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Abstract
Many methods for estimating conditional aver-
age treatment effects (CATEs) can be expressed
as weighted pseudo-outcome regressions (PORs).
Previous comparisons of POR techniques have
paid careful attention to the choice of pseudo-
outcome transformation. However, we argue that
the dominant driver of performance is actually
the choice of weights. For example, we point
out that R-Learning implicitly performs a POR
with inverse-variance weights (IVWs). In the
CATE setting, IVWs mitigate the instability asso-
ciated with inverse-propensity weights, and lead
to convenient simplifications of bias terms. We
demonstrate the superior performance of IVWs
in simulations, and derive convergence rates for
IVWs that are, to our knowledge, the fastest yet
shown without assuming knowledge of the covari-
ate distribution.

1. Introduction
Estimates of conditional average treatment effects (CATEs)
allow for treatment decisions to be tailored to the individ-
ual. Formally, let A ∈ {0, 1} be a binary treatment, let
X ∈ X be a vector of confounders and treatment effect
modifiers, let Y(a) be the potential outcome under treatment
a, and let Y = AY(1) + (1 − A)Y(0) be the observed out-
come. The CATE is defined as τ(X) := E

(
Y(1) − Y(0)|X

)
.

Under conventional assumptions of exchangeability (i.e.,
Y(1), Y(0) ⊥ A|X) and positivity (i.e., Pr(A = 1|X) ∈
(c, 1− c) for some c ∈ (0, 1)), the CATE can be identified
as τ(x) = E (Y |X,A = 1)− E (Y |X,A = 0).

CATE estimation has a rich history going back several
decades (see, e.g., Robins & Rotnitzky, 1995; Hill, 2011;
Zhao et al., 2012; Imai & Ratkovic, 2013; Hahn et al.,
2020; Athey & Imbens, 2016). We focus here on two gen-
eral approaches: pseudo-outcome regression (POR) and
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R-learning. Both approaches easily accommodate flexible
machine learning tools, and can attain double robustness
(DR) properties similar to those established in the aver-
age treatment effect (ATE) literature (Nie & Wager, 2020;
Kennedy, 2023; see also Scharfstein et al. 1999; Robins et al.
2000; Bang & Robins 2005; Chernozhukov et al. 2022b;
Kennedy 2022)

POR aims to derive a noisy but unbiased approximation of
Y(1)−Y(0), and to fit a regression to predict this approxima-
tion using X (Rubin & van der Laan, 2005; van der Laan,
2006; Tian et al., 2014; Chen et al., 2017; Künzel et al.,
2019; Semenova & Chernozhukov, 2020; Curth & van der
Schaar, 2021; Foster & Syrgkanis, 2023; see also Buckley
& James 1979; Fan & Gijbels 1994; Rubin & van der Laan
2007; Díaz et al. 2018). The approximation of Y(1)−Y(0) is
referred to as a “pseudo-outcome,” or “unbiasing transforma-
tion,” because it serves as an observed stand-in for the latent
outcome of interest Y(1) − Y(0). For example, if the propen-
sity scores E(A|X) are known, then an appropriate pseudo-
outcome can be derived using inverse propensity weights:
fIPW(A, Y ) := AY/E(A|X) − (1 − A)Y/E(1 − A|X).
Since E (fIPW(A, Y )|X) = τ(X), regressing the pseudo-
outcomes fIPW(A, Y ) against X produces a sensible esti-
mate of τ (Powers et al., 2018). This regression can be done
with any off-the-shelf machine learning algorithm. For this
reason, POR methods are sometimes referred to as “meta-
algorithms” (Kennedy, 2023).

R-learning estimates the CATE using a moment condition
derived by Robinson (1988; see Section 5.2 of Robins et al.,
2008; Nie & Wager, 2020; Zhao et al., 2022; Semenova
et al., 2023; Kennedy, 2023; Kennedy et al., 2024). While
R-Learning is sometimes described as separate from POR,
it can also be expressed as a weighted POR (Schuler et al.,
2018; Knaus et al., 2021; see Section 1.1 for details).

This parallel between R-learning and weighted POR invites
the question of whether or not weights should be used in
POR more broadly, and, if so, what choice of weights is op-
timal? In other words, even after confounding bias has been
accounted for through a pseudo-outcome transformation
(e.g., fIPW), should additional weights be used to prioritize
the fit of τ of different subregions of X ? We aim to shed
light on this question through a combination of simulation
& theory.
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Contribution Summary

The main intuition of this manuscript is that pseudo-
outcomes based on inverse-propensity weights are effective
at removing confounding, but can be unstable in the face
of propensity scores close to zero or one. Inverse-variance
weights restabilize the POR without reintroducing confound-
ing, since the CATE estimand is conditional on X , and Y is
unconfounded within strata of X . This form of reweighting
is done implicitly by the R-Learner.

Section 1.1 discusses the above intuition in more detail. Sec-
tion 2 shows that the intuition bears out in simulations, for
several types of pseudo-outcome transformations. Section 3
demonstrates how the framework of weighted POR can be
used to study bias terms for CATE estimates, and to derive
fast convergence rates. We close with a discussion.

1.1. Stabilizing Weights in CATE Estimation

In this section we outline POR, R-Learning, and inverse-
variance weighting (IVW) in more detail. Let Z :=
(Y,X,A), and let

µa(X) = E (Y |X,A = a) ,

η(X) = E (Y |X) ,

π(X) = Pr (A = 1|X) ,

κ(X) = Pr (A = 0|X) , and
ν(X) = V ar(A|X).

Let θ = {µ1, µ0, η, π, κ, ν} denote the full vector of nui-
sance functions, and let θ̂ = {µ̂1, µ̂0, η̂, π̂, κ̂, ν̂} be a set
of corresponding nuisance estimates. We use µ and µ̂ as
shorthand for {µ0, µ1} and {µ̂0, µ̂1} respectively. One of
the reasons we include the redundant representations π(x)
and κ(x) = 1 − π(x) is to simplify certain formulas and
bias results later on (e.g., Eq (6)). The notation “kappa” is
meant to be reminiscent of the term “control.”

1.1.1. WEIGHTS USED IN R-LEARNING

Given a pair of pre-estimated nuisance functions η̂ and π̂,
the R-Learning estimate of the CATE (τ ) is typically written
as

arg min
τ̂

n∑
i=1

[{Yi − η̂(Xi)} − {Ai − π̂(Xi)} τ̂(Xi)]
2
.

(1)

The procedure is motivated by the fact that the term in
square brackets has mean zero when η̂ = η, π̂ = π and
τ̂ = τ (Robinson, 1988). The nuisance estimates η̂ and
π̂, are typically obtained via cross-fitting (CF): splitting
the sample into two partitions, using one to estimate η̂ and
π̂, and using the other to create the summands in Eq (1)
(Nie & Wager, 2020; Kennedy et al., 2020; Kennedy, 2022;

Chernozhukov et al., 2022a;b; see also related work from,
e.g., Bickel 1982; Schick 1986; Bickel & Ritov 1988, as
well as Athey & Imbens 2016). In general, we assume in
this section that θ̂ is pre-estimated from an independent
dataset or sample partition.

A known but often overlooked fact is that the minimization
in Eq (1) can equivalently be solved by fitting a weighted
regression using X to predict

fU,θ̂(Z) :=
Y − η̂(X)

A− π̂(X)
(2)

with weights {A− π̂(X)}2 and the squared error loss func-
tion (see, e.g., Schuler et al., 2018; Knaus et al., 2021;
Zhao et al., 2022; Curth & Van Der Schaar, 2023; and the
NonParamDML method in the EconML package, Syrgkanis
et al. 2021). For this reason, R-Learning is closely related to
“U-Learning,” a method that fits an unweighted regression to
predict fU,θ̂(Z) from X (see the Appendix of Künzel et al.,
2019). The motivation for U-Learning is that, if π̂ = π
and η̂ = η, then fU,θ̂ is a pseudo-outcome in the sense that

E
[
fU,θ̂(Z)|X

]
= τ(X) (Robinson, 1988; Künzel et al.,

2019; Nie & Wager, 2020).1 Thus, U-Learning gives an
alternative motivation for R-Learning.

Moreover, we can motivate the R-Learner’s weights by ap-
pealing to the intuition of inverse-variance weighted least
squares. We show in Appendix E that, if θ̂ = θ, the treat-
ment effect is null (i.e., A ⊥ Y |X), and the outcome Y is
homoskedastic (i.e., V ar(Y |X) = σ2 is constant), then the
pseudo-outcome fU,θ̂ used in R-Learning has conditional
variance

V ar

(
Y − η(X)

A− π(X)
|X
)
∝ E

[
(A− π(X))

−2 |X
]
. (3)

In this way, the {A− π̂(X)}2 weights used by R-Learning
are approximate IVWs, and we would expect them to stabi-
lize the regression.

Indeed, Nie & Wager (2020) remark that U-Learning suf-
fers from instability due to the denominator in fU,θ̂(Z).
They find that R-Learning generally outperforms the U-
Learner in simulations. Since the R-Learner is equivalent
to a weighted U-Learner, this finding effectively means that
the {A− π̂(X)}2 weights used in R-Learning counteract
the instabilities of U-Learning. To our knowledge, the im-
plicit connections between R-Learning, U-Learning and
IVW have not been discussed in the literature.

Figure 1 shows a simple simulated illustration of how the
R-Learner’s weights provide stabilization. Here, X ∼
U(0.05, 0.95), π(X) = X , and Y ∼ N(0, 1) regardless
of the value of (A,X). This implies that τ(x) = 0 for all

1This follows from the “Robinson Decomposition.”
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x, and that the propensity score is most extreme when x
is close to 0 or 1. For simplicity of illustration, we briefly
assume perfect knowledge of the nuisance functions, and
use this knowledge to define pseudo-outcomes according
to Eq (2). (We remove this assumption in our theoretical
analysis and main simulation study.) Given these pseudo-
outcomes, we apply both U-Learning and R-Learning using
spline-based, (weighted) POR. We see in Figure 1 that val-
ues of x close to 0 or 1 produce extreme propensity scores,
which lead to instability in the pseudo-outcomes. While
this hinders the U-Learner’s performance, the R-Learner
is able to provide a more stable result and a lower rMSE
by down-weighting observations with extreme propensity
scores.

1.1.2. ALTERNATIVE MOTIVATION FOR R-LEARNER’S
WEIGHTS

As an alternative to Eq (3), a similar motivation for
the R-Learner’s weights can be derived by noting that
{A− π̂(X)}2 is roughly proportional the inverse variance
of fU,θ̂(Z) conditional on conditional on θ̂, X and A. More
specifically, if V ar (Y |A,X) = σ2 is constant, then

V ar

(
Y − η̂(X)

A− π̂(X)
|A,X, θ̂

)
∝ {A− π̂(X)}2 .

Thus, if we were to expand R-Learning to predict fU,θ̂ as a
function of both X and A, and if V ar(Y |A,X) were con-
stant, then {A− π̂(X)}2 would form appropriate inverse
variance weights, producing the regression problem

arg min
ĝ

n∑
i=1

{Ai − π̂(Xi)}2
{
Y − η̂(X)

A− π̂(X)
− ĝ(Ai, Xi)

}2

.

(4)
The change to include A as a covariate is balanced by
the fact that, if θ̂ = θ, then the population minimizer for
Eq (4), E

[
Y−η(X)
A−π(X) |A,X

]
, does not actually depend on A.

More specifically, the Robinson Decomposition implies that
E
[
Y−η(X)
A−π(X) |A,X

]
= τ(X). Reflecting this fact, if we ad-

ditionally require the solution to Eq (4) to not depend on
A, then we recover R-Learning exactly. Again, R-Learning
emerges as a form of (constrained) U-Learning with stabi-
lizing weights.

1.1.3. WEIGHTS FOR COVARIANCE-BASED
PSEUDO-OUTCOMES

A similar connection to stabilizing weights can be seen
in the “oracle” version of R-Learning studied by Kennedy
(2023; see their Section 7.6.1). This hypothetical oracle

model fits a weighted POR to predict the latent function

fcov,θ(Z) :=
{A− π(X)} {Y − η(X)}

π(X) {1− π(X)}

≈ {A− π̂(X)} {Y − η̂(X)}
{A− π̂(X)}2

= fU,θ̂(A,X, Y ),

with weights ν(X) = V ar(A|X). Above, the approxi-
mation simply reflects the fact that if π̂ = π then the
conditional expectation of the denominators are identi-
cal. We refer to fcov,θ as the “covariance-based” pseudo-
outcome, since the expected value of its numerator is
E [Cov (A, Y |X)]. Again, if the treatment effect is null
(A ⊥ Y |X) and the conditional variance of Y is constant
(i.e., V ar(Y |X) = σ2), then

V ar(fcov,θ(A,X, Y )|X) ∝ ν(X)−1

(see Appendix E). Thus, in the null setting, the oracle R-
Learner is an inverse-variance weighted POR.

1.1.4. WEIGHTS FOR THE DR-LEARNER

Another pseudo-outcome transformation that can suffer
from instability is the “DR-Learner” (Kennedy, 2023). This
method fits a regression using X to predict fDR,θ̂(Z) =

f1,θ̂(Z)− f0,θ̂(Z), where

fa,θ̂(Z)

= µ̂a(X) +
1(A = a)

aπ̂(X) + (1− a)κ̂(X)
(Y − µ̂a(X)) .

(5)

If V ar(Y |X,A) = σ2 is constant, then it is fairly
straightforward to show that V ar

(
fDR,θ̂(Z)|X, θ̂ = θ

)
=

κ(X)−1π(X)−1σ2 (Appendix E). Thus, extreme values of
the propensity score again lead to regions where the pseudo-
outcome has a high variance.

Inspired by this fact, we will see in the sections below that
using weights κ̂(X)π̂(X) when fitting a POR to predict
fDR,θ̂(Z) leads to fast convergence rates and better simu-
lated errors.

Table 1 summarizes the above relationships.

2. Simulations
The goal of this simulation section is to examine the role of
weights in POR. We include 6 simulation scenarios, labeled
A, B, C, D, E & F. The first four are experiments taken from
Nie & Wager (2020), with |X| set equal to 10. Setting E
is the “low dimensional” simulated example from Kennedy
(2023). Setting F is the simple illustrative example from
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Figure 1. Example of how weights stabilize pseudo-outcome regression, using a single simulated sample. Here, the true conditional
average treatment effect is zero for all patients. The estimates from U-Learning & R-Learning are shown as black lines. By down-weighting
the observations with high variance, i.e., those with extreme propensity scores, R-Learning is able to achieve a lower rMSE.

Table 1. Different available pseudo-outcome transformations and their conditional variances given X , under certain simplifying assump-
tions (see Appendix E).

Label Outcome Transformation Conditional Variance

U, R (fU,θ)
Y−η(X)
A−π(X) ∝ E

[
(A− π(X))

−2 |X
]

DR (fDR,θ) µ1(X)− µ0(X) ∝ 1/ν(X)

+ A−π(X)
π(X)(1−π(X)) (Y − µA(X))

Covariance-based (fcov,θ)
{A−π(X)}{Y−η(X)}

π(X)(1−π(X)) ∝ 1/ν(X)

Table 2. Simulation Setting Details. Below we show the covariate distribution, CATE function, and nuisance functions for simulations A
through F. The notation trima(b) is shorthand for min(max(a, b), 1− a), and the notation (a)+ is shorthand for max(a, 0). Settings
A-D use multivariate, iid covariates X with a dimension of 10. Here, each element of X follows the distribution shown in the second
column. Simulations E & F use univariate X . A qualitative description of these simulation settings is shown in Table 3.

Label X distr. τ (x) E [Y |X = x] E [A|X = x]

A U(0, 1) 1
2x1 + 1

2x2 sin(πx1x2) + 2
(
x3 − 1

2

)2
trim0.1 {sin(πx1x2)}

B N(0, 1)
log(1 + ex2)

+x1

max{0, x1 + x2, x3}
+ (x4 + x5)+

1/2

C N(0, 1) 1 2 log (1 + ex1+x2+x3) 1
1+ex2+x3

D N(0, 1)

(∑3
i=1 xi

)
+

− (x4 + x5)+

(∑3
i=1 xi

)
+

+ 1
2 (x4 + x5)+

1
1+e−x1+e−x2

E U(−1, 1) 0

1(x1 ≤ −.5) (x1+2)2

2
+1(x1 > .5)(x1 + 0.125)
+
(
x1

2 + 0.875
)

1
(
− 1

2 < x1 < 0
)

+
{

1
(
0 < x1 <

1
2

)
×
(
−5
(
x1 − 1

5

)2
+ 1.075)

)} 0.1 + (0.8x1)+

F U
(

1
20 ,

19
20

)
0 1 x1
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Table 3. Qualitative summary of the simulation settings detailed in Table 2.

Label Description τ (x) E [Y |X = x] E [A|X = x]

A Simple effect Simple Complex Complex
B Randomized trial Moderate Moderate Constant
C Complex prognosis Constant Complex Simple
D Unrelated arms Moderate Moderate Moderate
E Non-differentiable prognosis Constant Complex Simple
F Simple illustration Constant Constant Simple

Figure 1. Table 2 presents each setting in detail, and Table
3 gives a qualitative summary of each setting. The settings
generally differ in their complexity for the functions η, τ
and π. In each setting, we simulated sample sizes of 250,
500 and 1000.

We implemented POR with three pseudo-outcome functions:
fU,θ̂, fDR,θ̂, and fcov,θ̂. In each case we used 10-fold cross-
fitting. For example, for fU,θ̂, we used 90% of the data

to estimate the nuisance functions θ̂, evaluated and stored
fU,θ̂(Zi) for the remaining 10%, and then repeated this pro-
cess 10 times with different fold assignments to obtain a
pseudo-outcome for every individual. We then fit a regres-
sion against all of these pseudo-outcomes together. We used
boosted trees to perform all of our nuisance regressions, as
well as the final regression predicting pseudo-outcomes as a
function of X .2

For each pseudo-outcome function, we considered a
weighted and unweighted version. For fU,θ̂ we com-
pare uniform weights (i.e., the U-Learner) against weights
{A− π̂(X)}2 (i.e., the R-Learner). For fDR,θ̂ and fcov,θ̂,
we compare uniform against weights π̂(X)(1− π̂(X)) (see
Table 1).

As a baseline comparator, we consider a “T-Learner” ap-
proach (Künzel et al., 2019), which entails separately fitting
two estimates µ̂1 and µ̂0 for µ1 and µ0 respectively and
then taking µ̂1(xnew)− µ̂0(xnew) as an estimate of τ(xnew).
We used the same boosted tree algorithm when fitting the
T-Learner.

Figure 2 shows the results of 600 simulation iterations.
Weighted POR matched or outperformed unweighted POR
in every setting. Performance was similar across the three
weighted POR methods we considered. The T-Learner per-
formed comparably to weighted POR in Settings D, E & F,
but dramatically underperformed in Settings A, B & C.

2Specifically, we used the lightgbm R package written by Shi
et al. (2023).
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Figure 2. Weighted vs unweighted estimation of simulated CATEs.
The first three columns respectively represent POR with the DR-
Learner pseudo-outcome (fDR,θ̂), the covariance-based pseudo-
outcome (fcov,θ̂), and the U-Learner pseudo-outcome (fU,θ̂). The
fourth column shows the T-Learner. The rows show the different
simulation settings.
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3. Convergence Rate Results
Part of the value the IVW framework is that it provides
a straightforward path for simplifying expressions for the
bias of CATE estimates. Specifically, if Z, κ̂, π̂, and µ̂ are
mutually independent, we can make use of the following
helpful identity.

E
(
κ̂π̂
(
f1,θ̂ − f1,θ

)
|X
)

= E
(
κ̂π̂π

(
1

π̂
− 1

π

)
(µ̂1 − µ1)|X

)
= E (κ̂|X)E (π − π̂|X)E (µ̂1 − µ1|X) . (6)

The left-hand side is the weighted conditional bias in esti-
mating f1,θ̂ (see Eq (5)), which we can see depends only
on the product of the biases for π̂ and µ̂. The first equality
is shown in Appendix C. The second comes from the inde-
pendence assumption. Kennedy (2023) employs a similar
identity when reducing bias terms associated with the oracle
R-Learner (see their Section 7.6). In the remainder of this
section, Eq (6) will play a fundamental role in our study of
convergence rates.

3.1. Notation

Let Z̄ = (X̄, ā, ȳ) denote a dataset of n observations used
for POR, which we assume is independent of the data used
for estimating the nuisance functions θ̂. Let d denote the
dimension of the domain X of X , and let xnew be a point
for which we would like to predict τ(xnew).

We will often use the “bar” notation when referring to es-
timators derived from Z̄; “hat” notation when referring to
quantities that depend on nuisance training data; and both
notations when referring to estimators derived from both
datasets. We do this to help keep track of dependencies be-
tween estimated quantities. Let Xall be the combined matrix
of covariates including X̄ as well as the covariates used in
training nuisance functions.

Next we introduce notation to describe convergence rates.
From random variables An and Bn, let An . Bn denote
that there exists a constant c such that An ≤ cBn for all n.
Let An � Bn denote that An . Bn and Bn . An. Let
An .P cn denote that An = OP(cn) for constants cn.For

any vector k-length vector a, let ‖a‖ =
√∑k

j=1 a
2
j denote

its L2 norm.

We say that a function f is s-smooth if there exists a constant
c such that |f(x) − fbsc,x′(x)| ≤ c||x − x′||s for all x, x′,
where bsc is the largest integer strictly smaller than s and
fbsc,x′ is the bscth order Taylor approximation of f at x′.
This form of smoothness is a key property of functions in a
Holder class. For completeness, we review this connection
in Appendix F.

For any function g(Z), let P̄n(g(Z)) := 1
n

∑n
i=1 g(Zi) de-

note its sample average over Z̄. We frequently omit function
arguments when clear from context, writing, for example,
P̄n(π) in place of P̄n(π(X)).

3.2. Setup & Assumptions

We study convergence rates for a local polynomial (LP)
estimator of τ(xnew) that downweights regions of the co-
variate space that are either far from xnew or that produce
pseudo-outcomes with high variance. More formally, let h
be a bandwidth parameter that we expect will shrink with n
and let kern be a kernel function that is zero outside of the
unit hypersphere. Within the unit hypersphere, we assume
that kern is bound above and bounded below away from
zero. Let K(X) := 1

hd
kern

(
X−xnew

h

)
. Let fbasis be a

L-dimensional, polynomial basis function that is bounded
on the unit hypersphere, and let b(X) := fbasis

(
X−xnew

h

)
.

Given independent estimates π̂, κ̂ and µ̂, we define ν̂(X) :=
π̂(X)κ̂(X), and define our estimate of τ(xnew) as

ˆ̄τ(xnew) :=
1

n

n∑
i=1

ˆ̄w(Xi)fDR,θ̂(Zi),

where

ˆ̄w(x) := b(xnew)> ˆ̄Q−1b(x)K(x)ν̂(x)

and
ˆ̄Q :=

1

n

n∑
i=1

b(Xi)ν̂(Xi)K(Xi)b(Xi)
>.

Thus, ˆ̄τ(xnew) is a weighted LP regression predicting
fDR,θ̂(Z) from X , with stabilizing weights ν̂(X). Here-
after, with some abuse of notation, we also use the term
“weights” to refer to ˆ̄w(X).

We study ˆ̄τ(xnew) by comparing it against an oracle coun-
terpart using the same estimated weights ˆ̄w, but using the
true function fDR,θ. That is, we define the oracle estimate

ˆ̄τoracle(xnew) :=
1

n

n∑
i=1

ˆ̄w(Xi)fDR,θ(Zi).

Given π̂ and κ̂, this oracle estimate is a weighted LP re-
gression predicting fDR,θ(Z) from X , evaluated at the point
X = xnew.

Next, we present several assumptions. We reuse the notation
“c” to refer to generic constants; the same constant need not
satisfy all assumptions.

Assumption 3.1. (Regularity) E
(
Y 2|A,X

)
is bounded.

Assumption 3.2. (Positivity) There exists a constant c ∈
(0, 1) such that, for all covariate values x, all a ∈ {0, 1}, and
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all sample sizes n, we have c ≤ κ̂(x), κ(x), π̂(x), π(x) <
1− c.
Assumption 3.3. (Nuisance Error) There exists a complex-
ity parameter k (e.g., the number of coefficients in a lin-
ear model) and constants c, sµ and sπ, such that, with
probability approaching 1, the sequences Vk,n := ck/n,
Bπ,k := ck−sπ/d and Bµ,k := ck−sµ/d satisfy

V ar(π̂(x)|Xall) ≤ Vk,n,

V ar(κ̂(x)|Xall) ≤ Vk,n,

V ar(µ̂a(x)|Xall) ≤ Vk,n,

E(π̂(x)− π(x)|Xall) ≤ Bπ,k,

E(κ̂(x)− κ(x)|Xall) ≤ Bπ,k, and
E(µ̂a(x)− µa(x)|Xall) ≤ Bµ,k

for all x and a. Above, we assume that k grows with n, and
that k < n.

The bias conditions of Assumption 3.3 will typically require
µa and π to be sµ-smooth and sπ-smooth respectively. The
variance conditions typically will require the complexity
of the nuisance models (i.e., k) to grow at a limited rate.
For example, for spline estimators, they generally require
the sample covariance matrices to have stable eigenvalues
with high probability. This can be ensured by requiring
k log(k)/n to converge zero (see, e.g., Tropp, 2015; Belloni
et al., 2015; Newey & Robins, 2018).

Assumption 3.4. (X Distribution) X is the unit hyper-
sphere; X is continuous; the density of X is bounded above
and bounded below away from zero; and ‖xnew‖ < 1− h.

Assumption 3.4 implies that any point within h dis-
tance from xnew is in the interior of X , and that
Pr [‖X − xnew‖ ≤ h] � hd.

Assumption 3.5. (Limited bandwidth) nhd →∞.

Assumptions 3.4 & 3.5 together imply that the expected
number of datapoints in an h-size neighborhood around
xnew is increasing with n.

Assumption 3.6. (Eigenvalue Stability) There exists a
constant c > 0 such that λmin

(
ˆ̄Q
)
> c with probability

approaching 1.

Assumption 3.6 ensures that the weights ˆ̄w are bounded in
probability. In Appendix G, we show that Assumption 3.6
follows from Assumptions 3.2, 3.4 & 3.5, if we addition-
ally assume that E(|ν̂(x) − ν(x)|) → 0 for all x, and that
E
[
fbasis(U)fbasis(U)>

]
is positive definite, where U is a

random variable that is uniformly distributed on the unit hy-
persphere. This last condition can be ensured by design (see,
e.g., Kennedy et al.’s use of Legendre polynomials, as well
as Newey & Robins’s Assumption 3, 2018, and Kennedy’s
Theorem 3, 2023).

Assumption 3.7. (Local Nuisance Estimators) There
exists a constant c such that Cov(π̂(x), π̂(x′)) = 0,
Cov(κ̂(x), κ̂(x′)) = 0, and Cov(µ̂a(x), µ̂a(x′)) = 0 for
all x, x′, a satisfying ‖x− x′‖ > ck−1/d.

Assumption 3.7 says that the nuisance models’ predictions
for sufficiently far away points x, x′ depend on entirely
different training data. This is true, for example, for LP
nuisance regression models with a bandwidth h ∝ k−1/d

(see, e.g., Tsybakov, 2009).

3.3. Convergence Rate Results

The assumptions in the previous section allow us to char-
acterize the difference between ˆ̄τ(xnew) and the oracle esti-
mate.

Theorem 3.8. (Error with respect to oracle) Under Assump-
tions 3.1-3.7, we have the following results.

1. (4-way CF) If π̂, κ̂, µ̂, and Z̄ are mutually independent,
then

ˆ̄τ(xnew)−ˆ̄τoracle(xnew) .P

√
1

nhd
+BµBπ.

2. (3-way CF) If π̂, µ̂ and Z̄ are mutually independent;
κ̂(x) = 1− π̂(x); and

Var
[
supx {π̂(x)− π(x)}2 |Xall

]
. kn/n with proba-

bility approaching 1, then

ˆ̄τ(xnew)−ˆ̄τoracle(xnew) .P

√
1

nhd
+Bµ (Bπ + Vk,n) .

3. (2-way CF) If {π̂, µ̂} ⊥ Z̄ and κ̂(x) = 1− π̂(x), then

ˆ̄τ(xnew)− ˆ̄τoracle(xnew)

.P

√
1

nhd
+
(
Bµ +

√
Vk,n

)(
Bπ +

√
Vk,n

)
.

The three bounds given by Theorem 3.8 become less power-
ful as we relax the independence assumptions. As in Newey
& Robins (2018) and Kennedy (2023), the independence
conditions can be ensured via higher-order cross-fitting, or
“nested” cross-fitting, in which separate folds are used to
estimate each nuisance function. Higher order cross-fitting
is typically impractical in small or moderate sample sizes,
as it requires that a smaller fraction of data points be used to
train each nuisance function. That said, the effect of divid-
ing our sample into smaller partitions will be asymptotically
dwarfed by the effect of a faster convergence rate.

Point 3 makes the weakest assumptions and produces the
least powerful bound. It is similar to the bound in Lemma
2 of Nie & Wager, 2020. That is, Point 3 implies that
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Figure 3. Panel A illustrates how increasingly complex nuisance models are required to attain oracle efficiency when the underlying
nuisance functions (π, µ) are increasingly non-smooth. For any combination of nuisance smoothness values (sπ, sµ) and covariate
dimension (d), there is a constant z such that the bound from Corollary 3.11 equals the oracle whenever the number of nuisance parameters
(k) is proportional to nz . Panel A shows this rate z using color. For less smooth nuisance functions (the bottom-left of the figure), the
value of z becomes higher and higher, until z ≈ 1 and k grows at a rate almost proportional to the sample size (n). The white triangle in
the bottom-left denotes situations where the oracle rate cannot be attained by our approach, or by any other approach. Panel B compares
this white triangle to related results for other CATE estimators. Each line indicates the boundary of a region within which the estimator
has been shown to be oracle efficient. For example, Nie & Wager (2020) show that the standard R-Learner is oracle efficient when sπ/d
and sµ/d fall within the square region on the top-right, marked by the dark green, dot-dashed line. For simplicity, both Panels assume that
sτ/d = 1; Appendix B shows other scenarios.

ˆ̄τ(xnew)− ˆ̄τoracle(xnew) .P 1/
√
nhd if the conditional rMSE

of π̂(x) and µ̂a(x) are . n−1/4. The
√

1/nhd term com-
mon to all three bounds is a standard variance term asso-
ciated with LP regression (see, e.g., Proposition 1.13 of
Tsybakov, 2009, or Theorem 3 of Kennedy, 2023). The
variance condition in Point 2 is similar to Assumption 3.3,
and we expect it to hold in similar situations.

To bound the error of the oracle itself, we additionally as-
sume the following.

Assumption 3.9. The target function τ is sτ -smooth, and
the basis fbasis is of order at least bsτc.

From here, fairly standard results for local polynomial re-
gression (e.g., Tsybakov, 2009; see also Kennedy, 2023)
imply the following result.

Theorem 3.10. (Oracle error) Under Assumptions 3.1-3.7
and Assumption 3.9,

ˆ̄τoracle(xnew)− τ(xnew) .P

√
1

nhd
+ hsτ . (7)

The rate in Theorem 3.10 is minimized when h ∝ n
−1

2sτ+d .
In this case, the right-hand size of Eq (7) becomes n

−1
2+d/sτ ,

which is the classic minimax rate for regression with sτ -
smooth functions (see Tsybakov, 2009; and Kennedy et al.,

2024). We will say that an estimator is “oracle-efficient” if
it achieves this rate.

Combining the results of Theorems 3.8 & 3.10, we see that

Corollary 3.11. (Final bound) Under Assumptions 3.1-3.7
and Assumption 3.9, if π̂, κ̂, µ̂ and Z̄ are mutually indepen-
dent, then

ˆ̄τ(xnew)− τ(xnew) .P

√
1

nhd
+ hsτ + BµBπ. (8)

Moreover, let coracle := d
2+d/sτ

. If sπ + sµ > coracle and the

tuning parameters h and k are selected so that h ∝ n
−1

2sτ+d

and k ∝ n
d

(2+d/sτ )(sπ+sµ) , then ˆ̄τ is oracle-efficient:

ˆ̄τ(xnew)− τ(xnew) .P n
−1

2+d/sτ .

The key take-away of Corollary 3.11 is that ˆ̄τ achieves
oracle-efficiency when the nuisance functions are suffi-
ciently smooth (sπ + sµ > coracle). Importantly, Kennedy
et al. (2024) show that it is impossible to achieve the oracle
rate when sπ+sµ < coracle, meaning that ˆ̄τ is oracle-efficient
in almost every scenario possible.

The first panel of Figure 3-A illustrates the rate of param-
eter growth (k) required to reach oracle efficiency in each
scenario. This required rate approaches k ∝ n as sπ + sµ

8



Inverse-Variance Weighting for Estimation of Heterogeneous Treatment Effects

approaches coracle, in the bottom-left. Fittingly, the one
exception where we do not attain oracle-efficiency is the
edge case where sπ + sµ = coracle exactly, although setting
k ∝ n/ log(n)2 would still produce the oracle rate up to
log factors (as in Kennedy’s Corollary 2, 2023). Strictly
achieving oracle-efficiency in this edge case would require
the number of nuisance parameters in our approach to grow
at a rate proportional to n (i.e., k ∝ n), which will generally
preclude Assumption 3.3.

Interestingly, Kennedy (2023) derive a higher-order R-
Learner (HORL) that is minimax-optimal even when sπ +
sµ < coracle (the white region of Figure 3-A). However,
achieving minimax-optimality when sπ + sµ < coracle re-
quires the number of parameters to grow faster than the
number of relevant data-points. To make this computation-
ally tractable, the HORL assumes external knowledge of
the covariate distribution. The HORL can also be used
in combination with the empirical distribution of the co-
variates, but this empirical version leads to non-negligible
error terms (see their Proposition 7) and is not necessarily
oracle-efficient across the sπ + sµ ≥ coracle setting.

To our knowledge, ours is the first estimator shown to be
oracle-efficient for any (sπ, sµ) satisfying sπ + sµ < coracle,
without assuming knowledge of the covariate distribution.
Figure 3-B compares this condition against related smooth-
ness conditions that have previously been shown to im-
ply oracle-efficiency. We compare conditions for: our ap-
proach (4CF-IVW-DR); unweighted DR-Learning with 3-
way cross-fitting, where the two nuisance models are as-
sumed to be equally complex (3CF-Unweighted-DR; Fisher
& Fisher, 2023); unweighted DR-Learning with 2-way cross-
fitting, where the two nuisance models can differ in complex-
ity (Unweighted-DR; Kennedy, 2023); R-Learning with 3-
way cross-fitting (3CF-R; Kennedy, 2023); R-Learning with
2-way cross-fitting (R; Nie & Wager, 2020); T-Learning,
which requires sτ = sµ (“Plug-in”); and a modified version
of T-Learning with stronger guarantees (EP; see Theorem 5
of van der Laan et al., 2024). All of the conditions in Figure
3-B assume sτ/d is fixed at 1; Appendix B shows how the
boundaries change when sτ varies.

4. Discussion
We have argued that R-Learning implicitly employs a POR
with stabilizing weights, and that these weight are key to
its success. We also consider doubly robust learners that
incorporate IVW more directly, and show that they can attain
a convergence rate that is, to our knowledge, the fastest
available under our minimal assumptions (Corollary 3.11).
An important caveat is that our most powerful results require
“higher order sample splitting,” which can be impractical in
finite samples. With this in mind, we also include weaker
results under simpler versions of sample splitting, and study

these versions in simulations as well.

The use of weighted regression highlights two fundamental
differences in the difficulty of estimating the CATE versus
the ATE. The first is that the CATE is inherently a more
complex target, and so it incurs a higher oracle error. Indeed,
if the underlying CATE function is sufficiently non-smooth,
then the oracle error erodes any advantage of using doubly
robust methods over plug-in (“T-Learner”) methods.

The second is that CATE estimates can incorporate variance-
reducing weights without inducing bias, whereas ATE esti-
mates generally cannot. One exception is the special case
where the CATE is constant (see, e.g., Hullsiek & Louis,
2002; Yao et al., 2021). More generally though, weighted
estimates of an aggregated effect not only change an estima-
tor’s precision, but also the estimand itself.

Along these lines, Li et al. (2018) propose a hybrid ap-
proach using variance-reducing weights (ν(X)) to estimate
the unconditional average effect in the “overlap population,”
defined as the population who’s covariate density doverlap
satisfies doverlap(x) ∝ ν(x)doverall(x), where doverall is the
density ofX in the overall population. A drawback of study-
ing the overlap population is that it does not correspond to a
specific subgroup of individuals that can be targeted with a
deterministic enrollment criteria. On the other hand, Li et al.
argue that the overlap population is of special interest due
to the fact that it upweights individuals who could plausibly
receive either treatment. Morzywolek et al. (2023) extend
this idea to the estimation of average treatment effects con-
ditional on a subset of covariates V ⊆ X , using weights to
emphasize different patients within the strata defined by V .
When V ⊂ X , they show that using weights ν(X) leads to
the R Learner objective function. When V = X , they note
that all weights produce the same estimand (i.e., τ ).

The partial aggregation setting where V ⊂ X is widely
relevant, and presents an important area of future research.
For example, doctors choosing how to treat patients will not
always have access to the same set of confounders X that
was used in previous studies. Similarly, policy makers can-
not always perfectly tailor intervention programs for each
individual. Again, inverse-variance weighted procedures
such as R-Learning become harder to apply in this setting
without changing the estimand. While this problem can
be partially mitigated by fitting an additional regression to
predict the R-Learning estimate from a subset of allowed
decision factors V ⊂ X , R-Learning may still underper-
form due to the fact that it internally estimates a target (τ)
that is more complex than is necessary (Knaus et al., 2021).
Approaches that directly estimate the coarsened function
E (τ(X)|V ) may improve accuracy due to the low oracle er-
ror associated with estimating lower-dimensional functions
(see, e.g., Lee et al., 2017; Fisher & Fisher, 2023; as well as
Morzywolek et al., 2023).
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Figure 4. Boundaries for varying CATE smoothness (sτ/d). Above, we show how the boundaries in Figure 3 change with sτ/d. Again,
each line indicates the boundary of a region within which the estimator has been shown to be oracle efficient. The gray, shaded regions
show scenarios where the oracle rate is unattainable.

A. Code
Code for reproducing the methods and simulations in this paper is available at https://github.com/aaronjfisher/wpor/.

B. Theoretical Comparison with Varying sτ

Figure 4 shows how the oracle-efficiency boundaries from Figure 3 change when the CATE function is more smooth. As
sτ/d approaches infinity, the oracle rate n

−1
2+d/sτ approaches n−1/2. In this setting, oracle efficiency represents a higher

performance bar, which can only be attained under stricter conditions on the nuisance smoothness.

C. Proof of Theorem 3.8
Throughout this appendix, we will sometimes use colored text when writing long equations to flag parts of an equation that
change from one line to the next (e.g., Line (9)). We use I.E. as an abbreviation for “iterating expectations.”

Proof. Throughout the sections below we will use the fact if 1nAn .P bn and 1n is an indicator satisfying Pr(1n = 1)→ 1

(at any rate), then An .P bn as well. In particular, we define ˆ̄1 to be the event that the inequalities in Assumptions 3.3 and
3.6 hold. By these same assumptions, Pr(ˆ̄1 = 1)→ 1. When attempting to bound any given term An in probability, it will
be sufficient to bound ˆ̄1An.

We can now present a proof outline. First, we decompose the error with respect to the oracle as

ˆ̄τ(xnew)− ˆ̄τoracle(xnew) = P̄n
{

ˆ̄w
((
f1,θ̂ − f0,θ̂

)
− (f1,θ − f0,θ)

)}
= P̄n

{
ˆ̄w
(
f1,θ̂ − f1,θ

)}
− P̄n

{
ˆ̄w
(
f0,θ̂ − f0,θ

)}
.

Due to the symmetry of the problem, proving that either one of the above terms is bounded will be sufficient. Without loss

13
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of generality, we focus on the first term. After multiplying by ˆ̄1, which does not change the bound, we have

ˆ̄1P̄n
{

ˆ̄w
(
f1,θ̂ − f1,θ

)}
= ˆ̄1P̄n

[
ˆ̄w

{
µ̂1 − µ1 +

A

π̂
(Y − µ̂1)− A

π
(Y − µ1)

}]
= ˆ̄1P̄n

[
ˆ̄w

{
µ̂1 − µ1−

A

π
µ̂1 +

A

π
µ1

+
A

π̂
Y−A

π̂
µ1 −

A

π
Y +

A

π
µ1

−A
π̂
µ̂1+

A

π̂
µ1+

A

π
µ̂1 −

A

π
µ1

}]
(9)

= ˆ̄1P̄n
[

ˆ̄w

(
1− A

π

)
(µ̂1 − µ1)

]
(10)

+ ˆ̄1P̄n
[

ˆ̄wA

(
1

π̂
− 1

π

)
(Y − µ1)

]
(11)

− ˆ̄1P̄n
[

ˆ̄wA

(
1

π̂
− 1

π

)
(µ̂1 − µ1)

]
. (12)

Section C.1, below, shows that the weights ˆ̄w satisfy E
(

ˆ̄1 ˆ̄w(Xi)
2
)
. 1/hd (as in Kennedy (2023)’s Lemma 1). Under the

condition that (π̂, κ̂, µ̂1) ⊥ Z̄, Section C.2 shows that Lines (10) & (11) are weighted averages of terms that are iid and
mean zero, conditional π̂, κ̂, µ̂1 and X̄all. It will follow that Lines (10) & (11) have expected conditional variance bounded
by 1/

(
nhd

)
. Thus, Lines (10) & (11) are

.P
1√
nhd

(13)

by Markov’s Inequality (see Section C.2 for details). This fact holds for all forms of independence considered in Theorem
3.8 (Points 1, 2 & 3), as it depends only on (π̂, κ̂, µ̂1) ⊥ Z̄. As an aside, these same steps can be used to show the first
equality in Eq (6).

Line (12) does not have mean zero given π̂, κ̂, µ̂1 and X̄all, and so constitutes the bias relative to the oracle. These terms
are more challenging to tackle due to the correlations between the ˆ̄Q matrix (contained within ˆ̄w) and the 1/π̂ nuisance
estimate. However, we can separate these quantities using the Cauchy Schwartz inequality. Line (12) becomes

ˆ̄1P̄n
{

ˆ̄wA

(
1

π̂
− 1

π

)
(µ̂1 − µ1)

}
= ˆ̄1b(xnew)> ˆ̄Q−1P̄n

{
b(Xi)K(Xi)ν̂(Xi)Ai

(
1

π̂
− 1

π

)
(µ̂1 − µ1)

}
def of ˆ̄w

≤ ˆ̄1
∥∥∥ ˆ̄Q−1b(xnew)

∥∥∥ ∥∥P̄n {bKν̂A (π̂−1 − π−1) (µ̂1 − µ1)
}∥∥ Cauchy Schwartz

. ˆ̄1
∥∥P̄n {bKν̂A (π̂−1 − π−1) (µ̂1 − µ1)

}∥∥ def of ˆ̄1 & b

=

[
L∑
l=1

ˆ̄1P̄n
{
b`Kν̂A

(
π̂−1 − π−1

)
(µ̂1 − µ1)

}2]1/2

≤
L∑
l=1

∣∣∣ˆ̄1P̄n {b`Kκ̂π̂A (π̂−1 − π−1) (µ̂1 − µ1)
}∣∣∣ , (14)

where the last ≤ comes from the definition of ν̂, and from the fact that
∑J
j=1 a

2
j ≤

(∑J
j=1 aj

)2
for any nonnegative

sequences of values {aj , . . . , aJ}.

Appealing to Markov’s Inequality, we tackle Line (14) by bounding the second moment of each summand. For Point 1, we

14
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use the fact that E(V 2) = V ar(V ) + E(V )2 for any random variable V to bound

E
[
E
{

ˆ̄1P̄n
{
b`Kκ̂π̂A

(
π̂−1 − π−1

)
(µ̂1 − µ1)

}2 |Xall, κ̂
}]

= E
[
E
{

ˆ̄1P̄n
{
b`Kκ̂π̂A

(
π̂−1 − π−1

)
(µ̂1 − µ1)

}
|Xall, κ̂

}2
]

(15)

+ E
[
V ar

{
ˆ̄1P̄n

{
b`Kκ̂π̂A

(
π̂−1 − π−1

)
(µ̂1 − µ1)

}
|Xall, κ̂

}]
(16)

Section C.3 shows that Line (15) is

. k−2(sµ+sπ)/d

when π̂ ⊥ κ̂, using steps similar to those in Eq (6).

Section C.4 shows that Line (16) is . 1/
(
nhd

)
. Thus, Eq (14) is

.P

√
1

nhd
+ k−(sµ+sπ)/d.

This, combined with Line (13), completes the proof of Point 1.

Section C.5 shows that Line (14) is

.P k
−(sµ+sπ)/d +

k1−sµ/d

n
+

√
1

nhd

under the conditions of Point 2, and Section C.6 shows that Line (14) is

.P
k

n
+
k1/2−sµ/d√

n
+
k1/2−sπ/d√

n
+ k−(sµ+sπ)/d

under the conditions of Point 3. This completes the proof for Points 2 & 3.

C.1. Bound on weights

Here we show results for the weights ˆ̄w. Our approach closely follows classic approaches for LP regression (e.g., Tsybakov,
2009; see also Kennedy, 2023). Let I(x) = 1(‖x− xnew‖ ≤ h), so that K(x) = 0 and ˆ̄w(x) = 0 whenever I(x) = 0 by
the definitions of K and ˆ̄w.

Lemma C.1. (Bounded weights) Under Assumptions 3.2, 3.4, 3.5, & 3.6:

1. K(X) . 1
hd
I(X), and E (K(X)) . 1

hd
E (I(X)) . 1;

2. E
[{

1
n

∑n
i=1K(Xi)

}2]
. 1;

3. ˆ̄1| ˆ̄w(x)| . I(x)/hd for any fixed x;

4. E
{

ˆ̄1| ˆ̄w(Xi)|
}
. 1; and

5. E
{

ˆ̄1 ˆ̄w(Xi)
2
}
. 1/hd.

Proof. Point 1 comes immediately from the definitions of K and I, and from Assumption 3.4.

15
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For Point 2,

E

{ 1

n

n∑
i=1

K(Xi)

}2
 .

1

n2h2d
E

{ n∑
i=1

I(Xi)

}2
 Point 1

=
1

n2h2d

E{ n∑
i=1

I(Xi)

}
+ E


n∑
i=1

I(Xi)

n∑
j 6=i

E (I(Xj)|Xi)




.
1

n2h2d
[
nhd + n(n− 1)h2d

]
Assm 3.4

=
1

nhd
+

1

n2
[n(n− 1)]

. 1. Assm 3.5.

For Point 3,

ˆ̄1| ˆ̄w(x)| ≤ ˆ̄1‖b(xnew)‖ ‖ ˆ̄Q−1b(x)K(x)ν̂(x)‖ Cauchy Schwartz

. ˆ̄1‖ ˆ̄Q−1b(x)K(x)ν̂(x)‖ def of b

≤
ˆ̄1

λmin

(
ˆ̄Q
)‖b(x)K(x)ν̂(x)‖

. ‖b(x)K(x)ν̂(x)‖ def of ˆ̄1, Assm 3.6
≤ K(x) def of b,Assm 3.2

.
1

hd
I(x) Point 1.

Point 4 follows from Points 1 & 3. Similarly, for Point 5,

E
{

ˆ̄1 ˆ̄w(Xi)
2
}
.

1

h2d
E {I(x)} . 1

hd
,

where the first . is from Point 3 and the second is from Assumption 3.4.

C.2. Showing Lines (10) & (11) are .P
√

1/(nhd)

Line (10) has conditional expectation

ˆ̄1E
[
P̄n
(

ˆ̄w

(
1− A

π

)
(µ̂1 − µ1)

)
|X̄all, µ̂1, π̂, κ̂

]
= ˆ̄1P̄n

(
ˆ̄w
(

1− π

π

)
(µ̂1 − µ1)

)
= 0 (17)

16
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Thus, the second moment of Line (10) is

E

[
ˆ̄1E

{
P̄n
(

ˆ̄w

(
1− A

π

)
(µ̂1 − µ1)

)2

|X̄all, µ̂1, π̂, κ̂

}]

= E
[
ˆ̄1V ar

{
P̄n
(

ˆ̄w

(
1− A

π

)
(µ̂1 − µ1)

)
|X̄all, µ̂1, π̂, κ̂

}]
from Eq (17)

= E

[
ˆ̄1

n2

n∑
i=1

ˆ̄w(Xi)
2(µ̂1(Xi)− µ1(Xi))

2 1

π(Xi)2
V ar

[
A|X̄all

]]

. E

[
ˆ̄1

n2

n∑
i=1

ˆ̄w(Xi)
2(µ̂1(Xi)− µ1(Xi))

2

]
Assm 3.2

.
1

n2

n∑
i=1

E
[
ˆ̄1 ˆ̄w(Xi)

2E
{

(µ̂1(Xi)− µ1(Xi))
2|Xall

}]
.

1

n2

n∑
i=1

E
[
ˆ̄1 ˆ̄w(Xi)

2
]

def of ˆ̄1

.
1

nhd
Lemma C.1.5.

From here, Markov’s Inequality implies that Line (10) is .P

√
1
nhd

.

Similarly, Line (11) has conditional expectation

E
[
ˆ̄1P̄n

(
ˆ̄wA

(
1

π̂
− 1

π

)
(Y − µ1)

)
|X̄all, µ̂1, π̂, κ̂

]
= ˆ̄1P̄n

[
ˆ̄w

(
1

π̂
− 1

π

)
E {A(Y − µ1)|X}

]
= ˆ̄1P̄n

[
ˆ̄w

(
1

π̂
− 1

π

)
E {Y − µ1|X,A = 1}π(X)

]
= 0. (18)

Thus, the second moment of Line (11) is

E

[
ˆ̄1E

{
P̄n
(

ˆ̄wA

(
1

π̂
− 1

π

)
(Y − µ1)

)2

|X̄all, µ̂1, π̂, κ̂

}]

= E
[
ˆ̄1V ar

{
P̄n
(

ˆ̄wA

(
1

π̂
− 1

π

)
(Y − µ1)

)
|X̄all, µ̂1, π̂, κ̂

}]
=

1

n2

n∑
i=1

E

[
ˆ̄1 ˆ̄w(Xi)

2

(
1

π̂(Xi)
− 1

π(Xi)

)2

V ar
{
A(Y − µ1)|X̄all

}]

.
1

n2

n∑
i=1

E
[
ˆ̄1 ˆ̄w(Xi)

2
]

Assms 3.1 & 3.2

.
1

nhd
Lemma C.1.5.

Markov’s Inequality then implies that Line (11) is .P

√
1
nhd

.
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C.3. Showing Line (15) is . k−2(sµ+sπ)/d when π̂ ⊥ κ̂

Let 1̂ be the indicator that the inequalities in Assumption 3.3 hold, where 1̂ ≥ ˆ̄1, and 1̂ depends only on Xall. The inner
expectation in Line (15) equals

E
[
ˆ̄1P̄n

{
b`Kκ̂π̂A

(
π̂−1 − π−1

)
(µ̂1 − µ1)

}
|Xall, κ̂

]
≤ 1̂

n

n∑
i=1

b`(Xi)K(Xi)κ̂(Xi)

× E
[
A

(
1− π̂(Xi)

π(Xi)

)
|Xall

]
E [µ̂1(Xi)− µ1(Xi)|Xall] 4-way independence (19)

.
1̂k−sµ/d

n

n∑
i=1

K(Xi)

∣∣∣∣E [A(1− π̂(Xi)

π(Xi)

)
|Xall

]∣∣∣∣ def of 1̂

=
1̂k−sµ/d

n

n∑
i=1

K(Xi)

∣∣∣∣E [E (A|Xall, π̂)

(
1− π̂(Xi)

π(Xi)

)
|Xall

]∣∣∣∣ I.E.

=
1̂k−sµ/d

n

n∑
i=1

K(Xi) |E [π(Xi)− π̂(Xi)|Xall]| by E (Ai|Xall, π̂) = π(Xi)

.
k−(sµ+sπ)/d

n

n∑
i=1

K(Xi) def of 1̂.

Note that Line (19) requires π̂(x) ⊥ κ̂(x) in order to remove the conditioning on κ̂ from the expectation term containing π̂.

Thus, Line (15) is

. k−2(sµ+sπ)/dE

{ 1

n

n∑
i=1

K(Xi)

}2
 . k−2(sµ+sπ)/d

where the second . comes from Lemma C.1.2.

C.4. Showing Line (16) is . 1/(nhd)

Line (16) is the expected value of

V ar

[
ˆ̄1P̄n

{
b`Kκ̂A

(
1− π̂

π

)
(µ̂1 − µ1)

}
| Xall, κ̂

]
= V ar

[
E
[

ˆ̄1P̄n
{
b`Kκ̂A

(
1− π̂

π

)
(µ̂1 − µ1)

}
| Xall, π̂, κ̂, µ̂1

]
| Xall, κ̂

]
+ E

[
V ar

[
ˆ̄1P̄n

{
b`Kκ̂A

(
1− π̂

π

)
(µ̂1 − µ1)

}
| Xall, π̂, κ̂, µ̂1

]
| Xall, κ̂

]
Law of Total Var

= V ar

[
ˆ̄1

n

n∑
i=1

b`Kκ̂(π − π̂)(µ̂1 − µ1)|Xall, κ̂

]
(20)

+ E

[
ˆ̄1

n2

n∑
i=1

b2`K
2κ̂2V ar(A|X̄)

(
1− π̂

π

)2

(µ̂1 − µ1)2|Xall, κ̂

]
. (21)

Section C.4.1 shows that the expectation of Line (20) is . 1/(nhd) and Section C.4.2 shows that the expectation of Line
(21) is . 1/(nhd).
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C.4.1. SHOWING THE EXPECTATION OF LINE (20) IS . 1/(nhd)

To study Line (20), it will be helpful to introduce some abbreviations. Let επ̂i := π̂(Xi)− π(Xi), and εµ̂i := µ̂1(Xi)−
µ1(Xi). Line (20) becomes

V ar

[
ˆ̄1

n

n∑
i=1

b`(Xi)K(Xi)κ̂(Xi)επ̂iεµ̂i|Xall, κ̂i

]

.
1̂

n2

n∑
i=1

K(Xi)
2V ar (επ̂iεµ̂i|Xall) (22)

+
1̂

n2

n∑
i=1

∑
j∈{1,...n}\i

K(Xi)K(Xj) |Cov (επ̂iεµ̂i, επ̂jεµ̂j |Xall)| , (23)

by the definition of b.

To study these variance and covariance terms, we use the fact that for any four variables A1, A2, B1, B2 satisfying
(A1, A2) ⊥ (B1, B2), we have

Cov(A1B1, A2B2)

= Cov(A1, A2)Cov(B1, B2) + E(A1)E(A2)Cov(B1, B2) + Cov(A1, A2)E(B1)E(B2). (24)

A corollary of Eq (24) is that

V ar(A1B1) = V ar(A1)V ar(B1) + E(A1)2V ar(B1) + V ar(A1)E(B1)2. (25)

Applying Eq (25), we see that Line (22) equals

1̂

n2

n∑
i=1

K(Xi)
2 {V ar(επ̂i|Xall)V ar(εµ̂i|Xall)

+E(επ̂i|Xall)
2V ar(εµ̂i|Xall) + V ar(επ̂i|Xall)E(εµ̂i|Xall)

2
}

.
1

n2

n∑
i=1

K(Xi)
2 def of 1̂. (26)

For the off-diagonal terms in Line (23), we first note that for any i, j ∈ {1, . . . n} satisfying i 6= j we have

1̂Cov (επ̂iεµ̂i, επ̂jεµ̂j |Xall)

= 1̂Cov (επ̂i, επ̂j |Xall)Cov (εµ̂i, εµ̂j |Xall)

+ 1̂Cov (επ̂i, επ̂j |Xall)E (εµ̂i|Xall)
2

+ 1̂E (επ̂i|Xall)
2
Cov (εµ̂i, εµ̂j |Xall) by Eq (24),

. 1̂Cov (επ̂i, επ̂j |Xall)Cov (εµ̂i, εµ̂j |Xall)

+ 1̂Cov (επ̂i, επ̂j |Xall) + 1̂Cov (εµ̂i, εµ̂j |Xall) def of 1̂, (27)

where

1̂Cov(επ̂i, επ̂j |Xall)

= 1̂Cov(επ̂i, επ̂j |Xall)1
(
‖Xi −Xj‖ ≤ ck−1/d

)
Assm 3.7

≤ 1̂V ar(επ̂i|Xall)
1/2V ar(επ̂j |Xall)

1/21
(
‖Xi −Xj‖ ≤ ck−1/d

)
Cauchy Schwartz

.
k

n
1
(
‖Xi −Xj‖ ≤ ck−d

)
, def of 1̂. (28)

By the same reasoning,
ˆ̄1Cov(εµ̂i, εµ̂j |Xall) .

k

n
1
(
‖Xi −Xj‖ ≤ ck−1/d

)
. (29)
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Plugging Eqs (28) & (29) into Eq (27), we get

1̂Cov (επ̂iεµ̂i, επ̂jεµ̂j |Xall) .

(
k2

n2
+ 2

k

n

)
1
(
‖Xi −Xj‖ ≤ ck−1/d

)
. (30)

Finally, plugging Eqs (26) & (30) into Lines (22) & (23), we see that the expectation of the expectation of Line (22) plus
Line (23) is

. E

[
1

n2

n∑
i=1

K(Xi)
2

+
1

n2

n∑
i=1

∑
j∈{1,...n}\i

K(Xi)K(Xj)
k

n
1
(
‖Xi −Xj‖ ≤ ck−1/d

)
.

1

n2h2d

n∑
i=1

E [I(Xi)]

+
k

n3h2d

n∑
i=1

∑
j∈{1,...n}\i

E
[
I(Xi)E

{
1
(
‖Xi −Xj‖ ≤ ck−1/d

)
|Xi

}]
Lemma C.1.1

.
1

n2h2d

n∑
i=1

E [I(Xi)]

+
k

n3h2d

n∑
i=1

∑
j∈{1,...n}\i

E
[
I(Xi)k

−1] Assm 3.4

.
1

nhd
+

1

nhd
. Lemma C.1.1.

Thus, the expectation of Line (20) is . 1/(nhd) as well.

C.4.2. SHOWING THE EXPECTATION OF LINE (21) IS . 1/(nhd)

The expectation of Line (21) is

. EE

[
1̂

n2

n∑
i=1

K2κ̂2
(

1− π̂

π

)2

(µ̂1 − µ1)2|Xall, κ̂

]
def of b

= E

[
1̂

n2

n∑
i=1

K2κ̂2E

{{
π

π

(
1− π̂

π

)}2

|Xall

}
E
{

(µ̂1 − µ1)2|Xall
}]

4-way independence

= E

[
1̂

n2

n∑
i=1

K2κ̂2E
{

1

π2
(π − π̂)

2|Xall

}
E
{

(µ̂1 − µ1)2|Xall
}]

. E

[
1̂

n2

n∑
i=1

K2E
{

(π − π̂)
2|Xall

}
E
{

(µ̂1 − µ1)2|Xall
}]

Assm 3.2

.
1

n2

n∑
i=1

E
[
K(Xi)

2
]

def of 1̂

.
1

n2h2d

n∑
i=1

E [I(Xi)] Lemma C.1.1

.
1

nhd
Lemma C.1.1.
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C.5. Bounding Line (14) under the conditions of Point 2

Here, we redefine ˆ̄1 and 1̂ to additionally indicate that V ar
[
supx {π̂(x)− π(x)}2 |Xall

]
≤ ckn/n for all x. By assumption,

we still have Pr(ˆ̄1 = 1)→ 1 and Pr(1̂ = 1)→ 1.

We can add and subtract κ(X) to see that the summands in Line (14) are

≤ 1̂|P̄n
{
b`K {κ̂− κ} π̂A

(
π̂−1 − π−1

)
(µ̂1 − µ1)

}
| (31)

+ 1̂|P̄n
{
b`Kκπ̂A

(
π̂−1 − π−1

)
(µ̂1 − µ1)

}
|. (32)

Line (32) can be studied in the same way as in Sections C.3 & C.4, producing the same bound. We tackle Line (31) by
bounding its second moment, which is equal to

E

[
E

{
1̂P̄n

{
b`K {κ̂− κ}A

(
1− π̂

π

)
(µ̂1 − µ1)

}2

|Xall

} ]

= E

[
E
{

1̂P̄n
{
b`K {κ̂− κ}A

(
1− π̂

π

)
(µ̂1 − µ1)

}
|Xall

}2
]

(33)

+ E
[
V ar

{
1̂P̄n

{
b`K {κ̂− κ}A

(
1− π̂

π

)
(µ̂1 − µ1)

}
|Xall

} ]
. (34)

For Line (33), since κ̂(x) = 1− π̂(x), we have

κ̂(x)− κ(x) = 1− π̂(x)− (1− π(x)) = π(x)− π̂(x),

which implies that the inner expectation in Line (33) equals

1̂

n

n∑
i=1

b`(Xi)K(Xi)E {µ̂1(Xi)− µ1(Xi)|Xi}

× E
{
{π(Xi)− π̂(Xi)}Ai

(
1− π̂(Xi)

π(Xi)

)
|Xall

}
µ̂ ⊥ π̂

=
1̂

n

n∑
i=1

b`(Xi)K(Xi)E {µ̂1(Xi)− µ1(Xi)|Xi}

× E
{
{π(Xi)− π̂(Xi)}2 |Xall

}
I.E. over π̂

. k−sµ/d
(
k−2sπ/d +

k

n

)
1

n

n∑
i=1

K(Xi) def of 1̂ & b`.

Thus, Line (33) is

. k−2sµ/d
(
k−2sπ/d +

k

n

)2

E

{ 1

n

n∑
i=1

K(Xi)

}2


. k−2sµ/d
(
k−2sπ/d +

k

n

)2

Lemma C.1.2 (35)
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As in Section C.4, Line (34) is the expected value of

V ar

[
ˆ̄1P̄n

{
b`K (π − π̂)A

(
1− π̂

π

)
(µ̂1 − µ1)

}
| Xall

]
= V ar

[
E
[

ˆ̄1P̄n
{
b`K (π − π̂)A

(
1− π̂

π

)
(µ̂1 − µ1)

}
| Xall, π̂, µ̂1

]
| Xall

]
+ E

[
V ar

[
ˆ̄1P̄n

{
b`K (π − π̂)A

(
1− π̂

π

)
(µ̂1 − µ1)

}
| Xall, π̂, µ̂1

]
| Xall

]
Law of total var

= V ar

[
1̂

n

n∑
i=1

b`K(π − π̂)
2
(µ̂1 − µ1)|Xall

]

+ E

[
1̂

n2

n∑
i=1

b2`K
2 (π̂ − π)

2
V ar(A|X̄)

(
1− π̂

π

)2

(µ̂1 − µ1)2|Xall

]
.

= 1̂V ar

[
1

n

n∑
i=1

b`(Xi)K(Xi)ε
2
iπεiµ|Xall

]
(36)

+ 1̂E

[
1

n2

n∑
i=1

b`(Xi)K(Xi)ε
2
iπV ar(A|X̄)

(
1− π̂(Xi)

π(Xi)

)2

ε2iµ|Xall

]
. (37)

Since 1̂V ar(ε2π̂i|Xall) ≤ ck/n and ε2π̂i ≤ 1, we can follow the same steps as in Section C.4.1 (with (επ̂i, επ̂j) replaced

throughout by
(
ε2π̂i, ε

2
π̂j

)
) to see that Line (36) has expectation . 1/(nhd). Similarly, since ε2π̂i ≤ 1, we can follow the

same steps as in Section C.4.2 to see that Line (37) has expectation . 1/(nhd). Thus, by Markov’s Inequality and Eq (35),
we see that Line (31) is

.P k
−sµ/d

(
k−2sπ/d +

k

n

)
+

√
1

nhd

≤ k−(sµ+sπ)/d +
k1−sµ/d

n
+

√
1

nhd
.

C.6. Bounding Line (14) under the conditions of Point 3

If we assume only that (π̂, µ̂1) ⊥ Z, then

E
[

ˆ̄1|P̄n
{
b`Kκ̂π̂A

(
π̂−1 − π−1

)
(µ̂1 − µ1)

}
|
∣∣∣∣Xall

]
. 1̂P̄n

{
K E

(
|1− π̂/π| |µ̂1 − µ1|

∣∣∣ Xall

)}
A, b`(x), κ̂(x) . 1

. 1̂P̄n {K E (π |1− π̂/π| |µ̂1 − µ1| | Xall)} from 1/π(x) . 1

≤ 1̂P̄n
{
K E

(
(π − π̂)

2 |Xall

)1/2
E
(

(µ̂1 − µ1)
2 |Xall

)1/2}
Cauchy Schwartz

.

(
k

n
+ k−2sµ/d

)1/2(
k

n
+ k−2sµ/d

)1/2
1

n

n∑
i=1

K(Xi) (π̂,µ̂1)⊥ Z, and def. of 1̂

.

(√
k

n
+ k−sµ/d

)(√
k

n
+ k−sµ/d

)
1

n

n∑
i=1

K(Xi) (38)

.P
k

n
+
k1/2−sµ/d√

n
+
k1/2−sπ/d√

n
+ k−(sµ+sπ)/d Lemma C.1.1 + Markov’s Ineq.

Above, Line 38 comes from the fact that
√
a+ b ≤

√
a+
√
b for any two positive constants a, b.
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D. Proof of Theorem 3.10
First we remark that the “reproducing” property for local polynomial estimators still holds even when ν̂ is pre-estimated. If
f is a bsτc order polynomial, then there exists a set of coefficients β such that f(x) = b(x)>β. Thus,

f(xnew) = b(xnew)>β =b(xnew)> ˆ̄Q−1
n∑
i=1

b(Xi)K(Xi)ν̂(Xi)b(Xi)
>β

=b(xnew)> ˆ̄Q−1
n∑
i=1

b(Xi)K(Xi)ν̂(Xi)f(Xi)

=

n∑
i=1

ˆ̄w(Xi)f(Xi). (39)

Let τbsτc,xnew be the bsτc order Taylor approximation of τ at xnew. It follows from Eq (39) that

1

n

n∑
i=1

ˆ̄w(Xi)τbsτc,xnew(Xi) = τbsτc,xnew(xnew) = τ(xnew), (40)

where the second equality comes from the fact that the Taylor approximation is exact at xnew.

Conditional on ν̂ and X̄, the oracle bias is

E
({

ˆ̄τoracle(xnew)− τ(xnew)
}
|ν̂, X̄

)
=

1

n

n∑
i=1

ˆ̄w(Xi)E
(
fDR,θ(Zi)|ν̂, X̄

)
− τ(xnew)

=
1

n

n∑
i=1

ˆ̄w(Xi)τ(Xi)− τ(xnew) ν̂ ⊥ fDR,θ(Zi)|X̄

=
1

n

n∑
i=1

ˆ̄w(Xi)
{
τ(Xi)− τbsτc,xnew(Xi)

}
Eq (40)

≤ 1

n

n∑
i=1

| ˆ̄w(Xi)|
∣∣τ(Xi)− τbsτc,xnew(Xi)

∣∣ |I(Xi)| definitions of ˆ̄w & I

≤ 1

n

n∑
i=1

| ˆ̄w(Xi)| ‖Xi − xnew‖sτ |I(Xi)| Assm 3.9

≤ hsτ

n

n∑
i=1

| ˆ̄w(Xi)| definition of I. (41)
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From here, we study the expectation of the squared oracle error multiplied by ˆ̄1.

E
[
ˆ̄1
{

ˆ̄τoracle(xnew)− τ(xnew)
}2]

= E
[
ˆ̄1E
({

ˆ̄τoracle(xnew)− τ(xnew)
}2 |ν̂, X̄)] I.E.

≤ E

ˆ̄1

(
hsτ

n

n∑
i=1

| ˆ̄w(Xi)|

)2

+ ˆ̄1V ar
(
ˆ̄τoracle(xnew)|ν̂, X̄

) Eq (41)

= E

ˆ̄1

(
hsτ

n

n∑
i=1

| ˆ̄w(Xi)|

)2

+
ˆ̄1

n2

n∑
i=1

ˆ̄w(Xi)
2V ar(fDR,θ(Zi)|Xi)


. E

ˆ̄1

(
hsτ

n

n∑
i=1

| ˆ̄w(Xi)|

)2

+
ˆ̄1

n2

n∑
i=1

ˆ̄w(Xi)
2

 Assms 3.1 & 3.2

= E

 ˆ̄1h2sτ

n2

∑
i 6=j

| ˆ̄w(Xi)| | ˆ̄w(Xj)| +
ˆ̄1(1 + h2sτ )

n2

n∑
i=1

ˆ̄w(Xi)
2


. E

h2sτ
n2

∑
i6=j

I(Xi)I(Xj)

h2d
+

ˆ̄1

n2

n∑
i=1

ˆ̄w(Xi)
2

 Lemma C.1.3

=
h2sτ

n2

∑
i6=j

E [I(Xi)]E [I(Xj)]

h2d
+

1

n2

n∑
i=1

E
[
ˆ̄1 ˆ̄w(Xi)

2
]

.
h2sτ

n2

∑
i6=j

1 +
1

n2

n∑
i=1

1

hd
Lemma C.1.1 & C.1.5

≤ h2sτ +
1

nhd
.

Markov’s Inequality then shows the result.

E. Conditional Variance of Pseudo-outcomes
For the pseudo-outcome function fU,θ, assume that A ⊥ Y |X and V ar(Y |X) = σ2. It follows from A ⊥ Y |X that
η(X) = µ1(X) = µ0(X) and V ar(Y |X,A) = V ar(Y |X) = σ2. Thus, from the Law of Total Variance,

V ar (fU,θ(A,X, Y )|X) = V ar

(
Y − η(X)

A− π(X)
|X
)

= E
[
V ar

(
Y − η(X)

A− π(X)
|X,A

)
|X
]

+ V ar

[
E
(
Y − η(X)

A− π(X)
|X,A

)
|X
]

= E
[
(A− π(X))

−2
V ar (Y |X,A) |X

]
+ V ar

[
µA(X)− η(X)

A− π(X)
|X
]
. (42)

The assumption that η(X) = µA(X) implies that the second term in Line 42 is zero, and so

V ar (fU,θ(A,X, Y )|X) = E
[
(A− π(X))

−2 |X
]
σ2

=

{
π(X)

{1− π(X)}2
+

1− π(X)

{0− π(X)}2

}
σ2

=

{
π3 + {1− π}3

(1− π)
2
π2

}
σ2.
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For fcov,θ(Z), if A ⊥ Y |X and E
[
(Y − η(X))

2 |X
]

= σ2 then

V ar (fcov,θ(Z)|X) = ν(X)−2V ar [(A− π(X)) (Y − η(X)) |X]

= ν(X)−2E
[
(A− π(X))

2
(Y − η(X))

2 |X
]

− E [(A− π(X)) |X]
2 E [(Y − η(X)) |X]

2

= ν(X)−2E
[
(A− π(X))

2 |X
]
E
[
(Y − η(X))

2 |X
]

= ν(X)−1σ2.

For fDR,θ, if V ar(Y |A,X) = σ2 we have

V ar (fDR,θ(A,X, Y )|X)

= V ar

[
µ1(X)− µ0(X) +

A− π(X)

π(X)(1− π(X))
(Y − µA(X)) |X

]
= ν(X)−2V ar [(A− π(X)) (Y − µA(X)) |X]

= ν(X)−2
[
V ar

{
(A− π(X))E

{
Y − µA(X)|A,X

}
|X
}

E
{

(A− π(X))
2
V ar

{
Y − µA(X)|A,X

}
|X
}]

Law of Total Var

= ν(X)−2 [0

E
{

(A− π(X))
2 |X

}
σ2

]
= ν(X)−1σ2

= κ(X)−1π(X)−1σ2.

F. Holder Condition Implies Local Accuracy of Taylor Expansion
For completeness, this section reviews the classic result that Holder smooth functions are close to their Taylor expansions
(see, e.g., Tsybakov, 2009; Kennedy, 2023). This property follows from the fact that the residual of a Taylor expansion for a
function depends on the partial derivatives of that function, which are bounded by the Holder condition.

We first introduce notation. Let f : D → R be a function with domain D ⊂ Rk. For any k-length vector of indices
i = (i1, . . . , ik) ∈ {1, . . . , d}k and any x′ ∈ D, let

Dif(x′) :=
∂kf(x)

∂xi1 . . . ∂xik

∣∣∣∣
x=x′

be the higher order partial derivative of f , over indices i, evaluated at x′.

We say that a function f is Holder of order s if it has bsc continuous derivatives, and there is a constant c such that
|Dif(x)| ≤ c and

|Dif(x)−Dif(x′)| ≤ c‖x− x′‖s−bsc

for all x, x′ ∈ D and i ∈ {1, . . . , d}k with length k ≤ bsc (see, e.g., Belloni et al., 2015).
Lemma F.1. If f : D → R is a Holder function of order s and D is an open subset of Rd, then there is a constant c such
that ∣∣f(x)− fbsc,x′(x)

∣∣ ≤ c|x− x′|s
for all x, x′ ∈ X , where fbsc,x is the bsc-order Taylor expansion of f at x′.

Proof. For a, b, c ∈ D, let

ψk(a, b, c) :=
1

k!

d∑
i1=1

· · ·
d∑

ik=1

Dif(a)

k∏
j=1

(
bij − cij

)
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be the kth term in a Taylor approximation of f (see page 44 of Serfling, 1980). For d = 1, the function ψk reduces to simply

ψk(a, b, c) =
1

k!

∂kf(t)

∂tk

∣∣∣∣
t=a

(b− c)k .

The n-order Taylor expansion of f at x is

fx,n(y) = f(x) +

n∑
k=1

ψk(x, y, x).

Since f has bsc continuous partial derivatives, the multivariate version of Taylor’s implies that there exists a point z on the
line joining x and y such that

f(y) = f(x) +


bsc−1∑
k=1

ψk(x, y, x)

+ ψbsc(z, y, x)

= f(x) +


bsc∑
k=1

ψk(x, y, x)

+
{
ψbsc(z, y, x)− ψbsc(x, y, x)

}
= fbsc,x(y) +

{
ψbsc(z, y, x)− ψbsc(x, y, x)

}
(see page 44 of Serfling, 1980). For the univariate case, the term in braces is

1

bsc!

{
∂kf(t)

∂tk

∣∣∣∣
t=z

− ∂kf(t)

∂tk

∣∣∣∣
t=x

}
(y − x)

bsc

.

∣∣∣∣∣ ∂kf(t)

∂tk

∣∣∣∣
t=z

− ∂kf(t)

∂tk

∣∣∣∣
t=x

∣∣∣∣∣ |y − x|bsc
. |z − x|s−bsc |y − x|bsc by Holder condition

≤ |y − x|s−bsc |y − x|bsc

= |y − x|s .

Similarly, in the multivariate case, the residual term is in braces is

1

bsc!

d∑
i1=1

· · ·
d∑

ibsc=1

{
Dif(z)−Dif(x)

} bsc∏
j=1

(
yij − xij

)

. ‖z − x‖s−bsc
d∑

i1=1

· · ·
d∑

ibsc=1

ibsc∏
j=1

∣∣yij − xij ∣∣
= ‖z − x‖s−bsc

 d∑
j=1

|yj − xj |

bsc (43)

≤ ‖z − x‖s−bsc
 d∑
j=1

|yj − xj |2
bsc/2 Jensen’s Ineq

= ‖z − x‖s−bsc ‖y − x‖s

≤ ‖y − x‖s−bsc ‖y − x‖s

≤ ‖y − x‖s .

Above, in Line (43), we use the fact that (
∑n
i=1 xi)

k
=
∑n
i1=1 · · ·

∑n
ik=1

∏k
j=1 xij .
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G. Sufficient Conditions for Assumption 3.6
The following lemma gives sufficient conditions for Assumption 3.6.

Lemma G.1. (Sufficient Conditions for Assumption 3.6) Let U be a random variable uniformly distributed on the unit
hypersphere, and let QU := E

[
fbasis(U)fbasis(U)>

]
. If

1. Assumptions 3.2, 3.4 & 3.5 hold,

2. QU is positive definite, and

3. there exists a sequence cn → 0 such that E {|ν̂(x)− ν(x)|} ≤ cn for all x,

then Assumption 3.6 holds.

Proof. For any symmetric matrix A, let ‖A‖ denote the maximum absolute value of the eigenvalues of A. Let Q̄i =
b(Xi)K(Xi)ν(Xi)b(Xi)

>, let Q̄ = 1
n

∑
i Q̄i, and let Q = E

[
Q̄
]
.

We will show that E‖ ˆ̄Q − Q̄‖ and E‖Q̄ − Q‖ both converge to zero. These two facts will together imply that
E
[∣∣∣λmin

(
ˆ̄Q
)
− λmin (Q)

∣∣∣] converges to zero, which, in turn, implies that
∣∣∣λmin (Q)− λmin

(
ˆ̄Q
)∣∣∣ converges in probabil-

ity to zero. Finally, showing λmin (Q) & λmin (QU) will complete the proof.

For E‖Q̄−Q‖, note that E[Q̄i] = Q, and ‖Q̄i‖ . 1/hd since b is bounded and K(x) . 1/hd. Thus, from the Rudelson
Law of Large numbers (see, e.g., Rudelson, 1999; Belloni et al., 2015, or Section 1.6.3 of Tropp, 2015),

E‖Q̄−Q‖ .
(
1/hd

)
logL

n
+

√
(1/hd) ‖Q‖ logL

n
.

1

nhd
+

√
1

nhd
, (44)

where the last . comes from the fact that b, ν, and E(K(X)) all bounded (Lemma C.1.1), and so ‖Q‖ is bounded as well.
Since nhd →∞ by Assumption 3.5, we have E‖Q̄−Q‖ → 0.

For E‖ ˆ̄Q− Q̄‖, we have

E‖ ˆ̄Q− Q̄‖ = E

[
max
v:‖v‖=1

∣∣∣∣∣ 1n
n∑
i=1

(
v>b(Xi)

)2
K(Xi) {ν̂(Xi)− ν(Xi)}

∣∣∣∣∣
]

≤ E

[
max
v:‖v‖=1

1

n

n∑
i=1

‖v‖22 ‖b‖22K(Xi) |ν̂(Xi)− ν(Xi)|

]
Cauchy Schwartz

.
1

n

n∑
i=1

E
[
K(Xi) E {|ν̂(Xi)− ν(Xi)| |Xi}

]

≤ cn
n

n∑
i=1

E [K(Xi)]

. cn, (45)

where the last line comes from Lemma C.1.1.

Next, we show that λmin (Q) & λmin (QU). Let O := g(X) := X−xnew
h , and let fX and fO denote the densities of X and

O respectively. Note that g−1(o) = oh+ xnew. Let J = hI be the Jacobian of g−1, and let |J| be its determinant. Since g is
an invertible transformation applied to a continuous variable, we have

fO(o) = fX(g−1(o)) |J| � |J| = hd,

where the � follows from fX being bounded above and bounded below away from zero. Applying this, we see that for any
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v ∈ Rd satisfying ‖v‖ = 1,

v>Qv =
1

hd
E

{(
v>fbasis

(
X − xnew

h

))2

kern

(
X − xnew

h

)
ν(X)

}

=
1

hd
E
{(
v>fbasis (O)

)2
kern (O) ν(g−1(O))

}
� 1

hd
E
{(
v>fbasis (O)

)2
I (‖O‖ ≤ 1)

}
=

1

hd

∫
o:‖o‖≤1

(
v>fbasis (o)

)2
fO(o)do

�
∫
o:‖o‖≤1

(
v>fbasis (o)

)2
do

≥ λmin (QU) . (46)

Finally, combining Eqs (44) & (45) with Lemma G.2, below, we have

E
[∣∣∣λmin (Q)− λmin

(
ˆ̄Q
)∣∣∣]

= E
[∣∣∣λmin (Q)− λmin

(
Q̄
)

+ λmin

(
Q̄
)
− λmin

(
ˆ̄Q
)∣∣∣]

≤ E
[∣∣λmin (Q)− λmin

(
Q̄
)∣∣+

∣∣∣λmin

(
Q̄
)
− λmin

(
ˆ̄Q
)∣∣∣]

≤ E
[
‖Q− Q̄‖+ ‖Q̄− ˆ̄Q‖

]
Lemma G.2

. cn +
1

nhd
+

√
1

nhd

→ 0.

It follows from Markov’s inequality that P
(∣∣∣λmin (Q)− λmin

(
ˆ̄Q
)∣∣∣ > ε

)
→ 0 for any ε. This, combined with the fact that

λmin (Q) & λmin (QU) > 0 (Eq (46)), shows the result.

Lemma G.2. For any symmetric, p.s.d. matrices A & B, we have

|λmin(A)− λmin(B)| ≤ ‖A−B‖.

Proof. Let vA be the eigenvector corresponding to the smallest eigenvalue of A in absolute value. We consider two cases.

If λmin(B) > λmin(A), then

|λmin(B)− λmin(A)| = λmin(B)− v>AAvA

≤ v>ABvA − v>AAvA

≤ ‖B−A‖.

If λmin(B) < λmin(A), the same reasoning shows that

|λmin(A)− λmin(B)| ≤ ‖A−B‖.

In either case, the result holds.
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