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Abstract
Diffusion models have made significant contribu-
tions to computer vision, sparking a growing inter-
est in the community recently regarding the appli-
cation of them to graph generation. Existing dis-
crete graph diffusion models exhibit heightened
computational complexity and diminished train-
ing efficiency. A preferable and natural way is to
directly diffuse the graph within the latent space.
However, due to the non-Euclidean structure of
graphs is not isotropic in the latent space, the ex-
isting latent diffusion models effectively make it
difficult to capture and preserve the topological
information of graphs. To address the above chal-
lenges, we propose a novel geometrically latent
diffusion framework HypDiff. Specifically, we
first establish a geometrically latent space with
interpretability measures based on hyperbolic ge-
ometry, to define anisotropic latent diffusion pro-
cesses for graphs. Then, we propose a geometri-
cally latent diffusion process that is constrained
by both radial and angular geometric properties,
thereby ensuring the preservation of the original
topological properties in the generative graphs.
Extensive experimental results demonstrate the
superior effectiveness of HypDiff for graph gen-
eration with various topologies.

1. Introduction
Graphs in the real world contain variety and important
of topologies, and these topological properties often re-
flect physical laws and growth patterns, such as rich-clubs,
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small-worlds, hierarchies, fractal structures, etc. Tradi-
tional random graph models based on graph theory, such as
Erdos-Renyi (Erdős et al., 1960), Watts-Strogatz (Watts
& Strogatz, 1998) and Barabasi-Albert (Barabási & Al-
bert, 1999), etc., need artificial heuristics to build the al-
gorithms for single nature topologies and lack the flexibility
to model various complex graphs. Therefore, many deep
learning models have been developed for graph generation,
such as Variational Graph Auto-Encoder (VGAE) (Kipf
& Welling, 2016), Graph Generative Adversarial Net-
works(GraphGAN) (Wang et al., 2018a), and other tech-
nologies. Recently, the Denoising Diffusion Probabilistic
Model(DDPM) (Ho et al., 2020) have demonstrated great
power and potential in image generation, attracting huge
attention from the community of graph learning.

For graph generation, a straightforward idea involves design-
ing discretized diffusion methods for the graph structural
information. (Vignac et al., 2022; Jo et al., 2022; Luo et al.,
2022), and the other way is to develop advanced graph en-
coders to preserve structural information throughout the
diffusion process within a continuous potential space (Xu
et al., 2021; 2023). However, because of the irregular and
non-Euclidean structure of graph data, the realization of
the diffusion model for graphs still has two main limita-
tions: (1) High computational complexity. The core to
graph generation is to handle the discreteness, sparsity and
other topological properties of the non-Euclidean structure.
Since the Gaussian noise perturbation used in the vanilla
diffusion model is not suitable for discrete data, the dis-
crete graph diffusion model usually has high time and space
complexity due to the problem of structural sparsity. More-
over, the discrete graph diffusion model relies on a con-
tinuous Gaussian noise process to create fully connected,
noisy graphs (Zhang et al., 2023; Ingraham et al., 2019)
which loses structural information and underlying topologi-
cal properties. (2) Anisotropy of non-Euclidean structure.
Different from the regular structure data (e.g. pixel matrix
or grid structure), the “irregular” non-Euclidean structure
embeddings of graph data are anisotropic in continuous la-
tent space (Elhag et al., 2022). As shown in Figure 1(b), the
node embeddings of a graph in Euclidean space exhibit sig-
nificant anisotropy in several specific directions. Recently,
some studies (Yang et al., 2023) have shown that isotropic
diffusion of the node embedding of the graph in the latent
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(a) Original structure. (b) Euclidean latent space. (c) Hyperbolic latent space.

Figure 1. Visualization of node embeddings by singular value decomposition (SVD); (a) Original structure visualization of the NCAA
football graph and different colors indicate different labels(teams); (b) Visualization of node embeddings in 2D Euclidean space and
planar projection; (c) Visualization of node embeddings in 2D hyperbolic space and Poincaré disk projection.

space will treat the anisotropic structural information as
noise, and this useful structural information will be lost in
the denoising process.

Hyperbolic geometric space is widely recognized as an ideal
continuous manifold for representing discrete tree-like or hi-
erarchical structures (Cannon et al., 1997; Ungar, 1999; Kri-
oukov et al., 2010; Sun et al., 2024b), and has been widely
studied and applied to various graph learning tasks (Sun
et al., 2021; Tifrea et al., 2019; Nickel & Kiela, 2017; Sala
et al., 2018; Chami et al., 2019; Sun et al., 2024a). Inspired
by these studies, we find that hyperbolic geometry has great
potential to address non-Euclidean structural anisotropy in
graph latent diffusion processes. As shown in Figure 1(c),
in hyperbolic space, we can observe that the distribution
of node embeddings tends to be isotropic globally, while
anisotropy is preserved locally. In addition, hyperbolic
geometry unifies angular and radial measures of polar coor-
dinates as shown in Figure 2(a), and can provide geometric
measures with physical semantics and interpretability (Pa-
padopoulos et al., 2012). It is exciting that hyperbolic ge-
ometry can provide a geometrically latent space with graph
geometric priors, able to help deal with the anisotropy of
graph structures by special geometric measures.

Based on the above insights, we aim to establish a suitable
geometrically latent space based on hyperbolic geometry to
design an efficient diffusion process to the non-Euclidean
structure for topology-preserving graph generation tasks.
However, there are two primary challenges: (1) the addi-
tivity of continuous Gaussian distributions is undefined in
hyperbolic latent space; (2) devising an effective anisotropic
diffusion process for non-Euclidean structures.

Contributions. To address the challenges, we propose a
novel Hyperbolic Geometric Latent Diffusion (HypDiff)
model for the graph generation. For the additive issue of
continuous Gaussian distribution in hyperbolic space, we
propose an approximate diffusion process based on radial
measures. Then the angular constraint was utilized to con-
strain the anisotropic noise to preserve more structural prior,

guiding the diffusion model to finer details of the graph
structure. Our contributions are summarized as:

• We are the first to study the anisotropy of non-
Euclidean structures for graph latent diffusion mod-
els from a geometric perspective, and propose a novel
hyperbolic geometric latent diffusion model HypDiff.

• We proposed a novel geometrically latent diffusion
process based on radial and angular geometric con-
straints in hyperbolic space, and addresses the additiv-
ity of continuous Gaussian distributions and the issue
of anisotropic noise addition in hyperbolic space.

• Extensive experiments on synthetic and real-world
datasets demonstrate a significant and consistent im-
provement of HypDiff and provide insightful analysis
for graph generation.

2. Related Works
2.1. Graph Generative Diffusion Model

Different from that learn to generate samples once, like
GAN (Wang et al., 2018a;b; Dai et al., 2018), VGAE (Yu
et al., 2018; Xu & Durrett, 2018; Grattarola et al., 2019)
or GraphRNN (You et al., 2018), the diffusion model (Ho
et al., 2020) aims to gradually convert the sample into pure
noise by a parameterized Markov chain process. Some re-
cent works (Xu et al., 2021; 2023) employ advanced graph
encoders to effectively preserve the inherent structural infor-
mation throughout the diffusion process within a continuous
potential space. Gaussian noise is added on the distribu-
tion of nodes and edges of the graph (Vignac et al., 2022),
and Gaussian processes are performed on the neighborhood
or spectral domain of the graph (Vignac et al., 2022; Jo
et al., 2022; Luo et al., 2022). However, existing discrete
diffusion models have many challenges in capturing the non-
Euclidean structure and preserving underlying topologies.
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(a) Geometric interpretation. (b) Hyperbolic latent diffusion.

Figure 2. (a) Geometric interpretation of the hyperbolic geometry, which unifies the radius and angle measurements in polar coordinates
and interprets as popularity and similarity respectively; (b) Hyperbolic latent diffusion processing with isotropic/anisotropic noise;

2.2. Hyperbolic Graph Learning

Hyperbolic geometric space was introduced into complex
networks earlier to represent the small-world and scale-free
complex networks (Krioukov et al., 2010; Papadopoulos
et al., 2012). With high capacity and hierarchical-structure-
preserving ability, hyperbolic geometry is also used in
NLP (Nickel & Kiela, 2017; Tifrea et al., 2019) to learn
word representations with hypernym structure. For graph
neural networks, hyperbolic space is recently introduced
into graph neural networks (Liu et al., 2019; Chami et al.,
2019; Sun et al., 2021; 2022). P-VAE (Mathieu et al., 2019)
and Hyper-ANE (Liu et al., 2018) extend VAE and GAN
into the hyperbolic versions to learn the hierarchical rep-
resentations. To sum up, hyperbolic geometry provides an
intuitive and efficient way of understanding the underlying
structural properties of the graph.

3. Methodology
In this section, we present our Hyperbolic geometric latent
Diffusion model (HypDiff) for addressing the two main
challenges. The key insight is that we leverage hyperbolic
geometry to abstract the implicit hierarchy of nodes in the
graph and introduce two geometric constraints to preserve
important topological proprieties, such as scale-free, navi-
gability, and modularity. Considering the successful expe-
riences of graph latent diffusion models (Xu et al., 2023),
we adopt a two-stage training strategy framework in our
practice. We first train the hyperbolic autoencoder to obtain
the pre-trained node embeddings, and then train the hyper-
bolic geometric latent diffusion process. The architecture is
shown in Figure 3.

3.1. Hyperbolic Geometric Autoencoding

Since our work aims to improve the diffusion process in a
continuous potential space for graph data, we first embed
the graph data G = (X,A) into a low-dimensional hyper-
bolic geometric space. We consider a hyperbolic variant of
the auto-encoder, consisting of the hyperbolic geometric en-
coder and the Fermi-Dirac decoder. Where the hyperbolic
geometric encoder encodes the graph G = (X,A) into the
hyperbolic geometric space to obtain a suitable hyperbolic
representation, and the Fermi-Dirac decoder decodes the
hyperbolic representation back into the graph data domain.

Hyperbolic Encoder and Decoder. Based on the idea of
differential geometry, hyperbolic machine learning usually
maps a point in hyperbolic space to its tangent plane for
computing, and then maps the result back to the hyperbolic
space. These mapping operations are defined as follows.

The hyperbolic manifold Hd and the tangent space Tx can
be mapped to each other via exponential map and loga-
rithmic map (Ganea et al., 2018b). The exponential map
expmapcx(·) and logarithmic map logmapcx(·) are defined
as:

expmapcx(v) = x⊕c
1√
c
tanh

(√
cλc

x ∥v∥
2

)
v

∥v∥
,

logmapcx(u) =
2√
cλc

x

tanh−1
(√

c ∥−x⊕c u∥
) −x⊕c u

∥−x⊕c u∥
,

(1)
where ⊕c is Möbius addition and λc

x = 2
1+c∥x∥2 .

Then, we can leverage Multi-Layer Perceptrons(MLP) or
Graph Neural Networks(GNNs) by exponential and loga-
rithmic mapping as hyperbolic geometric encoders.
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Figure 3. An illustration of HypDiff architecture.

In this paper, we use Hyperbolic Graph Convolutional Neu-
ral Networks(HGCN) (Chami et al., 2019) as the hyperbolic
geometric encoder. For each layer ℓ of HGCN transforms
and aggregates the neighbors’ hidden feature of previous
layer ℓ− 1 of the updated node representation xℓ, the aggre-
gation AGGc and the non-linear activation ρ⊗

c

are defined
as follows:

AGGc
(
xℓ
)
= expmapcxℓ

 ∑
j∈N (i)

wj logmapcxℓ

(
xℓ
) ,

xℓ+1 = ρ⊗
c
(

AGGc
((

Wℓ+1 ⊗cℓ xℓ
)
⊕cℓ bℓ+1

))
,

(2)

Optimization of Autoencoding. Due to the additive failure
of the Gaussian distribution in hyperbolic space, we cannot
directly use Riemannian normal distribution or wrapped
normal distribution. Instead of hyperbolic diffusion em-
bedding (Lin et al.) using the product space of multiple
manifolds, we propose a new diffusion process in hyper-
bolic space, which will be described in detail in Section 3.2.
Following P-VAE (Mathieu et al., 2019), for compute ef-
ficiency, the Gaussian distribution of hyperbolic space is
approximated by the Gaussian distribution of the tangent
plane Tµ. The optimization of hyperbolic geometric auto-
encoding is as follows:

LHAE = −Eqϕ(zx|x)logmapcopξ (x|zx) , (3)

where logco is the logarithmic mapping of the north pole
(origin) o of hyperbolic space to simplify the computation.

3.2. Hyperbolic Geometric Latent Diffusion Process

Unlike the linear addition in Euclidean space, hyperbolic
space utilizes Möbius addition, posing challenges for diffu-
sion over a hyperbolic manifold. Furthermore, the isotropic
noise leads to a rapid reduction of signal-to-noise ratio mak-
ing it difficult to preserve topological information, and for
the detailed results and analysis please refer to Appendix B.

In light of these issues, we propose a novel diffusion process
to address both of them.

Hyperbolic Anisotropic Diffusion. The anisotropy of the
graph in the latent space contains an inductive bias of the
graph structure, where the most critical challenge is how
to determine the dominant directions of the anisotropic fea-
tures. In additionally, on hyperbolic manifolds, neither the
wrapped normal distribution of the isotropic setup nor the
anisotropic setup satisfies this property:

η ̸∼ η1 ⊕c η2,

η ∼ N c
H
(
0, (σ2

1 + σ2
2)I
)
,

η1 ∼ N c
H
(
0, σ2

1I
)
,η2 ∼ N c

H
(
0, σ2

2I
)
.

(4)

where c is Hyperbolic curvature and N c
H is the Wrapped

Gaussian distribution. We propose a hyperbolic anisotropic
diffusion framework to solve both challenges. The detailed
proof process can be found in the Appendix C.1. The core
idea is to select the main diffusion direction (i.e., angle)
based on the similarity clustering of nodes, which is equiv-
alent to dividing the hyperbolic latent space into multiple
sectors. Then we project the nodes of each cluster onto its
center’s tangent plane for diffusion.

Let h denote the embedding of the graph in the hyperbolic
space and hi denote the i-th node in it. Let hi belong to
the k-th cluster and its clustering center coordinates are µk,
then the node hi is represented in the tangent space of µk

as x0i :
x0i = logmapcµk

(hi) . (5)

where µk is the central point of cluster k obtained by
Hyperbolic-Kmeans (h-kmeans) (Hajri et al., 2019) algo-
rithm. Note that the clusters can be obtained by any clus-
tering algorithm based on similarity in the pre-processing
stage. Moreover, the hyperbolic clustering parameter k has
the following property:

Theorem 3.1. Given the hyperbolic clustering parameter
k ∈ [1, n], which represents the number of sectors divid-
ing the hyperbolic space (disk). The hyperbolic anisotropic
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diffusion is equivalent to directional diffusion in the Klein
model Kn

c with multi-curvature ci∈|k|, which is an approxi-
mate projecting onto the tangent plane set Toi∈{|k|} of the
centroids oi∈{|k|}.

The proof is in the Appendix C.2. This property elegantly
establishes the relationship between our approximation al-
gorithm and the Klein model with multiple curvatures. Our
algorithm exhibits specific behaviors based on the value of
k, it allows for a more flexible and nuanced representation
of anisotropy based on the underlying hyperbolic geometry,
enabling improved accuracy and efficiency in subsequent
noise addition and training.

Geometric Constraints. Hyperbolic geometry can natu-
rally and geometrically describe the connection pattern of
nodes during graph growth (Papadopoulos et al., 2012). The
Popularity-Similarity Optimization (PSO) model is a gen-
erative network model to describe how random geometric
graphs grow in hyperbolic spaces. Specifically, in hyper-
bolic geometric space, the new node distance can represent
a convenient single-metric by using a combination of the
two geometric attractiveness priors, radial popularity and
angular similarity. As shown in Figure 2(a), the popularity
of a node can be abstracted by its radial coordinates and
the similarity can be expressed by its angular coordinate
distances in the hyperbolic space, and more detail can be
referred to Appendix D.

Our goal is to model a diffusion with geometric radial
growth, and where this radial growth is consistent with
hyperbolic properties. Considering that we need to maintain
this kind of hyperbolic growth tendency in the tangent plane,
we use the following formulas:

xt =
√
αtx0 +

√
1− αtϵ+ δ tanh[

√
cλc

ot/T0]x0, (6)

where ϵ is Gaussian noise and δ is the radial popularity
coefficient that controls the diffusion strength of each node
in hyperbolic space. T0 is a constant to control the speed of
control of radial growth rate. λc

x = 2
1+c∥x∥2

Then, we discuss the content only on a cluster tangent plane.
The main reason why the general diffusion model does not
perform well on the graph is the decline of the fast signal-to-
noise ratio. Inspired by directional diffusion model (Yang
et al., 2023), we designate the direction of the geodesic
between each cluster’s center point and the north pole o
as the target diffusion direction while imposing constraints
for forward diffusion processes. Specifically, the angular
similarity constraints for each node i can be obtained by:

z = sgn (logmapco (hµi
)) ∗ ϵ,

ϵ ∼ N (0, I) ,
(7)

where z represents the angle constrained noise,ϵ is the Gaus-
sian noise, hµi

is the clustering center corresponding to the

i-th node. When the number of steps is spread out enough,
our results would satisfy some normal distribution.

Combining the radial and angular constraints, our geometric
diffusion process can be described as:

xt =
√
αtx0 +

√
1− αtz+ δ tanh[

√
cλc

ot/T0]x0, (8)

Theorem 3.2. Let xt indicate the node x at the t-step in
the forward diffusion process Eq (8). As t → ∞, the low-
dimensional latent representation xt of node x satisfies:

lim
t→∞

xt ∼ Nf (δx0, I) . (9)

where Nf is an approximate folded normal distribution.
More detail and proof can be referred to in the Appendix E,
and more implementation details are provided in Appendix
F.

Figure 2(b) illustrates examples of the diffusion process
with/without geometric constraints in hyperbolic space. We
can observe that by adding isotropic noise to the hyperbolic
latent diffusion process, the final diffusion result is com-
pletely random noise. In contrast, the hyperbolic latent dif-
fusion process with geometric constraints can significantly
preserve the anisotropy of the graph. In other words, after
the graph diffusion, the result still preserves the important
inductive bias of the graph below rather than the completely
random noise, which will directly affect the performance
and generation quality of the denoising process

Training and generation. Then, we follow the standard
denoising process (Ho et al., 2020; Yang et al., 2023) and
train a denoising network to simulate the process of reverse
diffusion. We use a denoising network architecture of DDM
based on UNET for training to predict x0, as follows:

LHDM = E ∥fθ (Xt, A, t)−X0∥2 . (10)

Note that the loss function of our geometric diffusion model
remains consistent with DDPM (Ho et al., 2020) based on
Theorem 3.2. The proof refers to the Appendix F.

Regarding the generation, we propose an efficient sampling
method based on theorem 3.1. Furthermore, we demonstrate
that it is possible to sample at once in the same tangent space
instead of sampling in different cluster center tangent spaces
to improve efficiency. As to the denoising process, we adopt
a denoising process that can be used in generalized diffusion
models(Yang et al., 2023). Specifically, where a recovery
operator and a noise addition operator are abstracted for use
in various diffusion methods. All the specifics regarding
each stage of the diffusion process, along with the theoreti-
cal derivation, are documented in the Appendix F.

Similar to other hyperbolic learning model (Krioukov et al.,
2010; Chami et al., 2019; Ganea et al., 2018a), we utilize
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Algorithm 1 Training of HypDiff
Input: Graph G = {X,A}; Number of training epochs
E;
Parameter: θ initialization;
Output:Predicted raw embedding x̂H
Encoding node to hyperbolic space xH← Eq. (3);
Compute k-clusters by h-Kmeans;
Project the embeddings onto each Toi∈{|k|}

for e = 1 to E do
Get the embeddings xHt of t-steps Eq. (8) ;
Predict the raw embeddings x̂H ;
Compute the loss L = LHDM← Eq. (10);
Update θ ← θ − η∇θ.

end for

the Fermi-Dirac decoder (Krioukov et al., 2010; Nickel &
Kiela, 2017) to compute the connection probability.

Fc

(
u, v; θF

)
=
[
e(d

c
H(u,v)

2−ρ)/τ + 1
]−1

, (11)

where dc
H is the hyperbolic distance and (ρ, τ) are hyper-

parameters of Fermi-Dirac distribution. Finally, the results
generated by each tangent space are mapped back into the
original hyperbolic space to reconstruct the final generated
graph. The diffusion and reverse processes are summarized
in Algorithm 1 and Algorithm 2.

Complexity Analysis. Let G = (X,E) be one of the
graphs set Gs, where X is the n-dimensional node eigen-
vector and E is the m ∗m-dimensional adjacency matrix
of the graph. s is the number of graphs in the graph set
Gs. Time complexity: The time complexity of hyperbolic
graph encoding is O((1(t) + k)md). For the forward dif-
fusion process, the complexity is O(md). The training of
denoising networks is essentially the same as other diffusion
models and does not require additional computing time as
O(md) ∗ 1(t). Overall, the total time complexity of the
diffusion process is O(1(t) ∗ 2md) +O((k+2)md) in one
epoch. Space complexity In our approach, since we embed
the graphs in hyperbolic space, each graph is represented as
a m ∗ d-dimensional vector in the hyperbolic space, which
means that our diffusion scale is O(smd). For a more de-
tailed complexity analysis please refer to Appendix G.

4. Experiment
In this section, we conduct comprehensive experiments to
demonstrate the effectiveness and adaptability of HypDiff 1

in various datasets and tasks. We first presented the experi-
mental settings and then showcased the results.

1The code is available at https://github.com/
RingBDStack/HypDiff.

4.1. Datasets

We estimate the capabilities of HypDiff in various down-
stream tasks while conducting experiments on synthetic and
real-world datasets. In addition, we construct and apply
node-level and graph-level datasets for node classification
and graph generation tasks. We elaborate on more details as
follows.

Synthetic Datasets. We first use two famous graph theoret-
ical models, Stochastic Block Model (SBM) and Barabási-
Albert (BA), to generate a node-level synthetic dataset with
1000 nodes for node classification, respectively. (1) SBM
portrays five equally partitioned communities with the edge
creation of intra-community p = 0.21 and inter-community
q = 0.025 probabilities. (2) BA is grown by attaching new
nodes each with random edges between 1 and 10. Then
we employ four generic datasets with different scales of
nodes |V | for graph generation tasks. Then, four datasets
are generated for the graph-level task. (3) Community con-
tains 500 two-community small graphs with 12 ≤ |V | ≤ 20.
Each graph is generated by the Erdős-Rényi model with the
probability for edge creation p = 0.3 and added 0.05 |V |
inter-community edges with uniform probability. (4) Ego
comprises 1050 3-hop ego-networks extracted from the
PubMed network with |V | ≤ 20. Nodes indicate docu-
ments and edges represent their citation relationship. (5)
Barabási-Albert (G) is a generated graph-level dataset by
the BA model (aka. BA-G to distinct node-level BA) with
500 graphs where the degree of each node is greater than
four. (6) Grid describes 100 standard 2D grid graphs which
have each node connected to its four nearest neighbors.

Real-world Datasets. We also carry out our experiments on
several real-world datasets. For the node classification task,
we utilize (1) two citation networks of academic papers in-
cluding Cora and Citeseer, where nodes express documents
and edges represent citation links, and (2) Polblogs dataset
which is political blogs and is a larger size dataset we used.
With the graph generation task, we exploit four datasets
from different fields. (3) MUTAG is a molecular network
whose each graph denotes a nitro compound molecule. (4)
IMDB-B is a social network, symbolizing the co-starring
of the actors. (5) PROTEINS is a protein network in which
nodes represent the amino acids and two nodes are con-
nected by an edge if they are less than 6 Angstroms apart.
(6) COLLAB is a scientific collaboration dataset, reflecting
the collaboration of the scientists. Statistics of the real-world
datasets Table H can be found in Appendix H.

4.2. Experimental Setup

Baselines. To evaluate the proposed HypDiff , we com-
pare it with well-known or state-of-the-art graph learning
methods which include: (1) Euclidean graph representa-
tion methods: VGAE (Kipf & Welling, 2016) designs a
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Table 1. Summary of node classification Micro-F1 and Macro-F1 scores (%) based on the average of five runs on synthetic and real-world
datasets. (Result: average score ± standard deviation (rank); Bold: best; Underline: runner-up.)

Method
Synthetic Datasets Real-world Datasets

Avg. R.SBM BA Cora Citeseer Polblogs
Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1

VGAE 20.5±2.1 15.4±1.1 37.4±1.7 15.9±2.3 79.7±0.4 78.1±0.2 63.8±1.4 55.5±1.3 79.4±0.8 79.4±0.8 4.6
ANE 39.9±1.1 33.9±1.8 46.0±3.0 19.3±2.7 69.3±0.1 66.4±0.1 50.2±0.1 49.5±0.6 80.8±0.1 80.7±0.1 4.3

GraphGAN 38.6±0.5 38.9±0.3 43.6±0.6 24.6±0.5 71.7±0.1 69.8±0.1 49.8±1.0 45.7±0.1 77.5±0.6 76.9±0.4 4.8

P-VAE 57.9±1.3 53.0±1.5 38.4±1.4 20.0±0.3 79.6±2.2 77.5±2.5 67.9±1.7 60.2±1.9 79.4±0.1 79.4±0.1 3.2
Hype-ANE 18.8±0.3 11.9±0.1 56.9±2.4 31.6±1.2 80.7±0.1 79.2±0.3 64.4±0.3 58.7±0.0 83.6±0.4 83.6±0.4 3.0

HypDiff 70.5±0.1 69.4±0.1 58.3±0.1 40.0±0.1 82.4±0.1 81.2±0.1 67.8±0.2 60.4±0.3 85.7±0.1 85.4±0.1 1.1

variational autoencoder for graph representation learning.
ANE (Dai et al., 2018) trains a discriminator to align the
embedding distribution with a predetermined fixed prior.
GraphGAN (Wang et al., 2018b) learns the sampling distri-
bution for negative node sampling from the graph. (2) Hy-
perbolic graph representation learning: P-VAE (Math-
ieu et al., 2019) is a variational autoencoder utilizing the
Poincaré ball model within hyperbolic geometric space.
Hype-ANE (Liu et al., 2018) is a hyperbolic adversarial
network embedding model that extends ANE into hyper-
bolic geometric space. (3) Deep graph generative mod-
els: VGAE (Kipf & Welling, 2016) can be used for graph
generation tasks by treating each graph as a batch size.
GraphRNN (You et al., 2018) is a deep auto-regressive gen-
erative model that focuses on graph representations under
different node orderings. (4) Graph diffusion generative
models: GDSS (Jo et al., 2022) simultaneously diffuses
node features and adjacency matrices to learn their scoring
functions. DiGress (Vignac et al., 2022) is a discrete de-
noising diffusion model that progressively recovers graph
properties by manipulating edges. GraphGDP (Huang et al.,
2022) is a position-enhanced graph score-based diffusion
model for graph generation. EDGE (Chen et al., 2023) is a
discrete diffusion process for large graph generation.

Settings. A fair parameter setting for the baselines is the
default value in the original papers and appropriate adjust-
ments for new datasets. For HypDiff, the encoder is 2-layer
HGCN with 256 representation dimensions, the edge drop-
ping probability to 2%, the learning rate to 0.001. Addition-
ally, the diffusion processing set diffusion strength δ as 0.5,
and the denoising network follows the setting in DDM(Yang
et al., 2023). We use Adam as an optimizer and set L2 reg-
ularization strength as 1e-5. For the metric, we use the
F1 scores of the node classification task and the maximum
mean discrepancy scores of Degree, Cluster, and Spectre
and the F1 score of precision-recall and density-coverage
(F1 pr and F1 dc) to evaluate graph generation results.

The richer experimental results under the other indicators
are shown in Appendix I. All experiments adopt the imple-
mentations from the PyTorch Geometric Library and Deep

Graph Library. The reported results are the average scores
and standard deviations over 5 runs. All models were trained
and tested on a single Nvidia A100 40GB GPU.

4.3. Performance Evaluation

We show the F1 scores of the node classification task in
Table 1 and the statistics of MMD distance and F1 scores
between the original and generated graph in the graph gener-
ation task in Table 2, Table 3and Table C.3. A higher score
reported in F1 indicates a more accurate prediction of the
node and fidelity of the generated graph. At the same time,
a smaller MMD distance suggests better generative capabil-
ities of the model from the perspective of graph topological
properties.

Node classification. HypDiff demonstrates superior per-
formance which outperforms nearly all baseline models,
achieving the highest ranking and revealing excellent gener-
alization. This implies that HypDiff can preserve essential
properties within complex structures, enabling better distinc-
tive and utility of the dependencies between nodes across
hierarchical levels in hyperbolic space.

Graph Generation. Successively, we focused on validating
the graph generation capability of HypDiff. The results of
the MMD metrics (You et al., 2018) for the graph genera-
tion task are reported in Table 2 and Table 3. Our MMD
is computed with the RBF kernel which is a more stable
and comprehensive metric to measure the diversity and re-
alism of generated graphs Using the finer-grained metrics,
we observed our approach’s outstanding performance. We
are further concerned with the fidelity and diversity of the
generated results which yielded conclusions consistent with
the previous and are reported in Table C.3. Specifically,
HypDiff depicts superior overall performance compared to
the state-of-the-art model auto-regressive model GraphRNN
and discrete diffusion method DiGress. Furthermore, our
model can effectively capture the local structure through
similarity constraints and achieve competitive performance
on highly connected graph data.
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Table 2. Generation results about the MMD distance between the original and generated graphs.
(Result: scores (rank) and average rank; Bold: best; Underline: runner-up.)

Method
Synthetic Datasets Real-world Datasets

Community BA-G MUTAG PROTRINS
Degree Cluster Spectre Degree Cluster Spectre Degree Cluster Spectre Degree Cluster Spectre

VGAE 0.365 0.025 0.507 0.775 1.214 0.398 0.255 2.000 0.744 0.705 0.979 0.700
GraphRNN 0.002 0.027 0.004 0.122 0.262 0.007 0.537 0.013 0.476 0.009 0.071 0.017

GDSS 0.094 0.031 0.052 0.978 0.468 0.917 0.074 0.021 0.003 1.463 0.168 0.013
DiGress 0.226 0.158 0.194 0.654 1.171 0.268 0.100 0.351 0.082 0.108 0.062 0.079

GraphGDP 0.046 0.016 0.042 0.698 0.188 0.053 0.127 0.057 0.050 0.103 0.240 0.088
EDGE 0.021 0.013 0.040 0.282 0.010 0.090 0.024 0.597 0.468 0.033 0.523 0.024

HypDiff 0.002 0.010 0.028 0.216 0.021 0.004 0.048 0.001 0.040 0.133 0.004 0.012

Table 3. Generation additional results about the MMD distance between the original and generated graphs.

Method
Synthetic Datasets Real-world Datasets

Ego Grid IMDB-B COLLAB
Degree Cluster Spectre Degree Cluster Spectre Degree Cluster Spectre Degree Cluster Spectre

VGAE 0.414 0.156 0.456 0.050 2.000 0.145 0.514 1.405 0.700 0.418 1.174 0.700
GraphRNN 0.206 0.539 0.157 0.203 0.043 0.042 0.137 0.252 0.423 0.044 0.036 0.510

GDSS 1.034 0.143 0.667 0.111 0.005 0.886 0.904 1.729 0.748 0.773 1.589 0.502
DiGress 0.110 0.056 0.122 0.689 1.115 0.203 0.166 0.425 0.159 0.022 0.008 0.003

GraphGDP 0.059 0.115 0.054 0.872 1.001 0.174 0.123 0.638 0.257 0.092 0.291 0.138
EDGE 0.023 0.048 0.023 0.223 0.072 0.802 0.041 0.874 0.026 0.023 0.569 0.034

HypDiff 0.075 0.090 0.015 0.422 0.665 0.137 0.034 0.257 0.030 0.016 0.023 0.009

4.4. Analysis of HypDiff

In this subsection, we present the experimental results to
intuitively convey our discovery and initiate a series of dis-
cussions and analyses.

Ablation Study. This study is to highlight the role of geo-
metric constraints of HypDiff. We conducted experiments
on three real-world datasets to validate the node classifica-
tion performance and removed radial popularity (HypDiff
(w/o P)), angular similarity (HypDiff (w/o S)) and total ge-
ometric prior(HypDiff (w/o PS)) components as the variant
models. We show the results in Figure 4. The radial popular-
ity is evident in facilitating hyperbolic diffusion processes,
thereby showcasing the advantage of hyperbolic geometry
in capturing the underlying graph topology. Furthermore,
the angular similarity also significantly preserves the local
structure of the graph, compensating for the limitations of
hyperbolic space in capturing local connectivity patterns.
In summary, the hyperbolic geometric prior plays a crucial
role in capturing non-Euclidean structures.

Sensitivity Analysis of Geometric Constraints. To in-
vestigate the impact of the number of clusters k and the
geometric prior coefficient δ on the model performance,
we conducted the sensitivity analysis on the real-world and
synthetic graph datasets.

As to cluster k can be understood as the strength of the an-
gular constraint, the results of three datasets with different
structures are shown in Fig 5 (Left). Specifically, Cora
has a real-world connected structure, SBM has a complex
community structure, and Fractal has self-similarity and
hierarchy properties. It can be observed that k has different
sensitivities in different structured datasets, indicating that
different graph structures have different approximate accu-
racies for anisotropy capture. (1) Cora: Being a real dataset,
Cora exhibits a highly complex structure. A larger value of
k can better capture its data characteristics. However, exces-
sively large values of k, such as k=500, introduce significant
anisotropy. This excessive anisotropy poses challenges in
learning the dataset’s probability distribution. (2) SBM:
Despite having only five major categories, SBM displays
a complex structure within each community. Increasing k
yields improved results, likely due to the intricacies within
each community that benefit from a higher resolution. (3)
Hierarchical Fractal: Interestingly, changes in k have min-
imal impact on the training effectiveness of Hierarchical
Fractal. This phenomenon may cause by the self-similarity
inherent in its fractal structure, since it preserves consistent
local geometric properties.

Correspondingly, geometric prior coefficient δ can be un-
derstood as the strength of the radial constraint, the results
of three real-world datasets are shown in Fig 5 (Right). The
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Figure 4. Ablation study results. Figure 5. Sensitivity analysis of geometric constraints.
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Figure 6. Efficiency analysis on IMDB-B for graph generation.

stronger the constraint, the smaller the diffusion step in the
radial direction of the hyperbolic space. In other words,
the radial constraint adjusts the degree of coupling between
graph diffusion and hyperbolic geometry, approximating
Euclidean space when radial growth at polar coordinates is
linear. The experiment results depicted in the figure illus-
trate a progressive improvement as the parameter δ gradu-
ally increases from very small values. This improvement is
attributed to the retention of more geometric a priori infor-
mation during the diffusion process. However, as δ contin-
ues to increase, there is an initial decline in effectiveness,
possibly due to the heightened geometric prior information.
Actually, the increase in geometric information also leads
to an increase in anisotropy during diffusion, resulting in
a reduced variance among nodes within the same tangent
space. Consequently, learning an optimal probability distri-
bution becomes more challenging. As the geometric prior
information further increases, a rebound effect is observed,
indicating that the increment in prior information surpasses
the interference caused by anisotropy on node representa-
tion. In additional, it can be observed that the tree-like
graphs requires lower radial constraints, while the graph
with high connectivity requires stronger radial constraints.

Diffusion Efficiency Analysis. We report the training time
for HypDiff and other graph diffusion baselines with the
same configurations on IMDB-B. We conduct experiments
with the hardware and software configurations listed in Sec-
tion 4.2. We report the results from the time and space costs
of the diffusion process. The result is shown in Figure 6, our
HypDiff comprehensively outperforms other baselines in
diffusion time and GPU memory cost. Compared with the
discrete graph diffusion model, our model directly diffuses
each node of the graph with structure-preserving based on
the latent diffusion model, so the space complexity is much
lower than that of the direct diffusion of discrete and sparse
structural information(e.g. adjacent/Laplace matrix). The
performance of each dataset is in the Appendix J,

Visualization. We compare the contributions of two dif-
fusion generation models, HypDiff and GDSS, to graph
generation tasks by visualizing networks generated by five
well-accepted graph theoretical models. By comparing the
ability to generate network structures with different topolog-
ical features, we demonstrate the superiority of our model
in terms of topological feature capability preservation. Also,
for highly connected grid structures, we discuss the short-
comings of our model in this regard. We discuss and show
the visualization as Figure C.3 in the Appendix I.2.

5. Conclusion
In this paper, we introduce hyperbolic geometric before
dealing with the conflict problem between discrete graph
data and continuous diffusion model, and propose a novel
hyperbolic geometric diffusion model named HypDiff. We
propose an improved hyperbolic Gaussian noise generation
method based on radial popularity to deal with the additive
failure of Gaussian distributions in hyperbolic space. The
geometric constraints of angular similarity are applied to the
anisotropic diffusion process, to preserve as much various
local structure information as possible. Extensive experi-
ments conducted on both synthetic and real-world graphs
demonstrate the comprehensive capability of HypDiff.
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A. Summary of Notations.

Table C.1. Summary of notations.
Symbol Description

G Graph
X Feature matrix
A Adjacent matrix
d Dimension of the latent space
n Number of nodes
H Hyperbolic space
K Klein model

ṪµHn tangent space of node µ
c Hyperbolic curvature
η Random variable

expmapc
µ(u) Exponential map.

logmapc
µ (x) Logarithmic map

λc
x Curvature metric parameters

⊕c Möbius’ addition
N c

H Wrapped normal distribution
N (0, I) Gaussian distribution

Nf (δx0, I) . Approximate folded normal distribution√
αt Diffusion coefficient
δ Radial constraint coefficient
k Hyperbolic clustering parameter
x0 Initial diffusion embedding coordinates
ϵ Gaussian noise
z Angular constrained Gaussian noise
h Hyperbolic embedding coordinates

B. Anisotropic Diffusion with/without Angular Noise
We refer to the anisotropic angular noise mentioned in Directional Diffusion Model(DDM) (Yang et al., 2023):

ϵ′ = sgn(x0)⊙ |ϵ̄| (C.1)

where ϵ denotes the Gaussian noise, x0 denotes the graph nodes represent embedding coordinates.

Figure C.1 shows the SNR results of angular noise and white noise in the diffusion process, respectively. With the iterations
(diffusion steps) increasing, the SNRAngular(red) curve of angular noise is earlier than the SNRWhite(blue) curve of
white noise. The blue curve shows that the isotropic white noise rapidly masks the underlying anisotropic structure or signal
during the standard diffusion process, which indicates the local details of the graph structure are greatly lost. HypDiff (red
curve) benefits from the angular similarity constraint and can effectively preserve the anisotropic community structure
during the diffusion process.
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Figure C.1. Curve of Signal-to-Noise Ratio of different diffusion steps.
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C. Proof and Analysis
C.1. Proof of the absence of additivity of the package normal distribution

Description of symbols. Bd
c is a d-dimentional Poincaré Ball space with curvature c. Rd is a d-dimensional Euclidean

space.G(z) is the metric tensor of the hyperbolic space. dc
p is the hyperbolic distance. We first introduce the expression of

metric tensor G(z) in hyperbolic space and the hyperbolic distance dc
p:

G(z) =

(
1 0

0
(

sinh(
√
cr)√

cr

)2
Id−1

)
,

dc
p(z,y) =

1√
c
cosh−1

(
1 + 2c

∥z − y∥2

(1− c ∥z∥2)(1− c ∥y∥2)

)
.

(C.2)

Following the P-VAE (Nickel & Kiela, 2017) we can then obtain the differential and integral operators by transforming
under hyperbolic polar coordinates and Euclidean space as:

ds2Bd
c
= (λc

z)
2(dz21 + · · ·+ dz2d) =

4

(1− c∥x∥2)2
dz2

=
4

(1− cρ2)2
(dρ2 + ρ2ds2Sd−1),

(C.3)

let r = dc
p, we have

r =

∫ ρ

0

λc
tdt =

∫ ρ

0

2

1− ct2
dt =

∫ √
cρ

0

2

1− t2
dt√
c

=
2√
c
tanh−1(

√
cρ).

(C.4)

Then, we have

ds2Bd
c
=

4

(1− cρ2)2
1

4
(1− cρ2)2dr2 +

(
2

ρ

1− cρ2

)2

ds2Sd−1

= dr2 +

2

1√
c
tanh(

√
c r2 )

1− c
(

1√
c
tanh(

√
c r2

)2


2

ds2Sd−1

= dr2 +

(
1√
c
sinh(

√
cr)

)2

ds2Sd−1 ,

(C.5)

when c→ 0,it recovers the Euclidean line element as

ds2Rd = dr2 + r2ds2Sd−1 . (C.6)

Then, we have the integral calculation as∫
Bd
c

f(z)dM(z) =

∫
Bd
c

f(z)
√
|G(z)|dz

=

∫
TµBd

c
∼=Rd

f(v)
√
|G(v)|dv

=

∫
R+

∫
Sd−1

f(r)
√
|G(r)|drrd−1dsSd−1

=

∫
R+

∫
Sd−1

f(r)

(
sinh(

√
cr)√

cr

)d−1

drrd−1dsSd−1

=

∫
R+

∫
Sd−1

f(r)

(
sinh(

√
cr)√

c

)d−1

drdsSd−1 .

(C.7)
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Proof. We introduce the probability density distribution of the wrapped normal distribution. The wrapped normal distribution
is mapped to a hyperbolic space by taking the normal distribution in the tangent plane TµBd

c through the exponential
map (Said et al., 2014). One can obtain samples as follows:

z = expcµ

(
G(µ)−

1
2 v
)
= expcµ

(
v

λc
µ

)
,withv ∼ N (·|0,Σ). (C.8)

Anisotropic. In the anisotropic settings, its probability density can be given by:

NW
Bd
c
(z|µ,Σ) = N

(
G(µ)1/2 logµ(z) |0,Σ)

( √
cdcp(µ, z)

sinh(
√
cdcp(µ, z))

)d−1

= N
(
λc
µ logµ(z)

∣∣0,Σ)( √
cdcp(µ, z)

sinh(
√
cdcp(µ, z))

)d−1

.

(C.9)

We can plug its density with introducing the variable v = rα = λc
µ logµ(z) and utilizing the metric tensor, and we have∫

Bd
c

NW
Bd
c
(z|µ,Σ)dM(z)

=

∫
TµBd

c
∼=Rd

N (v | 0,Σ)
( √

c ∥v∥2
sinh(

√
c ∥v∥2)

)d−1√
|G(v)|dv

=

∫
Rd

N (v | 0,Σ)
( √

c ∥v∥2
sinh(

√
c ∥v∥2)

)d−1(
sinh(

√
c ∥v∥2)√

c ∥v∥2

)d−1

dv

=

∫
Rd

N (v | 0,Σ) dv.

(C.10)

Next, we derive whether the sum of two independent wrapped normally distributed variables still satisfies the wrapped
normal distribution.

NW
Bd
c
(z1|µ1,Σ1) ∗ NW

Bd
c
(z2|µ2,Σ2)

=

∫
Bd
c

NW
Bd
c
(z − z2|µ1,Σ1)NW

Bd
c
(z2|µ2,Σ2)dM(z2)

=

∫
Rd

N (v − v2 | 0,Σ1)N (v2 | 0,Σ2)

( √
c ∥v − v2∥2

sinh(
√
c ∥v − v2∥2)

)d−1

dv2

NW
Bd
c
(z1|µ1,Σ1) ∗ NW

Bd
c
(z2|µ2,Σ2) ≁ NW

Bd
c
(z|µ,Σ).

(C.11)

Isotropic. In the isotropic setting, the density of the wrapped normal is given by:

NW
Bc
(z|µ, σ2) =

dνW(z|µ, σ2)

dM(z)

= (2πσ2)−d/2 exp

(
−
dcp(µ, z)

2

2σ2

)( √
cdcp(µ, z)

sinh(
√
cdcp(µ, z))

)d−1

.

(C.12)

Its integral form can be given by: ∫
Bd

c

NW

Ed
c

(z|µ, σ2)dM(z)

=

∫
R+

∫
d−1
S

1

ZR
e−

r2

2σ2 rd−1drds
Sd−1,

(C.13)
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where ZR is the constant, and it is defined as

ZR =ζ

(
d− 1

k

)
e

(d−1−2k)2

2 cσ2

[
1 + erf

(
(d− 1− 2k)

√
cσ√

2

)]
,

ζ =
2πd/2

Γ(d/2)

√
π

2
σ

1

(2
√
c)d−1

d−1∑
k=0

(−1)k.
(C.14)

Thus, we can derive its additivity:

NW
Bd
c
(z1|µ1,Σ1) ∗ NW

Bd
c
(z2|µ2,Σ2)

=

∫
Bd
c

NW
Bd
c
(z − z2|µ1,Σ1)NW

Bd
c
(z2|µ2,Σ2)dM(z2)

=

∫
R+

∫
d−1
S

1

ZR2 e
− (r−r2)2

2σ2 (r − r2)
d−1γc

pe
− (r2)2

2σ2 (r2)
d−1drds

Sd−1

=

∫
R+

∫
d−1
S

1

ZR2 e
− (r2−2rr2+2r22)

2σ2 (r2(r − r2))
d−1γc

pdrdsSd−1

γc
p =

( √
cdcp(µ1, z1)

sinh(
√
cdcp(µ1, z1))

)d−1

NW
Bd
c
(z1|µ1,Σ1) ∗ NW

Bd
c
(z2|µ2,Σ2) ≁ NW

Bd
c
(z|µ,Σ).

(C.15)

Thus, we have demonstrated the lack of additivity in the wrapped normal distribution.

C.2. Proof of Theorem 3.1

In hyperbolic geometry, four commonly used equivalent models are the Klein model, the Poincare disk model, the Lorentz
model, and the Poincare half-plane model. For our analysis in this study, we utilize the Lorentz model. (Ungar, 1999)

Lorentz model Hn can be denoted by a set of points z(z ∈ Rn+1) through Lorentzian product:

⟨z, z′⟩L = −z0z′0 +
n∑

i=1

ziz
′
i, (C.16)

Hn =

{
z ∈ Rn+1 : ⟨z, z⟩L =

1

c
, z0 > 0

}
. (C.17)

Tangent space TµHn is the tangent space of Hn at µ. TµHn can be represented as the set of points that satisfy the
orthogonality relation with respect to the Lorentzian product:

TµHn := {u : ⟨u,µ⟩L = 0}. (C.18)

Parallel transport and inverse parallel transport. For an arbitrary pair of point µ, ν ∈ Hn, the parallel transport from ν
to µ is defined as a map PTν→µ from TνHn to TµHn that carries a vector in TνHn along the geodesic from ν to µ without
changing its metric tensor.

The explicit formula for the parallel transport on the Lorentz model is given by:

PTc
ν→µ(v) = v +

⟨µ− αν, v⟩L
α+ 1

(ν + µ), (C.19)

where α = −⟨ν, µ⟩L.The inverse parallel transport is given by:

v = PTc
µ→ν(u). (C.20)
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Exponential map and Logarithmic map. Exponential map expmu:TµHn → Ḣn is a map that we can use to project a
vector ν in TµHn to Hn.The explicit formula for the exponential map on the Lorentz model is given by:

z = expcµ(u) = cosh (∥u∥L)µ+ sinh (∥u∥L)
u

∥u∥L
. (C.21)

The logarithmic map is defined to compute the inverse of the exponential map, mapping the point back to the tangent space.
It is given by:

u = logcµ(z) =
arccosh(α)√

α2 − 1
(z − αµ), (C.22)

where α = −⟨µ, z⟩L.

Klein model. This model of hyperbolic space is a subset of Rn given by Kn, and a point in the Klein model can be obtained
from the corresponding point in the hyperbolic model by projection:

πH→K(x)i =
xi

x0
. (C.23)

with its inverse given by

π−1
K→H(x) =

1√
1− ∥x∥2

(1,x). (C.24)

An interesting approach is that we can use the angle-preserving nature of the Klein model to construct a mapping from the
Lorentz tangent plane to the Klein model via the spherical pole mapping Pc:

kj = Pc(xj) =
1

−c+
∑n

i=1 x
2
i

(x2
j ). (C.25)

Proof. In our model, m represents the number of clusters and hi(hi ∈ Hn) represents the points in class i(i ∈ 1, 2, 3, ...,m),
µi denotes the hyperbolic center of the cluster i.Each point hi will be mapped to the tangent plane TµiHn of its center µi.
Let xi denote the point after mapping to the tangent plane, it can be calculated by:

xi = logcµi
(hi) (C.26)

If we consider all the points as being in the tangent plane to the North Pole ToHn, then their corresponding coordinates are:

X = (x1, x2, ..., xm) (C.27)

For a curvature ci, if the following equation is satisfied:

logcio (hi) = PTc0
o→µi

(logc0o (hi)) (C.28)

then it is possible to transform the tangent planes from the various centers to the tangent plane at the North Pole and unify
them into the Klein model. The mapping point k is given by:

ki = Pc0(logc0o (hi))

= Pc0(PTc0
µi→o(logµi

(hi)))

= Pc0(PTc0
µi→o(xi))

= πH→K(hi)

= Pci(logcio (hi)).

(C.29)

This implies that our approach essentially involves mathematically projecting points to approximate a Klein model comprising
multiple curvatures. The process represents a topological reconstruction of the geometric space derived from the original
graph structure, thereby enhancing our ability to capture the geometric properties inherent in the original graph.

16



Hyperbolic Geometric Latent Diffusion Model for Graph Generation

D. Hyperbolic Geometric Priori of Graph
The Popularity-Similarity Optimization (PSO) model (Papadopoulos et al., 2012) is a generative network model to describe
how random geometric graphs grow in hyperbolic Spaces to optimize the trade-off between node prevalence (abstracts by
radial coordinates) and similarity (expressed by angular coordinate distances), which exhibits many common structural and
dynamic features of realistic networks, such as clustering, small-worldness, scale-freeness and rich-clubness. It uses the
node’s birth time t = 1, 2, · · · , T to proxy popularity, giving preference to older nodes that are more likely to become popular
and attract connections, which is similar to Key Opinion Leaders (KOLs) in social networks The angular distances between
nodes denote their similarity distances by using cosine similarity or any other measure. The node t can be represented as
polar coordinates (rt, θt), and the objective is to establish new connections while optimizing the product between popularity
and similarity. To simulate a realistic graph with scale-freeness (power-law degree distribution), let radial coordinate rt of
the new node t have rt = ln t, indicating that the node t prefers to connect popular nodes. In hyperbolic geometric space,
the new node distance can represent a convenient single-metric by using a combination of the two geometric attractiveness
priors, radial popularity and angular similarity.

(a) Wrapped Gaussian distributions in hyperbolic space. (b) Angular distributions in hyperbolic space.

Figure C.2. (a) The Wrapped Gaussian distribution is commonly used to generate noise in hyperbolic space. As the µ approaches the edge
of the Poincaré disk, the probability density at the edge of the disk increases, while the probability density at the center becomes sparse. It
indicates a geometric interpretation for the disk radius, that there are always fewer nodes with popularity. (b) In hyperbolic space, the
sectors of the disk are closely related to the community structure in the graph, and noise that follows a mixed Gaussian distribution is
more likely to generate structures with communities. Therefore, angular constraints in the diffusion process are crucial for preserving
community structure information.

D.1. Radial Popularity Coordinates.

In the polar coordinates of hyperbolic space, the radial coordinates of the nodes determine the distortion of the Gaussian
distribution. As shown in Figure C.2. (a), the probability density of the central region is lower, while the probability density
of the edge region is higher. It intuitively follows the laws of physics, the phenomenon of popularity is consistently governed
by the rich club effects. We follow existing hyperbolic methods (Mathieu et al., 2019; Grattarola et al., 2019; Nagano et al.,
2019) and use the wrapped normal distribution to constructive Gaussian processes in hyperbolic spaces.

D.2. Angular Similarity Coordinates.

The angular similarity measures the local connectivity of nodes and is closely related to the community structure of graphs.
As shown in Figure C.2. (b), some existing works (Muscoloni & Cannistraci, 2018) couples the latent hyperbolic network
geometry to this geometry to generate networks with strong clustering, scale-free degree distribution and a non-trivial
community structure. Note that our method does not independently introduce noise to the angular similarity metric, but
rather incorporates angular geometric constraints into a Gaussian random process to achieve a similar anisotropic effect.
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E. Final Probability Density
First, we derive the form of the probability distribution of the forward diffusion process.

Definition: The folded normal distribution. If the probability distribution of Y follows the Gaussian distribution, with
Y∼N

(
µ, σ2

)
. Thus, X = |Y |, satisfies X ∼ FN

(
µ, σ2

)
, where FN

(
µ, σ2

)
denotes the folded normal distribution with

mean µ and variance σ. The density of X is given by

f (x) =
1√
2πσ2

[
e−

1
2σ2 (x−µ)2 + e−

1
2σ2 (x+µ)2

]
(C.30)

The density can be written in a more attractive form

f (x) =

√
2

πσ2
e−

(x2+µ2)
2

2σ2 cosh
(µx
σ2

)
. (C.31)

Specifically, when µ = 0, the density can be represented by

f (x) =

√
2

πσ2
e−

1
2σ2 x2

. (C.32)

which is also named the half-normal distribution.

Definition The random variable X obeys the probability distribution Nf (µ, σ) if and only if the density of X can be given
by

f(x) =


√

2
πσ2 e

− (x−µ)2

2σ2 , x ≥ µ

0, x < µ
. (C.33)

Now we can prove the Theorem 3.2.

Proof. The angle-constrained noise z in the forward diffusion process is given by Eq (7). For the convenience of the
later derivation, it can be assumed that sgn (logmapco (hm)) = 1.Thus, according to the definition of the folded normal
distribution, it follows that:

z ∼ FN (0, I) , (C.34)

Similarly, it can be easily obtained from Eq (8) and Eq (C.34) that the density of xt in the diffusion process can be written
by:

f(xt) =


√

2
πσ2

t
e
− (x−µtx0)2

2σ2
t , x ≥ µtx0

0, x < µ
. (C.35)

where µt =
√
αt + δ tanh[

√
cλc

o(t)/T0], and σt = (1− αt) I .

Thus, the probability density distribution of xt satisfies:

p(xt | x0) = Nf (µt, σt) . (C.36)

lim
t→∞

xt ∼ Nf (δx0, I) . (C.37)

F. Implementation Details of Diffusion Processing
F.1. Loss Prove

In DDPM, the loss function of the training network is derived from the following equation:

Eq

[
DKL(p(xT |x0) ∥ p(xT )) +

∑
t>1

DKL(p(xt−1|xt,x0) ∥ pθ(xt−1|xt))− log pθ(x0|x1)

]
. (C.38)
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Proof. To re-prove the validity of the loss function, it is first necessary to derive the probability distribution of the denoising
process according to the Bayesian formulation:

p (xt−1|xt,x0) =
p (xt|xt−1,x0) p (xt−1|x0)

p (xt|x0)

∝ exp[− (xt−1 − µt−1x0)
2

2(1− αt−1)
−

(xt − (
√
αtxt−1 + βtx0)]

2

4(1− αt)
+

(xt − µtx0)
2

2(1− αt)
]

= exp

{
−1

2
[
(xt−1 − µt−1x0)

2

(1− αt−1)
+

(xt − (
√
αtxt−1 + βtx0)]

2

2(1− αt)
− (xt − µtx0)

2

(1− αt)
]

}
= exp

{
−1

2
[(

1

1− αt−1
+

αt

2(1− αt)
)x2

t−1 − (
2µt−1x0

1− αt−1
+

2
√
αt(xt − βtx0)

(1− αt)
)xt−1 + C(xt, x0)]

}
∝ Nf (µq, σq) .

(C.39)
where µq is given by:

µq =
2[µt−1(1− αt)x0 + (1− αt−1)

√
αt(xt − βtx0)]

2− αt − αt

(C.40)

Based on the above derivation, our goal translates to:

argmin
θ

DKL(q(xt−1|xt,x0) ∥ pθ(xt−1|xt))

= argmin
θ

DKL(Nf (xt−1;µq,Σq(t)) ∥ N (xt−1;µθ,Σq(t)))

= argmin
θ

∫ ∞

0

√
2

πσ2
q

[
e
− 1

2σ2
q
(x−µq)

2
]
log

√
2

πσ2
q

[
e−

1
2σ2 (x−µq)

2
]

√
2

πσ2 e
− 1

2σ2 (x−µθ)2
dx

= argmin
θ

∫ ∞

0

√
2

πσ2
q

[
e
− 1

2σ2
q
(x−µq)

2
]
[− 1

2σ2
(x− µq)

2 +
1

2σ2
(x− µθ)

2]log2edx

= argmin
θ

∫ ∞

0

∣∣(x− µq)
2 − |(x− µθ)

2
∣∣ dx

= argmin
θ

∣∣(µθ − µq)
2
∣∣

(C.41)

Thus after a derivation similar to that of DDPM, we can define the loss function as:

L = E ∥fθ (Xt, A, t)−X0∥2 . (C.42)

F.2. Sample

As demonstrated in Theorem 3.1, the individual tangent planes can be viewed as the tangent planes of a hybrid surface.
The samples can also be sampled directly in the same tangent plane and denoised uniformly. Sampling from the target
distribution is difficult, but sampling from its construction process is easy. We just need to compute an additional direction
matrix. The direction transformation matrix is given by:

T = sgn (logmapco (hm1
) , logmapco (hm2

) , ..., logmapco (hmi
)) (C.43)

F.3. Reverse Denosing Process

In this section, we follow the same denoising process as in DDM (Yang et al., 2023) with the following algorithm.
Specifically, the denoising process is given by:

x̂0 = R(xs, s)

xs−1 = xs −D(x̂0, s) +D(x̂0, s− 1)
(C.44)
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Algorithm 2 Sampling from HypDiff
Input: Graph G = {A,X}; Number of diffusion timesteps T ;
Output: The generated hyperbolic embedding coordinates x̂H.
sample xT from the folded normal distribution← Eq. (C.43)
for t = T to 0 do

predict x̂0 with x̂t,t and A;
de-noise and predict x̂t−1← Eq. (C.44);

end for
mapping the generated x̂0 to the Poincaré embedding x̂H

where R is the restoration operator, D is the addition noise operator, s represents the time steps.

Next, we prove that this algorithm still satisfies our diffusion process:

z(xt, t) =
xt − (

√
αt + δ tanh[

√
cλc

o(t)/T0])x̂0√
1− αt

, (C.45)

D(x̂0, t) = (
√
αt + δ tanh[

√
cλc

o(t)/T0])x̂0 +
√
1− αtẑ, (C.46)

Thus, the denoising process can obtain xt−1:

xt−1 =xt −D(x̂0, t) +D(x̂0, t− 1)

=xt − [(
√
αt + δ tanh[

√
cλc

o(t)/T0])x̂0 +
√
1− αtẑ] + [(

√
αt−1+

δ tanh[
√
cλc

o(t− 1)/T0])x̂0 +
√
1− αt−1ẑ]

=(
√
αt−1 + δ tanh[

√
cλc

o(t− 1)/T0])x̂0 +
√
1− αt−1ẑ

(C.47)

The complete denoising process algorithm is described in Algorithm 2.

G. Complexity Analysis
In this part, we will analyze the time complexity and space complexity of our algorithm using graph set data as an example.
G = (X,E) is one of the graphs set Gs, where X is the n-dimensional node eigenvector and E is the m ∗m-dimensional
adjacency matrix of the graph. s is the number of graphs in the graph set Gs.

G.1. Time Complexity

Hyperbolic embedding and clustering: First, we need to embed each graph G into a hyperbolic space by HGCN. Let the
graph G be embedded after passing through HGCN into the m ∗ d-dimensional vector Hm. The time complexity of this
process can be viewed as O(md) ∗ 1(t), where 1(t) denotes the time through the neural network. The process of clustering
can be approximated with a time complexity of O(kmd), where k denotes the number of clusters. Both the embedding
process and the clustering process occupy a very short time compared to the forward diffusion and training denoising
network process.

Diffusion-forward process:For the forward diffusion process, we need to adjust the noise direction according to the north
pole to the center of the mass vector direction. Since calculating the direction transfer matrix can be prepared in advance
before training, the complexity of this part is O(md). The rest of the process is the same as the normal diffusion process,
and it is sufficient to do the noise addition process once. The time complexity of this part is O(md).

Training of denoising networks: The training of denoising networks is essentially the same as other diffusion models and
does not require additional computing time. So, the time complexity of this part is O(md) ∗ 1(t)

Overall, the time complexity of the diffusion process is O(1(t) ∗ 2md) +O((k + 2)md) in one epoch.

Generation: The main difference between our generation process and other methods is in our noise sampling. Since we
need to sample in different tangent planes in hyperbolic space, which requires each time to judge the tangent plane where
the corresponding sampling point is located, the time complexity of this process is O(m). Compared to the subsequent
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Table C.2. Statistics of real-world datasets.
Dataset #Nodes #Edges #Features #Avg. Degree #Class

L
in

k
P. Cora 2,708 5,429 1,433 3.90 7

Citeseer 3,312 4,732 3,703 2.79 6
Polblogs 1,490 19,025 500 25.54 3

Dataset #Graphs #Avg. Node #Avg. Edge #Max Num Node #Class
G

ra
ph

G
. MUTAG 188 17.9 39.6 28 2

IMDB-B 1,000 19.8 193.1 136 2
PROTEINS 1,113 39.1 145.6 620 2
COLLAB 5,000 74.5 4914.4 492 3

stepwise denoising process, the sampling process takes very little time, which means that we use almost the same amount of
time as the other methods for generation.

G.2. Space Complexity

It is worth noting that compared to other graph diffusion models, our model has a significant advantage over other models
due to its space complexity, which indirectly leads to a shorter training time than other models. Specifically, in other graph
diffusion models, such as GDSS and Digress, since it is directly for the sparse adjacency matrix diffusion, then as to the
graph set Gs, which is equivalent to the diffusion scale of O(s×m2 × d), the number of parameters that need to be trained
for the denoising network is also namely huge.

However, in our approach, since we embed the graphs in hyperbolic space, each graph is represented as a m ∗ d-dimensional
vector in the hyperbolic space, which means that our diffusion scale is O(sm2d), and the corresponding number of
parameters in the training network is much smaller than in other approaches (For large-scale graphs, m is much larger than
d). This suggests that our approach has significant advantages in both time and space.

H. Datesets Description
We show the specific properties of the dataset in Table C.2.

I. Additional Results
In this section, we record the results for the datasets beyond the in-text presentations.

I.1. F1 Scores of Graph Generation Task

The results of the F1 pr and F1 dc metrics (Naeem et al., 2020) for the graph generation task are presented in Table C.3,
and we obtain conclusions consistent with those described above where larger F1 means the model has better fidelity and
diversity. Note that F1 pr is the harmonic mean of improved precision and recall and F1 dc is the harmonic mean of density
and coverage. They are sensitive to detecting mode collapse and mode dropping.

Table C.3. Generation results about the F1 score of precision-recall and density-coverage (F1 pr and F1 dc) between the original and
generated graphs.

Method
Synthetic Datasets Real-world Datasets

Community BA-G Ego Grid MUTAG PROTEINS IMDB-B COLLAB
F1 pr F1 dc F1 pr F1 dc F1 pr F1 dc F1 pr F1 dc F1 pr F1 dc F1 pr F1 dc F1 pr F1 dc F1 pr F1 dc

VGAE 0.001 0.023 0.104 0.002 0.162 0.139 0.091 0.080 0.173 0.072 0.064 0.204 0.031 0.165 0.283 0.173
GraphRNN 0.732 1.312 0.016 0.003 0.008 0.186 0.333 0.109 0.643 0.334 0.804 0.842 0.475 0.575 0.260 0.295

GDSS 0.245 0.157 0.020 0.132 0.201 0.093 0.496 0.260 0.585 0.428 0.763 0.730 0.048 0.073 0.019 0.005
DiGress 0.645 0.695 0.724 0.783 0.409 0.091 0.761 0.742 0.713 0.549 0.867 0.193 0.546 0.358 0.918 1.179

GraphGDP 0.815 0.960 0.157 0.060 0.933 0.997 0.815 0.627 0.880 0.838 0.921 0.931 0.027 0.015 0.989 1.016
EDGE 0.989 1.207 0.920 0.864 0.609 0.770 0.671 0.287 0.667 0.679 0.951 0.974 0.959 0.995 0.933 1.015

HypDiff 0.812 0.864 0.971 0.923 0.943 0.734 0.792 0.641 0.730 0.680 0.973 0.943 0.730 0.670 0.981 0.653
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I.2. Visualization

The visualization of HypDiff and GDSS by five well-accepted graph theoretical models is shown in Figure C.3 These graphs
can represent typical general and complex topological properties: BA (Barabási & Albert, 1999) scale-free graphs have more
tree structure. SBM (Holland et al., 1983) graphs have more community structure. WS (Watts & Strogatz, 1998) small-world
graphs have more cyclic and clique structure. Hierarchical Fractal (Ravasz & Barabási, 2003) networks is constructed
by self-organization and self-similarity. Grid (Ma et al., 2018) have regular (Euclidean) structures. While comparing
the generated structure, we also color the node by using its degree. The results demonstrate that our HypDiff exhibits
significantly enhanced proficiency in reproducing the original graph structure across BA, SBM, WS, and Fractal graphs,
while consistently achieving a coherent distribution of node colors. Regarding the Grid, due to the weakness of hyperbolic
space for capturing regular structure, HypDiff still generates nodes with high degrees (the red color distribution is uneven).

Figure C.3. Visualization of graph generations.
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J. Analysis of GPU Occupancy and Runtime
We conducted a statistical analysis of GPU utilization during the model training and the average denoising time over 1000
steps during diffusion. The results, presented in Table C.4, indicate that our model performs comparably in terms of time to
other models, yet it utilizes significantly less GPU. This implies that our model exhibits higher efficiency.

Table C.4. GPU memory usage during training and time used to denoise 1000 steps during generation.

Method
Synthetic Datasets Real-world Datasets

Community BA-G Ego MUTAG PROTEINS IMDB-B
Time(s) GPU(MB) Time(s) GPU(MB) Time(s) GPU(MB) Time(s) GPU(MB) Time(s) GPU(MB) Time(s) GPU(MB)

GDSS 10.14 3475 11.80 7750 9.71 3883 10.79 3907 12.04 6305 12.5 3501
DiGress 9.62 3936 11.42 9012 12.28 4174 9.84 4125 11.74 6975 12.1 5800

GraphGDP 12.58 3802 14.36 13164 12.47 3848 12.85 3956 12.18 44708 13.6 5902
EDGE 9.87 2825 11.83 25236 10.24 2657 9.73 27603 10.95 26188 11.8 6205

HypDiff 10.03 2246 12.04 5697 10.15 2570 9.92 2720 10.72 4735 11.20 2519
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