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Abstract
In-context learning, i.e., learning from context ex-
amples, is an impressive ability of Transformer.
Training Transformers to possess this in-context
learning skill is computationally intensive due to
the occurrence of learning plateaus, which are
periods within the training process where there
is minimal or no enhancement in the model’s in-
context learning capability. To study the mech-
anism behind the learning plateaus, we concep-
tually separate a component within the model’s
internal representation that is exclusively affected
by the model’s weights. We call this the “weights
component”, and the remainder is identified as
the “context component”. By conducting metic-
ulous and controlled experiments on synthetic
tasks, we note that the persistence of learning
plateaus correlates with compromised functional-
ity of the weights component. Recognizing the
impaired performance of the weights component
as a fundamental behavior that drives learning
plateaus, we have developed three strategies to
expedite the learning of Transformers. The effec-
tiveness of these strategies is further confirmed
in natural language processing tasks. In conclu-
sion, our research demonstrates the feasibility of
cultivating a powerful in-context learning ability
within AI systems in an eco-friendly manner.

1. Introduction
This paper is centered on the in-context learning ability
of Transformer, which stands as one of the most signifi-
cant abilities for current applications of Transformer mod-
els (Brown et al., 2020; Dong et al., 2022; Shin et al., 2022;
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Min et al., 2021). Fig. 1A gives examples of the in-context
learning tasks. The in-context learning ability has a con-
fusing property that it is emergent when increasing training
FLOPs (Wei et al., 2022). By exploring the learning dy-
namic of in-context learning, previous works (Edelman
et al., 2022; Michaud et al., 2023; Kirsch et al., 2022; Singh
et al., 2023; Reddy, 2023) discover that the Transformer
learns the in-context learning ability abruptly. We summa-
rize the phenomenon during the learning process as plateaus
and transition pattern, illustrated in Fig. 1B. This pattern
indicates that there is negligible or no enhancement in the
in-context learning ability during the initial learning period,
which we call the learning plateaus, and these plateaus are
then followed by rapid and substantial gains, which are re-
ferred to as the transition process. Often, the strategy to
shorten learning plateaus involves expanding the model’s
scale, which consequently demands greater computational
resources and energy consumption. In this paper, our ob-
jective is to investigate the possibility of overcoming the
learning plateaus without scaling the model’s size. Address-
ing this challenge could lead to a novel approach to creat-
ing environmentally sustainable intelligent systems. Since
learning plateaus are not typically observed in conventional
supervised learning, concentrating on the difference may be
crucial for unraveling the mechanisms behind the learning
plateaus.

Weights and context components A principal distinc-
tion between in-context learning and traditional supervised
learning lies in the fact that in-context learning outcomes
are shaped by both the model’s parameters and the specific
context examples provided. In traditional supervised learn-
ing, for a given input sample xp with its corresponding
label yp, the goal is to find a parameterized function fw
with weights w, such that the prediction fw(xp) is equal
to the label yp. In this scenario, the weights w hold all
the information needed to perform the task at hand. Con-
versely, within the in-context learning paradigm, there is
an additional source of information, which is the context
examples sc. Hence, the prediction model is represented
as fw,sc(xp), indicating that both the weights and the con-
text examples have the potential to affect the prediction
outcome. To examine how the weights and in-context ex-
amples impact the prediction, we assume that the function
fw,sc(x) can be conceptual decomposite into fw,sc(xp) =

1



Breaking through the Learning Plateaus of In-context Learning in Transformer

Figure 1. A: Examples of the in-context learning tasks. Examples of (1) comes from Alayrac et al. (2022), Examples of (2),(3),(4)
come from Brown et al. (2020). B: Illustration of learning plateaus and transition pattern. We evaluate the in-context learning ability
of Pythia 13B model (Biderman et al., 2023) trained on pile dataset (Gao et al., 2020) using WordSelection task (Detail in Appendix B)
during the training process.

gcomb(gweights(xp), gcontext(sc)). This decomposition al-
lows us to separate the component gweights(·), which is part
of the Transformer solely dependent on the weights, from
the component gcontext(·), which is influenced by both the
weights and the context examples. We refer to gweights(·)
as the weights component and gcontext(·) as the context
component. Owing to the design of the Transformer’s ar-
chitecture, there is an interaction between gweights(·) and
gcontext(·). Importantly, conceptual decomposition im-
plies that the decomposition isn’t physical; rather, it’s solely
for analytical purposes.

Key observations Owing to the practical challenges of
directly investigating the components, as well as the inability
to regulate the complexity of these tasks, we depend on a
synthetic task to conduct controlled experiments. Through
conducting experiments involving tasks of varying difficulty
and monitoring the performance of both the weights and the
context components, we have made a critical observation:
the duration of learning plateaus are often associated with
a dysfunction of the weights component.

Break through the learning plateaus. Drawing from
our observations, we consider the dysfunction of the weights
component during learning to be the primary cause of the
extended learning plateaus. Based on this, we suggest three
methods for enhancing the weights component and all these
methods can mitigate the learning plateaus. The effective-
ness of these methods is also verified in NLP tasks.

Contributions Our main contributions can be summa-
rized as follows: a) We give formulations of weights and
context components with a new synthetic task that enables
the study of the mechanism behind learning plateaus. b) We
study the learning process of synthetic tasks with different
complexity. The experiments reveal the relation between the
weights component and the learning plateaus. c) To further
verify the causal relation between the learning plateaus and
the weights component, we propose different methods to
improve the weights component and we observe the mitigat-

ing of the learning plateaus. The discoveries are verified in
the NLP task.

2. Related works
In this section, we explore the works most closely related
to our study. Additional related literature can be found in
Appendix C. This appendix encompasses a) an examination
of the weights and context components in relation to the
previously proposed division of in-weights and in-context
learning, b) a review of evidence from prior studies that
supports the importance of both context and weights com-
ponents in practical applications, and c) a compilation of
related works aimed in understanding Transformers.

Analyzing the transition phenomenon of in-context learn-
ing The emergence of in-context learning capabilities dur-
ing learning has captivated numerous researchers (Olsson
et al., 2022; Michaud et al., 2023; Kirsch et al., 2022; Singh
et al., 2023; Reddy, 2023). Olsson et al. (2022) has found
that this transition process is linked to the creation of induc-
tive heads within Transformer models. Meanwhile, other
researchers have determined that the occurrence of such a
transition is influenced by the properties of the dataset (Chan
et al., 2022a). Li et al. (2022); Lu et al. (2023) go further
to associate the emergent capabilities seen during the learn-
ing with those that appear during the scaling of the model.
Our research, however, is not centered on this transition
phenomenon. We aim to delve into the learning plateaus
phenomenon, which serves as a vital complement to under-
standing the intricacies of the transition phenomenon.

Understanding of the mechanism of in-context learn-
ing Considerable research has been devoted to this vital
topic, with most prior studies focusing on understanding
the mechanism of in-context learning from the perspective
of algorithm implementation. For example, a number of
recent papers (von Oswald et al., 2022; Dai et al., 2023;
Akyürek et al., 2022) have described in-context learning as
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Figure 2. Synthetic task. In the task, Transformer is required to predict the label of xp given context examples sc. The images from the
3D Shapes dataset are synthesized based on six factors. The output factor is determined by the context. In this case, we provide two
sequences of factors: ”object color” and ”object shape,” respectively.

akin to performing gradient descent. Additional research
(Li et al., 2023; Bai et al., 2023) has interpreted in-context
learning in terms of algorithm implementation and choice.
Our study, however, takes a novel approach by examining
the in-context learning mechanism through the lens of the
weights and context components, offering a distinct perspec-
tive from earlier works.

3. Experimental Design
This paper employs a synthetic task to investigate the fun-
damental mechanisms behind learning plateaus. The use
of a synthetic task is due to the fact that the intricacies of
real tasks pose challenges in monitoring and comprehending
the precise factors that influence the emergence of learning
plateaus.

3.1. Dataset Construction

We propose a task using the Shapes3D (Kim & Mnih, 2018)
dataset for a more controllable study. The experimental
setting is shown in Fig. 2. Specifically, given a sequence of
image and label pairs as context, the task involves predicting
the label of the prompt image. Each image contains six
different factors: object color, object shape, object scale,
background color, floor color, and pose. We denote the
factor as e and the factor value of factor e as v(e). For
each sequence, we randomly choose a factor to generate the
labels of the images, referring to this factor as the hidden
factor eh for this sequence. For the two context sequences
in Fig. 2, the hidden factor of Seq #1 is object color, and
the correct label for the prompt image is 1 (object color is
green). In Seq #2, for the same prompt image, the correct
label is 3 (the object shape is a cube).

We give a formal formulation of the data generation process
below.

Notations We denote xp as the prompt example with
ground truth label yp. The context examples are sc =

{(x1, y1), · · · , (xl, yl)}. The prediction of the model is
denoted as fw,sc(xp). We denote the factor values of x as
vx and the corresponding factor value for factor e as v(e)x .
vp is short for vxp . The hidden factor is denoted as eh. We
denote the mapping function as m, which maps the factor
value to the corresponding label, i.e. yp = m(v

(eh)
p ). We

denote the probability as P.
Definition 3.1. The data is generated according to the equa-
tion that

P(xp, yp, sc) =
∑
m,eh

P(m)P(eh)P(xp, y, sc|m, eh), (1)

where P(m),P(eh) are manually setted distributions and
P(x, y, sc|m, eh) is a fixed distribution. P(m),P(eh) are
uniform distributions over all possible values by default. In
this paper, we rely on changing P(m) to obtain the tasks
with different complexity.

3.2. Analysis

To successfully tackle the in-context learning task, the net-
work is required to discern the values of the six factors
present in the prompt image, which relate to the weights
component, as well as accurately determine the appropri-
ate hidden factor for output based on the given contexts,
which pertains to the context component. We break down
the distribution P(yp|xp, sc) as follows.
Proposition 3.2. The probability of P(yp|xp, sc) can be
decomposite as:

P(yp|xp, sc) =∑
vp,m,eh

P(yp|vp,m, eh)︸ ︷︷ ︸
Properties of Task

P(vp|xp)︸ ︷︷ ︸
weights

P(eh|sc,m)P(m|sc)︸ ︷︷ ︸
context

,

(2)
where P(vp|xp) is weights related information, and
P(eh|sc,m)P(m|sc) is context related information.
P(yp|vp,m, eh) is related for the properties of task,
and we have P(yp|vp,m, eh) = 1 if m(vehp ) = yp else
P(yp|vp,m, eh) = 0.
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Ideally, if we can approximate the distribution P(vp|xp) and
the distribution P(eh|sc,m)P(m|sc), we can obtain the dis-
tribution P(yp|xp, sc). Recall that we denote gweights(xp)
as weights component and gcontext(sc) as context compo-
nent. Based on the decomposited results of P(yp|xp, sc),
we define our expectation for the components to be good:
Definition 3.3. If f(·) has a good weights component in
its representation, for any x, we can infer P(vx|x) from
gweights(x), and if it has good context component, we can
infer P(eh|sc,m) from gcontext(sc).

3.3. Evaluation framework

In practice, since we cannot find the specific form
of gweights and gcontext, such that fw,sc(xp) =
gcomb(gweights(xp), gcontext(sc)). We leverage the probe
method to measure the goodness of the components in the
inner representation of the Transformer as defined in Defini-
tion 3.3. We choose the layers in the Transformer that can
produce the best probe results. We give the details of the
probing framework in the Appendix A.3.

Probing methods and metrics We use three metrics
here. weights comp. score: accuracy of the probe model to
predict vx given x, where “comp.” is short for component.
context comp. score: the accuracy of the probe model
to predict eh given sc,xp. Accuracy: We evaluate the
prediction accuracy of the prompt example as the metric to
evaluate the in-context learning performance. We give 39
context examples when evaluate context comp. score and
accuracy.

All the results given in this paper are evaluated in the test set
by default, as the performance of the test set is more aligned
with the model’s performance on real situations.

3.4. Model, training and dataset detail

To simulate the auto-regression framework, we calculate the
loss for the sequence s = {(x1, y1), . . . , (xL, yL)} as:

L(θ, s) = 1

L

L∑
i=1

l(fw,s(i−1)(xi), yi), (3)

where s(j) ≜ {(x1, y1), · · · , (xj , yj)}, l denotes the loss
function. x will be tokenized by VAE (Kingma & Welling,
2013) before being passed to Transformer. Note that the
weights of VAE are pretrained and fixed during the whole
experiments. The training loss in the dataset S, which con-
tains n sequence, is calculated as the average of loss over
all training sequences, i.e.,

L(θ, S) = 1

n

∑
s∈S

L(θ, s). (4)

We leave the details of the model, dataset, training design
and configuration in the Appendix A.

4. Learning plateaus and weights component
Recall that we define learning plateaus as periods during
the learning process in which the model experiences mini-
mal or no improvement in performance on test data. Con-
versely, the transition process is characterized by a time
span in which the model’s performance rapidly enhances.
Typically, a learning plateau precedes a transition process.
When a learning process includes several instances of learn-
ing plateaus and transition processes, the terms “learning
plateaus” and “transition process” refer by default to the
first occurrence of each.

4.1. Controlling of complexity

We aim to understand when the learning plateaus will hap-
pen by controlling the complexity of the tasks. There-
fore, we will present the method for controlling the com-
plexity in this part. Recall from Definition 3.1 that the
data is generated following the formula P(x, y, sc) =∑

m,eh
P(m)P(eh)P(x, y, sc|m, eh). By altering the prob-

abilities P(m), we can manipulate the resulting dataset. We
first give two baseline configurations:

• Dfix: There exsits a m0 such that P(m0) = 1 and for
all m ̸= m0, we have P(m) = 0.

• Drnd: P(m) is a uniform distribution over all possible
values.

Clearly, introducing greater randomness in the selection
of m increases the complexity of the problem. We
quantify this complexity using entropy, defined as H ≜∑

m −P(m) logP(m). It is noted that H(Dfix) = 0. Since
our primary objective is to adjust the complexity of the in-
context learning task rather than to examine the effects of
various distributions of P(m), we simplify P(m) to a uni-
form distribution. The entropy is then managed by varying
the size of the support set, that is, the number of possible
mapping functions.

When considering two distinct data configurations D1 and
D2, the notation D1 ⇒ D2 denotes the performance evalu-
ation of a model on data setting D2 after it has been trained
on data setting D1. Unless specified otherwise, we assume
that the model is both trained and tested on the same data
configuration.

4.2. Learning plateaus of task with different complexity

Learning Plateuas and Transition Point The primary is-
sue at hand involves learning plateaus and transition patterns.
To begin with, we investigate the capability of the synthetic
task to mimic the specific pattern depicted in Fig. 1B. Our
scrutiny is directed toward the learning trajectory of the
synthetic task. As demonstrated in Fig. 3A, it becomes evi-
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Figure 3. Learning plateus. A. We reproduce the learning
plateaus and transition pattern in our synthetic task, similar to
Fig 1B. B. The length of learning plateaus increase with the com-
plexity of the task measured by entropy of P(m).

dent that the synthetic task is successful in replicating the
plateaus and transition pattern observed in the actual task.

The length of learning plateaus increases when increases
the complexity of task We delved into the relationship be-
tween task complexity and the duration of learning plateaus.
We employed the entropy of the mapping function m’s dis-
tribution as an indicator of task complexity. To pinpoint
the transition process, we identified the first epoch at which
the model achieved a test accuracy greater than 0.17. This
threshold was selected because the model’s accuracy re-
mains below 0.17 before reaching the transition process and
rises above this thereafter. As anticipated, more complex
tasks necessitate longer learning plateaus (Fig. 3B). How-
ever, the relationship between the length of the plateaus and
the entropy is not linear. With every unit increase in en-
tropy, the extension of the learning plateau is marginal when
the entropy is either low or relatively high; conversely, the
growth in plateau length is more pronounced at intermediate
levels of entropy.

4.3. Dysfunction of weights component

In the preceding section, we analyzed the plateaus-and-
transition pattern in in-context learning concerning task
complexity. In this section, our objective is to delve deeper
into the role that internal mechanisms—specifically, the
quality of the weights and context components—have in
influencing the plateaus-and-transition pattern.

Confusing pattern of weights component We exe-
cuted the task under two conditions: Dfix ⇒ Dfix and
Drnd ⇒ Drnd, with the outcomes presented in Fig. 4A. As
expected, in the simpler scenario of Dfix ⇒ Dfix, both
the context and weights components exhibit improvement
throughout the learning process, leading to enhanced in-
context learning performance. However, in the more chal-
lenging setting of Drnd ⇒ Drnd, the weights component
deteriorates over time, with its score remaining below the
initial value for the entire duration of the learning process.

This differs from the context component, which improves
with the rise in in-context learning performance. We refer
to the situation where the weights component score falls
below the starting value as a dysfunction of the weights
component. This outcome is intriguing because training has
no effect in improving the weights component. To gain bet-
ter insight into this phenomenon, we carried out additional
experiments across varying levels of task complexity. The
model was trained for 50 epochs on these tasks, and we
monitored the weights component score post-training. We
found that the weights component score gradually declines
as the entropy increases, eventually stabilizing at around
0.8, as shown in Fig. 4B.

Weight component degradation is linked to duration
learning plateaus. Our primary concern is the duration
of learning plateaus, and we seek to comprehend its connec-
tion to the in-weights component. To investigate this, we
graphed the relationship between learning plateau length
and weights component score after 50 epochs, as shown
in Fig. 4C. Our analysis reveals an approximately linear
correlation between the weights component score and the
learning plateau duration. Short learning plateaus occur
when there is a significant improvement in the in-weights
component score. Conversely, long learning plateaus arise
when the weights component is dysfunctioning or on the
edge of dysfunction, that is when the weights component
score is at or below the initial value.

Why the weights component is related to learning
plateaus. We are attempting to comprehend this phe-
nomenon, yet theoretically analyzing the learning process
of a multilayer transformer on intricate data proves to be
a formidable challenge. Recent theoretical studies (Tian
et al., 2023; Deora et al., 2023; Huang et al., 2023) fo-
cus on the learning dynamics of Transformers with one or
two layers using simple datasets. Given these limitations,
we propose a more attainable, albeit weaker, construction
analysis in Appendix E. Our approach is grounded in the
notion that if a model with a good weights component can
enhance its in-context learning capabilities with just a few
additional parameters, then the weights component must be
pivotal for achieving in-context learning prowess. To test
this idea, we hypothesize that the in-weights component has
been perfectly learned within a specific layer of the Trans-
former. Our findings reveal that by adding at most three
extra Transformer layers specifically tailored for processing
contextual information, the model demonstrates significant
in-context learning performance. These outcomes suggest
that in-context learning abilities are more readily achieved
when the weights component is well-optimized.
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Figure 4. Weights component and learning plateaus. A. The weights component score is increasing under Dfix ⇒ Dfix, while the weights
component score is descreasing under the Drnd ⇒ Drnd setting. Note that the “Weights” and “Context” in the figure are short for weights
comp. score and context comp. score respectively. B. The weights component score after 50 epoch training decreases when increasing the
complexity of the task. The dashed green line indicates the weights component score at the initialization point. C. The weights component
score at 50 epoch negative correlates with the length of learning plateaus. The dashed green line indicates the weights component score at
the initialization point.

5. Breaking Through Learning Plateaus
The previous section examined the mechanisms behind
learning plateaus and identified their connection to the
weights component. In this section, our goal is to investigate
whether we can shorten the learning plateaus or improve
the performance increasing for each transition process with-
out scaling models. We have chosen the Drnd configure as
the configuration of the test set by default, as it has demon-
strated pronounced learning plateau behavior, and this par-
ticular scenario is known to be more effective in evaluating
in-context learning capabilities, as discussed by Wei et al.
(2023); Min et al. (2022).

5.1. Weights warm-up method

Previous experiments demonstrate that the model better
learns the weight component more effectively in the Dfix
setting. A straightforward intuition is whether we can use
Dfix to improve the weights component in Drnd test set. We
give a further analysis of the relation between Drnd and Dfix:

Increasing weights component with Dfix: Recall that we
have P(yp|xp, sc) ∼ P(vp|xp)P(eh|sc,m)P(m|sc). Under
Dfix setting, we only has one mapping function m0. Con-
sequently, our model can readily learn that P(m0|sc) = 1.
This simplification allows the model to concentrate on mas-
tering P(vx|x). Therefore, it is anticipated that the model
will develop a more refined weights component under this
setting. Knowledge transfering between Dfix and Drnd
settings: The knowledge of P(vx|x) is shared between
these two settings. The reason is that P(vx|x) is unrelated
to the mapping function m and the context sc.

Based on this analysis, we propose the following data con-
figuration to improve the weights component on Dfix before
training on Drnd. This setting is denoted as Dfix→rnd, which

means that we initially train the model on Dfix for a specific
epoch (weights warm-up), and then, we train the model
on Drnd. We have the following discovery based on the
experiments on Dfix→rnd ⇒ Drnd.

Weights warm-up helps to mitigate the learning plateaus.
From Fig. 5A Top, we observe a notable enhancement in
the weights component during the initial “warm-up” phase.
Subsequent to this phase, there is a swift improvement in the
accuracy of the in-context learning. Nonetheless, a subse-
quent decline in the weights component score post-warm-up
is apparent. This further verify that the Transformer can not
learn a good weights component under Drnd settings. Fur-
ther investigation is conducted by training the Transformer
with various “warm-up” durations under the Dfix setting.
As shown in Figure5A Bottom, training the Transformer
for a brief number of epochs effectively eliminates the ini-
tial learning plateaus. Furthermore, this “warm-up” phase
contributes to a reduction in the duration of the subsequent
learning plateaus. The application of the “warm-up” tech-
nique yields significantly better results compared to those
without it, particularly after a training duration of 50 epochs.

5.2. mixed training method

In this section, we try to improve the weights compo-
nent during the whole training process by designing the
Dfix∧rnd ⇒ Drnd setting. In Dfix∧rnd setting, half training
data comes from Dfix setting, and half training data comes
from Drnd setting. For a fair comparison, the total number
of training data is the same as the training set that uses Drnd
or Dfix setting only.

The mixed training method significantly boosts the learn-
ing process. As anticipated, both the weights component
and the task accuracy exhibit improvements throughout the
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Figure 5. Three methods are proposed to assist in overcoming learning plateaus. A: Effective of the warm-up method. Top: Employing
Dfix as a warm-up for the Transformer significantly mitigates learning plateaus. The dashed line indicates the transition point from
Dfix to Drnd. Bottom: We execute the transition from Dfix→rnd ⇒ Drnd at various switching points. The curve labeled ”2” signifies the
switch from Dfix to Drnd at epoch 2. The curve labeled ”0” serves as the baseline, that is, Drnd ⇒ Drnd. The dashed lines highlight the
respective switching points. B: Combining Dfix and Drnd. Top: Mixed training substantially improves the weights component score
during the learning process and eliminates learning plateaus. Bottom: Boosting the weights component can promote the development of
in-context learning capabilities in smaller models. The dashed line depicts the task configuration Dfix∧rnd ⇒ Drnd, while the solid line
represents the Drnd ⇒ Drnd setting. C: Extra Loss. Top: Incorporating a weights loss can significantly enhance learning, whereas adding
context loss does not have a noticeable impact. The baseline is Drnd ⇒ Drnd. Bottom: With the weights loss, the Transformer can attain
a commendable weights component score after 50 epochs of training. The green dashed line indicates the weights comp. score at the
initialization point.

learning process, as depicted in Fig.5B Top. And the results
do not show a pronounced learning plateau. This suggests
that concurrently enhancing the weights component is ben-
eficial. In Fig.5B Bottom, we compare models of various
sizes trained on the Drnd ⇒ Drnd setting (represented by
the solid line) against those trained on the Drnd∧fix ⇒ Drnd
setting (depicted with a dashed line). It is observed that a
model of size 6.69M trained on Dfix∧rnd, after 20 epochs of
training, can attain an accuracy comparable to a model of
size 13.88M trained on Drnd that has undergone 50 epochs
of training. These findings suggest that overcoming learn-
ing plateaus can lead to a reduction in the computational
resources required for training.

5.3. Extra loss method

The previous methods require another data setting Dfix to
improve the weights component. Here, we consider another
alternate method by providing an extra supervision signal
to improve the weights component when we cannot find
the Dfix setting. We consider two extra loss settings. The
f ′
w′,sc

(x) is denote as the subnetwork of fw,sc(x) without
the output classifier. We denote the clse as the classifier for
the factor value of factor e. The weights loss is defined as

Lw(θ, s) =
1

L|E|
∑
e∈E

L∑
i=1

l(clse(f
′
w′,s(i−1)(xi)), v

(e)
x )

(5)

The context loss is defined as

Lc(θ, s) =
1

L

L∑
i=1

l(clseh(f
′
w′,s(i−1)(xi)), e

(s)
h ), (6)

where clseh is the classifier to predict hidden factor, and e
(s)
h

is the hidden factor for sequence s. Then, the original loss
function of Equation 3 is modified into L(θ, s) + λLc(θ, s)
or L(θ, s)+λLw(θ, s). The λ is chosen as 0.1 in our exper-
iments.

Add weights loss speedup the learning process while
adding context loss fails. Fig. 5C Top reveals that in-
corporating an additional weights loss significantly aids the
Transformer model in overcoming learning plateaus. In con-
trast, adding an extra context loss yields only a marginal
benefit. These outcomes further substantiate our hypothesis
that enhancing the weights component is crucial for break-
ing through learning plateaus, rather than concentrating on
the context component. As shown in Fig. 5C Bottom, we
note a marked improvement in the weights component when
an extra weights loss.

5.4. Further Exploration: Simple Functions Tasks

In this section, we give further exploration of the relation
between the weights component and the learning plateaus
on the simple function tasks (Garg et al., 2022) and fur-
ther understand the role of weights component in learning
plateaus.
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Figure 6. Experiments results on simple function tasks after 50
epochs. A: the dysfunction of the weights component happens
when d > 30. B: the effect of Extra Loss technique is significant
only when the dysfunction of weights component happens.

Two Roles of Weights Component Initially, I’d like to
emphasize that the weights component serves two primary
functions: 1) It takes the examples xi into the internal work-
ing of the Transformer. 2) It aims to find a better representa-
tion for xi. Considering this, the dysfunction of the weights
component can stem from these two sources correspond-
ingly. In the previous analysis of the Shape3D task, the
weights component draws from two sources. Since simple
function tasks lack representation learning, the dysfunction
of the weights component might primarily be attributed to
the first reason.

Date generation process In this task, we generate a
dataset with n sequences. The generation process for each
sequence is:

• Initially, we sample a vector w from the Gaussian
distribution N (0, Id) in Rd. Each component of w is
drawn independently.

• Subsequently, we sample {x1,x2, . . . . . . ,xL}, where
each xi ∈ Rd is drawn from a Gaussian distribution
N (0, Id).

• The labels are then determined using the formula
yi = sign(wTxi). Finally, we obtain a sequence
s = {(x1, y1), · · · , (xL, yL)}.

Exploring Framework The training methodology aligns
with that described in the paper (Garg et al., 2022). We’ll
modify the dimension of xi, i.e. the value of d to mod-
ulate the difficulty of the task. The evaluation of the
weights component follows the same process outlined in Ap-
pendix A.3, but with the utilization of the metric MSEp =
Exi

∥x̃i − xi∥ to assess its performance, where x̃ is the pre-
diction of the probe model. We use the Transformer with
6 layers and we probe at the layer 3. It’s worth noting that
unlike the weight component score, where higher is better,
lower values of MSEp indicate better weights component.

Results The MSEp and test accuracy are given in Figure
6. We find that: 1) Dysfunction in the weights component
is evident in the SimpleFunction dataset when d > 30. The
Transformer exhibits poor performance in these situations.
2) the effect of the Extra Loss technique is significant only
when the dysfunction of weights component happens. The
effect is incremental when the Transformer doesn’t experi-
ence a significant weights dysfunction. This further verifies
the causal relation between the weights component and
learning plateaus.

5.5. Beyond Synthetic Task

To ensure that the proposed methods are broadly applicable,
this section examines their adaptability to natural language
processing (NLP) tasks.

SST-ICL task The task employs the SST dataset as out-
lined by Socher et al. (2013). An illustration of the task
is given in Fig. 7A. Comprehensive details regarding the
dataset structure, training methods, and model configura-
tions are available in Appendix B. We assess the results
for both the Dfix∧rnd ⇒ Drnd. It is noted that improving
the weights component through training on Dfix similarly
aids in-context learning within this domain. Nevertheless, it
should be acknowledged that variations exist between the
outcomes of the SST-ICL task and those of the synthetic
task; specifically, Dfix settings worse the performance when
trained on small epochs, which is evident in the Figure 7 that
the Dfix∧rnd performs worse than Drnd when training epoch
is less than 30. The key reason to this divergence is that the
weights component is more difficult to improve compared
that in the synthetic one. As a result, more epochs of train-
ing are needed to improve the weights component so as to
make it come into effect. This explanation is evident by the
result in Figure 7 that the model trained on Dfix∧fix setting
significantly outperforms that trained on Drnd settings after
the 35 epochs.

WordSelection task We have devised an additional task
named the WordSelection Task, which requires selecting
a single word from a group of four options. For example,
given the input “hello information learning art → learning”,
the task for the model is to identify “learning” as the correct
choice from the provided set. The model must infer the
correct answer by considering context examples. We offer
five such in-context examples, all selecting the words at
the same position as the prompt example. Creating a spe-
cific Dfix setting to improve the weights component poses
a challenge in this task. Consequently, we opt for the im-
plementation of the extra weights loss technique. We define
the factor as the position and the factor values of a factor is
the corresponding word in this position. For example, with
x being “hello information learning art”, we define v

(e1)
x

as “hello”, v(e2)x as “information”, v(e3)x as “learning” and
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Figure 7. Experiments on natural language tasks. A: Example of dataset SST-ICL task. The example label y is obtained from v by map
function m, i.e. y = m(v). B: Results on SST-ICL task. We explore the Dfix∧rnd ⇒ Drnd and Drnd ⇒ Drnd settings. The dashed line
denotes the time when we transit from Dfix to Drnd. C: Results on WordSelection Task. Adding extra weights loss has a significant effect
in shortening the learning plateaus.

v
(e4)
x as “art”. The extra weights loss is then applied in a

manner consistent with what is described in Eq. (5). Our
experimental findings align with those from the synthetic
task, indicating that the advantage of integrating an extra
weights loss is not limited to synthetic environments. The
results highlight that adding extra weights loss can be a
beneficial strategy across different task types.

6. Discussion
Q1: What are the reasons and intuitions behind the dys-
function of weights? The observed dysfunction in the
Transformer’s performance may stem from the confluence
of two crucial factors: 1) The problem-solving process relies
on the information derived from both context examples and
query examples. 2) The contextual information is hard to
obtain. In situation 1, where both contextual and weight
information are critical, the Transformer is compelled to har-
ness both effectively. Yet, under condition 2, where the con-
textual information proves difficult to learn, the Transformer
finds itself unable to fully extract this vital knowledge. Con-
sequently, it lacks the incentive to refine the weight compo-
nent at this stage, as doing so would not yield appreciable
improvements in overall performance. This phenomenon
aligns with our observation in Figure 4C that the weight
dysfunction occurs predominantly when the in-context tasks
exhibit a high degree of complexity, as measured by the high
entropy of the distribution of m. As a result, we witness
the manifestation of weight dysfunction, characterized by
the stagnation or regression of the weight component dur-
ing the learning process, despite the Transformer’s ongoing
attempts to adapt and solve the given problem.

Q2: Whether the decomposition of weights and context
components is general? The conceptual decomposition
is general based on the following reasons:

1) Firstly, the decomposition of the weights component and
the context component is conceptual instead of physical
and only for analysis purposes. The decomposition stems
from the understanding that the in-context learning task

necessitates information from both its context samples and
the query example.

2) Secondly, our evaluation of the weights component and
context component is not based on the physical decompo-
sition of these components. We employ complex probe
methods (see Section A.3) to analyze these two components
because we have only conceptually decomposed them.

3) We tested our method across various scenarios, includ-
ing the Shape3D task, SST-ICL task, Word Selection Task,
and SimpleFunction task, which consistently validated the
efficacy of our approach.

7. Conclusion
This paper establishes a connection between the weights
component and learning plateaus. Building on this connec-
tion, the paper proposes three strategies to overcome these
plateaus. These strategies have proven to be effective in
both synthetic and natural language tasks.

8. Limitation
In this paper, we mainly focus on understanding of the
learning plateaus of in-context learning with Transformer,
where the Transformer requires the information from the
context examples and the query example to make a predic-
tion. Therefore, our method cannot explain the learning
plateaus phenomenon outside this score. There are some
works (Nanda et al., 2023; Power et al., 2022) that discuss
the learning plateaus phenomenon in supervised learning.
Our work fails to explain these phenomena.
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Impact Statement
The goal of this paper is to understand the mechanism of
learning plateaus in Transformers and find a method to avoid
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A. Detail of experiments on sythetic tasks
A.1. 3DShape

3dshapes1 (Kim & Mnih, 2018) is a dataset of 3D shapes procedurally generated from 6 ground truth independent latent
factors. These factors are floor colour, wall colour, object colour, scale, shape and orientation. All possible combinations of
these latents are present exactly once, generating N = 480000 total images. Latent factor values including: 1) floor hue: 10
values linearly spaced in [0, 1], 2) wall hue: 10 values linearly spaced in [0, 1], 3) object hue: 10 values linearly spaced in
[0, 1], 4) scale: 8 values linearly spaced in [0, 1], 5) shape: 4 values in [0, 1, 2, 3], and 6) orientation: 15 values linearly
spaced in [-30, 30].

Shape3D dataset We employ the Adam optimizer (Kingma & Ba, 2014) and mini-batch training to optimize the loss
function L(θ, S). Here, we use cross-entropy as the loss function. We utilize a batch size of 128 and set the learning rate to
0.0001. For training purposes, we use 105 sequences and, for evaluation, 4× 104 sequences. There is no overlap between
images in the training sequences and those in the evaluation sequences.

A.2. Architecture Detail

We employ a pre-trained Variational Autoencoder (VAE) to transform images into tokens. The encoder of the VAE comprises
seven convolutional layers with ReLU activations, followed by three linear layers two ReLU activations. Conversely,
the VAE’s decoder is structured with three linear layers and two ReLU activations, which precede a sequence of seven
convolutional layers also with ReLU activations. The resulting latent representation serves as the token representation of the
input image. The label embedding is learned during the in-context training process. Our study’s primary goal is to explore
the characteristics of in-context learning. To this end, we utilize a causal Transformer architecture that restricts each token to
only interact with preceding tokens. Specifically, the default configuration of the Transformer, denoted as f , includes 12
layers, 4 attention heads, and an embedding dimension of 128. As depicted in the lower section of Figure 5B, we experiment
with varying model sizes. Detailed configurations for these model sizes can be found in Table 1.

Table 1. Model configure with different size in Fig 5B Bottom
Number of Layers 12 6 6 3

Attention head 4 4 2 2
Embedding size 128 64 32 16

Model Size 34.53 13.88 6.69 3.24

A.3. More detail about probe framework

Figure 8. Probe method. AB: illustration of the probe method. C: The weights and in-context score when we probe at different layers. We
choose the Dfix∧rnd ⇒ Drnd settings. The dashlines marked the chosen layers in the experiments.

We employ metrics for numerical evaluation of components and in-context learning performance. Since the components are

1https://github.com/deepmind/3d-shapes
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hidded in the representation, we use the probe method (Alain & Bengio, 2016). The probe classifier has a single linear layer,
with softmax and cross-entropy calculating the loss. Because we don’t know the specific form of gweights and gcontext,
we choose the representation within the Transformer that given the high score for weights and context components
for approximating. We use the linear probe because using more complex probe model doesn’t have significant improve in
accuracy and the change of the accuracy during the training process is more important than the absolutely value. The probe
model is trained utill totally converge. The probe is trained for 2 epoch for context component and 1 epoch for weights
component. The in-weight probe predicts values of six factors of all images, while the in-context probe identifies the hidden
factor for each sequence. The details are as follows.

context comp. score Context comp. score measures whether the Transformer can capture the information from all the
context examples, i.e., whether the inner representation within Transformer can capture the distribution P(yp|xp, sc). Given
the test set S′, the context comp. score is calculated as 1

|S′|
∑

s∈S′ 1êh,s=eh,s
, where 1expr is indicator function, s is the

sequence in the dataset S, eh,s is the hidden factor for the sequence s, and êh,s is the prediction of probe classifier. We use
| · | to denote the corresponding size of a set.

weights comp. score The weights comp. score measures whether the Transformer can learn the information from
individual examples, i.e. whether the inner representation of Transformer can capture the distribution P(vx|x). Because
the distribution P(vx|x) is unrelated to the context examples sc, we remove the influence of context examples by re-
moving the context examples when evaluate the weights component score. The weights comp score is calculated as
1

|S′|
∑

s∈S′
1

|s||E|
∑

(x,y)∈s

∑
e∈E 1

v̂
(e)
x =v

(e)
x

, where vex is factor value of factor e and sample x , v̂(e)k is the prediction of
probe classifier, s = {(x1, y1), . . . , (xL, yL)} is the sequence in the dataset S′ and E is the set of all factors.

Accuracy We measure the accuracy of the prediction of in-context learning task given a fix number of context example as
the measure for the in-context performance. In this paper, we choose the number of context examples as 39.

A.4. Dataset split

In-context training We first split all the the images in Shape3D into two part: the training image set (80 %) and the test
image set (20 %). Then, we organize all the training images into Sfix, Srnd, Sfix∧rnd, corresponding to Dfix, Drnd, Dfix∧rnd
settings. Sfix, Srnd, Sfix∧rnd Test image set are also organized into S′

fix, S′
rnd, S

′
fix∧rnd. Each of Sfix, Srnd, and Sfix∧rnd contains

105 sequences. Each of S′
fix, S′

rnd, S
′
fix∧rnd contains 4× 104 sequences.

Probe model training If we want to probe a model fw,sc(·) on setting Drnd (test setting), we will first train the probe
model on Srnd with fw,sc(·) and we evaluate the probe model on S′

rnd with fw,sc(·). The same for Dfix and Dfix∧rnd settings.

B. Detail of experiments on langugae task.

Figure 9. Example of the SST-ICL task and WordSelection task.

B.1. Experiments on Pythia

We first indroduce the experiment design on the Pythia 13B model, because setup of this experiment is totally different from
the other experiments on Section 5.5. We leverage the opensouce of the Pythia 13B checkpoints. The Pythia is trained using
autoregression framework on the Pile dataset. We evaluate the performance of the Pythia model for each 10k steps. We
construct 400 sequence of 4 wordselection task. All the words are randomly sampled from 2000 words. 4 context examples
are given for each prompt. The prediction of the Pythia model is processed to ensure that it has same form as the given label.
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B.2. Model Struture

For both tasks, we use the GPT2 model in this setting. The model is consist of 6 layers, 4 attention heads with 368 embedding
size.

B.3. Dataset Detail

SST-ICL dataset The dataset is contructed based on SST (Socher et al., 2013) datasets. We remove the long review in the
datasets and transform the original labels into “Negative”, “Positive” and “Neutral”. Then, we organize the reviews follow
the same way as that in Subsection A.4. We produce 104 sequence for training and 4 × 103 for testing. Each sequence
contains 5 reviews. We illustrate the example of the dataset in Fig. 7 AB.

WordSelection Dataset We choose 2000 words for the experiments. The 2000 words is organzed into 105 training
sequence and 5 × 104 training sequence. Each sequence contain six examples and five examples served as in-context
examples and the rest served as the prompt example.

B.4. Training Detail

For SST-ICL task and WordSelection task, the models are both trained using AdamW optimizer with learning rate 2e− 5.
We choose the batch size as 64.

C. Other Related works
C.1. In-weights and in-context learning

Previous studies (Chan et al., 2022a;b) examined the relationship between in-weights learning and in-context learning. The
division of in-weights learning and the in-context learning process is conceptually similar to our distinction between the
influence of the weights and context component. In in-context learning, the Transformer relies on a combination of both its
internal weights and the context provided to address a given task. In contrast, for in-weights learning, the model depends
exclusively on its weights. Nevertheless, there are notable differences between these two notions: 1) The internal weights
and context components are concerned with capturing information within the Transformer, whereas the focus of in-weights
and in-context learning is on how the Transformer tackles a task. In-weights learning is a rename for regular supervised
learning. 2) Both weights and context components coexist and play roles within the paradigm of in-context learning. While
in-weights learning is distinguished from in-context learning.

C.2. Evidence of previous works regarding weights and context component are both important for in-context
learning

In this section, we provide evidence about that the in-context and weights components in practice tasks.

Intuition 1: Influence of words replacing A key difference between the weights and context components lies in the
susceptibility of the weights component to word substitution. The weights component can be easily disrupted if a word is
replaced with a token that was not present during the training phase, as the weights lack information about this new token.
On the other hand, if the context examples are rich in information, the meaning of this new token can still be deduced. This
mirrors the human ability to infer the meaning of an unknown word based on its context. If word substitution leads to a
decline in performance, it suggests that the Transformer’s prediction relies heavily on the weights component.

Intuition 2:Influence of number of in-context examples The efficiency of the context component is expected to
rise with the inclusion of more context-specific examples, a characteristic not shared by the weights components, which
remain unaffected by the addition of in-context examples. Therefore, if performance improves with the integration of
more context-specific examples, it would suggest that the Transformer’s prediction is heavily influenced by the context
component.

Intuition 3: Zero-shot performance The zero-shot performance can directly indicate the effectiveness of the weights
component. This is because no in-context examples are provided in this scenario, reducing the problem to a traditional
supervised one

Based on the intuitions above, we collect the related experiments in practice paper.
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1. Min et al. (2022) discovered that (1) performance can be improved by increasing the number of in-context examples.
(2) Changing the labels of in-context examples does not influence the predicted label. The first discovery indicates that
the prediction relies on the context components. The second discovery suggests that the Transformer uses the weights
component for label prediction, given that there is no observed change when the labels of in-context examples are altered.

2. Brown et al. (2020) found that larger models are increasingly effective at utilizing in-context information. This suggests
that in real-world scenarios, the efficiency of the context component improves with the enlargement of the model’s size.
Brown et al. (2020) also found that enhancing the model size can boost its zero-shot capabilities. These findings suggest that
scaling the model can enhance both the weights and context components, and the model employs these two components to
address the problem.

3.(Wei et al., 2023) carried out research on a two-class classification issue. They conducted experiments in which they
altered a certain percentage of labels in the context examples to ascertain if the model’s prediction would also change. If a
change was observed, it would imply that the prediction relies on the context components. If no change was noticed, the
prediction would be considered to depend on the weights component. Their results were intermediate, suggesting that both
weights and context components contribute. Additionally, they found that enhancing the model size increases the impact of
in-context examples.

C.3. Related works for understanding Transformer

Analysis of Transformer The analysis of Transformers can be broken down into two main components: examining the
expressibility of Transformers and comprehending the mechanisms of learned Transformers. To analyze the expressibility of
Transformers, a common approach is to determine if they can solve specific problems by constructing appropriate weights.
Giannou et al. (2023) demonstrates that Transformers can function as Turing machines, while Liu et al. (2022) shows that
they can learn shortcuts to solve automata problems. In addition to expressibility, researchers have also investigated the
mechanisms behind learned Transformers. Bietti et al. (2023) examines Transformers from a memory standpoint, and Tian
et al. (2023) focuses on single-layer Transformers. While the analysis of Transformers is crucial to our work, our ultimate
goal differs; we aim to bridge the gap between representation learning and in-context learning.

Exploration of representation within Transformer. Owing to the widespread use of Transformers, numerous studies
(Li et al., 2022; Voita & Titov, 2020) seek to investigate their internal representations as a means of comprehending their
functionality. The most prevalent approach involves utilizing probe models and tasks to discern the information stored
within these representations (Voita & Titov, 2020; Schouten et al., 2022). Taking a different perspective, Voita et al. (2019)
explores the flow of information across Transformer layers and how this process is influenced by the selection of learning
objectives. Our work shares similarities with these studies in that we employ the probe method to examine representations.
However, our focus differs in that we do not concentrate on the semantic meaning within the representation. Instead, we
investigate how the weights and in-context information impact representation.

D. Proof of Proposition 3.2
Proposition D.1. Given yp, probability of P(yp|xp, sc) can be decomposite as:

P(yp|xp, sc) =
∑

vp,m,eh

P(yp|vp,m, eh)P(vp|xp)P(eh|sc,m)P(m|sc). (7)

Proof.

P(yp|xp, sc) =
∑

vp,m,eh

P(yp, vp,m, eh|xp, sc)

=
∑

vp,m,eh

P(yp|xp, sc, vp,m, eh)P(vp,m, eh|xp, sc, )

=
∑

vp,m,eh

P(yp|vp,m, eh)P(vp|xp, sc,m, eh)P(m, eh|xp, sc)

=
∑

vp,m,eh

P(yp|vp,m, eh)P(vp|xp)P(eh|sc,m)P(m|sc),

(8)
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where the first equation is due to the law of total probability, the third equation is leverages the formular
P(yp|xp, sc, vp,m, eh) = P(yp|vp,m, eh).

E. Contruction analysis of why the weights component is related to the learning plateaus

Figure 10. The constructed Transformer can match the performancce of trained Transformer (Dfix∧rnd setting) in experiment part

Intuition In this section, our objective is to comprehend the connection between the weights component of the model and
the occurrence of learning plateaus. Owing to the challenges involved in dissecting the training dynamics of the Transformer,
we turn to constructive analysis as a methodology. By examining a scenario where a Transformer possesses an effective
weights component at a specific layer, and only a small number of additional layers are required to attain proficient in-context
learning performance, we can indirectly infer insights about their relationship.

Notation The position embedding is denoted as pi = (0, · · · 0, 1, 0, · · · ), where we only have value 1 at i-th position and
0 others. The weights for the attention operation of l-th layer and c-th head in Transformer is denoted as W(l,c)

Q , W(l,c)
K and

W
(l,c)
V . The weights of the forward layer in the Transformer are denoted as W(l)

1 ,W
(l)
2 . We use E to denote all possible

values of the factor e. we denote yi as the one hot version of y. The vector with all zero values is denoted as 0 ≜ (0, · · · , 0).
We consider the naive Transformer (Vaswani et al., 2017). The hidden representation of token i in Transformer is denoted as
hi ∈ Rd. The hidden representation of l-th layer is denoted as H(l) = [h

(l)
1 , · · · ,h(l)

2L]
T ∈ R2L×d. Given a input token x,

we denote h
(l)
x as its corresponding representation at layer l. The factor value of this token is denoted as vx. The factor

value of the corresponding factor e is denoted as v(e)x . The set of all possible values of factor e is denoted as Ve. The size of
the set is denoted as |Ve|.

In our analysis, we explore a modified, more relaxed variant of the Transformer model. The rationale behind this relaxation
is underpinned by evidence suggesting that 1) employing the ReLU activation function in the feed-forward layers can
achieve results comparable to the original model (Press et al., 2019), and 2) the softmax operation may not be essential for
the functioning of the Transformer (Wiegreffe & Pinter, 2019; Brunner et al., 2019; Richter & Wattenhofer, 2020). The
relaxed Transformer is defined as follows:

Definition E.1. (Transformer) One layer of the Transformer contains one attention layer and one MLP layer. The calculation
of the Attention Layer is

Attn(l)(H(l)) = H(l) +

C∑
c=1

σ
(
H(l)W

(l,c)
Q (H(l)W

(l,c)
K )T

)
H(l)W

(l,c)
V W

(l,c)
O . (9)

And the calculation of MLP layer is

H(l+1) = Attn(l)(H(l)) + Relu(Attn(l)(H(l))W
(l)
1 )W

(l)
2 . (10)

Here we consider relaxed case where σ = Id.

Remember that a good weights component implies that we have the ability to deduce P(vx|x) based on this component. To
streamline the construction, we introduce a stronger assumption: the concept of a perfect weights component. Unlike the
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definition of a good weights component, which necessitates that the Transformer encapsulates information about P(vx|x), a
perfect weights component also demands that this information should be readily accessible. If the representations of the
images corresponding to different factor values are situated in distinct orthogonal bases, then the factor values’ information
can be easily decoded. Drawing on this insight, we propose the following definition.
Definition E.2. (Perfect weights component) If a Transformer has perfect weights component in layer l, then for all factor
e, any i, j, exists We ∈ Rd×|Ve| such that f (e)x1 · f (e)x2 = 1 only when v

(e)
x1 = v

(e)
x2 , else we have f

(e)
x1 · f (e)x2 = 0, where

f
(e)
x = Weh

(l)
x .

Under the assumption of a perfect weights component, we can enhance the Transformer by adding at most three extra layers
that are specifically designed to learn the context component. The detailed results of this construction are as follows:
Proposition E.3. We consider the data with ne factors and each factor has nv values in Drnd setting. For causal
Transformer with the number of heads larger or equal the number of factors with the hidden size O(nenv + L),
if the Transformer can learn a perfect weights component in layer k, then it can learn a representation given i
in-context examples with context comp. score srsi = (1 − srsi−1)si + srsi−1 and srs0 = s0 at layer k + 2,

where si = 1 −
∑i

j=0

(
i
j

)∑|E|
k=2

(|E|
k

)
k−1
k

(
(nv−1)i−j

ni
v

)k (
1− (nv−1)i−j

ni
v

)|E|−k

, and we can obtain the accuracy as

clsi =
(nv−1)(ni−1

v −(nv−1)i−1)
ni
v

srsi +
1
nv

at k + 3 layers.

The constucted Transformer achieve significant performance. To illustrate that the construction is meaningful, we
compare the performance of the constructed model with the previously trained model. We choose the performance of the
model trained on Dfix∧rnd settings as it is the best-performed model on Drnd setting. We find that the constructed model
achieved a comparable performance as that of the trained model. These results indicate that our construction is meaningful.

E.1. Proof Sketch

a) Contruction of the Transformer.

We divided the contruction into two steps. The first step is to estimate the factor in the sequence and the second step is to
estimate the label based on the discovered hidden factor. Given the sequence s = {(x1, y1), . . . , (xL, yL)}, we short fxj as
fj .

1. Estimate the hidden factor. According to the perfect weights component assumption, for any j, we can project the j-th
token feature into the space f

(e)
j . Assuming the j-th token is not the prompt token, then we have its label information yj .

Then, for i-th token, where i < j, obviously i is also not the prompt token. As a result, we also have the information about
yi. If a factor e is the hidden factor, then we would expect yi · yj = m(v

(eh)
i ) ·m(v

(eh)
j ) = v

(eh)
i · v(eh)

j = f
(eh)
i · f (eh)j ,

where v,y,m is the corresponding one-hot version of v, y,m. Therefore, if we can find e such that f (e)i · f (e)j can have a
same value as yi · yj , for all i, then e can be predicted as hidden factor. Based on this intuition, in the construction, we
focus on finding a way to compare the value between f

(e)
i · f (e)j and yi · yj . All these operations are done in the first layer.

2. Block unrelated information. After finding the hidden factor, the next step is to block the information that is unrelated
to the hidden factor. Blocking unrelated information can remove the influence of it and simplify the following steps. We add
a large negative value to the positions of the representation that is unrelated to the hidden factor. Then, through the Relu
operation, all these negative values will be removed. These operations are placed in Layer 2.

3. Predict y. The final step is to predict the yp for the prompt sample xp. The challenge here is that we don’t know
the mapping function m that bridges the factor value and the corresponding label. Consider the relation that for any i, j

satisfying i < j, we have v(eh)
i ·v(eh)

j = f
(eh)
i · f (eh)j = yi ·yj . Therefore, if we can find a i, satisfying that f (eh)i · f (eh)j = 1,

then we have yi = yj . Then, we can copy yi to the representation of j-th token and use the final linear layer to output yi as
the prediction for yj .

b) Analyzing the performance.

Given the perfect weights component assumption, there are two source that cause the error prediction. We give the separate
analysis below.

1. Fail to find the correct hidden factor. Finding the correct hidden factor is essential to make the correct prediction. The
correct hidden factor cannot be inferred if there are more than two factors such that the values of f (e)i · f (e)j and yi · yj can
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be matched according to the construction of first layer.

2. Make error prediction and give the correct factor. Given the hidden factor, it is also possible that we cannot make the
correct prediction if we fail to associate the correct label the factor value. This will happen if all the context examples don’t
contain the same factor value of the hidden factor as the prompt image.

E.2. Proof of useful lemma

In this section, we proof some useful lemma for the proof. The lemma E.4 indicates that the attention head can copy part of
the representation from its previous token into current token. The lemma E.5 indicates that there exists a construction to
make the MLP to only operate on the part of its input.

Lemma E.4. One attention head can implement copy and past behavior.

Proof. According to the definition of pi, we have pi · pj = 0 if i ̸= j, otherwise, we have pi · pj = 1. We denote

M =


0 0 · · · 0 1
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 .

Then we have piM = pi−1. For j > i, we denote the value of 2j-th token as h2j = (0,0,0,0,0,0,0,pj) and 2i-th
token as h2i = (h′

i,0,0,0,0,0,0,pi). If we want to copy the value of 2i-th token to the value of 2j-th token, we can set
the query matrix as WQ = (0,0,0,0,0,0,0,Mj−i), the key matrix as WK = (0,0,0,0,0,0,0, I) and value matrix as
WV = (W′

V ,0,0,0,0,0,0,0). Then we have

hT
2iWQ · hT

2aWK = pi · pa =

{
1 a ̸= j
0 a = j

(11)

Therefore, the 2j-th token can only attend to the token with the position embedding pi. If h2i−1 = (0,0,0,0,0,0,0,pi),
we have the value of hj after attention as hattn

j = ((h′
i)

TWV ,0,0,0,0,0,0,pj). By setting WV as different value, we
can copy different part information of i-th to j-th token. Then the lemma is held.

Lemma E.5. For the input h = (h1,h2,h3), where hi ∈ Rdi and d1+d2+d3 = d, for all MLPs(h) = W′
2 Relu(W

′
1h2) :

Rd2 → Rd2 , there exists MLP (h) = W2 Relu(W1h) : Rd → Rd, such that MLP (h) = (h1,MLPs(h2),h3).

Proof. Obviously, for any W′
1, there exists W1, such that h(a) ≜ hW1 = (h1,−h1, (W

′
1h2),h

T
3 ,−h3).

Obviously, for any W′
2, There exists W2, such that h(b) = W2 Relu(h

(a)) = ((Relu(h1) +
Relu(−h1)), (W

′
2 Relu(W

′
1)), (Relu(h3) + Relu(−h3))) = (h1,MLPs(h2),h3)

E.3. Construction of Transformer

Without loss of generality, we assume the representation of the Transformer in layer k is in a form that h
(k)
2i−1 =

(fi,0,0,0,0,0,0,pi)
T and h

(k)
2i = (0,yi,0,0,0,0,0,pi)

T (Remind that one sample will take two token, one for x
and one for y). Because the representation usually lies in low-dimension space, a simple linear layer can transfer the
representation in our defined sparse form. Moreover, it is natural to assume that the position information is stored in the
representation since it is given in the input and is essential for attention.

The consider the operations of Transformer in different layers.

1) ** Layer 1 **

Because we assume that h(k)
2i−1 is a perfect token representation, then there exists We, such that h(k)

2i−1We = f
(e)
k , where

f
(e)
i satisfies that ∀e, i, we have f

(e)
j · f (e)i = 1 only when v

(e)
i = v

(e)
j else f

(e)
j · f (e)i = 0.

Step 1, we use each attention head to obtain the matching information of each factor.
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We first consider the query token at the position 2i − 1 And we assign W
(l,k)
Q = W

(l,k)
K = Wek and W

(l,k)
V =

(0,0,0,0,0,0,0, I)T so that (h(l)
i )TW

(l,k)
V = pi. Then, we have

bek =

2i−2∑
a=1

(hT
i W

(l,k)
Q · hT

aW
(l,k)
K )hT

i W
(l,k)
V =

i−1∑
a=1

pa(v
(ek)
a · v(ek)

i ), (12)

where v
(e)
i is the one-hot vector of v(e)i . We denote base = (20, 21, · · · , 2L)T and u2i−1 = ({base · be1 , · · · , base · bene

}.
Obvious, there is W(l,k)

O such that
∑ne

k=1 bekW
(l,k)
O = (0,0,u2i−1,0,0,0,0,0).

Then, we consider the token at position 2i as query token. We assign W
(l,ne+1)
Q = W

(l,ne+1)
K = (0, I,0,0,0,0,0,0)T

and W
(l,ne+1)
V = (0,0,0,0,0,0,0, I)T. We have

by =

2i−1∑
a=1

(hT
i W

(l,ne+1)
Q · hT

aW
(l,ne+1)
K )hT

i W
(l,ne+1)
V =

i−1∑
a=1

pa(ya · yi) (13)

Obvious, there is WO such that byW
(l,ne+1)
O = (0,0,0,u2i,0,0,0,0,0), where u2i = {base ·by, · · · ,base ·by}.

The ne + 1 head doesn’t affect the token 2i − 1, because value of the h2i−1 is 0. As a result, we have h2i−1 =

h2i−1 +
∑ne

k=1 bekW
(l,k)
O = (fi,0,u2i−1,0,0,0,0,pi) after the operation. Similarily, because the first ne head dosen’t

affect the value of h2i, we have h2i = (0,yi,0,u2i,0,0,0,pi) after the operation.

Note that base · bek has the property that base · bek = base · bek′ if and only if bek = be′k
. This result indicates that all the

context examples that have same factor value of factor ek with the sample i also has the same factor value of factor ek′ as
sample i. Therefore, we denote u as the matching information. If base · bek = base · by, we can infer that the factor
value of ek has a similar pattern with the label. Therefore, ek is regard as the possible hidden factor.

Step 2: compare the u2i−1 and u2i to infer possible hidden factor.

For embedding of h2i, using the copy past of Lemma E.4, we can obtain h2i = (0,yi,0,u2i,u2i−1,0,0,pi). (By setting
the copy position as pi and therefore the operation will only influence y token.) According to Lemma E.5, there exists
W

(l)
1 ,W

(l)
2 , such that we have h2i = (0,yi,0,u2i,u2i−1,m2i,0,pi), where m2i = Relu(u2i −u2i−1) +Relu(u2i−1 −

u2i). Recall that h2i−1 = (fi,0,u2i−1,0,0,0,0,pi). because all the corresponding terms of h2i−1 are 0, this operation
won’t impact the value of it. This copy past operation can be put into a same layer as the pervious operations is because in
this operation we mainly copy the infomation from 2i− 1 token to 2i-token. Because 2i− 1 precede 2i, the operations of
2i− 1 is finished before the copy past operation happens.

The value of m2i has the property that the k-th position in m2i is equal to 0 if the values of k-th position of u2i−1 and u2i

are equal. After this operation, we have h2i = (0,yi,0,u2i,u2i−1,m2i,0,pi) and h2i−1 = (fi,0,u2i−1,0,0,0,0,pi).

2) ** Layer 2 **

Blocking the information according to m.

First attention head: for y token, at position 2i, we apply Lemma E.4 to copy m2i−2 from h2i−2 to h2i. Due to
the weights sharing of attention, this yield a iterative effect. We denote m′

2i−1 = 2m′
2i−3 + m2i−2 and m′

2i =
m2i−1 + m2i. Therefore, we have h2i = (0,yi,0,u2i,u2i−1,m

′
2i,0,pi). Because of weights sharing, we have

h2i−1 = (fi,0,u2i−1,0,0,m
′
2i−1,0,pi) .

Second attention head: In this layer, for y token, at position 2i, we apply Lemma E.4 to copy fi from h2i−1 (This operation
only affects y tokens). We have h2i = (fi,yi,0,u2i,u2i−1,m

′
2i,0,pi).

MLP Layer: We denote f ′i,x ≜ (f
(ej)
i −Mm′

2i−1[1], · · · , f
(ej)
i −Mm′

2i−1[ne]) and f ′i,y ≜ (f
(ej)
i −Mm′

2i[1], · · · , f
(ej)
i −

Mm′
2i[ne]). M is a large constant value. In f ′i,x, we will block the information of j-th factor if m′

2i−1[j] > 0.

m′
2i−1[j] < 0 if and only if ∀ k < i, m2k[j] = 0. The same for f ′i,y In MLP, we calculate Relu(hT

2i−1W
(l+2)
1 )W

(l+2)
1 =

(fi, f
′
i)W

(l+2)
1 = (f ′i − fi,0,0,0,0,0,0,0). Then, we have h2i−1 = Relu(hT

2i−1W
(l+2)
1 )W

(l+2)
1 + h2i−1 =

(f ′i,x,0,u2i−1,0,m
′
2i−1,0,0,pi). And similar, we have h2i = (f ′i,y,yi,0,u2i,u2i−1,m

′
2i,0,pi).
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3) ** Layer 3 **

This layer obtains the logit of the new sample by comparing the similarity between the unblocked feature of this sample and
the in-context sample.

Setting W
(l+3,1)
Q = W

(l+3,1)
K = (I,0,0,0,0,0,0,0), we have hT

i W
(l+3,1)
Q = hT

i W
(l+3,1)
K = f ′i . Setting W

(l+3,1)
V =

(0, I,0,0,0,0,0,0) such that hT
2iW

(l+3,1)
V = yi and hT

2i−1W
(l+3,1)
V = 0.

For position 2i− 1, we have

Logit =
2i−2∑
a=1

(hT
i W

(l+3,1)
Q · hT

aW
(l+3,1)
K )hT

i W
(l+3,1)
V =

i−1∑
a=1

(f ′i,x · f ′a,y)y′
a. (14)

Note that value f ′i,x · f ′a,y is equal to the number of unblocked factors (both unblocked) that have the same value between

a-th sample and i-th sample Obviously, there is a W
(l+3,1)
O such that h2i−1 = (f ′i,x,0,u2i−1,0,0,0,m

′
2i−1,Logit,pi).

Finally, we output Logit using the prediction head.

E.4. Performance analysis

Here, we will analyze the sequence representation score and the in-context learning accuracy of our constructed model.

1) **context comp. score**

Propability for same factor value between in-context examples and prompt sample The probability for an in-context
example having the same value of a factor as the prompt sample is 1

nv
and the probability of having different values is

nv−1
nv

. Therefore, given i samples, the probability for j samples have the same value of a factor as the prompt sample is(
i
j

) (nv−1)i−j

ni
v

.

Probability for connot distinguish factors Given i in-context examples, we cannot distinguish k factors to decide which
one is the hidden factor if the k factors satisfying that of ∀ e1, e2 ∈ Ek, (x, y) ∈ sc, we have v(e1)x = v

(e2)
p ⇔ v

(e2)
x = v

(e2)
p ,

where Ek is the set of these k factors, sc is in-context examples, and v is factor value.

Given i in-context examples, the probability for that we cannot distinguish k factors is

(|E|
k

) i∑
j=0

(
i
j

)( (nv − 1)i−j

ni
v

)k (
1− (nv − 1)i−j

ni
v

)|E|−k

. (15)

context comp. score When we cannot distinguish the hidden factor from k factors, the probability of predicting wrong
results is k−1

k . Combining the results above, we obtain the error:

|E|∑
k=2

(|E|
k

) i∑
j=0

(
i
j

)k − 1

k

(
(nv − 1)i−j

ni
v

)k (
1− (nv − 1)i−j

ni
v

)|E|−k

. (16)

The probability of giving the right prediction is

si = 1−
i∑

j=0

(
i
j

) |E|∑
k=2

(|E|
k

)k − 1

k

(
(v − 1)i−j

vi

)k (
1− (v − 1)i−j

vi

)|E|−k

. (17)

In the constructed Transformer, we will autoregressively combine the results of the previous prediction (Corresponding to
Layer 2). We have:

srsi = (1− srsi−1)si + srsi−1,
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where srs0 = s0.

2) **Accuracy**

The copy-past mechanism is used to predict the answer to the prompt example (Corresponding to layer 3). For the copy-past
mechanism, having an in-context example with the same prediction result as the prompt example is necessary. When we
correctly predict the hidden factor, the probability to predict correctly is 1− (nv−1

nv
)i. When we predict a wrong hidden

factor, the probability is 1
nv

. Combine the two above, we obtain the accuracy as follows

(1− (
nv − 1

nv
)i) srsi +

1

nv
(1− srsi) = clsi =

(nv − 1)(ni−1
v − (nv − 1)i−1)

ni
v

srsi +
1

nv
(18)
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