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Abstract
We introduce a hyperbolic neural network ap-
proach to pixel-level active learning for semantic
segmentation. Analysis of the data statistics leads
to a novel interpretation of the hyperbolic radius
as an indicator of data scarcity. In HALO (Hy-
perbolic Active Learning Optimization), for the
first time, we propose the use of epistemic uncer-
tainty as a data acquisition strategy, following the
intuition of selecting data points that are the least
known. The hyperbolic radius, complemented by
the widely-adopted prediction entropy, effectively
approximates epistemic uncertainty. We perform
extensive experimental analysis based on two es-
tablished synthetic-to-real benchmarks, i.e. GTAV
→ Cityscapes and SYNTHIA → Cityscapes. Ad-
ditionally, we test HALO on Cityscape → ACDC
for domain adaptation under adverse weather con-
ditions, and we benchmark both convolutional
and attention-based backbones. HALO sets a new
state-of-the-art in active learning for semantic seg-
mentation under domain shift and it is the first
active learning approach that surpasses the per-
formance of supervised domain adaptation while
using only a small portion of labels (i.e., 1%).1

1. Introduction
Dense prediction tasks, such as semantic segmentation (SS),
are important in applications such as self-driving cars, man-
ufacturing, and medicine. However, these tasks necessitate
pixel-wise annotations, which can incur substantial costs
and time inefficiencies (Cordts et al., 2016). Previous meth-
ods (Xie et al., 2022a; Vu et al., 2019; Shin et al., 2021b;a;
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Ning et al., 2021) have addressed this labeling challenge via
domain adaptation, capitalizing on large source datasets for
pre-training and domain-adapting with few target annota-
tions (Ben-David et al., 2010). Most recently, active domain
adaptation (ADA) has emerged as an effective strategy, i.e.
annotating only a small set of target pixels in successive
labelling rounds (Ning et al., 2021). State-of-the-art (SOTA)
ADA (Shin et al., 2021b; Wu et al., 2022; Xie et al., 2022a)
relies on the entropy of predicted pseudo-labels, which they
define as prediction uncertainty, as the core strategy for
active learning (AL) data acquisition. In fact, prediction
uncertainty correlates well with the likelihood of pixel clas-
sification mistakes, but it is only one of the factors of the
overall model uncertainty, as we argue in this work.

Following extensive literature (Depeweg et al., 2017;
Kendall & Gal, 2017; Hüllermeier & Waegeman, 2021;
Valdenegro-Toro & Mori, 2022), we distinguish aleatoric
and epistemic uncertainty, and we propose the second for
the data acquisition strategy in active learning. Epistemic
uncertainty is an indicator of the state of knowledge about
the task. This uncertainty stems not only from inaccuracies,
as identified by prediction uncertainty, but also from the in-
formation the model has been exposed to thus far, including
the amount of data considered. In the domain adaptation
task, the domain gap arises from the model’s lack of un-
derstanding of the new domain data, akin to the definition
of epistemic uncertainty. Building upon this intuition, we
propose HALO (Hyperbolic Active Learning Optimization),
a novel approach for active domain adaptation, where we
introduce the use of epistemic uncertainty into the data ac-
quisition strategy. Our in-depth analysis shows that the
hyperbolic radius effectively estimates data scarcity, reveal-
ing it as a key component in the estimation of epistemic
uncertainty. The combination of the radius with a comple-
mentary information signal such as prediction entropy offers
a comprehensive estimate of epistemic uncertainty.

Interpreting the hyperbolic radius as a proxy to data scarcity
diverges from known interpretations in the hyperbolic lit-
erature. The SOTA hyperbolic SS model (Atigh et al.,
2022) trains with class hierarchies, which they manually
define. As a result, their hyperbolic radius represents the
parent-to-child hierarchical relations in the Poincaré ball.
We adopt Atigh et al. (2022) without enforcing hierarchi-
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Figure 1. Overview of HALO. Pixels are encoded into the hyperbolic Poincaré ball and classified in the pseudo-label Ŷ . The hyperbolic
radius of the pixel embeddings defines the new hyperbolic score map R. The prediction entropy H is extracted as the entropy of the
softmax probabilities. Combining R and H we define the data acquisition score map A, which is used to query new labels Y .

cal labels and we find that hierarchical relationships do
not emerge naturally in our case. For instance, in HALO,
classes such as road and building are closer to the center of
the ball, while person and rider have larger radii. This class
arrangement contradicts the interpretation of the hyperbolic
radius as a proxy for uncertainty, which emerged from met-
ric learning hyperbolic studies (Ermolov et al., 2022; Franco
et al., 2023). In our context, larger radii indicate larger data
scarcity, therefore less certainty, which is in contrast with
Franco et al. (2023)’s interpretation. Thus, our interpreta-
tion of the hyperbolic radius as a proxy for data scarcity
does not align with neither of the existing interpretations
in the case of hierarchy-free hyperbolic SS. Consider the
HALO pipeline illustrated in Fig. 1 and the circular sector
representing the Poincaré ball, where pixels from various
classes are mapped. The hyperbolic model assigns a higher
radius to classes that appear less frequently in the dataset
(e.g., rider), and a lower radius to classes which are more
frequent (e.g., road). In Sec. 4, we show how this novel in-
terpretation of the hyperbolic radius arises bottom-up from
data statistics.

We demonstrate the effectiveness of our approach through
extensive benchmarking on well-established datasets for SS,
including ADA from GTAV to Cityscapes, SYNTHIA to
Cityscapes, and additional testing on Cityscapes to ACDC
under adverse weather conditions. HALO sets a new SOTA
on all the benchmarks (+3.3% on GTA→CS, +4.2% on
SYNTHIA→CS, and +2.9% on CS→ACDC). Moreover,
this is the first AL method that surpasses the supervised
domain adaptation baseline using only a small portion of
labels (+2.6% on GTA→CS with 5% budget). Our paper
also introduces a novel technique to enhance the stability
of hyperbolic training, referred to as Hyperbolic Feature
Reweighting (HFR), cf. Sec. 5. Our code will be released.

In summary, our contributions include: 1) Presenting a

novel interpretation of the hyperbolic radius as a proxy
for data scarcity and its relationship with epistemic uncer-
tainty; 2) Introducing hyperbolic neural networks in AL
and a novel pixel-based data acquisition score based on the
hyperbolic radius; 3) Validating both the concept and the
algorithm through a comprehensive analysis, achieving a
new state-of-the-art performance across all the considered
ADA benchmarks for SS. Our method surpasses for the fist
time in AL the supervised DA performance using only a
small percentage of labels.

2. Related Works
Hyperbolic Representation Learning (HRL) Hyper-
bolic geometry has been extensively used to capture embed-
dings of tree-like structures (Nickel & Kiela, 2017; Chami
et al., 2020) with low distortion (Sala et al., 2018; Sarkar,
2012). Since the seminal work of Ganea et al. (2018) on
Hyperbolic Neural Networks (HNN), approaches have suc-
cessfully combined hyperbolic geometry with model archi-
tectures ranging from convolutional (Shimizu et al., 2020)
to attention-based (Gulcehre et al., 2018), including graph
neural networks (Liu et al., 2019; Chami et al., 2019) and,
most recently, vision transformers (Ermolov et al., 2022).
There are two leading interpretations of the hyperbolic ra-
dius in hyperbolic space: as a measure of the prediction
uncertainty (Chen et al., 2022; Ermolov et al., 2022; Franco
et al., 2023; Flaborea et al., 2023) or as the hierarchical
parent-to-child relation (Nickel & Kiela, 2017; Tifrea et al.,
2018; Surı́s et al., 2021; Ermolov et al., 2022; Atigh et al.,
2022). Our work builds on the SOTA hyperbolic semantic
segmentation method of Atigh et al. (2022), which enforces
hierarchical labels and training objectives. However, when
training without manually injected hierarchical labels, as we
do, the hierarchical interpretation does not apply. Although
a correlation between the hyperbolic radius and an uncer-

2



Hyperbolic Active Learning for Semantic Segmentation under Domain Shift

tainty measure has been noted, a comprehensive understand-
ing of this relationship is still lacking. In order to further
research in this direction, we provide an investigation that
examines the relationship between the hyperbolic radius,
data scarcity, and epistemic uncertainty, aiming to shed light
on this association. Furthermore, HALO’s acquisition score
is tailored for semantic segmentation, as it computes the hy-
perbolic radius for each pixel embedding. Hyperbolic neural
networks have shown comparable performance to Euclidean
models in semantic segmentation (Atigh et al., 2022), en-
abling fair comparisons. However, this equivalence does
not extend to other tasks, where hyperbolic neural networks
have not achieved similar performance (image classification)
or are yet to be developed (object detection).

Active Learning (AL) The number of annotations re-
quired for dense tasks such as semantic segmentation can
be costly and time-consuming. Active learning balances the
labeling efforts and performance, selecting the most infor-
mative pixels in successive learning rounds. Strategies for
active learning are based on uncertainty sampling (Gal et al.,
2017; Wang & Shang, 2014; Wang et al., 2016), diversity
sampling (Ash et al., 2019; Kirsch et al., 2019; Sener &
Savarese, 2017; Wu et al., 2021) or a combination of both
(Sinha et al., 2019; Xie et al., 2022b; Prabhu et al., 2021;
Xie et al., 2022a). For the case of AL in semantic segmenta-
tion, EqualAL (Golestaneh & Kitani, 2020) incorporates the
self-supervisory signal of self-consistency to mitigate the
overfitting of scenarios with limited labeled training data.
Labor (Shin et al., 2021b) selects the most representative
pixels within the generation of an inconsistency mask. Pix-
elPick (Shin et al., 2021a) prioritizes the identification of
specific pixels or regions over labeling the entire image.
Mittal et al. (2023) explores the effect of data distribution,
semi-supervised learning, and labeling budgets. We are the
first to leverage the hyperbolic radius as a proxy for the most
informative pixels to label next.

Active Domain Adaptation (ADA) Domain Adaptation
(DA) involves learning from a source data distribution and
transferring that knowledge to a target dataset with a differ-
ent distribution. Recent advancements in DA for semantic
segmentation have utilized unsupervised (UDA) (Hoffman
et al., 2018; Vu et al., 2019; Yang & Soatto, 2020; Liu et al.,
2020; Mei et al., 2020; Liu et al., 2021) and semi-supervised
(SSDA) (French et al., 2017; Saito et al., 2019; Singh, 2021;
Jiang et al., 2020) learning techniques. However, challenges
such as noise and label bias still pose limitations on the
performance of DA methods. Active Domain Adaptation
(ADA) aims to reduce the disparity between source and
target domains by actively selecting informative data points
from the target domain (Su et al., 2020; Fu et al., 2021;
Singh et al., 2021; Shin et al., 2021b), which are subse-
quently labeled by human annotators. In semantic segmen-
tation, Ning et al. (2021) propose a multi-anchor strategy

to mitigate the distortion between the source and target dis-
tributions. The recent study of Xie et al. (2022a) shows
the advantages of region-based selection in terms of region
impurity and prediction uncertainty scores, compared to
pixel-based approaches. By contrast, we show that select-
ing pixels just from class boundaries limits performance, as
they are not necessarily the most informative, as we confirm
with an oracular study. Instead, we show that the hyperbolic
radius, in conjunction with prediction entropy, effectively
approximates epistemic uncertainty, thereby serving as a
successful objective for label acquisition.

Uncertainty The notion of uncertainty has gained in-
creasing attention in machine learning (ML) research in
recent years, primarily due to its growing practical signifi-
cance in real-world applications. Consequently, numerous
studies have developed approaches for uncertainty quantifi-
cation in ML (Kendall & Gal, 2017; Carvalho et al., 2020;
Xiao & Wang, 2019; Michelmore et al., 2020). Within the
existing literature, two distinct sources of uncertainty are
commonly acknowledged: aleatoric and epistemic (Fisher,
1930; Hora, 1996). Aleatoric uncertainty stems from the
inherent randomness and variability within the data, while
epistemic uncertainty arises from a lack of knowledge or
data. As a result, epistemic uncertainty can theoretically be
reduced with supplementary information, while aleatoric
uncertainty remains non-reducible. Several methodologies
have proposed techniques for quantifying both aleatoric and
epistemic uncertainty (Depeweg et al., 2017; Kendall & Gal,
2017; Hüllermeier & Waegeman, 2021; Valdenegro-Toro
& Mori, 2022). Following the approach of Depeweg et al.
(2017), both total uncertainty and aleatoric uncertainty can
be approximated via model ensemble (Lakshminarayanan
et al., 2016), deriving epistemic uncertainty as the differ-
ence between the two. In our study, for the first time, we
distinguish two leading complementary causes for epistemic
uncertainty: prediction error and data scarcity.

3. Background
In this section, we introduce the background for our work.
We begin by discussing Hyperbolic Neural Networks and
Hyperbolic Semantic Segmentation, moving then to Active
Domain Adaptation, which form the basis of our approach.

Hyperbolic Neural Networks and Semantic Segmenta-
tion We operate in the Poincaré ball hyperbolic manifold.
We define it as the pair (DN

c , gDc) where DN
c = {x ∈ RN :

c∥x∥ < 1} is the manifold and gDc
x = (λc

x)
2gE is the associ-

ated Riemannian metric, −c is the curvature, λc
x = 2

1−c∥x∥2

is the conformal factor and gE = IN is the Euclidean metric
tensor. Hyperbolic neural networks first extract a feature
vector v in Euclidean space, which is subsequently projected
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Figure 2. (left) Plot of class average radius vs. the percentage of total pixels in the target dataset; (center) Plot of the class average entropy
vs. class accuracy; (right) Plot of labeling budget vs. correlation between class average radius and percentage of total pixels (blue) and
between class average entropy and class accuracy (orange).

into the Poincaré ball via exponential map:

expcx(v) = x⊕c

(
v√
c∥v∥

tanh

(√
c
λc
x∥v∥
2

))
(1)

where x ∈ DN
c is the anchor and ⊕c is the Möbius hy-

perbolic addition. The latter is defined for two hyperbolic
vectors h,w as follows:

h⊕cw =
(1 + 2c⟨h,w⟩+ c∥w∥2)v + (1− c∥h∥2)w

1 + 2c⟨h,w⟩+ c2∥h∥2∥w∥2
(2)

We define the hyperbolic radius of the embedding h ∈ DN
c

as the Poincaré distance (See Eq. A1 in Appendix A.2) from
the origin of the ball:

d(h, 0) =
2√
c
tanh−1

(√
c∥h∥

)
. (3)

For the hyperbolic semantic segmentation, we adopt the
work by Atigh et al. (2022), which stands as the first to show-
case performance comparable to that of Euclidean networks.
Segmentation is performed using hyperbolic multinomial
logistic regression (HyperMLR) (Ganea et al., 2018). The
complete formulation of HyperMLR is in Appendix A.2.

ADA for Semantic Segmentation The task aims to trans-
fer knowledge from a source labeled dataset S = (Xs, Ys)
to a target unlabeled dataset T = (Xt, Yt), where X rep-
resents an image and Y the corresponding annotation map.
Ys is given, Yt is initially the empty set ∅. Adhering to
the ADA protocol (Xie et al., 2022a; Wu et al., 2022; Shin
et al., 2021b), target annotations are incrementally added
in rounds, subject to a predefined budget, upon querying an
annotator. Each pixel is assigned a priority score using a pre-
defined acquisition map A. Labels are added to Yt in each
AL round by selecting pixels from A with higher scores,
in accordance with the budget. Each AL round is divided
into two phases. In the first phase, the segmentation model

undergoes end-to-end training, with back-propagation in-
corporating estimates Ŷs and Ŷt from the per-pixel cross-
entropy loss L(Ŷs, Ŷt, Ys, Yt). The second phase consists
in acquiring new target labels according to the acquisition
score A and the predefined budget.

In Sec. 4, we assume to have pre-trained the hyperbolic
image segmenter of Atigh et al. (2022) on the source dataset
GTAV (Richter et al., 2016) and to have domain-adapted it
to the target dataset Cityscapes (Cordts et al., 2016) through
5 rounds of AL with a total budget of 5%. The following
analyses consider the radii of the hyperbolic pixel embed-
dings and the prediction entropy, for which statistics are
computed on the Cityscapes validation set.

4. Hyperbolic Radius and Epistemic
Uncertainty

In Sec. 4.1 we interpret the emerging properties of hyper-
bolic radius, and we compare with the interpretations in
literature in Sec. 4.2.

4.1. Emerging properties of the hyperbolic radius

What does the hyperbolic radius represent? Fig. 2
(left) shows the correlation between the average class hyper-
bolic radius and the percentage of pixel labels for each class
relative to the total number of pixels in the dataset. The cor-
relation is substantial (ρ = −0.899), so classes with larger
hyperbolic radii such as motocycle are rarer in the target
dataset, while at lower hyperbolic radii we have more fre-
quent classes such as road. In conclusion, larger hyperbolic
radii indicate which classes the model has been exposed less
so far in the training.

Understanding the role of the prediction entropy Prior
active learning literature (Xie et al., 2022b; Prabhu et al.,
2021; Xie et al., 2022a) agree on the utility of prediction
entropy, i.e. the entropy of the prediction scores, in the
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data acquisition strategy. In Fig. 2 (center) we report the
correlation between the class average entropy and the class
accuracy, whose resulting value is a strong correlation of
ρ = −0.913. In conclusion, prediction entropy appears to
be a good indicator for classes with low accuracy. In HALO,
we combine prediction entropy with the newly proposed
hyperbolic radius.

How does learning the hyperbolic manifold proceed?
Fig. 2 (right) illustrates the evolution, across active learning
rounds, of the correlation between prediction entropy and
accuracy (orange), and the correlation between the hyper-
bolic radius and the percentage of pixels in the target dataset
(blue). Both correlations exhibit a growing trend in module,
eventually saturating at high values. In conclusion, as the
training progresses, both the hyperbolic radius and the pre-
diction entropy become better estimators for data scarcity
and prediction error.

Relation with the epistemic uncertainty Following the
work of Depeweg et al. (2017), we quantify the epistemic
uncertainty as the difference between total and aleatoric
uncertainty. The total uncertainty is estimated by com-
puting the entropy of the predictive posterior distribution
Ut(x) = H[p(y|x)]. This formulation encompasses the
epistemic uncertainty regarding the network parameters θ.
To compute it, we first measure the aleatoric uncertainty as
Ua(x) = Ep(θ|D)H[p(y|θ,x)] and then we derive the epis-
temic uncertainty as the difference Ue(x) = Ut(x)−Ua(x).
The model ensemble approach (Lakshminarayanan et al.,
2016) offers an effective means to approximate the poste-
rior distribution p(θ|D) using a finite ensemble of models
θ1, ...,θM . We can approximate the total uncertainty as

Ũt(x) = −
∑
y∈Y

(
1

M

M∑
m=1

p(y|θm,x)

)
log2

(
1

M

M∑
m=1

p(y|θm,x)

)
(4)

and similarly the aleatoric uncertainty

Ũa(x) = − 1

M

M∑
m=1

∑
y∈Y

p(y|θm,x) log2 p(y|θm,x). (5)

Finally the epistemic uncertainty is approximated by the
difference Ũe(x) = Ũt(x)− Ũa(x).

The correlation between the epistemic uncertainty and the
hyperbolic radius results in a value of ρ = 0.769, while
the correlation between the epistemic uncertainty and the
prediction entropy is ρ = 0.789. Supported by the fact
that the correlation between the hyperbolic radius and the
prediction entropy is moderate (ρ = 0.658), we conclude
that they encode complementary signals for the uncertainty
description, respectively data scarcity and prediction error.
In fact, the correlation between their product and epistemic
uncertainty results in an even higher value (ρ = 0.824).
Building upon this observation, we establish the acquisition
score as the product of these two metrics (see Sec. 5.2).

Figure 3. Plot of the class average radius vs. class accuracy.

4.2. Comparing interpretations of the hyperbolic radius

It emerges from our analysis that larger radii are assigned
to classes that have higher data scarcity. Earlier work has
explained the hyperbolic radius in terms of uncertainty or hi-
erarchies. Approaches from the former (Franco et al., 2023;
Flaborea et al., 2023) suggest that larger hyperbolic radii
indicate more certain and unambiguous samples in terms of
classification accuracy. In our case, the correlation between
the hyperbolic radius and class accuracy, as depicted in Fig.
3, is moderate (ρ = −0.605). However, this value is con-
siderably lower than the correlation between the hyperbolic
radius and the percentage of pixels. Hence, the radius serves
as a more effective indicator of data scarcity (see appendix
A.7 for additional analysis). Another difference with the
studies in favor of the uncertainty interpretation lies in the
definition of the uncertainty as 1− radius, typical of hyper-
bolic metric learning-based approaches (Franco et al., 2023;
Flaborea et al., 2023). In those, a larger radius leads to an
exponentially larger matching penalty due to the employed
Poincaré distance, effectively making the radius inversely
proportional to the errors, as those studies show.

Elsewhere, the interpretation of the hyperbolic radius aligns
with a hierarchical explanation (Nickel & Kiela, 2017; Tif-
rea et al., 2018; Surı́s et al., 2021; Ermolov et al., 2022;
Atigh et al., 2022). These methods involve hierarchical
datasets, hierarchical labeling, and classification objective
functions. Hierarchies naturally align with the growing vol-
ume in the Poincaré ball, resulting in children nodes from
different parents being mapped further from each other than
from their parents. Learning under hierarchical constraints
results in leaf classes closer to the edge of the ball, and tran-
sitions between them traverse their parent nodes at lower
hyperbolic radii. Our hyperbolic segmentation approach dif-
fers from prior hyperbolic works (Atigh et al., 2022; Franco
et al., 2023; Flaborea et al., 2023; Ermolov et al., 2022)
as we employ hyperbolic multinomial logistic regression
without the incorporation of hierarchical labels or losses
based on the Poincaré distance. These differences drive
our intuition to utilize the hyperbolic radius as an estimator
of data scarcity, thereby incorporating it into the final data
acquisition score in the active learning process.
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Figure 4. (a) Original image; (b) Radius map depicting the hyperbolic radii of pixel embeddings; (c) Pixels (yellow) that have been
selected for data acquisition. See Sec. 5 for details; (d) HALO prediction; (e) Ground Truth annotations. Zoom in for the details.

5. Hyperbolic Active Learning Optimization
(HALO)

In this section, first we introduce the proposed HALO
pipeline (Sec. 5.1), then we detail the novel acquisition
strategy (Sec. 5.2). Finally, we present our proposition for
fixing the hyperbolic training instability (Sec. 5.3).

5.1. HALO pipeline

Let us consider Fig. 1. Our AL strategy consists in assigning
an acquisition score A to each pixel, based on the combi-
nation of hyperbolic radius and prediction entropy. We
estimate the hyperbolic radius R from pixel embeddings (as
detailed in Sec. 4 and illustrated in Fig. 4b). Concurrently,
predicted classification probabilities are used to compute the
prediction entropy H, inspired by prior works (Paul et al.,
2020; Shin et al., 2021a; Wang & Shang, 2014; Wang et al.,
2016; Xie et al., 2022a). New labels are subsequently cho-
sen based on the acquisition score A and integrated into the
training set (see selected pixels in Fig. 4c). Note that the
new labels are both at the boundaries and within, in areas
with the largest inaccuracies (compare Fig. 4d and 4e).

5.2. Novel data acquisition strategy

The acquisition score of each pixel in an image is formulated
as the element-wise multiplication of the hyperbolic radius
map R and the prediction entropy map H, i.e. A = R⊙H.
The radius is computed as the distance of the hyperbolic
pixel embedding (i, j) from the center of the Poincaré ball
R(i,j) = d(hi,j , 0) (see Eq. 3). The prediction entropy
H(i,j) = −

∑C
c=1 Pi,j,c logPi,j,c is estimated as the entropy

of the softmax probability array Pi,j,c associated with the
pixel (i, j) and the classes c ∈ {1, ..., C}. The acquisition
score A serves as a surrogate indicator for the epistemic
uncertainty of each pixel and determines which ones are
presented to the human annotator for labeling, to augment
the target label set Yt.

5.3. Robust hyperbolic learning with feature
reweighting

HNNs are prone to instability during training because of
the unique topology of the Poincaré ball. More precisely,

when embeddings approach the boundary, the occurrence of
vanishing gradients can impede the learning process. Sev-
eral solutions have been proposed in the literature to ad-
dress this problem. Guo et al. (2022b) achieves robustness
by clipping the largest values of the radii, Franco et al.
(2023) makes it by curriculum learning, and van Spengler
et al. (2023) needs to carefully initialize the hyperbolic
network parameters. However, these approaches yield sub-
optimal performances or are not compatible with our use
case (see Appendix A.1). Therefore, we introduce the Hy-
perbolic Feature Reweighting (HFR) module, designed to
enhance training stability by reweighting features, prior
to their projection onto the Poincaré ball. Given the fea-
ture map Z ∈ RH̃×W̃ generated by the encoder, we com-
pute the weights L = HFR(Z) ∈ RH̃×W̃ and use them to
rescale each entry of the normalized feature map, yielding
Z̃ = Z

|Z| ⊙ L, where |Z| =
∑H̃W̃

k=1 zij and ⊙ denotes the
element-wise multiplication. Intuitively, reweighting pre-
vents embeddings from getting too close to the boundaries,
where the distances tend to infinity. Our proposed HFR
module is end-to-end trained and it enables the model to
dynamically adapt through the various stages of training,
improving its robustness.

6. Results
In this section, we describe the benchmarks and we perform
a comparative evaluation against the SOTA (Sec. 6.1). We
conduct ablation studies on the components of HALO and
additional analyses in Sec. 6.2 and 6.3. The implementation
follows Xie et al. (2022a) (details in Appendix A.3).

Datasets For pre-training, we utilize GTAV (Richter et al.,
2016) and SYNTHIA (Ros et al., 2016) synthetic datasets,
each comprising 24,966 and 9,000 densely annotated im-
ages, with 19 and 16 classes, respectively. For ADA training
and evaluation, we employ real-world target datasets, specif-
ically Cityscapes (CS) train and val sets or ACDC train
and test sets, both categorized into the same 19 classes.
CS (Cordts et al., 2016) consists of 2,975 training samples
and 500 validation samples. ACDC (Sakaridis et al., 2021)
comprises 4,006 images captured under adverse conditions
(fog, nighttime, rain, snow) to maximize the complexity and
diversity of the scenes.
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Table 1. Comparison of mIoU results for different methods on the (a) GTAV→Cityscapes, (b) SYNTHIA→Cityscapes, and (C)
Cityscapes→ACDC benchmarks. Methods marked with ♯ are based on DeepLab-v3+ (Chen et al., 2018b), the ones with † on SegFormer-
B4 (Xie et al., 2021), whereas all the others use DeepLab-v2 (Chen et al., 2018a).
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bu
s
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mIoU mIoU*

(a) GTAV → Cityscapes
LabOR (Shin et al., 2021b) 2.2% 96.6 77.0 89.6 47.8 50.7 48.0 56.6 63.5 89.5 57.8 91.6 72.0 47.3 91.7 62.1 61.9 48.9 47.9 65.3 66.6 -
RIPU (Xie et al., 2022a) 2.2% 96.5 74.1 89.7 53.1 51.0 43.8 53.4 62.2 90.0 57.6 92.6 73.0 53.0 92.8 73.8 78.5 62.0 55.6 70.0 69.6 -
HALO (ours) 2.2% 97.5 79.9 90.2 55.6 51.5 45.3 56.2 66.2 90.2 58.6 92.8 73.3 53.5 92.6 76.9 76.2 64.2 55.2 70.1 70.8 -

AADA♯ (Su et al., 2020) 5% 92.2 59.9 87.3 36.4 45.7 46.1 50.6 59.5 88.3 44.0 90.2 69.7 38.2 90.0 55.3 45.1 32.0 32.6 62.9 59.3 -
MADA♯ (Ning et al., 2021) 5% 95.1 69.8 88.5 43.3 48.7 45.7 53.3 59.2 89.1 46.7 91.5 73.9 50.1 91.2 60.6 56.9 48.4 51.6 68.7 64.9 -
D2ADA♯ (Wu et al., 2022) 5% 97.0 77.8 90.0 46.0 55.0 52.7 58.7 65.8 90.4 58.9 92.1 75.7 54.4 92.3 69.0 78.0 68.5 59.1 72.3 71.3 -
RIPU♯ (Xie et al., 2022a) 5% 97.0 77.3 90.4 54.6 53.2 47.7 55.9 64.1 90.2 59.2 93.2 75.0 54.8 92.7 73.0 79.7 68.9 55.5 70.3 71.2 -
HALO♯ (ours) 5% 97.6 81.0 91.4 53.7 54.9 56.7 62.9 72.1 91.4 60.5 94.1 78.0 57.3 94.0 81.4 84.7 70.1 60.0 73.3 74.5 -

HALO† (ours) 5% 98.2 85.4 92.5 62.5 61.6 58.3 67.7 74.9 92.2 65.1 94.7 79.9 60.8 94.6 84.1 85.4 83.6 61.2 75.5 77.8 -

Eucl. Supervised DA♯ 100% 97.4 77.9 91.1 54.9 53.7 51.9 57.9 64.7 91.1 57.8 93.2 74.7 54.8 93.6 76.4 79.3 67.8 55.6 71.3 71.9 -
Hyper. Supervised DA♯ 100% 97.6 81.2 90.7 49.9 53.2 53.5 58.0 67.2 91.0 59.1 93.9 74.2 52.6 93.1 76.4 81.0 67.0 55.0 70.8 71.9 -

(b) SYNTHIA → Cityscapes
RIPU (Xie et al., 2022a) 2.2% 96.8 76.6 89.6 45.0 47.7 45.0 53.0 62.5 90.6 - 92.7 73.0 52.9 93.1 - 80.5 - 52.4 70.1 70.1 75.7
HALO (ours) 2.2% 97.5 81.7 90.5 52.8 52.8 45.6 57.3 67.1 91.2 - 92.6 74.5 54.9 93.3 - 81.6 - 55.2 71.1 72.5 77.6

AADA♯ (Su et al., 2020) 5% 91.3 57.6 86.9 37.6 48.3 45.0 50.4 58.5 88.2 - 90.3 69.4 37.9 89.9 - 44.5 - 32.8 62.5 61.9 66.2
MADA♯ (Ning et al., 2021) 5% 96.5 74.6 88.8 45.9 43.8 46.7 52.4 60.5 89.7 - 92.2 74.1 51.2 90.9 - 60.3 - 52.4 69.4 68.1 73.3
D2ADA♯ (Wu et al., 2022) 5% 96.7 76.8 90.3 48.7 51.1 54.2 58.3 68.0 90.4 - 93.4 77.4 56.4 92.5 - 77.5 - 58.9 73.3 72.7 77.7
RIPU♯ (Xie et al., 2022a) 5% 97.0 78.9 89.9 47.2 50.7 48.5 55.2 63.9 91.1 - 93.0 74.4 54.1 92.9 - 79.9 - 55.3 71.0 71.4 76.7
HALO♯ (ours) 5% 97.5 81.5 91.5 56.5 52.7 57.0 63.2 72.9 92.0 - 94.4 77.8 57.4 94.4 - 86.1 - 60.5 73.5 75.6 80.2

HALO† (ours) 5% 98.3 86.5 92.6 61.0 61.5 60.6 67.6 76.2 93.2 - 94.6 80.8 58.9 95.0 - 85.1 - 62.7 75.6 78.1 82.1

Eucl. Supervised DA♯ 100% 97.5 81.4 90.9 48.5 51.3 53.6 59.4 68.1 91.7 - 93.4 75.6 51.9 93.2 - 75.6 - 52.0 71.2 72.2 77.1
Hyper. Supervised DA♯ 100% 97.7 82.2 90.3 53.0 48.8 51.7 56.0 66.1 91.4 - 94.2 75.0 51.5 93.4 - 82.1 - 52.8 70.2 72.3 77.1

(c) Cityscapes → ACDC
RIPU (Xie et al., 2022a) 2.2% 91.4 69.5 83.8 52.7 41.6 52.8 66.4 54.2 85.1 47.5 94.7 54.5 21.8 85.5 58.7 58.8 76.9 41.4 45.9 62.3 -
HALO 2.2% 92.6 71.3 84.5 51.3 43.1 53.5 67.2 57.6 85.1 49.5 94.5 57.2 28.6 84.1 53.3 76.0 66.9 44.1 41.4 63.2 -

RIPU♯ (Xie et al., 2022a) 5% 92.7 72.5 84.7 53.1 44.8 56.7 69.1 58.9 85.9 46.9 95.3 57.2 24.3 84.5 61.4 59.4 79.0 36.9 43.6 63.5 -
HALO♯ 5% 92.6 72.2 84.8 54.9 47.7 59.5 71.5 61.1 86.1 49.5 95.2 60.7 30.6 85.8 58.4 73.8 82.0 41.6 53.2 66.4 -

HALO† 5% 95.2 79.8 88.2 60.2 51.1 64.1 78.2 65.6 87.9 55.7 95.5 66.3 20.7 88.9 82.2 89.3 87.9 50.4 59.0 71.9 -

Training protocol The model undergoes a pre-training
on either GTAV or SYNTHIA source synthetic datasets.
Subsequently, the model is domain adapted using both the
source and the target datasets. Our hyperbolic radius-based
acquisition method is used to select pixels to be labeled
in five evenly spaced rounds during training, with either
2.2% or 5% of the total labels. Our model is additionally
trained under adverse weather conditions, using CS and
ACDC as the source and target datasets, respectively, in
line with Hoyer et al. (2023) and Brüggemann et al. (2023).
The ADA performances in Table 1 are also compared with
the corresponding supervised domain adaptation baselines
(Supervised DA). Supervised DA refers to the process where
the adaptation to a target dataset involves using all of its
labels (i.e., 100%) for the whole training, in contrast to
active domain adaptation which uses a smaller fraction (e.g.,
2.2% or 5%) of labels.

Evaluation metrics To assess the effectiveness of the
models, the mean Intersection-over-Union (mIoU) metric
is computed on the target validation set. For GTAV→CS
and CS→ACDC, the mIoU is calculated on the shared 19
classes, whereas for SYNTHIA→CS two mIoU values are
reported, one on the 13 common classes (mIoU*) and an-
other on the 16 common classes (mIoU).

6.1. Comparison with the state-of-the-art

In Table 1a, we present the results of our method and the
most recent ADA approaches on the GTAV→CS bench-
mark. HALO outperforms the current state-of-the-art meth-
ods (Xie et al., 2022a; Wu et al., 2022) using both 2.2%
(+1.2% mIoU) and 5% (+3.3% mIoU) of labeled pixels,
reaching 70.8% and 74.5%, respectively. Additionally, our
method is the first to surpass the supervised domain adapta-
tion baseline (71.9%), even by a significant margin (+2.6%).
A thorough analysis on the performance at increasing bud-
gets is provided in Sec. 6.3. HALO achieves state-of-the-art
also in the SYNTHIA→CS case (cf. Table 1b), where it im-
proves by +2.4% and +4.2% using 2.2% and 5% of labels,
reaching performances of 72.5% and 75.6%, respectively.
Additionally, we train HALO with the SegFormer-B4 (Xie
et al., 2021) segmenter to demonstrate the adaptability of
our approach to different architectures. With SegFormer-B4,
HALO improves by +3.3% in GTAV→CS and +2.5% in
SYNTHIA→CS compared to HALO with DeepLab-v3+,
using 5% of labels. Due to the absence of other ADA studies
on CS→ACDC adaptation, we train RIPU (Xie et al., 2022a)
as a baseline for comparison with our method. HALO im-
proves over RIPU by +2.9% mIoU with a 5% budget, reaf-
firming the effectiveness of our approach on a novel dataset,
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Table 2. Ablation study conducted with the Hyperbolic DeepLab-
v3+ as backbone with 5% budget. Performance of prediction
entropy and hyperbolic radius scores in isolation (a and b) and
combined (c).

Ablative version mIoU

(a) Prediction Entropy only (H) 63.2
(b) Hyperbolic Radius only (R) 64.1
(c) HALO (R⊙H) 74.5

as shown in Table 1c.

6.2. Ablation study

We begin by conducting an oracular study using ground-
truth labels, followed by ablation studies on the selection
criteria, region- versus pixel-based acquisition scores, and
HFR. Additional ablation studies are in Appendix A.1.

Oracle experiment with ground-truth boundaries To
test our hypothesis that acquiring labels solely from class
boundaries results in performance decline, we conduct an
oracular experiment. We replace the pseudo-labels used in
RIPU with ground-truth labels, effectively evaluating an AL
acquisition strategy based on ground-truth boundary pixels.
Although oracular, the experiment yields a performance
drop of 1.4 mIoU (69.8 vs. to RIPU’s 71.2), motivating the
design of a novel acquisition strategy which samples also
from non-boundary regions.

Selection criteria HALO demonstrates a substantial im-
provement of +10.4% compared to methods (a) and (b) in
Table 2. More precisely, utilizing solely either the entropy
(a) or the hyperbolic radius (b) as acquisition scores yields
comparable performance of 63.2% and 64.1%, respectively.
When these two metrics are combined, the final performance
is notably improved to 74.5%.

Region- vs. Pixel-based criteria Unlike region impurity
in Xie et al. (2022a), the hyperbolic radius is a continuous
quantity that can be computed for each pixel. We conduct
experiments comparing region- and pixel-based acquisition
scores. The results demonstrate a small difference between
the two approaches (74.1% vs. 74.5%), proving that HALO
does not necessitate a region-based formulation. More in
Appendix A.1.

Hyperbolic Feature Reweighting (HFR) HFR improves
training stability and enhances performance in the Hyper-
bolic model. Although the mIoU improvement is modest
(+1.6%), the main advantage is the training robustness, as
the Hyperbolic model otherwise struggles to converge. HFR
does not benefit the Euclidean model and instead negatively
impacts its performance. More in Appendix A.1.

Figure 5. (left) Performance on GTAV → Cityscapes with different
budgets. (right) Evolution of the variance (y axis) of selected pixels
distributions with varying budget (x axis).

6.3. Additional analyses

Correlation analysis on Cityscapes→ACDC In addition
to GTAV→CS, we report the correlations for CS→ACDC.
The correlation of hyperbolic radius vs. percentage of target
pixels is -0.868, while the correlation of prediction entropy
vs. class accuracy is -0.892. These results are in line with
the GTAV→CS case (-0.899 and -0.913), showing that the
proposed method generalizes well even on a different do-
main adaptation benchmark.

Class imbalance with increasing budget We experiment
with different labeling budgets, observing performance im-
provements as the number of labeled pixels increases. How-
ever, beyond a threshold of 5%, adding more labeled pixels
leads to diminishing returns (see Fig. 5 (left)). We believe
this may be explained by data unbalance: taking all labels
to domain adapt means that most of them belong to a few
classes. Indeed, road, building and vegetation account for
77% of the total labels, potentially hindering successive
training rounds due to data redundancy.

To verify the intuition on data imbalance, we have evaluated
the variance of selected pixels distributions as the labelling
budget increases. In Fig. 5 (right), we start with the ac-
quisition of just 0.1% of labels from the target dataset. At
this stage, the variance is at a minimum, as HALO man-
ages to identify and select labels from each class in equal
proportions. Then the variance increases slowly until the
budget reaches 5%. This happens as the model manages to
select pixels from each class, balancing the acquired data
selection. The variance has a steep increase at budgets of
10% and higher. This occurs because the model has already
selected most of the labels from the complex and scarce
classes which it can identify thanks to the hyperbolic radius
and the prediction entropy (cf. Sec. 5.2). So, for budgets of
10% or more, the data acquisition strategy is influenced by
the target dataset imbalance. The imbalance trend in label
selection matches the performance variation in Fig. 5 (left).
Therefore, we conclude that HALO’s selection aids perfor-
mance, beyond the supervised domain adaptation, until the
model manages to successfully identify complex and scarce
classes, and until they are available in the target dataset.
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7. Conclusions
We have introduced the first hyperbolic neural network tech-
nique for AL, which we have extensively validated as the
novel state-of-the-art on semantic segmentation under do-
main shift. We have identified a novel interpretation of the
hyperbolic radius as an estimator of data scarcity and epis-
temic uncertainty, and we have supported the finding with
experimental evidence. The novel concept of hyperbolic
radius and its successful use as an acquisition strategy in
AL are a step forward in understanding hyperbolic neural
networks.

Limitations
While we have presented experimental evidence support-
ing the need for a novel interpretation of the hyperbolic
radius, our work lacks a rigorous mathematical validation
of the properties of the hyperbolic radius within the given
experimental setup. Future research should delve into this
mathematical aspect to formalize and prove these properties.

HALO’s reliance on a source model pretrained on synthetic
data introduces challenges related to large-scale simulation
efforts and the need for effective synthetic-to-real domain
adaptation. Exploring alternative strategies, such as self-
supervised pre-training on real source datasets, could be a
promising research direction to mitigate these challenges.

Although Active Domain Adaptation significantly reduces
labeling costs, the manual annotation of individual pixels
can be a time-consuming task. Further investigation into
human-robot interaction methodologies to streamline pixel
annotation processes and expedite the annotation workflow
is needed.
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resnet, 2023.

Vu, T.-H., Jain, H., Bucher, M., Cord, M., and Perez, P.
Advent: Adversarial entropy minimization for domain
adaptation in semantic segmentation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), June 2019.

Wang, D. and Shang, Y. A new active labeling method for
deep learning. In 2014 International joint conference on
neural networks (IJCNN), pp. 112–119. IEEE, 2014.

Wang, K., Zhang, D., Li, Y., Zhang, R., and Lin, L. Cost-
effective active learning for deep image classification.
IEEE Transactions on Circuits and Systems for Video
Technology, 27(12):2591–2600, 2016.

Wu, T.-H., Liu, Y.-C., Huang, Y.-K., Lee, H.-Y., Su, H.-T.,
Huang, P.-C., and Hsu, W. H. Redal: Region-based and
diversity-aware active learning for point cloud semantic
segmentation. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pp. 15510–15519,
2021.

Wu, T.-H., Liou, Y.-S., Yuan, S.-J., Lee, H.-Y., Chen, T.-
I., Huang, K.-C., and Hsu, W. H. D 2 ada: Dynamic
density-aware active domain adaptation for semantic seg-
mentation. In Computer Vision ECCV 2022 Proceedings,
Part XXIX, pp. 449–467. Springer, 2022.

Xiao, Y. and Wang, W. Quantifying uncertainties in natu-
ral language processing tasks. Proceedings of the AAAI
Conference on Artificial Intelligence, 33:7322–7329, 07
2019. doi: 10.1609/aaai.v33i01.33017322.

Xie, B., Yuan, L., Li, S., Liu, C. H., and Cheng, X. To-
wards fewer annotations: Active learning via region im-
purity and prediction uncertainty for domain adaptive
semantic segmentation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 8068–8078, June 2022a.

Xie, B., Yuan, L., Li, S., Liu, C. H., Cheng, X., and Wang, G.
Active learning for domain adaptation: An energy-based
approach. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 36, pp. 8708–8716, 2022b.

Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J. M.,
and Luo, P. Segformer: Simple and efficient design
for semantic segmentation with transformers. In Neural
Information Processing Systems (NeurIPS), 2021.

Yang, Y. and Soatto, S. Fda: Fourier domain adaptation for
semantic segmentation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), June 2020.

12



Hyperbolic Active Learning for Semantic Segmentation under Domain Shift

Appendix
This appendix provides additional information and insights on the proposed Hyperbolic Active Learning Optimization
(HALO) for semantic segmentation under domain shift.

This supplementary material is structured as follows:

A.1: Additional ablation studies presents additional ablation studies on the proposed Hyperbolic Feature Reweighting
(HFR), strategies for stable training in hyperbolic space, region- vs. pixel-based acquisition score, evaluation on the
source-free protocol and correlation between Riemannian variance and classification accuracy;

A.2 Additional hyperbolic formulas reports additional employed hyperbolic formulas;

A.3 Implementation details describes the training details adopted in the experiments;

A.4 Comparison of parameters count compares the number of parameters of HALO with the baseline model;

A.5 Computational resources consumption analyzes the computational cost of HALO compared to the baseline;

A.6 Qualitative results showcases representative qualitative results of HALO;

A.7 Data acquisition strategy: rounds of selection illustrates examples of pixel labeling selection and the priorities of
the data acquisition strategy at each acquisition round;

A.8 Qualitative comparison with the baseline model illustrates a qualitative comparison of pixel acquisition between
HALO and baseline model to prove the limitation of boundary-only selection;

A.1. Additional ablation studies
A.1.1. Results of HFR

Table A1 provides insights into the performance of hyperbolic and Euclidean models with and without Hyperbolic Feature
Reweighting (HFR). In the case of HALO, the performance with and without HFR remains the same in the source-only
setting. However, when applied to the source+target ADA scenario, HFR leads to an improvement of 1.2%. It should be
noted that HFR also stabilizes the training of hyperbolic models. In fact, when not using HFR, training requires a warm-up
schedule and, still, it does not converge in approximately 20% of the runs. HFR improves therefore performance for ADA
and it is important for hyperbolic learning stability.

Table A1. HFR Performance Comparison: Evaluating the impact of Hyperbolic Feature Reweighting (HFR) on hyperbolic and
Euclidean models in source-only and source+target protocols.

Encoder Protocol HFR mIoU (%)

DeepLab-v3+ source-only ✗ 36.3
DeepLab-v3+ source-only ✓ 22.7
Hyper DeepLab-v3+ source-only ✗ 39.0
Hyper DeepLab-v3+ source-only ✓ 38.9

HALO source+target ✗ 72.9
HALO source+target ✓ 74.5

A.1.2. Exploring strategies for stable training in hyperbolic space

Here we conduct a more comprehensive evaluation of approaches aimed at stabilizing the training of hyperbolic neural
networks. We test Guo et al. (2022a)’s Feature Clipping method in our framework for comparison with our HFR. As
shown in the Table A2, while Feature Clipping works and produces better results than the baseline RIPU, it still falls
short of our HFR method (-1.2%). Guo et al. (2022a) utilize Feature Clipping to prevent vanishing gradients during
backpropagation. Despite its simplicity, this technique restricts the model’s representational capacity by clipping features,
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resulting in inferior performance compared to our HFR. We have not tested the curriculum learning of Franco et al.
(2023) and the initialization approach of van Spengler et al. (2023), because their adaptation to the ADA task is not
straightforward. The curriculum learning in Franco et al. (2023) is specifically tailored for metric learning scenarios
involving a hyperbolic loss, enabling training in hyperbolic space by utilizing cosine distance for improved initialization,
gradually transitioning to the Poincaré loss. Our method does not involve comparing embeddings and leveraging the
Poincaré loss. Similarly, the initialization approach in van Spengler et al. (2023) is designed explicitly for fully hyperbolic
ResNets, particularly hyperbolic convolutions. As we do not employ hyperbolic convolutional layers, their initialization
approach is not immediately suitable for our model.

Table A2. Comparison of strategies for stable training in hyperbolic space

Method mIoU (%)

Hyperbolic Feature Reweighting (ours) 74.5
Feature Clipping (Guo et al., 2022) 73.3
Initialization (van Spengler et al., 2023) not compatible
Curriculum Learning (Franco et al., 2023) not compatible

A.1.3. Region- vs. Pixel-based acquisition score

While the region impurity score of RIPU (Xie et al., 2022a) requires pixel regions to work, as the impurity is based on
region statistics, the hyperbolic radius employed in HALO can be computed on both pixel and region bases. Here we train
HALO with the region-based approach for comparison. As we observe in the Table A3, the region-based approach leads to a
small difference of -0.4% on the GTAV→CS benchmark with 5% acquired labels, but still manages to achieve a significative
improvement over the baseline (RIPU).

Table A3. Comparison of Region- vs. Pixel-based acquisition score.

Method Region-based Pixel-based mIoU (%)

RIPU (Xie et al., 2022a) ✓ 71.2
HALO (ours) ✓ 74.1
HALO (ours) ✓ 74.5

A.1.4. Source-free domain adaptation

In the source-free protocol, the model is pre-trained on the source dataset and domain-adapted using only the target dataset.
In Table A4 we show the performance of HALO on the source-free GTAV → CS domain adaptation task. HALO surpasses
the current best (Xie et al., 2022a) by +3% using 2.2% of labels.

Table A4. HALO performance on the source-free protocol on GTAV→CS, compared with the previous state-of-the-art approach. Methods
marked with ♯ are based on DeepLab-v3+ (Chen et al., 2018b), whereas all the others use DeepLab-v2 (Chen et al., 2018a).

Method Budget mIoU

RIPU (Xie et al., 2022a) 2.2% 67.1
HALO (ours) 2.2% 70.1

HALO♯ (ours) 5% 73.3

A.1.5. Analysis on the Riemannian variance

Fig. 6 complements our analysis by plotting the class accuracies vs. the Riemannian variance (see Eq. A2 in Appendix
A.2) of radii for each class. The latter generalizes the Euclidean variance, considering the increasing Poincaré ball density
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at larger radii. The correlation between accuracy and Riemannian variance is noteworthy (ρ = −0.811), indicating that
challenging classes, like pole, exhibit lower accuracy and larger Riemannian variance, occupying a greater volume in the
space.
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Figure 6. Plot of per-class accuracy against per-class Riemannian variance.

A.2. Additional hyperbolic formulas
Here we report established hyperbolic formulas and definitions which have used in the paper, but not shown due to space
constraints.

Poincaré Distance Given two hyperbolic vectors x, y ∈ DN
c , the Poincaré distance represents the distance between them

in the Poincaré ball and is defined as:

dPoin(x, y) =
2√
c
tanh−1(

√
c∥ − x⊕c y∥) (A1)

where ⊕c is the Möbius addition defined in Eq. 2 of the paper and c is the manifold curvature.

Riemannian Variance Given a set of hyperbolic vectors x1, ..., xM ∈ DN
c we define the Riemannian variance between

them as:

σ2 =
1

M

M∑
i=1

d2Poin(xi, µ) (A2)

where µ is the Fréchet mean, the hyperbolic vector that minimizes the Riemannian variance. µ cannot be computed in closed
form, but it may be approximated with a recursive algorithm (Lou et al., 2021).

Hyperbolic Multinomial Logistic Regression (MLR) Following Ganea et al. (2018), to classify an image feature
zi ∈ RN we project it onto the Poincaré ball hi = expcx(zi) ∈ DN

c and classify with a number of hyperplanes Hc
y (known

as ”gyroplanes”) for each class y:
Hc

y = {hi ∈ DN
c , ⟨−py ⊕c hi, wy⟩}, (A3)

where, py represents the gyroplane offset, and wy represents the orientation for class y. The distance between a Poincaré
ball embedding hi and the gyroplane Hc

y is given by:

d(hi, H
c
y) =

1√
c
sinh−1

(
2
√
c⟨−py ⊕c hi, wy⟩

(1− c∥ − py ⊕c hi∥2)∥wy∥

)
, (A4)

Based on this distance, we define the likelihood as p(ŷi = y|hi) ∝ exp(ζy(hi)) where ζy(hi) = λc
py
∥wy∥d(hi, H

c
y) is the

logit for the y class.

15



Hyperbolic Active Learning for Semantic Segmentation under Domain Shift

A.3. Implementation details
For all experiments, the model is trained on 4 Tesla V100 GPUs using PyTorch (Paszke et al., 2019) and PyTorch Lightning
with an effective batch-size of 8 samples (2 per GPU). The DeepLab-v3+ architecture is initialized with an Imagenet
pre-trained ResNet-101 as the backbone. RiemannianSGD optimizer with momentum of 0.9 and weight decay of 5× 10−4

is used for all the trainings. The base learning rates for the encoder and decode head are 1× 10−3 and 1× 10−2 respectively,
and they are decayed with a ”polynomial” schedule with power 0.5. The models are pre-trained for 15K iterations and
adapted for an additional 15K on the target set. As per (Xie et al., 2022a), the source images are resized to 1280 × 720,
while the target images are resized to 1280× 640.

A.4. Comparison of parameters count
To provide additional insights into the hyperbolic architecture employed, we conduct a comparison of parameter counts
between RIPU (Xie et al., 2022a) and our method HALO (see Table A5). Both employ the DeepLab-v3+ architecture but
with some distinctions. RIPU operates with a pixel embedding dimension of 512, resulting in a parameter count of 60.1M.
In contrast, HALO operates with a reduced pixel embedding dimension of 64, which the adoption of a hyperbolic learning
enables. Moreover, the HyperMLR requires fewer parameters than the Euclidean Linear layer used for classification due to
the reduced embedding dimension. This results in a slightly lower total parameter count than RIPU’s (10k fewer params).
Additionally, HALO introduces the HFR module, consisting of two linear layers separated by a BatchNorm layer and a
ReLU. Thanks to the lower embedding dimensions, the input and output sizes of the HFR module are only 64-dimensional,
adding less than 10k additional parameters. This roughly matches the number of parameters removed from the segmenter.
These modifications result in the parameter count being nearly identical between the two methods (60.1M), aligning with
other studies leveraging the DeepLab-v3+ architecture.

Table A5. Comparison of parameters count in HALO vs. RIPU (Xie et al., 2022a).

Method Segmenter Dim. HFR (params) Total Params

RIPU DeepLab-v3+ 512 Not used 60.1M
HALO (ours) Hyper-DeepLab-v3+ 64 10k 60.1M

A.5. Computational Resources
We evaluated the computational resources required by our method, HALO, compared to the previous state-of-the-art, RIPU,
using the setup described in Appendix A.3. The comparison was conducted under the source+target protocol.

A.5.1. Environment and Computational Load Metrics

Using an identical environment — the same conda environment, 4 Tesla V100 GPUs, and a batch size of 2 per GPU —
we compared different computational load metrics for HALO and RIPU using DeepLab-v3+. Table A6 summarizes the
comparison:

Table A6. Comparison of computational load metrics for HALO and RIPU (Xie et al., 2022a).

Method FLOPS ↓ FPS ↑ Params ↓
RIPU 125.49 M 5.62 60.1 M
HALO 280.17 M 4.72 60.1 M

FLOPs (Floating Point Operations) are calculated only for the classification layers, which differ between the RIPU and
HALO segmentation models. The rest of the model architectures require 1.7 TFLOPS. FPS (Frames Per Second) is measured
at inference time. The parameter count (Params) refers to the entire model.

Both models have identical parameter counts and are trained using the same batch size, resulting in negligible differences in
memory consumption.
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A.5.2. Training and inference times

Training RIPU takes 12.5 hours, while training HALO takes 13.5 hours, which is just an 8% increase. This marginal
difference is primarily due to the nature of operations in hyperbolic space, such as Möbius addition. Despite this, the increased
computational cost of hyperbolic operations is offset by the reduced embedding size needed to achieve state-of-the-art
performance in hyperbolic space, as detailed in Appendix A.4.

At inference time, evaluated on the Cityscapes validation set, RIPU takes 1m:29s, while HALO takes 1m:46s. Again, the
difference in computing time is minor.

A.5.3. Optimization considerations

It is important to note that existing implementations of hyperbolic operations are still under active development and may
not yet be fully optimized for mainstream deep learning frameworks and hardware. Specifically, the primary hyperbolic
operations — exponential mapping (Eq. 1), Möbius addition (Eq. 2), and Poincaré distance (Eq. A1) — have not been
optimized to the same extent as their Euclidean counterparts, which have benefited from over a decade of optimization.

This analysis demonstrates that the computational overhead introduced by hyperbolic operations is manageable and does not
significantly impact the overall efficiency of our method.

A.6. Qualitative results
In Fig. 9, we present visualizations of HALO’s predicted segmentation maps and the selected pixels. In the first row, HALO
prioritizes the selection of pixels that are not easily interpretable, as evident in the fence or wall on the right side of the
image. Notably, HALO does not limit itself to selecting contours exclusively; it continues to acquire pixels within classes
if they exhibit high acquisition score. This behavior is also observed in rows 2, 3, and 4 of Fig. 9. For classes with lower
complexity, such as road and car, HALO acquires only the contours. However, for more intricate classes like pole and signs,
it also selects pixels within the class.

In rows 5, 6, and 8, the images depict a crowded scene with numerous small objects from various classes. Remarkably, the
selection process directly targets the more complex classes (such as pole and signs), providing an accurate classification
of these. In row 7, we observe an example where the most common classes (road, vegetation, building, sky) dominate the
majority of the image. HALO efficiently allocates the labeling budget by focusing on the more complex classes, rather
than expending resources on these prevalent ones. Refer to Sec. A.7 and Fig. 8 for a detailed overview of the selection
prioritization during each active learning round.

A.7. Data acquisition strategy: rounds of selection
In this section, we analyze how the model prioritizes the selection of the pixels during the different rounds. In Fig. 7, we
consider the ratio between the selected pixel at each round and the total number of pixels for the considered class. Note
how the model selects in the early stages from the class with high intrinsic difficulty (e.g., rider, bicycle, pole). During the
different rounds, the number of selected pixels decreases because of the scarcity of pixels associated with these classes.
On the other hand, less complex classes are less considered in the early stages and the model selects from them in the
intermediate rounds if the class has an intermediate complexity (e.g., wall, fence, sidewalk) or in the last stages if it has low
complexity (e.g., road or building).

The qualitative samples of pixel selections in Fig. 8 corroborate this observation. In rounds 1 and 2, the model gives
precedence to selecting pixels from more complex classes (e.g., poles, sign, person, or rider). Subsequently, HALO shifts
its focus to two distinct objectives: i) acquiring contours from classes with lower complexity (e.g., road, car, or vegetation),
and ii) obtaining additional pixels from more complex classes (e.g., pole or wall). Notably, in rows 1, 2, 3, 5, and 6, HALO
gives priority to selecting complete objects right from the initial round (as seen with the sign). Another noteworthy instance
is the acquisition of the bicycle in row 7. The hyperbolic radius score enables the acquisition of contours that extend beyond
the boundaries of pseudo-label classes. In this case, we observe precise delineation of the internal portions of the wheels.
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Figure 7. Ratio between the selected pixels for each class at each round and the total number of pixels per class. Each color shows the
ratio in the specific round. On the x-axis are reported the classes with the relative mIoU (%) of HALO (cf. Table 1 of the main paper)
ordered according to they decreasing hyperbolic radius.

A.8. Qualitative comparison with the baseline model
The top row of Fig. 10 depicts label acquisition using the baseline RIPU method with budgets of 2.2% (left) and 5% (right).
The bottom row illustrates visualizations with our proposed HALO using the same budgets. Noteworthy observations
include:

• By design, RIPU only concentrates on selecting boundaries between semantic parts (ref. Fig. 10 top-left). However,
since there are only a few (thin) boundary pixels, RIPU soon exhausts the pixel selection request. Next, when a larger
budget is available, RIPU simply samples from the left side. The random selection still provides additional labels (ref.
Fig. 10 top-right) and is a good baseline, cf. Table 3 of Xie et al. (2022a), although not as good as HALO’s acquisition
strategy.

• By contrast, HALO showcases pixel selection from both boundaries and internal regions within semantic parts (ref. Fig.
10 bottom-left). Especially passing from 2.2% to 5% acquisition budget, HALO considers thick boundaries, so also
parts of objects close to the boundaries, but also areas within objects, as it happens for wall, fence, pole, and sidewalk,
cf. the right image part in the bottom-right of Fig. 10.
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Figure 8. Qualitative analysis on the pixel selected by HALO at each round. Zoom in to see details.
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Figure 9. Qualitative Results Visualization for the GTAV → Cityscapes Task. The figure showcases different subfigures representing:
the original image, HALO’s pixel selection, HALO’s prediction, and the ground-truth label. Zoom in for the details.
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Figure 10. (top-row) Pixel selection with RIPU’s baseline; (bottom-row) Pixel selection with out HALO; (left-column) Selection with
budget 2.2%; (right-column) Selection with budget 5%. Zoom in for the details.
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