,E,X) be a connected graph
with node features. For some k > 0, for any target node
v ∈ V , for any k source nodes u1, . . . , uk ∈ V , and for any
compact, differentiable function f : Rd(0) × . . .× Rd(0) →
Rd, there exists an L-layer CO-GNN computing final node
representations such that for any ϵ, δ > 0 it holds that
P(|h(L)

v − f(xu1
, . . .xuk

)| < ϵ) ≥ 1− δ.

This means that if a property of a node v is a function of k
distant nodes then CO-GNNs can approximate this function.
This follows from two findings: (i) the features of k nodes
can be transmitted to the source node without loss of infor-
mation and (ii) the final layer of a CO-GNN architecture,
e.g., an MLP, can approximate any differentiable function
over k node features (Hornik, 1991; Cybenko, 1989). We
validate these findings empirically on long-range interac-
tions datasets (Dwivedi et al., 2022) in Appendix C.2.
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Figure 3: ROOTNEIGHBORS examples. Left: Example tree for ROOTNEIGHBORS. Right: Example of an optimal directed
subgraph over the input tree, where the nodes with a degree of 6 (u and v) BROADCAST, while other nodes LISTEN.

6. Experimental Results
We evaluate CO-GNNs on a synthetic experiment, and
on real-world node classification datasets (Platonov et al.,
2023). We also report a synthetic expressiveness experiment,
an experiment on long-range interactions datasets (Dwivedi
et al., 2022), and graph classification datasets (Morris et al.,
2020) in Appendix C. Our codebase is available at https:
//github.com/benfinkelshtein/CoGNN.

6.1. Synthetic Experiment on ROOTNEIGHBORS

Task. In this experiment, we compare CO-GNNs to
MPNNs on a new dataset: ROOTNEIGHBORS. We consider
the following regression task: given a rooted tree, predict
the average of the features of root-neighbors of degree 6.
This task requires to first identify the neighbors of the root
node with degree 6 and then to return the average feature of
these nodes. ROOTNEIGHBORS consists of trees of depth 2
with random features of dimension 5. The generation (Ap-
pendix E.3) ensures each tree root has at least one degree-6
neighbor. An example is shown on the left of Figure 3: the
root node r has only two neighbors with degree 6 (u and v)
and the target prediction value is (xu + xv)/2.

Setup. We consider GCN, GAT, SUMGNN, MEANGNN,
as baselines, and compare to CO-GNN(Σ,Σ),
CO-GNN(µ, µ), CO-GNN(Σ, α) and CO-GNN(Σ, µ).
We report the Mean Average Error (MAE), use the
Adam optimizer and present all details including the
hyperparameters in Appendix E.4.

Results for MPNNs. The results are presented in Table 1,
which includes the random baseline (i.e., MAE obtained via
a random prediction). All MPNNs perform poorly: GCN,
GAT, and MEANGNN fail to identify node degrees, making
it impossible to detect nodes with a specific degree, which
is crucial for the task. GCN and GAT are only marginally
better than the random baseline, whereas MEANGNN per-
forms substantially better than the random baseline. The
latter can be explained by the fact that MEANGNN employs
a different transformation on the source node rather than
treating it as a neighbor (unlike the self-loop in GCN/GAT).
SUMGNN uses sum aggregation and can identify the node
degrees, but struggles in averaging the node features, which
yields comparable MAE results to that of MEANGNN.

Table 1: Results on ROOTNEIGHBORS. Top three models
are colored by First, Second, Third.

Model MAE

Random 0.474
GAT 0.442
SUMGNN 0.370
MEANGNN 0.329

CO-GNN(Σ,Σ) 0.196
CO-GNN(µ, µ) 0.339
CO-GNN(Σ, α) 0.085
CO-GNN(Σ, µ) 0.079

Results for CO-GNNs. The ideal mode of operation for
CO-GNNs would be as follows:

1. The action network chooses either LISTEN or STAN-
DARD for the root node, and BROADCAST or STANDARD
for the root-neighbors which have a degree 6.

2. The action network chooses either LISTEN or ISOLATE
for all the remaining root-neighbors.

3. The environment network updates the root node by aver-
aging features from its broadcasting neighbors.

CO-GNN(Σ, µ): The best result is achieved by this model,
because SUMGNN as the action network can accomplish
(1) and (2), and MEANGNN as the environment network
can accomplish (3). Therefore, this model leverages the
strengths of SUMGNN and MEANGNN to cater to the dif-
ferent roles of the action and environment networks, making
it the most natural CO-GNN model for the regression task.

CO-GNN(Σ, α): We observe a very similar phenomenon
here to that of CO-GNN(Σ, µ). The action network allows
GAT to determine the right topology, and GAT only needs
to learn to average the features. This shows the contribution
of CO-GNNs is orthogonal to that of attention aggregation.

CO-GNN(Σ,Σ): This model also performs well, primarily
because it uses SUMGNN as the action network, accom-
plishing (1) and (2). However, it uses another SUMGNN
as the environment network which cannot easily mimic the
averaging of the neighbor’s features.
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Table 2: Results on node classification. Top three models are colored by First, Second, Third.

roman-empire amazon-ratings minesweeper tolokers questions

GCN 73.69 ± 0.74 48.70 ± 0.63 89.75 ± 0.52 83.64 ± 0.67 76.09 ± 1.27
SAGE 85.74 ± 0.67 53.63 ± 0.39 93.51 ± 0.57 82.43 ± 0.44 76.44 ± 0.62
GAT 80.87 ± 0.30 49.09 ± 0.63 92.01 ± 0.68 83.70 ± 0.47 77.43 ± 1.20
GAT-sep 88.75 ± 0.41 52.70 ± 0.62 93.91 ± 0.35 83.78 ± 0.43 76.79 ± 0.71
GT 86.51 ± 0.73 51.17 ± 0.66 91.85 ± 0.76 83.23 ± 0.64 77.95 ± 0.68
GT-sep 87.32 ± 0.39 52.18 ± 0.80 92.29 ± 0.47 82.52 ± 0.92 78.05 ± 0.93

CO-GNN(Σ,Σ) 91.57 ± 0.32 51.28 ± 0.56 95.09 ± 1.18 83.36 ± 0.89 80.02 ± 0.86
CO-GNN(µ, µ) 91.37 ± 0.35 54.17 ± 0.37 97.31 ± 0.41 84.45 ± 1.17 76.54 ± 0.95

CO-GNN(µ, µ): This model clearly performs weakly,
since MEANGNN as an action network cannot achieve
(1) hindering the performance of the whole task. Indeed,
CO-GNN(µ, µ) performs comparably to MEANGNN sug-
gesting that the action network is not useful in this case.

To shed light on the performance of CO-GNN models, we
computed the percentage of edges which are accurately
retained or removed by the action network in a single layer
CO-GNN model. We observe an accuracy of 99.71% for
CO-GNN(Σ, µ), 99.55% for CO-GNN(Σ,Σ), and 57.20%
for CO-GNN(µ, µ). This empirically confirms the expected
behavior of CO-GNNs. In fact, the example tree is shown
on the right of Figure 3 is taken from the experiment with
CO-GNN(Σ, µ): reassuringly, this model learns precisely
the actions that induce the shown optimal subgraph.

6.2. Node Classification with Heterophilic Graphs

One of the strengths of CO-GNNs is their capability to uti-
lize task-specific information propagation, which raises an
obvious question: could CO-GNNs outperform the base-
lines on heterophilious graphs, where standard message
passing is known to suffer? To answer this question, we
assess the performance of CO-GNNs on heterophilic node
classification datasets from (Platonov et al., 2023).

Setup. We evaluate SUMGNN, MEANGNN and
their CO-GNN counterparts, CO-GNN(Σ,Σ) and
CO-GNN(µ, µ) on the 5 heterophilic graphs, following
the 10 data splits and the methodology of Platonov et al.
(2023). We report the accuracy and standard deviation for
roman-empire and amazon-ratings. We also report the ROC
AUC and standard deviation for minesweeper, tolokers, and
questions. The classical baselines GCN, GraphSAGE, GAT,
GAT-sep, GT (Shi et al., 2021) and GT-sep are taken from
Platonov et al. (2023). We use the Adam optimizer and
report all hyperparameters in Appendix E.4.

Results. All results are reported in Table 2. Observe that
CO-GNNs achieve state-of-the-art results across the board,
despite using relatively simple architectures as their action

and environment networks. Importantly, CO-GNNs demon-
strate an average accuracy improvement of 2.23% compared
to all baseline methods, across all datasets, surpassing the
performance of more complex models such as GT. In our
main finding we observe a consistent trend: enhancing stan-
dard models with action networks of CO-GNNs results
in improvements in performance. For example, we report
3.19% improvement in accuracy on the roman-empire and
3.62% improvement in ROC AUC on minesweeper com-
pared to the best performing baseline. This shows that
CO-GNNs are flexible and effective on different datasets
and tasks. These results are reassuring as they establish
CO-GNNs as a strong method in the heterophilic setting
due to its unique ability to manipulate information flow.

7. Empirical Insights for the Actions
The action network of CO-GNNs is the key model compo-
nent. The purpose of this section is to provide additional
insights regarding the actions being learned by CO-GNNs.

7.1. Actions on Heterophilic vs Homophilic Graphs

We aim to compare the actions learned on a homophilic task
to the actions learned on a heterophilic task. One idea would
be to inspect the learned action distributions, but they alone
may not provide a clear picture of the graph’s topology.
For example, two connected nodes that choose to ISOLATE
achieve the same topology as nodes that choose both to
BROADCAST or LISTEN. This is a result of the immense
number of action configurations and their interactions.

To better understand the learned graph topology, we inspect
the induced directed graphs at every layer. Specifically, we
present the ratio of the directed edges that are kept across
the different layers in Figure 4. We record the directed edge
ratio over the 10 different layers of our best, fully trained
10 CO-GNN(µ, µ) models on the roman-empire (Platonov
et al., 2023) and cora datasets (Pei et al., 2020). We follow
the 10 data splits and the methodology of Platonov et al.
(2023) and Yang et al. (2016), respectively.
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Figure 4: The ratio of directed edges that are kept on cora
(as a homophilic dataset) and on roman-empire (as a het-
erophilic dataset) for each layer 0 ≤ ℓ < 10.

This experiment serves as a strong evidence for the adaptive
nature of CO-GNNs this statement. Indeed, by inspecting
Figure 4, we observe completely opposite trends between
the two datasets.

On the homophilic dataset cora, the ratio of edges that are
kept gradually decreases as we go to the deeper layers. In
fact, 100% of the edges are kept at layer ℓ = 0 while all
edges are dropped at layer ℓ = 9. This is very insight-
ful because homophilic datasets are known to not benefit
from using many layers, and the trained CO-GNN model
recognizes this by eventually isolating all the nodes. This
is particularly the case for cora, where classical MPNNs
typically achieve their best performance with 1-3 layers.

On the heterophilic dataset roman-empire, the ratio of edges
that are kept gradually increases after ℓ = 1 as we go to the
deeper layers. Initially, ∼ 42% of the edges are kept at layer
ℓ = 0 while eventually this reaches 99% at layer ℓ = 9. This
is interesting, since in heterophilic graphs, edges tend to
connect nodes of different classes and so classical MPNNs,
which aggregate information based on the homophily as-
sumption perform poorly. Although, CO-GNN model uses
these models it compensates by controlling information flow.
The model manages to capture the heterophilous aspect of
the dataset by restricting the flow of information in the early
layer and slowly enabling it the deeper the layer (the fur-
ther away the nodes), which might be a great benefit to its
success over heterophilic benchmarks.

7.2. What Actions are Performed on Minesweeper?

To better understand the topology learned by CO-GNNs,
we visualize the topology at each layer in a CO-GNN model
over the highly regular minesweepers dataset.

Dataset. Minesweeper (Platonov et al., 2023) is a synthetic
dataset inspired by the Minesweeper game. It is a semi-
supervised node classification dataset with a regular 100×
100 grid where each node is connected to eight neighboring
nodes. Each node has an one-hot-encoded input feature

Figure 5: The 10-hop neighborhood at layer ℓ = 4

showing the number of adjacent mines. A randomly chosen
50% of the nodes have an unknown feature, indicated by a
separate binary feature. The task is to identify whether the
querying node is a mine.

Setup. We train a 10-layer CO-GNN(µ, µ) model and
present the graph topology at layer ℓ = 4. The evolution
of the graph topology from layer ℓ = 1 to layer ℓ = 8 is
presented in Appendix F. We choose a node (black), and at
every layer ℓ, we depict its neighbors up to distance 10. In
this visualization, nodes which are mines are shown in red,
and other nodes in blue. The features of non-mine nodes
(indicating the number of neighboring mines) are shown
explicitly whereas the nodes whose features are hidden are
labeled with a question mark.

Interpreting the Actions. The visualization of the actions
at layer ℓ = 4 is shown in Figure 5. In this game, every
label is informative: non-0-labeled nodes are more informa-
tive in the earlier layers (ℓ = 1, 2, 3, 4), whereas 0-labeled
nodes become more informative at later layers. This can be
explained by considering two cases:

1. The target node has at least one 0-labeled neighbor: In
this case, the prediction trivializes, since we know that
the target node cannot be a mine.

2. The target node has no 0-labeled neighbors: In this case,
the model needs to make a sophisticated inference based
on the surrounding mines within the k-hop distance. In
this scenario, a node obtains more information by aggre-
gating from non-0-label nodes. The model can still im-
plicitly infer “no mine” from the lack of a signal/message.

The action network appears to diffuse the information of
non-0-labeled nodes in the early layers to capture nodes

8
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Figure 6: MAE and ROC AUC as a function of the choice of action (π) and environment (η) networks over ROOTNEIGHBORS
(left) and the minesweeper (right) experiments, respectively.

from case (2), while largely isolating the 0-labeled nodes
until the last layers (avoiding mixing of signals and potential
loss of information) which can later be used to capture the
nodes from case (1). In the earlier layers, the action network
prioritizes the information flowing from the left sections of
the grid in Figure 5 where more mines are present. After
identifying the most crucial information and propagating
this through the network, it then requires this information
to also be communicated with the nodes that initially were
labeled with 0. This leads to an almost fully connected grid
in the later layers (see ℓ = 7, 8 in Figures 16 and 17).

7.3. Which Action or Environment Network?

We conduct an ablation study on the choice of action and
environment networks to quantify its affect.

Setup. We experiment with all 25 combinations of the
architectures MEANGNNs, GAT, SUMGNN, GCN and
GIN on the heterophilic graph minesweeper and on the
synthetic dataset ROOTNEIGHBORS. We report MAE for
ROOTNEIGHBORS and the ROC AUC for minesweeper.

ROOTNEIGHBORS Results. The results reported in Fig-
ure 6 (left) support our analysis from Section 6.1: an envi-
ronment network with mean-type aggregation (GCN, GAT,
or MEANGNN) and an action network with sum-type ag-
gregation (SUMGNN, or GIN) are best choices for the task.
The choice of the action network is critical for this task:
SUMGNN and GIN yield best results across the board when
they are used as action networks. In contrast, if we use GAT,
GCN, or MEANGNN as action networks then the results are
poor and comparable to baseline results on this task. These
action networks cannot detect node cardinality which pre-
vents them from choosing the optimal actions as elaborated
in Section 6.1. The choice of the environment network is
relatively less important for this task.

Minesweeper Results. In Figure 6 (right), CO-GNNs
achieve multiple state-of-the-art results on minesweeper

with different choices of action and environment networks.

In terms of the environment network, we observe that
MeanGNN and GAT yield consistently robust results when
used as environment networks regardless of the choice of
the action network. This makes sense in the context of the
minesweeper game. In order to make a good inference, a
k-layer environment network can keep track of the average
number of mines found in each hop distance. The task is
hence well-suited to mean-style aggregation environment
networks, which manifests as empirical robustness. GCN
performs worse as environment network, since it cannot
distinguish a node from its neighbors.

In terms of the action network, we observed earlier that the
role of the action network is to mainly make a distinction
between 0-labeled nodes and non-0-labeled nodes, and such
an action network can be realized with all of the architec-
tures considered. As a result, we do not observe dramatic
differences in the performance regarding to the choice of
the action network in this task.

8. Summary and Outlook
We introduced CO-GNN architectures which can dynam-
ically explore the graph topology while learning. These
architectures have desirable properties which can inform
future work. Looking forward, one potential future direc-
tion is to adapt CO-GNNs to other types of graphs such
as directed, and even multi-relational graphs. One possi-
ble approach is by including actions that also consider the
directionality. For example, for each node u, one can de-
fine the actions LISTEN-INC (listen to nodes that have an
incoming edge to u) and LISTEN-OUT (listen to nodes that
have an incoming edge from u) and extend the other actions
analogously to incorporate directionality. It is also possible
to consider other types of actions or extend our approach
to edge-wise actions (rather than node-wise), though these
extensions will lead to a larger state space.
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A. Proofs of Technical Results
A.1. Proof of Proposition 5.1

In order to prove Proposition 5.1, we first prove the following lemma, which shows that all non-isolated nodes of an input
graph can be individualized by CO-GNNs:

Lemma A.1. Let G = (V,E,X) be a graph with node features. For every pair of non-isolated nodes u, v ∈ V and for all
δ > 0, there exists a CO-GNN architecture with sufficiently many layers L which satisfies P(h(L)

u ̸= h
(L)
v ) ≥ 1− δ.

Proof. We consider an L-layer CO-GNN(η, π) architecture satisfying the following:

(i) the environment network η is composed of L injective layers,

(ii) the action network π is composed of a single layer, and it is shared across CO-GNN layers.

Item (i) can be satisfied by a large class of GNN architectures, including SUMGNN (Morris et al., 2019) and GIN (Xu et al.,
2019). We start by assuming h

(0)
u = h

(0)
v . These representations can be differentiated if the model can jointly realize the

following actions at some layer ℓ using the action network π:

1. a(ℓ)u = L ∨ S,

2. a(ℓ)v = I ∨ B, and

3. ∃ a neighbor w of u s.t. a(ℓ)w = S ∨ B.

The key point is to ensure an update for the state of u via an aggregated message from its neighbors (at least one), while
isolating v. In what follows, we assume the worst-case for the degree of u and consider a node w to be the only neighbor of
u. Let us denote the joint probability of realizing these actions 1-3 for the nodes u, v, w at layer ℓ as:

p(ℓ)u,v = P
(
(a(ℓ)u = L ∨ S) ∧ (a(ℓ)v = I ∨ B) ∧ (a(ℓ)w = S ∨ B)

)
.

The probability of taking each action is non-zero (since it is a result of applying softmax) and u has at least one neighbor
(non-isolated), therefore p(ℓ)u,v > 0. For example, if we assume a constant action network that outputs a uniform distribution
over the possible actions (each action probability 0.25) then p(ℓ)u,v = 0.125.

This means that the environment network η applies the following updates to the states of u and v with probability p(ℓ)u,v > 0:

h(ℓ+1)
u = η(ℓ)

(
h(ℓ)
u , {{h(ℓ)

w | w ∈ Nu, a
(ℓ)
w = S ∨ B}}

)
,

h(ℓ+1)
v = η(ℓ)

(
h(ℓ)
v , {{}}

)
.

The inputs to the environment network layer η(ℓ) for these updates are clearly different, and since the environment layer is
injective, we conclude that h(ℓ+1)

u ̸= h
(ℓ+1)
v .

Thus, the probability of having different final representations for the nodes u and v is lower bounded by the probability of
the events 1-3 jointly occurring at least once in one of the CO-GNN layers, which, by applying the union bound, yields:

P(h(Lu,v)
u ̸= h(Lu,v)

v ) ≥ 1−
Lu,v∏
ℓ=0

(
1− p(ℓ)u,v

)
≥ 1− (1− γu,v)

Lu,v ≥ 1− δ

where γu,v = maxℓ∈[Lu,v ]

(
p
(ℓ)
u,v

)
and Lu,v = log1−γu,v

(δ).

We repeat this process for all pairs of non-isolated nodes u, v ∈ V . Due to the injectivity of η(ℓ) for all ℓ ∈ [L], once
the nodes are distinguished, they cannot remain so in deeper layers of the architecture, which ensures that all nodes
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u, v ∈ V differ in their final representations h(ℓ)
u ̸= h

(ℓ)
v after this process completes. The number of layers required for this

construction is then given by:
L = |V \ I| log1−α (δ) ≥

∑
u,v∈V \I

log1−γu,v
(δ) ,

where I is the set of all isolated nodes in V and

α = max
u,v∈V \I

(γu,v) = max
u,v∈V \I

(
max

ℓ∈[Lu,v ]

(
p(ℓ)u,v

))
.

Having shown a CO-GNN construction with the number of layers bounded as above, we conclude the proof.

Proposition 5.1. Let G1 = (V1, E1,X1) and G2 = (V2, E2,X2) be two non-isomorphic graphs. Then, for any threshold
0 < δ < 1, there exists a parametrization of a CO-GNN architecture using sufficiently many layers L, satisfying
P(z(L)

G1
̸= z

(L)
G2

) ≥ 1− δ.

Proof. Let δ > 0 be any value and consider the graph G = (V,E,X) which has G1 and G2 as its components:

V = V1 ∪ V2, E = E1 ∪ E2, X = X1||X2,

where || is the matrix horizontal concatenation. By Lemma A.1, for every pair of non-isolated nodes u, v ∈ V and for all
δ > 0, there exists a CO-GNN architecture with sufficiently many layers L = |V \ I| log1−α (δ) which satisfies:

P(h(Lu,v)
u ̸= h(Lu,v)

v ) ≥ 1− δ, with α = max
u,v∈V \I

(
max

ℓ∈[Lu,v ]

(
p(ℓ)u,v

))
,

where p(ℓ)u,v represents a lower bound on the probability for the representations of nodes u, v ∈ V at layer ℓ being different.

We use the same CO-GNN construction given in Lemma A.1 on G, which ensures that all non-isolated nodes have different
representations in G. When applying this CO-GNN to G1 and G2 separately, we get that every non-isolated node from
either graph has a different representation with probability 1− δ as a result. Hence, the multiset M1 of node features for G1

and the multiset M2 of node features of G2 must differ. Assuming an injective pooling function from these multisets to
graph-level representations, we get:

P(z(L)
G1

̸= z
(L)
G2

) ≥ 1− δ

for L = |V \ I| log1−α (δ).

A.2. Proof of Proposition 5.2

Proposition 5.2. Let G = (V,E,X) be a connected graph with node features. For some k > 0, for any target node
v ∈ V , for any k source nodes u1, . . . , uk ∈ V , and for any compact, differentiable function f : Rd(0) × . . . × Rd(0) →
Rd, there exists an L-layer CO-GNN computing final node representations such that for any ϵ, δ > 0 it holds that
P(|h(L)

v − f(xu1 , . . .xuk
)| < ϵ) ≥ 1− δ.

Proof. For arbitrary ϵ, δ > 0, we start by constructing a feature encoder ENC : Rd(0) → R2(k+1)d(0)

which encodes the
initial representations xw ∈ Rd(0)

of each node w as follows:

ENC(xw) =
[
x̃⊤
w ⊕ . . .⊕ x̃⊤

w︸ ︷︷ ︸
k+1

]⊤
,

where x̃w = [ReLU(x⊤
w)⊕ ReLU(−x⊤

w)]
⊤. Observe that this encoder can be parametrized using a 2-layer MLP, and that

x̃w can be decoded using a single linear layer to get back to the initial features:

DEC(x̃w) = DEC
([

ReLU(x⊤
w)⊕ ReLU(−x⊤

w)
]⊤)

= xw

Individualizing the Graph. Importantly, we encode the features using 2(k + 1)d(0) dimensions in order to be able to
preserve the original node features. Using the construction from Lemma A.1, we can ensure that every pair of nodes in the
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connected graph have different features with probability 1−δ1. However, if we do this naı̈vely, then the node features will be
changed before we can transmit them to the target node. We therefore make sure that the width of the CO-GNN architecture
from Lemma A.1 is increased to 2(k + 1)d(0) dimensions such that it applies the identity mapping on all features beyond the
first 2d(0) components. This way we make sure that all feature components beyond the first 2d(0) components are preserved.
The existence of such a CO-GNN is straightforward since we can always do an identity mapping using base environment
models such SUMGNNs. We use L1 CO-GNN layers for this part of the construction.

In order for our architecture to retain a positive representation for all nodes, we now construct 2 additional layers which
encode the representation h

(L)
w ∈ R2(k+1)d(0)

of each node w as follows:

[ReLU(q⊤
w )⊕ ReLU(−q⊤

w )⊕ x̃⊤
w ⊕ . . .⊕ x̃⊤

w ]
⊤

where qw ∈ R2d(0)

denotes a vector of the first 2d(0) entries of h(L1)
w .

Transmitting Information. Consider a shortest path u1 = w0 → w1 → · · · → wr → wr+1 = v of length r1 from node u1
to node v. We use exactly r1 CO-GNN layers in this part of the construction. For the first these layers, the action network
assigns the following actions to these nodes:

• w0 performs the action BROADCAST,

• w1 performs the action LISTEN, and

• all other nodes are perform the action ISOLATE.

This is then repeated in the remaining layers, for all consecutive pairs wi, wi+1, 0 ≤ i ≤ r until the whole path is traversed.
That is, at every layer, all graph edges are removed except the one between wi and wi+1, for each 0 ≤ i ≤ r. By construction
each element in the node representations is positive and so we can ignore the ReLU.

We apply the former construction such that it acts on entries 2d(0) to 3d(0) of the node representations, resulting in the
following representation for node v:

[ReLU(q⊤
w )⊕ ReLU(−q⊤

w )⊕ x̃u1
⊕ x̃v ⊕ . . .⊕ x̃v]

where qw ∈ R2d(0)

denotes a vector of the first 2d(0) entries of h(L1)
w .

We denote the probability in which node y does not follow the construction at stage 1 ≤ t ≤ r by β(t)
y such that the

probability that all graph edges are removed except the one between wi and wi+1 at stage t is lower bounded by (1− β)
|V |,

where β = maxy∈V (βy). Thus, the probability that the construction holds is bounded by (1− β)
|V |r1 .

The same process is then repeated for nodes ui, 2 ≤ i ≤ k, acting on the entries (k + 1)d(0) to (k + 2)d(0) of the node
representations and resulting in the following representation for node v:

[ReLU(q⊤
w )⊕ ReLU(−q⊤

w )⊕ x̃u1 ⊕ x̃u2 ⊕ . . .⊕ x̃uk
]

In order to decode the positive features, we construct the feature decoder DEC′ : R2(k+2)d(0) → R(k+1)d(0)

, that for
1 ≤ i ≤ k applies DEC to entries 2(i+ 1)d(0) to (i+ 2)d(0) of its input as follows:

[DEC(x̃u1
)⊕ . . .⊕DEC(x̃uk

)] = [xu1
⊕ . . .⊕ xuk

]

Given ϵ, δ, we set:

δ2 = 1− 1− δ

(1− δ1) (1− β)
|V |

∑k+1
i=1 ri

> 0.

Having transmitted and decoded all the required features into x = [x1 ⊕ . . .⊕ xk], where xi denotes the vector of entries
id(0) to (i+ 1)d(0) for 0 ≤ i ≤ k, we can now use an MLP : R(k+1)d(0) → Rd and the universal approximation property to
map this vector to the final representation h

(L)
v such that:

P(|h(L)
v − f(xu1

, . . .xuk
)| < ϵ) ≥ (1− δ1) (1− β)

|V |
∑k+1

i=1 ri (1− δ2) ≥ 1− δ.

The construction hence requires
(
L = L1 + 2 +

∑k
i=0 ri

)
CO-GNN layers.
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B. Relation to Over-squashing
Over-squashing refers to the failure of message passing to propagate information on the graph. Topping et al. (2022) and
Di Giovanni et al. (2023) formalized over-squashing as the insensitivity of an r-layer MPNN output at node u to the input
features of a distant node v, expressed through a bound on the Jacobian ∥∂h(r)

v /∂xu∥ ≤ Cr(Âr)vu, where C encapsulated
architecture-related constants (e.g., width, smoothness of the activation function, etc.) and the normalized adjacency matrix
Â captures the effect of the graph. Graph rewiring techniques amount to modifying Â so as to increase the upper bound and
thereby reduce the effect of over-squashing.

Observe that the actions of every node in CO-GNNs result in an effective graph rewiring (different at every layer). As
a result, the action network can choose actions that transmit the features of node u ∈ V to node v ∈ V as shown in
Proposition 5.2, resulting in the maximization of the bound on the Jacobian between a pair of nodes or (k nodes, for some
fixed k).

C. Additional Experiments
C.1. Expressivity Experiment

In Proposition 5.1 we state that CO-GNNs can distinguish between pairs of graphs which are 1-WL indistinguishable. We
validate this with a simple synthetic dataset: CYCLES. CYCLES consists of 7 pairs of undirected graphs, where the first graph
is a k-cycle for k ∈ [6, 12] and the second graph is a disjoint union of a (k−3)-cycle and a triangle. The train/validation/test
set are the k ∈ [6, 7]/[8, 9]/[10, 12] pairs, correspondingly. The task is to correctly identify the cycle graphs. As the pairs
are 1-WL indistinguishable, solving this task implies a strictly higher expressive power than 1-WL.

Our main finding is that CO-GNN(Σ,Σ) and CO-GNN(µ, µ) achieve 100% accuracy, perfectly classifying the cycles,
whereas their corresponding classical SUMGNN and MEANGNN achieve a random guess accuracy of 50%. These results
imply that CO-GNN can increase the expressive power of their classical counterparts. We find the model behaviour rather
volatile during training, which necessitated careful tuning of hyperparameters.

C.2. Long-range Interactions

Table 3: Results on LRGB. Top three mod-
els are colored by First, Second, Third.

Peptides-func

GCN 0.6860 ± 0.0050
GINE 0.6621 ± 0.0067
GatedGCN 0.6765 ± 0.0047
CRaWl 0.7074 ± 0.0032
DRew 0.7150 ± 0.0044
Exphormer 0.6527 ± 0.0043
GRIT 0.6988 ± 0.0082
Graph-ViT 0.6942 ± 0.0075
G-MLPMixer 0.6921 ± 0.0054

CO-GNN(∗, ∗) 0.6990 ± 0.0093
CO-GNN(ϵ, ϵ) 0.6963 ± 0.0076

To validate the performance of CO-GNNs on long-range tasks, we exper-
iment with the LRGB benchmark (Dwivedi et al., 2022).

Setup. We train CO-GNN(∗, ∗) and CO-GNN(ϵ, ϵ) CO-GNN(ϵ, ϵ) on
LRGB and report the unweighted mean Average Precision (AP) for Peptides-
func. All experiments are run 4 times with 4 different seeds and follow the
data splits provided by Dwivedi et al. (2022). Following the methodology
of Tönshoff et al. (2023), we used AdamW as optimizer and cosine-with-
warmup scheduler. We also use the provided results for GCN, GCNII
(Chen et al., 2020), GINE, GatedGCN (Bresson & Laurent, 2018), CRaWl
(Tönshoff et al., 2023), DRew (Gutteridge et al., 2023), Exphormer (Shirzad
et al., 2023), GRIT (Ma et al., 2023), Graph-ViT / G-MLPMixer (He et al.,
2023).

Results. We follow Tönshoff et al. (2023) who identified that the previously
reported large performance gaps between classical MPNNs and transformer-
based models can be closed by a more extensive tuning of MPNNs. In light
of this, we note that the performance gap between different models is not
large. Classical MPNNs such as GCN, GINE, and GatedGCN surpass some
transformer-based approaches such as Exphormer. CO-GNN(∗, ∗) further
improves on the competitive GCN and is the third best performing model
after DRew and CRaWl. Similarly, CO-GNN(ϵ, ϵ) closely matches CO-GNN(∗, ∗) and is substantially better than its base
architecture GIN. This experiment further suggests that exploring different classes of CO-GNNs is a promising direction, as
CO-GNNs typically boost the performance of their underlying base architecture.
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Table 4: Results on graph classification. Top three models are colored by First, Second, Third.

IMDB-B IMDB-M REDDIT-B REDDIT-M NCI1 PROTEINS ENZYMES

DGCNN 69.2 ± 3.0 45.6 ± 3.4 87.8 ± 2.5 49.2 ± 1.2 76.4 ± 1.7 72.9 ± 3.5 38.9 ± 5.7
DiffPool 68.4 ± 3.3 45.6 ± 3.4 89.1 ± 1.6 53.8 ± 1.4 76.9 ± 1.9 73.7 ± 3.5 59.5 ± 5.6
ECC 67.7 ± 2.8 43.5 ± 3.1 OOR OOR 76.2 ± 1.4 72.3 ± 3.4 29.5 ± 8.2
GIN 71.2 ± 3.9 48.5 ± 3.3 89.9 ± 1.9 56.1 ± 1.7 80.0 ± 1.4 73.3 ± 4.0 59.6 ± 4.5
GraphSAGE 68.8 ± 4.5 47.6 ± 3.5 84.3 ± 1.9 50.0 ± 1.3 76.0 ± 1.8 73.0 ± 4.5 58.2 ± 6.0
CGMM - - 88.1 ± 1.9 52.4 ± 2.2 76.2 ± 2.0 - -
ICGMMf 71.8 ± 4.4 49.0 ± 3.8 91.6 ± 2.1 55.6 ± 1.7 76.4 ± 1.4 73.2 ± 3.9 -
SPN(k = 5) - - - - 78.6 ± 1.7 74.2 ± 2.7 69.4 ± 6.2
GSPN - - 90.5 ± 1.1 55.3 ± 2.0 76.6 ± 1.9 - -

CO-GNN(Σ,Σ) 70.8 ± 3.3 48.5 ± 4.0 88.6 ± 2.2 53.6 ± 2.3 80.6 ± 1.1 73.1 ± 2.3 65.7 ± 4.9
CO-GNN(µ, µ) 72.2 ± 4.1 49.9 ± 4.5 90.5 ± 1.9 56.3 ± 2.1 79.4 ± 0.7 71.3 ± 2.0 68.3 ± 5.7

C.3. Graph Classification

In this experiment, we evaluate CO-GNNs on the TUDataset (Morris et al., 2020) graph classification benchmark.

Setup. We evaluate CO-GNN(Σ,Σ) and CO-GNN(µ, µ) on the 7 graph classification benchmarks, following the risk
assessment protocol of Errica et al. (2020), and report the mean accuracy and standard deviation. The results for the
baselines DGCNN (Wang et al., 2019), DiffPool (Ying et al., 2018), Edge-Conditioned Convolution (ECC) (Simonovsky &
Komodakis, 2017), GIN, GraphSAGE are from Errica et al. (2020). We also include CGMM (Bacciu et al., 2020), ICGMMf

(Castellana et al., 2022), SPN(k = 5) (Abboud et al., 2022) and GSPN (Errica & Niepert, 2023) as more recent baselines.
OOR (Out of Resources) implies extremely long training time or GPU memory usage. We use Adam optimizer and StepLR
learn rate scheduler, and report all hyperparameters in the appendix (Table 13).

Results. CO-GNN models achieve the highest accuracy on three datasets in Table 4 and remain competitive on the other
datasets. CO-GNN yield these performance improvements, despite using relatively simple action and environment networks,
which is intriguing as CO-GNNs unlock a large design space which includes a large class of model variations.

C.4. Homophilic Node Classification

Table 5: Results on homophilic datasets. Top three
models are colored by First, Second, Third.

pubmed cora

MLP 87.16 ± 0.37 75.69 ± 2.00
GCN 88.42 ± 0.50 86.98 ± 1.27
GraphSAGE 88.45 ± 0.50 86.90 ± 1.04
GAT 87.30 ± 1.10 86.33 ± 0.48
Geom-GCN 87.53 ± 0.44 85.35 ± 1.57
GCNII 90.15 ± 0.43 88.37 ± 1.25

SUMGNN 88.58 ± 0.57 84.80 ± 1.71
MEANGNN 88.66 ± 0.44 84.50 ± 1.25

CO-GNN(Σ,Σ) 89.39 ± 0.39 86.43 ± 1.28
CO-GNN(µ, µ) 89.60 ± 0.42 86.53 ± 1.20
CO-GNN(∗, ∗) 89.51 ± 0.88 87.44 ± 0.85

In this experiment, we evaluate CO-GNNs on the homophilic
node classification benchmarks cora and pubmed (Sen et al.,
2008).

Setup. We assess MEANGNN, SUMGNN and their
corresponding CO-GNNs counterparts CO-GNN(µ, µ) and
CO-GNN(Σ,Σ) on the homophilic graphs and their 10 fixed
splits provided by Pei et al. (2020), where we report the mean
accuracy, standard deviation and the accuracy gain due to the
application of CO-GNN. We also use the results provided by
Bodnar et al. (2023) for the classical baseline: GCN, Graph-
SAGE, GAT, Geom-GCN (Pei et al., 2020) and GCNII.

Results. Table 5 illustrates a modest performance increase of
1-2% across all datasets when transitioning from SUMGNN,
MEANGNN, and GCN to their respective CO-GNN counter-
parts. These datasets are highly homophilic, but CO-GNNs
nonetheless show improvements on these datasets (even though,
modest) compared to their environment/action network archi-
tectures.
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Figure 7: The accuracy of CO-GNN(µ, µ) and MEANGNN on cora (left) and on roman-empire (right) for an increasing
number of layers.

C.5. Over-smoothing Experiments

Section 5.1 explains that CO-GNNs can mitigate the over-smoothing phenomenon, through the choice of BROADCAST or
ISOLATE actions. To validate this, we experiment with an increasing number of layers of CO-GNN(µ, µ) and MEANGNN
over the cora and roman-empire datasets.

Setup. We evaluate CO-GNN(µ, µ) and MEANGNN over the cora and roman-empire datasets, following the 10 data splits
of Pei et al. (2020) and Platonov et al. (2023), respectively. We report the accuracy and standard deviation.

Results. Figure 7 indicates that the performance is generally retained for deep models and that CO-GNNs are effective in
alleviating the over-smoothing phenomenon even though their base GNNs suffer from performance deterioration already
with a few layers.

D. Runtime Analysis
Consider a GCN model with L layers and a hidden dimension of d on an input graph G = (V,E,X). Wu et al. (2019) has
shown the time complexity of this model to be O(Ld(|E|d+ |V |)). To extend this analysis to CO-GNNs, let us consider a
CO-GNN(∗, ∗) architecture composed of:

• a GCN environment network η with Lη layers and hidden dimension of dη , and

• a GCN action network π with Lπ layers and hidden dimension of dπ .

A single CO-GNN layer first computes the actions for each node by feeding node representations through the action network
π, which is then used in the aggregation performed by the environment layer. This means that the time complexity of a single
CO-GNN layer is O(Lπdπ(|E|dπ + |V |) + dη(|E|dη + |V |)). The time complexity of the whole CO-GNN architecture is
then O(LηLπdπ(|E|dπ + |V |) + Lηdη(|E|dη + |V |)).

Typically, the hidden dimensions of the environment network and action network match. In all of our experiments, the depth
of the action network Lπ is much smaller (typically ≤ 3) than that of the environment network Lη. Therefore, assuming
Lπ << Lη we get that a runtime complexity of O(Lηdη(|E|dη + |V |)), matching the runtime of a GCN model.

To empirically confirm the efficiency of CO-GNNs, we report in Figure 8 the duration of a forward pass of a CO-GNN(∗, ∗)
and GCN with matching hyperparameters across multiple datasets. From Figure 8, it is evident that the increase in runtime
is linearly related to its corresponding base model with R2 values higher or equal to 0.98 across 4 datasets from different
domains. Note that, for the datasets IMDB-B and PROTEINS, we report the average forward duration for a single graph in a
batch.
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Figure 8: Empirical runtimes: CO-GNN(∗, ∗) forward pass duration as a function of GCN forward pass duration.

E. Further Details of the Experiments Reported in the Paper
E.1. The Gumbel Distribution and the Gumbel-softmax Temperature

The Gumbel distribution is used to model the distribution of the maximum (or the minimum) of a set of random variables.

Figure 9: The pdf f(x) = e−x+e−x

of Gumbel(0, 1).

Its probability density function has a distinctive, skewed shape,
with heavy tails, making it a valuable tool for analyzing and
quantifying the likelihood of rare and extreme occurrences. By
applying the Gumbel distribution to the logits or scores associated
with discrete choices, the Gumbel-Softmax estimator transforms
them into a probability distribution over the discrete options.
The probability density function of a variable that follows X ∼
Gumbel(0, 1) is f(x) = e−x+e−x

(Figure 9).

The Straight-through Gumbel-softmax estimator is known to
benefit from learning an inverse-temperature before sampling
an action, which we use in our experimental setup. For a given
graph G = (V,E,X) the inverse-temperature of node v ∈ V is
estimated by applying a bias-free linear layer L : Rd → R to the
intermediate representation h ∈ Rd. To ensure the temperature
is positive, an approximation of the ReLU function with a bias
hyperparameter τ ∈ R is subsequently applied:

1

τ (h)
= log

(
1 + exp

(
ωTh

))
+ τ0

where τ0 controls the maximum possible temperature value.
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E.2. Dataset Statistics

The statistics of the real-world long-range, node-based, and graph-based benchmarks used can be found in Tables 6 to 9.

Table 6: Statistics of the heterophilic node classification benchmarks.

roman-empire amazon-ratings minesweeper tolokers questions

# nodes 22662 24492 10000 11758 48921
# edges 32927 93050 39402 519000 153540
# node features 300 300 7 10 301
# classes 18 5 2 2 2
edge homophily 0.05 0.38 0.68 0.59 0.84
metrics ACC ACC AUC-ROC AUC-ROC AUC-ROC

Table 7: Statistics of the long-range graph benchmarks (LRGB).

Peptides-func

# graphs 15535
# average nodes 150.94
# average edges 307.30
# classes 10
metrics AP

Table 8: Statistics of the graph classification benchmarks.

IMDB-B IMDB-M REDDIT-B NCI1 PROTEINS ENZYMES

# graphs 1000 1500 2000 4110 1113 600
# average nodes 19.77 13.00 429.63 29.87 39.06 32.63
# average edges 96.53 65.94 497.75 32.30 72.82 64.14
# classes 2 3 2 2 2 6
metrics ACC ACC ACC ACC ACC ACC

Table 9: Statistics of the homophilic node classification benchmarks.

pubmed cora

# nodes 18717 2708
# edges 44327 5278
# node features 500 1433
# classes 3 6
edge homophily 0.80 0.81
metrics ACC ACC

E.3. ROOTNEIGHBORS: Dataset Generation

In Section 6.1, we compare CO-GNNs to a class of MPNNs on a dedicated synthetic dataset ROOTNEIGHBORS in order to
assess the model’s ability to redirect the information flow. ROOTNEIGHBORS consists of 3000 trees of depth 2 with random
node features of dimension d = 5 which is generated as follows:

• Features: Each feature is independently sampled from a uniform distribution U [−2, 2].
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• Level-1 Nodes: The number of nodes in the first level of each tree in the train, validation, and test set is sampled from a
uniform distribution U [3, 10], U [5, 12], and U [5, 12] respectively. Then, the degrees of the level-1 nodes are sampled as
follows:

• The number of level-1 nodes with a degree of 6 is sampled independently from a uniform distribution
U [1, 3], U [3, 5], U [3, 5] for the train, validation, and test set, respectively.

• The degree of the remaining level-1 nodes are sampled from the uniform distribution U [2, 3].

We use a train, validation, and test split of equal size.

E.4. Hyperparameters for all Experiments

In Tables 10 to 14, we report the hyperparameters used in our experiments.

Table 10: Hyperparameters used for ROOTNEIGHBORS and CYCLES.

ROOTNEIGHBORS CYCLES

η # layers 1 2
η dim 16, 32 32
π # layers 1, 2 6
π dim 8, 16 32
learned temp ✓ -
temp - 1
τ0 0.1 -
# epochs 10000 1000

dropout 0 0
learn rate 10−3 10−3

batch size - 14
pooling - sum

Table 11: Hyperparameters used for the heterophilic node classification benchmarks.

roman-empire amazon-ratings minesweeper tolokers questions

η # layers 5-12 5-10 8-15 5-10 5-9
η dim 128,256,512 128,256 32,64,128 16,32 32,64
π # layers 1-3 1-6 1-3 1-3 1-3
π dim 4,8,16 4,8,16,32 4,8,16,32,64 4,8,16,32 4,8,16,32
learned temp ✓ ✓ ✓ ✓ ✓
τ0 0,0.1 0,0.1 0,0.1 0,0.1 0,0.1
# epochs 3000 3000 3000 3000 3000

dropout 0.2 0.2 0.2 0.2 0.2
learn rate 3 · 10−3, 3 · 10−5 3 · 10−4, 3 · 10−5 3 · 10−3, 3 · 10−5 3 · 10−3 10−3, 10−2

activation function GeLU GeLU GeLU GeLU GeLU
skip connections ✓ ✓ ✓ ✓ ✓
layer normalization ✓ ✓ ✓ ✓ ✓
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Table 12: Hyperparameters used for the long-range graph benchmarks (LRGB).

Peptides-func

η # layers 5-9
η dim 200,300
π # layers 1-3
π dim 8,16,32
learned temp ✓
τ0 0.5
# epochs 500

dropout 0
learn rate 3 · 10−4, 10−3

# decoder layer 2,3
# warmup epochs 5
positional encoding LapPE, RWSE
batch norm ✓
skip connections ✓

Table 13: Hyperparameters used for social networks and proteins datasets.

IMDB-B IMDB-M REDDIT-B REDDIT-M NCI1 PROTEINS ENZYMES

η # layers 1 1 3,6 6 2,5 3,5 1,2
η dim 32,64 64,256 128,256 64, 128 64,128,256 64 128,256
π # layers 2 3 1,2 1 2 1,2 1
π dim 16,32 16 16,32 16 8, 16 8 8
learned temp. ✓ ✓ ✓ ✓ ✓ ✓ ✓
τ0 0.1 0.1 0.1 0.1 0.5 0.5 0.5
# epochs 5000 5000 5000 5000 3000 3000 3000

dropout 0.5 0.5 0.5 0.5 0 0 0
learn rate 10−4 10−3 10−3 10−4 10−3,10−2 10−3 10−3

pooling mean mean mean mean mean mean mean
batch size 32 32 32 32 32 32 32
scheduler step size 50 50 50 50 50 50 50
scheduler gamma 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Table 14: Hyperparameters used for the homophilic node classification benchmarks.

pubmed citeseer

η # layers 1-3 1-3
η dim 32,64,128 32,64,128
π # layers 1-3 1-3
π dim 4,8,16 4,8,16
temperature 0.01 0.01
τ0 0.1 0.1
# epochs 2000 2000

dropout 0.5 0.5
learn rate 5 · 10−3, 10−2, 5 · 10−2 5 · 10−3, 10−2, 5 · 10−2

learn rate decay 5 · 10−6, 5 · 10−4 5 · 10−6, 5 · 10−4

activation function ReLU ReLU
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F. Visualizing the Actions
We extend the discussion about CO-GNNs dynamic topology over the Minesweeper dataset in Section 7.2 and present the
evolution of the graph topology from layer ℓ = 1 to layer ℓ = 8.

Setup. We train a 10-layered CO-GNN(µ, µ) model and present the evolution of the graph topology from layer ℓ = 1 to
layer ℓ = 8. We choose a node (black), and at every layer ℓ, we depict its neighbors up to distance 10. In this visualization,
nodes which are mines are shown in red, and other nodes in blue. The features of non-mine nodes (indicating the number of
neighboring mines) are shown explicitly whereas the nodes whose features are hidden are labeled with a question mark. For
each layer ℓ, we gray out the nodes whose information cannot reach the black node with the remaining layers available.
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Figure 10: The 10-hop neighborhood at layer ℓ = 1.

Figure 11: The 10-hop neighborhood at layer ℓ = 2.
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Figure 12: The 10-hop neighborhood at layer ℓ = 3.

Figure 13: The 10-hop neighborhood at layer ℓ = 4.
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Figure 14: The 10-hop neighborhood at layer ℓ = 5.

Figure 15: The 10-hop neighborhood at layer ℓ = 6.
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Figure 16: The 10-hop neighborhood at layer ℓ = 7.

Figure 17: The 10-hop neighborhood at layer ℓ = 8.
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