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Abstract
The Shapley value (SV) is a prevalent approach of
allocating credit to machine learning (ML) entities
to understand black box ML models. Enriching
such interpretations with higher-order interactions
is inevitable for complex systems, where the Shap-
ley Interaction Index (SII) is a direct axiomatic
extension of the SV. While it is well-known that
the SV yields an optimal approximation of any
game via a weighted least square (WLS) objec-
tive, an extension of this result to SII has been
a long-standing open problem, which even led
to the proposal of an alternative index. In this
work, we characterize higher-order SII as a so-
lution to a WLS problem, which constructs an
optimal approximation via SII and k-Shapley val-
ues (k-SII). We prove this representation for the
SV and pairwise SII and give empirically vali-
dated conjectures for higher orders. As a result,
we propose KernelSHAP-IQ, a direct extension
of KernelSHAP for SII, and demonstrate state-of-
the-art performance for feature interactions.

1. Introduction
The Shapley value (SV) (Shapley, 1953) is a commonly
used theoretical framework from cooperative game theory to
allocate credit among entities in machine learning (ML) set-
tings. Prevalent ML applications of the SV include feature
attribution (Lundberg & Lee, 2017) for local interpretabil-
ity, feature importance (Covert & Lee, 2021) for global
interpretability, or data valuation to quantify the worth of
data points (Ghorbani & Zou, 2019). However, in many
application domains, the SV accounting solely for individ-
ual entities such as features or data points does not suffice
(Kumar et al., 2020; 2021; Slack et al., 2020; Sundararajan

1Bielefeld University, CITEC, D-33619 Bielefeld, Germany
2LMU Munich, D-80539 Munich, Germany 3MCML, Munich
4Paderborn University, D-33098, Paderborn, Germany. Cor-
respondence to: Fabian Fumagalli <ffumagalli@techfak.uni-
bielefeld.de>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

i
have

never

forgot

this

movie

all

these
years

and

it

has

remained

in

my

life

I have never forgot this
movie. All these years
and it has remained in

my life.

Network Plot (predicted output: 0.99, positive)

start

Figure 1. Positive (red) and negative (blue) feature attributions
(vertices) and interactions (edges) for a movie review excerpt
provided to a sentiment analysis language model. The interaction
of “never” and “forget” highly contributes to the positive sentiment.

et al., 2020; Wright et al., 2016). As illustrated with Fig-
ures 1 and 2, in complex domains like language modeling
(Murdoch et al., 2018), image classification (Tsang et al.,
2018), or bioinformatics (Winham et al., 2012; Wright et al.,
2016), enriching contributions of individuals with interac-
tions among entities is required.

The SV’s allocation scheme can be generalized to Shapley
interactions and quantify the synergy of groups of entities.
The Shapley Interaction Index (SII) (Grabisch & Roubens,
1999) is a natural axiomatic extension of the SV to any-order
interactions, which yields an exact additive decomposition
of any cooperative game (Grabisch et al., 2000). However,
this decomposition includes an exponential number of com-
ponents and is not suited for interpretability. As a remedy,
fixing a maximum interaction order k, k-Shapley values
(k-SII) (Bordt & von Luxburg, 2023) aggregate SII up to
order k uniquely and yield an interpretable and efficient
k-additive interaction index. This aggregation fairly dis-
tributes the joint payout, e.g. the model’s prediction, to all
individuals and groups of entities up to order k.
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Potential Question: “Does the location of my property affect its price ŷ = 4.54 (in 100k$)?”
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Figure 2. Force plots as first and second order explanations showing positive (red) and negative (blue) feature attributions for a data point
of the California Housing regression dataset (Kelley Pace & Barry, 1997). The SVs show that a longitude of −122.44 and a latitude of
37.8, positively influences the predicted property’s price. Considering 2-SII feature interactions reveals that the positive influence of latit.
vanishes and only the combination of longi. and latit. pointing to the exact location, San Francisco, impacts the property’s price.

Both, SII and 1-SII are the SV for individuals. In this case,
besides the classical representation, it is well-known that
the SV yields an optimal 1-additive approximation of the co-
operative game, which minimizes the weighted least square
(WLS) loss over all subsets constrained on the efficiency
property (Charnes et al., 1988). Extensions of such repre-
sentations for interactions exist for constant weights, which
yields the Banzhaf interaction index (Hammer & Holzman,
1992; Grabisch et al., 2000). For Shapley interactions, the
Faithful Shapley Interaction Index (FSI) (Tsai et al., 2023)
extends on the axiomatic structure of the least square fam-
ily (Ruiz et al., 1998) by imposing Shapley-like axioms.
However, while FSI yields a unique index, it neither yields
SII nor k-SII and the dualism between both representations
is not as clear as for the SV. In light of the exponential
complexity of the SV and SII, which necessitates efficient
approximation techniques, a WLS representation of SII is
particularly desirable. In fact, KernelSHAP (Lundberg &
Lee, 2017) directly utilizes this representation of the SV and
yields state-of-the-art (SOTA) approximations in ML appli-
cations (Chen et al., 2023; Kolpaczki et al., 2024a). For FSI,
where a direct extension of KernelSHAP is possible, it has
been shown that it is similarly superior over sampling-based
approaches (Fumagalli et al., 2023; Kolpaczki et al., 2024b).

Contribution. In this work, we show that SII is the solu-
tion to a WLS problem, which yields the optimal k-additive
approximation of any cooperative game via k-SII and SII.
We then present two variants of KernelSHAP Interaction
Quantification (KernelSHAP-IQ), a direct extension of Ker-
nelSHAP for higher-order SII. We empirically demonstrate
that KernelSHAP-IQ outperforms existing baselines and
yields SOTA performance across various datasets and model
classes. Therein, our main contributions include:

1. Iterative approximations via SII: We introduce k-
additive approximations via k-SII and prove an itera-
tive link to SII (Proposition 3.2).

2. Optimal k-additive approximation via SII: We prove
that pairwise SII are the solution to a WLS problem
(Theorem 3.7) with empirically validated conjectures
for higher orders (Conjecture 3.9).

3. KernelSHAP-IQ1: We propose an inconsistent and
consistent variant of KernelSHAP for SII that yields
SOTA performance for local feature interactions.

Related Work. In cooperative game theory, the studied set
functions are known as transferable utility (TU) games, and
k-additive TU-games, if k is the maximum order (Grabisch,
2016). Extensions of the SV to interactions were proposed
with SII (Grabisch & Roubens, 1999), FSI (Tsai et al., 2023)
among others (Marichal & Roubens, 1999; Sundararajan
et al., 2020). Recent work was largely motivated by the
lack of efficiency of SII, which was recently resolved by the
SII-based aggregation k-SII (Bordt & von Luxburg, 2023)
that extends on (pairwise) Shapley interactions (Lundberg
et al., 2020). The dualism between semivalues, such as
the SV or Banzhaf value (Banzhaf III, 1964), and optimal
WLS approximations is well known (Ruiz et al., 1998). For
interactions, these results extend to Banzhaf interactions
(Grabisch & Roubens, 1999; Grabisch et al., 2000). FSI
provides a novel index, which directly yields this dualism
for Shapley interactions. However, FSI differs from SII and
k-SII, and the classical representation, as well as the link
between orders remains mostly unknown (Tsai et al., 2023).

1KernelSHAP-IQ is implemented in the open-source shapiq
explanation library github.com/mmschlk/shapiq.
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Lastly, our approach is linked to the Shapley residuals (Ku-
mar et al., 2021).

Approximations of Shapley interactions, were introduced for
particular interaction indices by Sundararajan et al. (2020);
Tsai et al. (2023) and arbitrary cardinal interaction indices
(Fujimoto et al., 2006) by Fumagalli et al. (2023); Kolpaczki
et al. (2024b). They directly extend on methods for the
SV (Castro et al., 2009; Covert & Lee, 2021; Kolpaczki
et al., 2024a). KernelSHAP (Lundberg & Lee, 2017) was
introduced for the SV and extended to FSI (Tsai et al., 2023).
Including SII in KernelSHAP also improved approximations
of the SV (Pelegrina et al., 2023). Above approximations do
not make any assumption about the game and were used for
model-agnostic interpretability. For tree-based models, it
was shown that SII can be computed much more efficiently
(Muschalik et al., 2024; Zern et al., 2023), which extends
TreeSHAP (Lundberg et al., 2020; Yu et al., 2022) to SII.

Apart from cooperative game theory, interactions were also
studied in statistics with functional decomposition (Hooker,
2004; 2007; Lengerich et al., 2020), where some are linked
to game theory (Herbinger et al., 2023; Herren & Hahn,
2022; Hiabu et al., 2023). In ML, model-specific variants
for deep learning architectures were proposed (Deng et al.,
2024; Harris et al., 2022; Janizek et al., 2021; Tsang et al.,
2018; 2020a; Zhang et al., 2021), as well as model-agnostic
methods (Tsang et al., 2020b) without axiomatic structures.

2. From Shapley Values to Interactions
Notations. We use lower-case letters to denote subset
sizes, i.e. s := |S|, and write i for {i} and ij for {i, j}. We
write constraints in the superscript of a sum, e.g.

∑k≤t≤n−k
T⊆N

indicates a sum over subsets T ⊆ N of size k ≤ |T | ≤ n−k.
We index matrices using subsets, e.g. (X)TS refers to the
row indexed by T and column indexed by S. Lastly, the
indicator function 1A is one if A is fulfilled and T ∼ p is a
subset sampled according to a probability distribution p.

We consider a set of players N := {1, . . . , n} and the pay-
out of a cooperative game ν : P(N)→ R, where ν models
the payout given a subset of players T ⊆ N . In the con-
text of local interpretability, N might be chosen as the set
of features and ν the prediction of the model given only a
subset of features. For simplicity, we consider games with
ν(∅) = 0. In the following, we are interested in quantifying
the contribution of a set of players S ⊆ N to the payout ν.
For local interpretability, this is known as feature attribution
for individual players and feature interaction for multiple
players. For individual players, the fair attribution is the
well-known Shapley value (SV) (Shapley, 1953)

ϕSV(i) =
∑

T⊆N\i

(n−1−t)!·t!
n! [ν(T ∪ i)− ν(T )]︸ ︷︷ ︸

=:∆i(T )

.

The SV is the unique attribution measure that fulfills the
linearity, symmetry, dummy, and in particular the efficiency
axiom, which distributes the payout ν(N)−ν(∅) among the
players, e.g. the prediction of a ML model. The SV of player
i is the weighted average over all marginal contributions
∆i(T ) := ν(T ∪ i)−ν(T ). For two players ij the marginal
contribution to T ⊆ N \ ij can be extended using the
recursion

∆ij(T ) = ν(T ∪ ij)− ν(T )︸ ︷︷ ︸
contribution of ij jointly

− ∆i(T )︸ ︷︷ ︸
contribution of i

− ∆j(T )︸ ︷︷ ︸
contribution of j

,

i.e. the effect of adding both players ij, minus their indi-
vidual contributions. For feature interactions, a positive
value indicates meaningful joint information, e.g. exact po-
sition versus latitude and longitude separately, whereas a
negative value indicates redundancy. Using above intu-
ition, the marginal contributions can be extended to any
subset, which is known as the discrete derivative ∆S(T ) :=∑

L⊆S(−1)s−lν(T ∪ L) of a set of players S ⊆ N to a set
of participating players T ⊆ N \ S. Similar to the SV, an
interaction index is then defined as a weighted average over
discrete derivatives.

Definition 2.1 (Shapley Interaction Index (Grabisch &
Roubens, 1999)). The Shapley Interaction Index (SII) is

ϕSII(S) :=
∑

T⊆N\S

(n− s− t)! · t!
(n− s+ 1)!

∆S(T ).

We refer to all SIIs of order s as ϕSII
s := {ϕSII(S) : |S| = s}.

The SII includes the SV as ϕSII
1 ≡ ϕSV. It was shown

by Grabisch & Roubens (1999) that the SII satisfies the
(generalized) linearity, symmetry and dummy axiom. The
SII is further the unique interaction index that additionally
satisfies the recursive axiom, which naturally extends the
recursion of discrete derivatives and links higher- to lower-
order interactions. For pairwise interaction, it requires

ϕ(ij) = ϕ[ij]([ij])︸ ︷︷ ︸
SV of merged player

− ϕ−j(i)︸ ︷︷ ︸
SV of i, j excluded

− ϕ−i(j)︸ ︷︷ ︸
SV of j, i excluded

.

Here, ϕ[ij], ϕ−j , ϕ−i correspond the SV of games, where
[ij] are merged, j is absent, and i is absent, respectively.
This recursion is similar to ∆ij , where the right-hand side
is the marginal contribution of the merged player [ij] minus
the marginal contributions of the individual players, where
the other player is absent in T .

2.1. k-Additive Interactions and k-Shapley Values

While the SII is an intuitive extension of the SV to arbitrary
interactions, it is not suitable for interpretability as it consists
of 2n non-trivial components. We thus introduce k-additive
interaction indices Φk(S), which admit a lower complexity
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with non-zero interactions up to order 1 ≤ |S| ≤ k ≤ n, i.e.
Φk(S) := 0 for |S| > k, which we omit for simplicity.

Definition 2.2 (Efficiency). A k-additive interaction index
Φk(S) is efficient if and only if

∑1≤|S|≤k
S⊆N Φk(S) = ν(N).

The SV and the SII subsume all higher order effects, which
has been shown by Grabisch (1997) and was recently re-
discovered and linked to feature attributions (Bordt & von
Luxburg, 2023; Hiabu et al., 2023). When constructing an
efficient k-additive interaction index Φk based on SII, it
is required to account for double counting of effects with
order larger than k. For k = 2, this was introduced as the
(pairwise) Shapley interactions (Lundberg et al., 2020) and
extended to higher-order k-Shapley values (Bordt & von
Luxburg, 2023).

Definition 2.3 (k-Shapley Values (Bordt & von Luxburg,
2023)). The k-Shapley value (k-SII) is defined as Φk(S) :={

ϕSII(S) if |S| = k

Φk−1(S) +Bk−|S|
∑|S|+S̃=k

S̃⊆N\S ϕSII(S ∪ S̃) if |S| < k

with 1 ≤ |S| ≤ k ≤ n, Φ0 ≡ 0 and Bernoulli numbers Bn.

Note that 1-SII is again the SV, i.e. Φ1 ≡ ϕSV. Furthermore,
k-SII requires SII values up to order k and the highest order
is equal to SII. It was shown that Φk is efficient and that
the Bernoulli numbers are the unique choice of weighting
to achieve this property (Bordt & von Luxburg, 2023). For
k = n the explicit form is drastically simplified and cor-
responds to the well-known Möbius transform (Bordt &
von Luxburg, 2023). The k-SII therefore defines a flexi-
ble low-complexity k-additive interaction index, which is a
straight-forward aggregation of SII and can be directly used
for an interpretable representation. In Section 3, we will
show and leverage that k-SII is directly linked to an optimal
k-additive approximation of ν.

2.2. Approximations of Shapley Interactions

In applications, the limiting factor of SII and the SV are
the amount of evaluations of ν, where both require 2n

evaluations for exact computation. Therefore, multiple
approximation techniques have been proposed, as illus-
trated in Table 1. In the following, we introduce the
main approaches for SII, which are based on Monte Carlo
sampling of different representations, and extend on tech-
niques for the SV. These methods will be used as base-
line methods in our experiments. Permutation Sampling
(Castro et al., 2009; Tsai et al., 2023) samples random
permutations π of N and is based on the representation
ϕSII(S) = Eπ[1π∈S∆S(uS(π))], where uS(π) is the set
of elements that appear in π before any element of S, and
1π∈S is one, if all elements of S appear consecutively in
π, and zero otherwise. For permutation sampling only a

Table 1. Summary of approximation techniques extended to SII

Method SV SII (k-SII)

Permutation (Castro et al., 2009) (Tsai et al., 2023)
SHAP-IQ (Covert & Lee, 2021) (Fumagalli et al., 2023)
SVARM (Kolpaczki et al., 2024a) (Kolpaczki et al., 2024b)

KernelSHAP (Lundberg & Lee, 2017) KernelSHAP-IQ

small fraction of interaction estimates are updated with each
evaluation. An alternative method is SHAP-IQ (Fumagalli
et al., 2023) that samples subsets T ⊆ N directly and uti-
lizes a representation ϕSII(S) = ET [ν(T )ωs(t, |T ∩ S|)],
where ωs are SII-specific weights adjusted to the sampling
distribution. SHAP-IQ can therefore utilize every evaluation
to update all interaction estimates. SVARM-IQ (Kolpaczki
et al., 2024b) further improves approximation by stratifying
over subset sizes t and intersections T ∩ S = L with

ϕSII(S) =

n∑
t=0

∑
L⊆S

E[ν(T )ω̃s(t, L) | |T | = t, T ∩ S = L],

where ω̃s(t, L) := ωs(t, ℓ) · p(|T | = t, T ∩ S = L), i.e. ad-
justed by the strata probabilities. The core idea is to compute
strata estimates by sampling T ⊆ N and treat it as a random
sample for one specific stratum of every interaction. This
allows again to utilize every evaluation for all interaction
estimates. It was shown empirically that SVARM-IQ is the
most powerful estimator for SII (Kolpaczki et al., 2024b).

2.3. Approximating Shapley Values with KernelSHAP

While recent research extended techniques of the SV to the
SII, one particularly powerful method has not been consid-
ered, so far. KernelSHAP (Lundberg & Lee, 2017) is based
on a representation of the SV as a solution to a constrained
WLS problem (Charnes et al., 1988; Covert & Lee, 2021)

ϕSV = argmin
ϕ∈Rn

0<|T |<n∑
T⊆N

µ(t)

[
ν(T )−

∑
i∈T

ϕ(i)

]2
,

such that
∑
i∈N

ϕ(i) = ν(N),

(1)

where p(T ) ∝ µ(t) :=
(
n−2
t−1

)−1
for 1 ≤ t ≤ n− 1.

KernelSHAP considers above objective as an expectation

0<t<n∑
T⊆N

µ(t)[ν(T )−
∑
i∈T

ϕ(i)]2 = ET [(ν(T )−
∑
i∈T

ϕ(i))2]

over sampled subsets T ∼ p(T ) ∝ µ(t), and approximates
the expectation using Monte Carlo sampling. Then, the
WLS problem is solved with the approximated objective.
The constraint is thereby included with sets T ∈ {∅, N} and
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a large weight µ∞ ≫ 1, where we prove in Theorem 3.6
that this yields the SV. While the theoretical analysis of
KernelSHAP remains difficult, it was shown that the ap-
proach works especially well for ML applications (Chen
et al., 2023; Kolpaczki et al., 2024a; Lundberg & Lee, 2017).
In the following, we rigorously describe this approach and
discover such a representation for SII, which we use for
efficient approximation.

3. Weighted Least Square Optimization for
Shapley Interactions

The SII is an axiomatic extension of the SV and constructs
k-SII as an efficient k-additive interaction index used for
interpretability. In this section, we give an alternative charac-
terization of SII, as the solution to a WLS problem, which ex-
tends on the representation of the SV given in Equation (1).
Based on this representation, we introduce KernelSHAP-
IQ, an extension of KernelSHAP for Shapley interactions.
We rigorously prove its convergence for pairwise interac-
tions and conclude with empirically validated conjectures
for higher orders. All proofs are deferred to Appendix A.

The representation of the SV in Equation (1), utilized by
KernelSHAP, shows that the approximation

∑
i∈T ϕ(i) ≈

ν(T ) of the game is optimal in terms of the WLS objective,
if and only if ϕ(i) are the SVs. This approximation can be
viewed as a 1-additive approximation of the game, which
we now directly extend to k-additive approximations.

Definition 3.1 (k-additive Approximation). The k-additive
approximation induced by the k-SII Φk is given by

ν̂k(T ) :=

1≤|S|≤k∑
S⊆T

Φk(S) for T ⊆ N.

Clearly, ν̂1 is the approximation given in Equation (1). Link-
ing higher orders of the SII to such an optimal approxi-
mation of ν has remained unknown. In order to extend
KernelSHAP to interactions, recent research introduced the
FSI as an alternative index (Tsai et al., 2023). FSI constructs
an optimal k-additive approximation of ν by extending on
the KernelSHAP representation with interactions up to or-
der k. One disadvantage of FSI is that the solution directly
depends on k, which complicates the relationship between
representations of different order. Furthermore, the exact
representation of lower-order FSI with discrete derivatives
remains unknown (Tsai et al., 2023). In contrast, we show
that k-SII constructed from SII values yield an appealing
iterative approximation of ν, which additively extends on
the previous approximation by including a weighted average
of SII of order k. We then show that SII via k-SII is linked
to an optimal k-additive approximation of ν. This yields a
suitable framework, where SII is fixed independent of k and

Figure 3. Links between SII, k-SII and the k-additive approxima-
tion ν̂k. The SII captures the average contribution of S to ν, which
constructs the k-additive interaction index k-SII, which is used for
interpretation. Both are linked to ν̂k, where SII yields an optimal
approximation, which iteratively constructs ν̂k.

k-SII yields an interpretable k-additive interaction index, as
summarized in Figure 3.

3.1. Optimal Approximations via Shapley Interactions

We first link ν̂k and SII, which reveals a surprising recursion.
Proposition 3.2 (Iterative Approximation). If k ≥ 2, then

ν̂k(T ) = ν̂k−1(T ) +

|S|=k∑
S⊆N

ϕSII(S)λ(|S|, |S ∩ T |)

with weights λ(k, ℓ) :=
∑ℓ

r=1

(
ℓ
r

)
Bk−r and λ(k, 0) := 0.

Corollary 3.3. It holds λ(k, k) = 0 for k > 1, ν̂1(T ) =∑
i∈T ϕSV(i), and ν̂2(T ) = ν̂1(T )− 1

2

∑|ij∩T |=1
ij⊆N ϕSII(ij).

Increasing k successively builds on the SV-based approx-
imation ν̂1(T ) from Equation (1) by including all SII of
order k, i.e.

(
n
k

)
components. With increasing k, the approx-

imation ν̂k includes more interaction terms, which yields
a complexity-accuracy trade-off. In this context, ν̂1 based
on the SVs is the least complex, and ν̂n is the most com-
plex and most faithful approximation, where ν̂n(T ) = ν(T )
follows from a game-theoretic result (Grabisch et al., 2000).
Corollary 3.4. For any T ⊆ N , it holds ν(T ) = ν̂n(T ).

In this case, n-SII values (k = n for k-SII), which construct
ν̂n, are the Möbius transform (Bordt & von Luxburg, 2023),
which is related to the well-known functional ANOVA de-
composition (Hooker, 2004) from statistics, if ν are condi-
tional expectations (Herren & Hahn, 2022).

Optimality of the SII. We now link SII of order k, ϕSII
k ,

to an optimal k-additive approximation of ν in terms of a
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WLS objective. More concretely, we show that for all in-
teraction indices ϕk of order k with induced approximation
via Proposition 3.2, the SII ϕSII

k yields the optimal approxi-
mation given a specific WLS objective. In the following, it
is convenient to use matrix notations, where the rows cor-
respond to subsets T ⊆ N and the columns to interactions
S ⊆ N of order |S| = k. We first introduce the residual
vector yk ∈ R2n as (y1)T := ν(T ) and for k ≥ 2

(yk)T := ν(T )− ν̂k−1(T ) for T ⊆ N.

Next, we introduce the coefficient matrix Xk ∈ R2n×(nk) as

(Xk)TS := λ(|S|, |T ∩ S|) for T, S ⊆ N with |S| = k.

With SII of order k, ϕSII
k ∈ R(

n
k), and Proposition 3.2 the

approximation error of ν and ν̂k is given by yk −Xkϕ
SII
k .

Introducing a diagonal weight matrix Wk ∈ R2n×2n , we
aim to characterize ϕSII

k as the solution to a WLS problem

ϕ∗ = argmin

ϕk∈R(
n
k)

∥∥∥√Wk (yk −Xkϕk)
∥∥∥2
2
, (2)

where ∥ · ∥2 is the Euclidean norm. Note that this WLS
problem for k = 1 is similar to Equation (1) but includes all
subsets T ⊆ N . The solution is explicitly given as

ϕ∗ = (XT
kWkXk)

−1XT
kWk · yk. (3)

We now define the weights of Wk with µ∞ ≫ 1 as

(Wk)TT := µk(t) :=

{(
n−2·k
t−k

)−1
if k ≤ t ≤ n− k

µ∞ else.

Remark 3.5. The weights µk appear naturally from
ϕSII(S) =

∑
T⊆N ν(T )ωs(t, |T ∩ S|) (Fumagalli et al.,

2023) as the common factors µk(t) ∝ ωs(t, 0), . . . ωs(t, k)

for k ≤ t ≤ n − k. Since (XT
kWkXk)

−1 ∈ R(
n
k)×(

n
k)

does not depend on T , it holds that µk controls the final
weight in XT

kWk for all interactions S. For a more detailed
discussion, see Appendix B.9.

For k = 1, µ1 are the KernelSHAP weights and the SV
is the solution of the WLS problem for µ∞ → ∞, which
justifies KernelSHAP.

Theorem 3.6 (KernelSHAP). Let n ≥ 2 and (W1)TT :=
µ1(t). Then the SV is represented as

ϕSV = lim
µ∞→∞

argmin
ϕ1∈Rn

∥∥∥√W1 (y1 −X1ϕ1)
∥∥∥2
2
.

A large weight µ∞ requires the solution to achieve lower
approximation error for this subset, which is a soft con-
straint. The subsets with weights µ∞ are the empty set

and N . For the empty set, the approximation error is
constant, and is thus not influenced by the solution of
the WLS problem. For N , the approximation error is
(y1)N − (X1ϕ)N = ν(N) −

∑
i∈N ϕ(i), which is zero

if efficiency holds. Intuitively, with µ∞ →∞, the soft con-
straint becomes a hard constraint, which requires zero ap-
proximation error, i.e. efficiency with ν(N) =

∑
i∈N ϕ(i).

This was argued in KernelSHAP (Lundberg & Lee, 2017)
without formal proof. Theorem 3.6 is a formal proof that
this intuition holds, and indeed yields the SV satisfying the
efficiency constraint from Equation (1).

For pairwise SII, we now present a novel representation akin
to Theorem 3.6.

Theorem 3.7 (KernelSHAP-IQ, k = 2). Let n ≥ 4 and
(W2)TT := µ2(t). Then the pairwise SII is represented as

ϕSII
2 = lim

µ∞→∞
argmin

ϕ2∈R(
n
2)

∥∥∥√W2 (y2 −X2ϕ2)
∥∥∥2
2
.

While µ∞ → ∞ corresponds to a constraint for k = 1
that ensures efficiency, its behavior for k = 2 is less clear.
In fact, µ2(1) = µ2(n − 1) = µ∞, but for two such sub-
sets T ∈ {ℓ,N \ ℓ} with ℓ ∈ N the approximation is for
both the same value as (X2ϕ2)T = − 1

2

∑|T∩ij|=1
ij⊆N ϕ(ij) =

− 1
2

∑j ̸=ℓ
j∈N ϕ(jℓ), which implies that the corresponding hard

constraint of zero approximation error cannot be satisfied.
Consequently, contrary to k = 1, the soft constraints with
µ∞ cannot be re-written to a hard-constrained WLS prob-
lem, since it would not have a solution in general.

3.2. Optimal Higher-Order Approximations

For k > 2 we were unable to find closed-form solutions
and we suspect that our proof may not be suited for finding
these in general. However, we empirically validated that
µk can also be used for higher-order approximations, which
we summarize in the following conjectures. The first one
concerns the structure of the inverse in Equation (3).

Conjecture 3.8. Let n ≥ 2k and define the precision matrix

Ak := lim
µ∞→∞

(XT
kWkXk)

−1,

Then, for S1, S2 ⊆ N with |S1| = |S2| = k, it holds

(Ak)S1S2
=

(−1)k−|S1∩S2|

n− k + 1

(
n− k

k − |S1 ∩ S2|

)−1

.

Referring to Ak as the precision matrix is due to the interpre-
tation of A−1

1 as the covariance matrix for the SV by Covert
& Lee (2021). The second conjecture poses a higher-order
representation of SII. In fact, if Conjecture 3.8 holds, then
the subsets T ⊆ N with finite weights, i.e. k ≤ |T | ≤ n−k
yield the correct weights for SII.

6



KernelSHAP-IQ: Weighted Least Square Optimization for Shapley Interactions

Conjecture 3.9. Let n ≥ 2k and Tk := {T ⊆ N : k ≤
|T | ≤ n− k}, which splits for T ⊆ N the vector yk into

(y+
k )T := 1T∈Tk

· yk(T ), (y−
k )T := 1T /∈Tk

· yk(T ).

Let further for T ⊆ N and interaction S ⊆ N with |S| = k

(Qk)ST :=

{
(−1)s−|S∩T |ms(t− |S ∩ T |), if T /∈ Tk,
0, if T ∈ Tk,

where ms(t) :=
(n−s−t)!·t!
(n−s+1)! from Definition 2.1. Then,

ϕSII
k = Qky

−
k + lim

µ∞→∞
argmin

ϕk∈R(
n
k)

∥∥∥√Wk

(
y+
k −Xkϕk

)∥∥∥2
2
.

Conjecture 3.9 states that higher-order SII are again rep-
resented as the solution to a WLS problem. However, in
contrast to k ≤ 2, the representation does only hold par-
tially for T ∈ Tk. For T /∈ Tk, Qk contains all SII weights
(Fumagalli et al., 2023), which are required for the correct
weighting. This is necessary as, in contrast to k ≤ 2, the
weights do not converge to the SII weights for µ∞ → ∞
and T /∈ Tk, which requires to adjust the representation
using y+

k and y−
k . Presumably, different µ∞ could resolve

this issue, which we leave to future research.

3.3. KernelSHAP-IQ for Shapley Interactions

We introduce two variants of KernelSHAP-IQ for SII
based on distinct optimization problems. Inconsistent
KernelSHAP-IQ solves a single WLS problem and does
not converge to SII. In contrast, (consistent) KernelSHAP-
IQ solves iteratively a WLS problem for every order and
converges to SII. Similar to KernelSHAP, we solve an ap-
proximated objective by sampling subsets from a distribu-
tion p∗(T ) ∝ q(t) with sampling weights q(t) ≥ 0 for
t = 0, . . . , n. We re-write Equation (2) as

ϕ∗ = argmin

ϕk∈R(
n
k)

ET∼p∗

[∥∥∥√W∗
k (yk −Xkϕk)

∥∥∥2
2

]
,

where we adjusted (W∗
k)TT := (Wk)TT /p

∗(T ). Accord-
ing to our previous results, the right-hand side has to be
solved for µ∞ →∞, and we thus set µ∞ ≫ 1 to account
for the limit. KernelSHAP-IQ estimates are computed by
solving the approximated WLS objective with Ŵk, X̂k and
ŷk, containing sampled subsets T ⊆ N at each row. More
details and pseudocode can be found in Appendix B.

Inconsistent KernelSHAP-IQ. Our baseline method, in-
consistent KernelSHAP, solves a single WLS problem us-
ing the KernelSHAP weights. We include all interac-
tions up to order k via the weighting in Proposition 3.2,

Algorithm 1 KernelSHAP-IQ
Require: order k, sampling weights q, budget b.

1: {Ti}i=1,...,b, {wT }T=T1,...,Tb
← SAMPLE(q, b)

2: y1 ← [ν(T1), . . . , ν(Tb)]
T

3: for ℓ = 1, . . . , k do ▷ iterative approximation
4: for T ∈ {Ti} and |S| = ℓ do
5: (X̂ℓ)TS ← λ(|S|, |T ∩ S|) ▷ Bernoulli weighting
6: (Ŵ∗

ℓ )TT ← µℓ(t) · wT ▷ weight adjustment
7: end for
8: if ℓ ≤ 2 then ▷ higher order split
9: ϕ̂ℓ ← SOLVEWLS(X̂ℓ, ŷℓ,Ŵ

∗
ℓ )

10: else
11: for T ∈ {Ti} and |S| = ℓ do
12: (Qℓ)ST ← 1T /∈Tℓ

· SIIWEIGHT(T, S)
13: (ŷ+

ℓ )T ← 1T∈Tℓ
(ŷℓ)T

14: (ŷ−
ℓ )T ← 1T /∈Tℓ

(ŷℓ)T
15: end for
16: ϕ̂ℓ ← Qℓŷ

−
ℓ + SOLVEWLS(X̂ℓ, ŷ

+
ℓ ,Ŵ

∗
ℓ )

17: end if
18: ŷℓ+1 ← ŷℓ − X̂ℓ · ϕ̂ℓ ▷ compute residuals
19: end for
20: Φ̂k ← AGGREGATESII(ϕ̂1, . . . , ϕ̂k) ▷ compute k-SII
21: return k-SII estimates Φ̂k, SII estimates ϕ̂1, . . . , ϕ̂k

i.e. in total
∑k

ℓ=1

(
n
ℓ

)
interactions. More formally, intro-

ducing the stacked matrices X≤k := (X1, . . . ,Xk) and
ϕ≤k := [ϕ1, . . . , ϕk]

T , this approach solves

ϕ∗ = lim
µ∞→∞

argmin
ϕ≤k

∥∥∥√W1 (y1 −X≤kϕ≤k)
∥∥∥2
2
. (4)

Inconsistent KernelSHAP solves the WLS problem with the
approximated objective to obtain estimates for SII.
Remark 3.10. Interestingly, we observe empirically that
solving Equation (4) yields the exact SVs.
Remark 3.11. Inconsistent KernelSHAP-IQ is related, but
not equivalent, to kADD-SHAP (Pelegrina et al., 2023) and
FSI. kADD-SHAP includes ϕSII(∅) and a sum starting from
zero in λ in X≤k. FSI uses binary weights X≤k, and effec-
tively solves for k-SII Φk instead of SII ϕSII

≤k.

While higher-order estimates do not converge to SII, in-
consistent KernelSHAP-IQ surprisingly yields high-quality
estimations in low-budget settings. Utilizing our novel repre-
sentations we formalize (consistent) KernelSHAP-IQ, which
yields SOTA approximation and converges to SII.

KernelSHAP-IQ. We now introduce KernelSHAP-IQ
based on the novel representation in Theorem 3.7, which
ensures that KernelSHAP-IQ converges to SII for k = 2.
Further, with Conjecture 3.9, KernelSHAP-IQ can be ex-
tended to k > 2, where we empirically validate its conver-
gence. KernelSHAP-IQ once samples subsets given the sam-
pling weights q, where the weights w account for the sam-
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pling probabilities and the number of Monte Carlo samples
(line 1). As a default, we propose the KernelSHAP weights
for sampling, i.e p(T ) ∝ µ1(t), and apply the border-trick
(Fumagalli et al., 2023). For further details regarding the
sampling and the weights w, we refer to Appendix B.3. The
game is then evaluated on all sampled subsets, stored in
ŷ1, which determines the computational complexity (line 2).
Then, ν̂ℓ is iteratively constructed for ℓ = 1, . . . , k by com-
puting the SII estimates (line 3-19). Starting from ℓ = 1,
where KernelSHAP-IQ reduces to KernelSHAP, ϕ̂ℓ is esti-
mated and the residual ŷℓ+1 := ŷℓ −Xℓ · ϕ̂ℓ is computed
for the next iteration (line 18). We repeat this process until
ℓ = k, summarized in Algorithm 1. At each step, we set the
matrices for the WLS problem (line 4-7). The coefficient
matrix X̂ℓ is set for every sampled subset and every inter-
action of the current order ℓ (line 5). The diagonal weight
matrix Ŵ∗

ℓ is set for every sampled subset, and contains µℓ

adjusted by wT , which accounts for the sampling probabili-
ties p∗(T ) and the number of Monte Carlo samples (line 6).
If ℓ ≤ 2, then the WLS problem is solved directly with
X̂ℓ, ŷℓ, and Ŵ∗

ℓ (line 9). If ℓ > 2, then Conjecture 3.9
applies, and the WLS problem is split by Tℓ (line 11-15).
For every sampled subset and every interaction of the cur-
rent order ℓ, the SII weights are assigned to Qℓ (line 12),
and the residuals ŷℓ are split by Tk into ŷ+

ℓ (line 13) and
ŷ−
ℓ (line 14). The SII estimates ϕ̂ℓ are then computed with

the SII weights Qℓ for ŷ−
ℓ and by solving the WLS prob-

lem with X̂ℓ, ŷ
+
ℓ and Ŵ∗

ℓ (line 16). After reaching ℓ = k,
the SII estimates are aggregated via the non-recursive for-
mula (cf. Appendix B.6) to k-SII values, and used for final
interpretation (line 20-21).

4. Experiments
We conduct multiple experiments to compare KernelSHAP-
IQ with existing baseline methods for estimating SII and
k-SII values. For each method, we assess estimation qual-
ity with mean-squared error (MSE; lower is better) and
precision at ten (Prec@10; higher is better) compared to
ground truth (GT) SII and k-SII. We compute confidence
bands with the standard error of the mean (SEM). Prec@10
measures the accuracy of correctly identifying the ten high-
est interaction scores in terms of absolute values. The GT
values are calculated once via brute force by evaluating 2n

coalitions for each game of n players (i.e. features).

Baselines. We compare KernelSHAP-IQ and inconsistent
KernelSHAP-IQ with all available baseline algorithms; per-
mutation sampling (Castro et al., 2009; Tsai et al., 2023),
SHAP-IQ (Fumagalli et al., 2023), and SVARM-IQ (Kol-
paczki et al., 2024b), as shown in Table 1.

Benchmark Datasets and Models. Based on recent work
by Fumagalli et al. (2023); Kolpaczki et al. (2024b); Tsai

Table 2. Summary of the benchmark datasets and models used.

ID Model Removal Strategy n Y
SOUM Synthetic – 20, 40 [0, 1]

LM DistilBert Token Removal 14 [−1, 1]
CH Neural Net Mean 8 R
BR XGBoost Mean/Mode 12 R
ViT ViT-32-384 Token Removal 16 [0, 1]

CNN ResNet18 Superpixel 14 [0, 1]
AC RF Mean/Mode 14 [0, 1]

et al. (2023), we create different benchmark scenarios2. Ta-
ble 2 summarizes the scenarios and corresponding removal
approaches after Covert et al. (2021). For a detailed descrip-
tion regarding the experimental setup and model training
we refer to Appendices C and D including a runtime anal-
ysis. First, we create synthetic sum of unanimity models
(SOUMs), also known as sum of unanimity games and in-
duced subgraph game (Deng & Papadimitriou, 1994), where
GT SII can be computed, cf. Appendix B.8. Second, we
compute feature (i.e. token) interaction values for a senti-
ment analysis language model (LM). The LM is a fine-tuned
version of DistilBert (Sanh et al., 2019) on movie re-
view excerpts from the IMDB dataset (Maas et al., 2011).
Third and forth, we explain local instances of the bike rental
(BR) (Fanaee-T & Gama, 2014) and california housing
(CH) (Kelley Pace & Barry, 1997) regression datasets. On
BR we train an XGBoost regressor and on CH a small neu-
ral network. The target variables are logarithmized. Fifth
and sixth, we explain a ResNet18 convolutional neural
network (CNN) (He et al., 2016) and a vision transformer
(ViT) image classifiers, which were pre-trained on ImageNet
(Deng et al., 2009). The ViT considers patches of 32× 32
pixels. In the CNN, individual pixels are grouped together
into super-pixels. Seventh, we compute feature interactions
for instances of the adult census (AC) (Kohavi, 1996) clas-
sification dataset and a random forest (RF) classifier.

Approximation Quality of SII and k-SII. Figure 4 depicts
the approximation quality of KernelSHAP-IQ and incon-
sistent KernelSHAP-IQ compared to the baseline estima-
tors on a selection of benchmark tasks. Further results are
provided in Appendix D. KernelSHAP-IQ and inconsis-
tent KernelSHAP-IQ clearly outperform all three sampling-
based baselines on both regression benchmarks (BR and
CH). Inconsistent KernelSHAP-IQ achieves high estimation
qualities in low-budget scenarios. This trend also material-
izes for second order SII values, in particular in high-player
tasks (e.g. SOUM in Figure 4). Yet, unlike KernelSHAP-IQ,
the inconsistent version does not converge to the GT SII val-
ues. Interestingly, we observe that the inconsistent version

2https://github.com/FFmgll/KernelSHAP_IQ_
Supplementary_Material
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Figure 4. Approximation quality of KernelSHAP-IQ (orange) and inconsistent KernelSHAP-IQ (yellow) compared to the permutation
sampling (purple), SHAP-IQ (pink) and SVARM-IQ (blue) baselines for estimating SII values for the LM (left; n = 14, l ∈ {1, 2, 3})
the bike rental dataset (center left, n = 12, l = 2), the california housing dataset (center right; n = 8, l = 2), and the SOUM (right;
n = 20, l = 2). The shaded bands represent the standard error of the mean (SEM).

does converge to the GT SV independent of the approxi-
mation order k ≥ 1. Notably, in benchmark tasks like the
LM, KernelSHAP-IQ and SVARM-IQ rapidly outperform
all baselines as well as inconsistent KernelSHAP-IQ. Both
SVARM-IQ and KernelSHAP-IQ achieve SOTA results for
the LM task and second order SII values. By relying on
Conjecture 3.9, KernelSHAP-IQ yields high-quality esti-
mations for SII of higher orders (k > 2) and outperforms
SVARM-IQ for order 3 on the LM.

Example Use Case: Feature Attribution. As illustrated in
Figures 1 and 2, 2-SII values can be used to enhance current
feature attribution techniques. Similar to Fumagalli et al.
(2023); Sundararajan et al. (2020); Tsai et al. (2023), we
show that feature interactions are relevant for understand-
ing intricate LMs. In Figure 1, 2-SII scores reveal that the
predicted positive sentiment largely stems from the interac-
tion of the two words “never” and “forget”, while “forget”
individually points towards a negative sentiment. In the CH
example illustrated in Figure 2, the longit. and latit. features
are both contributing positively to the prediction considering
1-SII (SV). The 2-SII explanation, however, reveals that the
positive contribution of latit. vanishes (very low latit. score)
and can be mostly attributed to the latit. x longit. interaction.
Hence, the exact location of the property is meaningful.

5. Limitations
We linked the SII to a solution of a WSL optimization prob-
lem. As previously discussed, our theoretical results ex-
tend to higher orders, provided that 2k ≤ n, although we
were unable to give a rigorous proof. We expect that other
proof techniques are required to further understand these
coherences, which could resolve improper weighting in
Conjecture 3.9. In practice, due to iterative computation

of KernelSHAP-IQ, higher-order estimates are negatively
affected by previous low-quality estimates, where interpre-
tation may be flawed. Lastly, the exponentially growing
number of interactions requires human-centered post pro-
cessing, and we give modest suggestions for visualizations.

6. Conclusion and Future Work
In this work, we clarified the link between SII, an axiomatic
interaction index, and k-SII, an aggregation of SII that yields
a k-additive interaction index used for interpretability. We
demonstrated that the approximation of any game induced
by k-SII is iteratively constructed via SII. Similar to the SV,
we then established that SII of order k is represented as the
solution to a WLS problem, where SII yields an optimal
k-additive approximation. We rigorously prove our results
for the SV and pairwise SII and give empirically validated
conjectures for higher orders. Consequently, we introduce
KernelSHAP-IQ, a direct extension of KernelSHAP, which
efficiently approximates SII for higher orders and yields
SOTA performance. We apply KernelSHAP-IQ for local
interpretability and demonstrate benefits of enriching feature
attributions with interactions.

In future work, we suspect that a rigorous proof of our
conjectures would reveal novel techniques and further in-
sights. Another interesting link are orthogonal projections,
where we suspect a link of pairwise SII to the Shapley resid-
ual (Kumar et al., 2021). Our novel representation of SII
opens up additional possibilities, including the investigation
of amortized Shapley interactions through methods akin
to FastSHAP (Jethani et al., 2022). Apart from local in-
terpretability with feature interactions, KernelSHAP-IQ is
applicable in any game-theoretic setting, which includes
global interpretability or data valuation.
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A. Proofs
A.1. Proof of Proposition 3.2

Proof. By Definition 3.1, we have ν̂k(T ) :=
∑1≤|S|≤k

S⊆T Φk(S). According to Appendix A.2 in (Bordt & von Luxburg,
2023), Φk(S) is explicitly computed as

Φk(S) =

|S̃|≤k∑
S⊆S̃⊆N

B|S̃|−|S|ϕ
SII(S̃) for 1 ≤ |S| ≤ k.

Hence, it follows by re-arranging terms

ν̂k(T ) =

1≤|S|≤k∑
S⊆T

Φk(S) =

1≤|S|≤k∑
S⊆T

|S̃|≤k∑
S⊆S̃⊆N

B|S̃|−|S|ϕ
SII(S̃) =

1≤|S|∑
S⊆T

|S̃|≤k∑
S̃⊆N

B|S̃|−|S|ϕ
SII(S̃)1(S ⊆ S̃)

=

|S̃|≤k∑
S̃⊆N

ϕSII(S̃)

1≤|S|∑
S⊆T

B|S̃|−|S|1(S ⊆ S̃) =

|S̃|≤k∑
S̃⊆N

ϕSII(S̃)

|S̃|∑
r=1

B|S̃|−r

|S|=r∑
S⊆N

1(S ⊆ S̃ ∩ T )

=

|S̃|≤k∑
S̃⊆N

ϕSII(S̃)

|S̃∩T |∑
r=1

B|S̃|−r

(
|S̃ ∩ T |

r

)
=

|S̃|≤k∑
S̃⊆N

ϕSII(S̃)λ(|S̃|, |S̃ ∩ T |),

where we introduced
(
0
r

)
:= 0 for r > 0 and λ(k, ℓ) :=

∑ℓ
r=1

(
ℓ
r

)
Bk−r. The result follows then immediately by observing

that the terms do not depend on k and separating above sum into terms of order k and order less than k as

ν̂k(T ) = ν̂k−1(T ) +

|S̃|=k∑
S̃⊆N

ϕSII(S̃)λ(|S̃|, |S̃ ∩ T |).

A.2. Proof of Corollary 3.3

Proof. From Proposition 3.2 it suffices to compute λ(k, ℓ) :=
∑ℓ

r=1

(
ℓ
r

)
Bk−r. Clearly, λ(1, 1) = B0 = 1, which yields

ν̂1(T ) =
∑

i∈T ϕSII(i) =
∑

i∈T ϕSV(i). For k > 1, we have by the symmetry of the binomial coefficient λ(k, k) =∑k
r=1

(
k
r

)
Bk−r =

∑k−1
r=0

(
k
r

)
Bk = 0, which is the defining property of the Bernoulli numbers. Hence, for k = 2,

λ(2, 0) = λ(2, 2) = 0. Lastly, λ(2, 1) = B1 = −1/2, which yields

ν̂2(T ) = ν̂1(T )−
1

2

|ij∩T |=1∑
ij⊆N

ϕSII(ij).

A.3. Proof of Corollary 3.4

Proof. This proof follows immediately from the fact that ν̂n(T ) is constructed from k-SII values Φk, which are the Möbius
transform for k = n, cf. Theorem 4 by Bordt & von Luxburg (2023). A defining property of the Möbius transform (Grabisch,
2016) is

ν(T ) =
∑
S⊆T

Φn(S),

and thus, by Definition 3.1, ν(T ) = ν̂n(T ).
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A.4. Proof of Theorem 3.6

Proof. The solution of the optimization problem is explicitly given as

ϕ∗ = (XT
1 W1X1)

−1XT
1 W1 · y1. (5)

Our goal is show that for µ∞ →∞ we obtain the correct weight of the SV for
(
(XT

1 W1X1)
−1XT

1 W1

)
iT

. We will show
that those weights are equal to the representation given in Theorem 4.4 by Fumagalli et al. (2023) as

ϕSV(i) =
1

n
ν(N) +

1≤|T |≤n−1∑
T⊆N

ν(T )
µ1(t)

n− 1

[
1(i ∈ T )− t

n

]
.

Note that the values ν(T ) are encoded in y1. The proof is structured as follows:

• Find structure of XT
1 W1X1.

• Find inverse (XT
1 W1X1)

−1.

• Compute limµ∞→∞(XT
1 W1X1)

−1XT
1 W1

– for T with finite weight, i.e. 1 ≤ |T | ≤ n− 1.
– for T with infinite weight µ1(t) = µ∞, i.e. T ∈ {∅, N}.

We proceed by computing the terms in ϕ∗ separately. First, with (X1)Ti = 1(i ∈ T )

(XT
1 W1X1)i,j =

∑
T⊆N

µ1(|T |)1(i ∈ T )1(j ∈ T ) = 1(i = j)

n∑
t=1

µ1(t)

(
n− 1

t− 1

)
︸ ︷︷ ︸

=:µ1,1

+1(i ̸= j)

n∑
t=2

µ1(t)

(
n− 2

t− 2

)
︸ ︷︷ ︸

=:µ1,0

.

Introducing a matrix (J)i,j ≡ 1 of all ones and the identity I, we have (XT
1 W1X1) = µ1,0J+ (µ1,1 − µ1,0)I. Due to this

simplistic structure, we can compute the inverse explicitly using the following Lemma.

Lemma A.1 (Fumagalli et al. (2023)). Let η0, η1 > 0 with η0 ̸= η1. Then, (η0J+ (η1 − η0)I)
−1 = η̃0J+ (η̃1 − η̃0)I with

η̃0 =
−η0

(η1 − η0)(η1 + (n− 1)η0)
η̃1 =

η1 + (n− 2)η0
(η1 − η0)(η1 + (n− 1)η0)

.

Hence,

(XT
1 W1X1)

−1 = (µ1,0J+ (µ1,1 − µ1,0)I)
−1 = µ̃1,0J+ (µ̃1,1 − µ̃1,0)I.

By definition of µ1, we have

µ1,1 = µ∞ +

n−1∑
t=1

(
n− 2

t− 1

)−1(
n− 1

t− 1

)
= µ∞ +

n−1∑
t=1

n− 1

n− t
= µ∞ + (n− 1)hn−1 = µ∞ + (n− 1)hn−2 + 1,

where hn :=
∑n

k=1 1/k is the harmonic number. Further,

µ1,0 = µ∞ +

n−1∑
t=2

(
n− 2

t− 1

)−1(
n− 2

t− 2

)
= µ∞ +

n−1∑
t=2

t− 1

n− t
= µ∞ +

n−2∑
t=1

n− t− 1

t
= µ∞ + (n− 1)hn−2 − (n− 2).

Hence, µ1,1 − µ1,0 = n− 1. Note that if µ∞ →∞, then µ̃1,0
µ∞→∞−→ 1

n(n−1) and µ̃1,1
µ∞→∞−→ 1

n , which proves the special
case for k = 1 of Conjecture 3.8. We are now able to compute the weights

(XT
1 W1X1)

−1XT
1 W1 = µ̃1,0J ·XT

1 W1 + (µ̃1,1 − µ̃1,0)I ·XT
1 W1.
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By Lemma A.1, µ̃1,1 − µ̃1,0 = 1
µ1,1−µ1,0

= 1
n−1 . With (JXT

1 W1)ST = |T |µ1(t) it follows

(
µ̃1,0J ·XT

1 W1 + (µ̃1,1 − µ̃1,0)I ·XT
1 W1

)
iT

= µ̃1,0|T |µ1(t) +
1

n− 1
1(i ∈ T )µ1(t)

=
1

n− 1
µ1(t)

(
−µ1,0|T |+ 1(i ∈ T )(µ1,1 + (n− 1)µ1,0)

µ1,1 + (n− 1)µ1,0

)
.

Now, for T with µ1(t) ̸= µ∞, i.e. 1 ≤ |T | ≤ n− 1, we have that µ1(t)
µ∞→∞−→ µ1(t) and thus compute

(
(XT

1 W1X1)
−1XT

1 W1

)
iT

µ∞→∞−→ 1

n− 1
µ1(t)

(
1(i ∈ T )− |T |

n

)
,

where we used that µ∞ appears in µ1,0 and µ1,1. Clearly, this directly yields the weight in the representation of Theorem
4.4 in (Fumagalli et al., 2023). For the cases, where µ1(t) = µ∞, i.e. T ∈ {∅, N}, we have zero weight for ∅, as |T | = 0
and 1(i ∈ T ) = 0 for all i ∈ N . For T = N , we have |T | = n and 1(i ∈ T ) = 1 for all i ∈ N . Hence,

(
(XT

1 W1X1)
−1XT

1 W1

)
iN

=
1

n− 1
µ1(t)

(
µ1,1 − µ1,0

µ1,1 + (n− 1)µ1,0

)
= µ1(t)

(
1

µ1,1 + (n− 1)µ1,0

)
µ∞→∞−→ 1

n
,

which is again the weight in Theorem 4.4 in (Fumagalli et al., 2023).

A.5. Proof of Theorem 3.7

Proof. Again, the solution of the optimization problem is explicitly given as

ϕ∗ = (XT
2 W2X2)

−1XT
2 W2 · y2. (6)

We show that for µ∞ →∞, we obtain the correct weight of the SII in
(
(XT

2 W2X2)
−1XT

2 W2

)
ST

with S = ij. We will
show that those weights are equal to the representation given in Theorem 4.1 in (Fumagalli et al., 2023) with |S| = 2 as

ϕSII(S) =
∑
T⊆N

ν(T )(−1)|S|−|T∩S| 1

n− |S|+ 1

(
n− |S|

|T | − |T ∩ S|

)−1

=
1

n− 1

∑
T⊆N

ν(T )(−1)|T∩S|
(

n− 2

|T | − |T ∩ S|

)−1

.

(7)
Note that for T ∈ {∅, N}, we have (y2)T = ν(T ) − ν̂1(T ) = ν(T ) −

∑
i∈T ϕSV(i) = 0 and thus we do not have to

consider these cases. The proof is again structured as follows:

• Find structure of XT
2 W2X2.

• Find conditions for inverse (XT
2 W2X2)

−1.

• Compute limµ∞→∞(XT
2 W2X2)

−1XT
2 W2

– for T with finite weight, i.e. 2 ≤ |T | ≤ n− 2.

– for T with infinite weight µ2(t) = µ∞, i.e. |T | = 1 or |T | = n− 1.

Recall from Corollary 3.3 that λ(2, 0) = λ(2, 2) = 0 and λ(2, 1) = −1/2. Hence,

(
XT

2 W2X2

)
S1S2

=
1

4

∑
T⊆N

µ2(t)1(|T ∩ S1| = 1)1(|T ∩ S2| = 1) =: µ2,|S1∩S2|.
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For each T , the element may either be from S1 ∩ S2 or from T \ S1 and T \ S2, and thus

µ2,0 =
1

4

n−2∑
t=2

(
n− 4

t− 2

)−1(
n− 4

t− 2

)
4 = n− 3

µ2,1 =
1

2
µ∞ +

1

4

n−2∑
t=2

(
n− 4

t− 2

)−1 [(
n− 3

t− 1

)
+

(
n− 3

t− 2

)]
=

1

2
µ∞ +

1

4

n−2∑
t=2

(n− 2)(n− 3)

(n− t− 1)(t− 1)

=
1

2
µ∞ +

n− 3

4

n−2∑
t=2

(
1

t− 1
+

1

n− t− 1

)
=

1

2
µ∞ +

n− 3

2
hn−3.

µ2,2 = µ∞ +
1

4

n−2∑
t=2

(
n− 4

t− 2

)−1(
n− 2

t− 1

)
2 = µ∞ + (n− 3)hn−3 = 2µ2,1,

where for |T | = 1 or |T | = n− 1 with weight µ∞ no combination is found for |S1 ∩ S2| = ∅, two for |S1 ∩ S2| = 1, i.e.
T = S1 ∩ S2 and T = N \ (S1 ∩ S2) and four for S1 = S2, i.e. T = i and T = N \ i with i ∈ S1. Due to this simplistic
structure of XT

2 W2X2, we now introduce three square matrices indexed with all subsets of size 2, i.e.
(
n
2

)
many. We

introduce the matrix with all ones, J, the identity I and the intersection matrix Q := 1(S1 ∩ S2 = ∅). Using these matrices,
we can rewrite

XT
2 W2X2 = µ2,1J+ (µ2,0 − µ2,1)Q+ (µ2,2 − µ2,1)I.

We now first prove the following lemma.

Lemma A.2. Let η0, η1, η2 > 0, qk :=
(
n−4+k

2

)
for k = 0, . . . , 2 and let square matrices J,Q, I indexed by all subsets of

size 2 of N . Then, (η1J+ (η0 − η1)Q+ (η2 − η1)I)
−1

= η̃1J+ (η̃0 − η̃1)Q+ (η̃2 − η̃1)I, where

η̃2 − η̃1 =
(η2 − η1) + (q0 − q1)(η0 − η1)

(η2 − η1)2 + (q0 − q1)(η2 − η1)(η0 − η1)− (q2 − q1)(η0 − η1)2
,

η̃0 − η̃1 = − (η0 − η1)(η̃2 − η̃1)

η2 − η1 + (q0 − q1)(η0 − η1)

η̃1 = − (q2η1 + q1(η0 − η1))(η̃0 − η̃1) + η1(η̃2 − η̃1)

(
(
n
2

)
− 1− q2)η1 + q2η0 + η2

provided that the inverse exists and all denominators are unequal zero.

Remark A.3. Note that this system of equations can be directly solved by computing the first equation. Then, inserting this
solution into the second equation and solving it explicitly. Finally inserting both results into the third equation to compute
η̃1, and consequently, η̃0 and η̃2. However, we do not need this explicit structure and will rely on the above conditions to
prove our result.

Proof of Lemma A.2. We explicitly compute the product

(η1J+ (η0 − η1)Q+ (η2 − η1)I) (η̃1J+ (η̃0 − η̃1)Q+ (η̃2 − η̃1)I) .

In this computation the products J2 =
(
n
2

)
J, JI = IJ = J, I2 = I, QI = IQ = Q are trivial to compute. Additionally,

(Q2)S1S2
=

|S|=2∑
S⊆N

1(S1 ∩ S = ∅)1(S ∩ S2 = ∅) =
|S|=2∑
S⊆N

1((S1 ∪ S2) ∩ S = ∅) =
(
n− |S1 ∪ S2|

2

)
= q|S1∩S2|,

since |S1 ∪ S2| = |S1| + |S2| − |S1 ∩ S2| = 4 − |S1 ∩ S2| and JQ = QJ = q2J. Hence, we can write Q2 =
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q1J+ (q0 − q1)Q+ (q2 − q1)I. We then collect all coefficients of J,Q, I in the above product separately as

(η1J+ (η0 − η1)Q+ (η2 − η1)I) (η̃1J+ (η̃0 − η̃1)Q+ (η̃2 − η̃1)I)

= J

η1η̃1

(
n

2

)
︸ ︷︷ ︸

from J2

+ q2(η0 − η1)η̃1︸ ︷︷ ︸
from QJ

+ q2η1(η̃0 − η̃1)︸ ︷︷ ︸
from JQ

+ η1(η̃2 − η̃1)︸ ︷︷ ︸
from JI

+ η̃1(η2 − η1)︸ ︷︷ ︸
from IJ

+ q1(η0 − η1)(η̃0 − η̃1)︸ ︷︷ ︸
from Q2



+Q

(η2 − η1)(η̃0 − η̃1)︸ ︷︷ ︸
from IQ

+(η0 − η1)(η̃2 − η̃1)︸ ︷︷ ︸
from QI

+(q0 − q1)(η0 − η1)(η̃0 − η̃1)︸ ︷︷ ︸
from Q2


+ I

(η2 − η1)(η̃2 − η̃1)︸ ︷︷ ︸
from I2

+(q2 − q1)(η0 − η1)(η̃0 − η̃1)︸ ︷︷ ︸
from Q2


Clearly, the coefficient of J and Q should be zero, whereas the coefficient of I should be equal to one to yield the identity
matrix. We thus obtain the following system of equations for the coefficients of J,Q and I, respectively:

0 = (η̃0 − η̃1) · (q2η1 + q1(η0 − η1)) + (η̃2 − η̃1) · η1 + η̃1 · ((
(
n

2

)
− 1− q2)η1 + q2η0 + η2)

0 = (η̃0 − η̃1) · ((η2 − η1) + (q0 − q1)(η0 − η1)) + (η̃2 − η̃1) · (η0 − η1)

1 = (η̃0 − η̃1) · (q2 − q1)(η0 − η1) + (η̃2 − η̃1) · (η2 − η1).

Solving the second equation for η̃0 − η̃1 directly yields the second condition in Lemma A.2. Inserting this result into the
third equation yields

1 = (η̃2 − η̃1) ·
(
(η2 − η1)−

(q2 − q1)(η0 − η1)
2

η2 − η1 + (q0 − q1)(η0 − η1)

)
= (η̃2 − η̃1) ·

(
(η2 − η1)

2 + (q0 − q1)(η0 − η1)(η2 − η1)− (q2 − q1)(η0 − η1)
2

η2 − η1 + (q0 − q1)(η0 − η1)

)
,

where solving for η̃2− η̃1 yields the first condition in Lemma A.2. Note that the value of η̃2− η̃1 can be explicitly computed,
which implies and explicit representation of η̃0 − η̃1. Lastly, treating η̃2 − η̃1 and η̃0 − η̃1 as known and solving the first
equation for η̃1 yields the third condition in Lemma A.2.

Having established the conditions for the inverse, we apply Lemma A.2 to XT
2 W2X2 = µ2,1J+ (µ2,0−µ2,1)Q+ (µ2,2−

µ2,1)I to obtain (XT
2 W2X2)

−1 = µ̃2,1J+ (µ̃2,0 − µ̃2,1)Q+ (µ̃2,2 − µ̃2,1)I. For the following calculations the explicit
form of µ2,ℓ and the following relations will be used

q2 − q1 = n− 3, q0 − q1 = −(n− 4), q2 + q1 = (n− 3)2, µ2,2 − µ2,1 = µ2,1

We now further simplify the terms using the structure of µ and q as

µ̃2,2 − µ̃2,1 =
(µ2,2 − µ2,1) + (q0 − q1)(µ2,0 − µ2,1)

(µ2,2 − µ2,1)2 + (q0 − q1)(µ2,2 − µ2,1)(µ2,0 − µ2,1)− (q2 − q1)(µ2,0 − µ2,1)2
,

=
µ2,1 − (n− 4)(µ2,0 − µ2,1)

µ2
2,1 − (n− 4)µ2,1(µ2,0 − µ2,1)− (n− 3)(µ2,0 − µ2,1)2

=
(n− 3)µ2,1 − (n− 4)µ2,0

µ2
2,1 + (µ2,1 − (n− 3)µ2,0)(µ2,0 − µ2,1)

=
(n− 3)µ2,1 − (n− 4)µ2,0

(n− 2)µ2,1µ2,0 − (n− 3)µ2
2,0

. (8)
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We continue with the second equation and the previous result as

µ̃2,0 − µ̃2,1 = − (µ2,0 − µ2,1)(µ̃2,2 − µ̃2,1)

µ2,2 − µ2,1 + (q0 − q1)(µ2,0 − µ2,1)

= − (µ2,0 − µ2,1)

µ2,1 − (n− 4)(µ2,0 − µ2,1)
· (µ̃2,2 − µ̃2,1)

= − µ2,0 − µ2,1

(n− 3)µ2,1 − (n− 4)µ2,0
· (µ̃2,2 − µ̃2,1) (9)

Lastly, the third equation yields

µ̃2,1 = − (q2µ2,1 + q1(µ2,0 − µ2,1))(µ̃2,0 − µ̃2,1) + µ2,1(µ̃2,2 − µ̃2,1)

(
(
n
2

)
− 1− q2)µ2,1 + q2µ2,0 + µ2,2

= −
((n− 3)µ2,1 +

(
n−3
2

)
µ2,0)(µ̃2,0 − µ̃2,1) + µ2,1(µ̃2,2 − µ̃2,1)

(
(
n
2

)
+ 1−

(
n−2
2

)
)µ2,1 +

(
n−2
2

)
µ2,0

= −
(n− 3)µ2,1 +

(
n−3
2

)
µ2,0

2(n− 1)µ2,1 +
(
n−2
2

)
µ2,0

· (µ̃2,0 − µ̃2,1)−
µ2,1

2(n− 1)µ2,1 +
(
n−2
2

)
µ2,0

· (µ̃2,2 − µ̃2,1). (10)

Since our goal is to compute limµ∞→∞(XT
2 W2X2)

−1XT
2 W2 we distinguish between the finite subsets, where µ2(t) ̸=

µ∞, i.e. 2 ≤ |T | ≤ n− 2 and the infinite subsets, where µ2(t) = µ∞, i.e. |T | = 1 or |T | = n− 1.

T with finite weight. Clearly, for the T with µ2(t) ̸= µ∞, we have that limµ∞→∞(XT
2 W2)TS = (XT

2 W2)TS and thus
we can compute the limit of (XT

2 W2X2)
−1 separately. Recall that µ1 ∝ µ∞ and µ0 = n − 3 does not depend on µ∞.

Hence, by Equation (8), Equation (9) and Equation (10), it follows for µ∞ →∞

µ̃2,2 − µ̃2,1 →
1

n− 2
, µ̃2,0 − µ̃2,1 →

1

(n− 3)(n− 2)
, µ̃2,1 → −

1

(n− 1)(n− 2)
.

Therefore, this proves the special case of Conjecture 3.8 for k = 2 as

µ̃2,1 → −
1

(n− 1)(n− 2)
µ̃2,2 →

1

n− 1
µ̃2,0 →

2

(n− 1)(n− 2)(n− 3)
.

With λ(2, 1) = −1/2 it holds, (JXT
2 W2)ST = − 1

2 t(n− t)µ2(t), (QXT
2 W2)ST = − 1

2 (t− |T ∩ S|)(n− |T ∪ S|)µ2(t)
and (IXT

2 W2)ST = − 1
21(|T ∩ S| = 1)µ2(t). We can thus compute(

(XT
2 W2X2)

−1XT
2 W2

)
ST

µ∞→∞−→ µ2(t)

 t(n− t)

2(n− 1)(n− 2)︸ ︷︷ ︸
from µ̃2,1JXT

2 W2

− (t− |T ∩ S|)(n− t− 2 + |T ∩ S|)
2(n− 3)(n− 2)︸ ︷︷ ︸

from (µ̃2,0−µ̃2,1)QXT
2 W2

− 1(|T ∩ S| = 1)

2(n− 2)︸ ︷︷ ︸
from (µ̃2,2−µ̃2,1)IXT

2 W2



=
(n− t− 2)!(t− 2)!

(n− 4)!
·


t(n−t)

2(n−1)(n−2) −
t(n−t−2)

2(n−3)(n−2) =
t((n−t)(n−1)−(n−t−2)(n−3))

2(n−1)(n−2)(n−3) = t(t−1)
(n−1)(n−2)(n−3) , if T ∩ S = ∅

(n−3)t(n−t)−(n−1)(t−1)(n−t−1)−(n−1)(n−3)
2(n−1)(n−2)(n−3) = − (t−1)(n−t−1)

(n−1)(n−2)(n−3) , if |T ∩ S| = 1
t(n−t)

2(n−1)(n−2) −
(t−2)(n−t)
2(n−3)(n−2) =

(n−t)((n−3)t−(t−2)(n−1))
2(n−1)(n−2)(n−3) = (n−t)(n−t−1)

(n−1)(n−2)(n−3) , if |T ∩ S| = 2

= (−1)|T∩S| (t− |T ∩ S|)!(n− t− 2 + |T ∩ S|)!
(n− 1)!

=
(−1)|T∩S|

n− 1

(
n− 2

t− |T ∩ S|

)−1

,

which yields the SII weights in Equation (7) and concludes the proof for this case.

T with infinite weight. Without loss of generality, we consider T = i, since (X2)iS = (X2)(N\i)S , and (X2)iS =

λ(2, 1) = −1/2 for all S = ij with i ̸= j ∈ N , and zero otherwise. It holds (JXT
2 W2)ST = − 1

2 (n − 1)µ∞,
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(QXT
2 W2)ST = − 1

21(i /∈ S)(n− 3)µ∞ and (IXT
2 W2)ST = − 1

21(i ∈ S)µ∞.

(
(XT

2 W2X2)
−1XT

2 W2

)
Si

= −1

2
µ∞ ((n− 1)µ̃2,1 + 1(i /∈ S)(n− 3)(µ̃2,0 − µ̃2,1) + 1(i ∈ S)(µ̃2,2 − µ̃2,1))

= −1

2
µ∞ ·

{
(n− 1)µ̃2,1 + (n− 3)(µ̃2,0 − µ̃2,1) , if i /∈ S

(n− 1)µ̃2,1 + (µ̃2,2 − µ̃2,1) , if i ∈ S

We now first explicitly compute µ̃2,1 with Equation (10) and Equation (9) as

µ̃2,1
(10)
= −

(n− 3)µ2,1 +
(
n−3
2

)
µ2,0

2(n− 1)µ2,1 +
(
n−2
2

)
µ2,0

· (µ̃2,0 − µ̃2,1)−
µ2,1

2(n− 1)µ2,1 +
(
n−2
2

)
µ2,0

· (µ̃2,2 − µ̃2,1)

(9)
=

(
(n− 3)µ2,1 +

(
n−3
2

)
µ2,0

2(n− 1)µ2,1 +
(
n−2
2

)
µ2,0

· µ2,0 − µ2,1

(n− 3)µ2,1 − (n− 4)µ2,0
− µ2,1

2(n− 1)µ2,1 +
(
n−2
2

)
µ2,0

)
· (µ̃2,2 − µ̃2,1)

=

(
((n− 3)µ2,1 +

(
n−3
2

)
µ2,0) · (µ2,0 − µ2,1)− µ2,1((n− 3)µ2,1 − (n− 4)µ2,0)

(2(n− 1)µ2,1 +
(
n−2
2

)
µ2,0) · ((n− 3)µ2,1 − (n− 4)µ2,0)

)
· (µ̃2,2 − µ̃2,1)

=

(
((n− 3)µ2,1 +

(
n−3
2

)
µ2,0) · (µ2,0 − µ2,1)− µ2,1((n− 3)µ2,1 − (n− 4)µ2,0)

(2(n− 1)µ2,1 +
(
n−2
2

)
µ2,0) · ((n− 3)µ2,1 − (n− 4)µ2,0)

)
· (µ̃2,2 − µ̃2,1)

=

(
−2(n− 3)µ2

2,1 + ((n− 4) + (n− 3)−
(
n−3
2

)
)µ2,1µ2,0 +

(
n−3
2

)
µ2
2,0

(2(n− 1)µ2,1 +
(
n−2
2

)
µ2,0) · ((n− 3)µ2,1 − (n− 4)µ2,0)

)
· (µ̃2,2 − µ̃2,1)

=:
γ↑

γ↓ · (µ̃2,2 − µ̃2,1) (11)

Utilizing the new notation, we obtain for i ∈ S

(
(XT

2 W2X2)
−1XT

2 W2

)
Si

= −1

2
µ∞((n− 1)µ̃2,1 + (µ̃2,2 − µ̃2,1))

(11)
= −1

2
µ∞((n− 1)

γ↑

γ↓ + 1)(µ̃2,2 − µ̃2,1)

= −1

2
µ∞

(n− 1)γ↑ + γ↓

γ↓ (µ̃2,2 − µ̃2,1).

In the following, we use ≈ to indicate that terms grow similarly for µ∞ →∞. We further observe that the terms with µ2
2,1

vanish in (n− 1)γ↑ + γ↓, and

(n− 1)γ↑ + γ↓ ≈ µ2,1

(
(n− 1)((n− 4) + (n− 3)−

(
n− 3

2

)
)µ2,0 + µ2,0(

(
n− 2

2

)
(n− 3)− 2(n− 1)(n− 4))

)
= µ2,1µ2,0((n− 1)− (n− 1)

(
n− 3

2

)
+ (n− 3)

(
n− 2

2

)
)

= µ2,1µ2,0((n− 1)− (n− 3)(

(
n− 3

2

)
−
(
n− 2

2

)
)− 2

(
n− 3

2

)
)

= µ2,1µ2,0((n− 1)− (n− 3)(n− 3)− (n− 3)(n− 2))

= 2µ2,1µ2,0(n− 2).

Clearly, γ↓ ≈ 2(n− 1)(n− 3)µ2
2,1 are the dominating terms. Hence, with µ2,1 ≈ 1

2µ∞, we have 1
2µ∞

µ2,1

µ2
2,1
→ 1 and with

µ2,0 = (n− 3) we compare the coefficients of µ2,1 to obtain

lim
µ∞→∞

(
(XT

2 W2X2)
−1XT

2 W2

)
Si

= − 2(n− 3)(n− 2)

2(n− 1)(n− 3)︸ ︷︷ ︸
from 1

2µ∞
(n−1)γ↑+γ↓

γ↓

· 1

n− 2︸ ︷︷ ︸
from µ̃2,2−µ̃2,1

= − 1

n− 1
=

(−1)|T∩S|

n− 1

(
n− 2

t− |T ∩ S|

)−1

,

which proves the convergence to the SII weight for the case where T = i and i ∈ S.
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To prove the case for T = i and i /∈ S, we first represent µ̃2,1 with µ̃2,0 − µ̃2,1. Using the reverse relation in Equation (9)
and Equation (10), we obtain

µ̃2,1
(10)
= −

(n− 3)µ2,1 +
(
n−3
2

)
µ2,0

2(n− 1)µ2,1 +
(
n−2
2

)
µ2,0

· (µ̃2,0 − µ̃2,1)−
µ2,1

2(n− 1)µ2,1 +
(
n−2
2

)
µ2,0

· (µ̃2,2 − µ̃2,1)

(9)
=

(
−

(n− 3)µ2,1 +
(
n−3
2

)
µ2,0

2(n− 1)µ2,1 +
(
n−2
2

)
µ2,0

+
µ2,1

2(n− 1)µ2,1 +
(
n−2
2

)
µ2,0

· (n− 3)µ2,1 − (n− 4)µ2,0

µ2,0 − µ2,1
·

)
(µ̃2,0 − µ̃2,1)

=
−(µ2,0 − µ2,1) · ((n− 3)µ2,1 +

(
n−3
2

)
µ2,0) + µ2,1 · ((n− 3)µ2,1 − (n− 4)µ2,0)

(2(n− 1)µ2,1 +
(
n−2
2

)
µ2,0) · (µ2,0 − µ2,1)

· (µ̃2,0 − µ̃2,1)

=
µ2
2,12(n− 3)− µ2,1µ2,0((n− 3)−

(
n−3
2

)
+ (n− 4))− µ2

2,0

(
n−3
2

)
−µ2

2,12(n− 1) + µ2,1µ2,0(2(n− 1)−
(
n−2
2

)
) + µ2

2,0

(
n−2
2

) · (µ̃2,0 − µ̃2,1)

=
µ2
2,12(n− 3)− µ2,1µ2,0((n− 3)−

(
n−3
2

)
+ (n− 4))− µ2

2,0

(
n−3
2

)
−µ2

2,12(n− 1) + µ2,1µ2,0(2(n− 1)−
(
n−2
2

)
) + µ2

2,0

(
n−2
2

) · (µ̃2,0 − µ̃2,1)

=:
τ↑

τ↓
· (µ̃2,0 − µ̃2,1). (12)

Again, utilizing the new notation, we obtain for i /∈ S(
(XT

2 W2X2)
−1XT

2 W2

)
Si

= −1

2
µ∞((n− 1)µ̃2,1 + (n− 3)(µ̃2,0 − µ̃2,1))

(12)
= −1

2
µ∞((n− 1)

τ↑

τ↓
+ n− 3)(µ̃2,0 − µ̃2,1)

= −1

2
µ∞

(n− 1)τ↑ + (n− 3)τ↓

τ↓
(µ̃2,0 − µ̃2,1).

We observe again that the terms of µ2
1,2 cancel in (n− 1)τ↑ + (n− 3)τ↓ and thus the coefficients of µ2,1 are the dominating

terms for µ∞ →∞. Therefore,

(n− 1)τ↑ + (n− 3)τ↓ ≈ µ2,1µ2,0(−(n− 1)((n− 3)−
(
n− 3

2

)
+ (n− 4)) + (n− 3)(2(n− 1)−

(
n− 2

2

)
))

= µ2,1µ2,0((n− 1)(n− 3)− (n− 1)(n− 4)︸ ︷︷ ︸
=n−1

+

(
n− 3

2

)
((n− 1)− (n− 3))− (n− 3)(n− 3))︸ ︷︷ ︸

=(n−3)(n−4)−(n−3)(n−3)=−(n−3)

= 2µ2,1µ2,0.

Clearly the denominating terms in τ↓ are τ↓ ≈ −µ2
2,12(n− 1). Hence, with µ2,1 ≈ 1

2µ∞, we have 1
2µ∞

µ2,1

µ2
2,1
→ 1 and with

µ2,0 = (n− 3) we compare the coefficients of µ2,1 to obtain

lim
µ∞→∞

(
(XT

2 W2X2)
−1XT

2 W2

)
Si

= − 2(n− 3)

−2(n− 1)
· 1

(n− 2)(n− 3)︸ ︷︷ ︸
from µ̃2,0−µ̃2,1

=
1

(n− 1)(n− 2)
=

(−1)|T∩S|

n− 1

(
n− 2

t− |T ∩ S|

)−1

,

which proves the convergence to the SII weight for T = i and i /∈ S, and finishes the proof.
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B. Algorithms and Ground Truth Calculations
In this section, we give further details on the implemented algorithms, the default parameters of KernelSHAP-IQ and the
computation of GT SII values for the synthetic SOUM.

B.1. KernelSHAP-IQ Default Parameters

We use the following default configurations in our experiments:

• Sampling weights: We use p∗(T ) ∝ µ1(t), similar to KernelSHAP (Covert & Lee, 2021), i.e.

q(t) := p∗(|T | = t) ∝
(
n

t

)
µ1(t) ∝

1

t(n− t)
.

We further use similar sampling weights for the baseline methods, if applicable, i.e. SHAP-IQ (Fumagalli et al., 2023)
and SVARM-IQ (Kolpaczki et al., 2024b).

• Border-Trick: We use the border-trick (Fumagalli et al., 2023; Lundberg & Lee, 2017) to split the sampling procedure
in a deterministic and a sampling part, cf. Appendix B.3. We also apply this method to the baseline algorithms, were it
is applicable, i.e. SHAP-IQ (Fumagalli et al., 2023) and SVARM-IQ (Kolpaczki et al., 2024b).

• Infinite Weight: We set µ∞ = 106, in line with KernelSHAP (Lundberg & Lee, 2017).

B.2. Inconsistent KernelSHAP-IQ

The inconsistent KernelSHAP-IQ procedure is similar to KernelSHAP-IQ. However, there is no iterative computation
involved and the weights do not change. We outline the pseudocode in Algorithm 2.

Algorithm 2 Inconsistent KernelSHAP-IQ
Require: order k, sampling weights q, budget b.

1: {Ti}i=1,...,b, {wT }T=T1,...,Tb
← SAMPLE(q, b)

2: y1 ← [ν(T1), . . . , ν(Tb)]
T

3: for T ∈ {Ti} and 1 ≤ |S| ≤ k do
4: (X̂≤k)TS ← λ(|S|, |T ∩ S|) ▷ Bernoulli weighting
5: (Ŵ∗

≤k)TT ← µ1(t) · wT ▷ weight adjustment
6: end for
7: ϕ̂≤k ← SOLVEWLS(X̂≤k, ŷ≤k,Ŵ

∗
≤k)

8: ϕ̂1, . . . , ϕ̂k ← UNSTACK(ϕ̂≤k)

9: Φ̂k ← AGGREGATESII(ϕ̂1, . . . , ϕ̂k) ▷ compute k-SII
10: return k-SII estimates Φ̂k, SII estimates ϕ̂≤k

B.3. Sampling Algorithm

In this section, we describe our sampling approach. We make use of the border-trick (Fumagalli et al., 2023), which
computes the low- and high-cardinality subsets explicitly without sampling, if the expected number of subsets is higher
than the number of subsets of that size. The sampling procedure is split in a deterministic (t < q0 and t > n− q0) and a
sampling part (q0 ≤ t ≤ n − q0). The method takes a (symmetric) sampling weight vector q ≥ 0 and budget b > 0 and
returns b distinct subsets with subset weights wT for each subset adjusted for the sampling distribution to readily apply the
KernelSHAP-IQ weights at a later step.

Consider first the initial probability distribution p∗(T ) ∝ q(t). It is clear that this distribution is explicitly given as

p∗(T ) :=
q(t)(

n
t

)
·
∑n

ℓ=0 q(ℓ)
, where p∗(|T | = t) =

q(t)∑n−0
ℓ=0 q(ℓ)

.

The expected number of subsets of a given size t is thereby given as p(|T | = t) · b, where we consider the subset size t in
the deterministic part, if the expected number of subsets exceeds the total number of subsets of that size

(
n
t

)
. The procedure
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that splits the subset sizes in the deterministic and sampling part based on this notion is outlined in Algorithm 4, where q0 is
iteratively increased and finally returned. Given the sampling order q0, we can re-define the sampling probabilities as

p∗q0(T ) :=
q(t)(

n
t

)
·
∑n−q0

ℓ=q0
q(ℓ)

, where p∗q0(|T | = t) =
q(t)∑n−q0

ℓ=q0
q(ℓ)

,

where p∗q0 is now a probability distribution over Tq0 , i.e. subsets of size q0 ≤ t ≤ n − q0. Recall that our goal is to
approximate a sum over squared losses ν̃(T ) weighted by the KernelSHAP-IQ weights µ(t). We can re-write this sum as

∑
T⊆N

µ(t)ν̃(T ) =

T /∈Tq0∑
T⊆N

µ(t)ν̃(T ) + ET∼p∗
q0

[
µ(t)ν̃(T )

p∗q0(T )

]
≈

T /∈Tq0∑
T⊆N

µ(t)ν̃(T ) +
1

nsamples

nsamples∑
ℓ=1

µ(tℓ)ν̃(Tℓ)

p∗q0(Tℓ)
,

where the nsamples Monte Carlo samples T1, . . . , Tnsamples are drawn according to p∗q0 . In practice, note it is easy to sample
from this distribution by sampling a subset size according to p∗q0(|T | = t) and then sample a subset T of that size uniformly

with probability
(
n
t

)−1
. Clearly, the sampling procedure should therefore return the sampling probabilities

Deterministic part: wT ≡ 1 Sampling part: wT =
1

nsamples · p∗q0(T )
.

If a subset is sampled multiple times, then clearly the budget should be decreased, as the game only needs to be evaluated
once. As a consequence, we simply increase the weight proportionally and leave the budget unchanged. The full algorithm
is outlined in Algorithm 3.

Algorithm 3 Sampling
Require: Budget b > 0, sampling weights {q(t)}t=0,...,n

1: q0 ← SAMPLINGORDER(b, q)
2: i← 1
3: for T ⊆ N with T /∈ Tq0 do ▷ deterministic part
4: Ti ← T
5: wT ← 1 ▷ no weighting adjustment
6: b← b− 1 ▷ reduce budget
7: end for
8: qsampling(t)← q(t)/

∑n−q0
ℓ=q0

q(ℓ) for q0 ≤ t ≤ n− q0 ▷ sampling weight normalization, i.e. p∗q0(|T | = t)
9: nsamples ← b ▷ store total number of subsets sampled

10: while b > 0 do ▷ sampling part
11: t← Sample according to qsampling
12: T ← Sample uniformly of size t

13: p(T )← qsampling(t) ·
(
n
t

)−1
▷ probability to draw this subset

14: if T /∈ {Ti} then ▷ Subset is new
15: wT ← (nsamples · p(T ))−1

16: b← b− 1 ▷ reduce budget
17: else ▷ Subset is not new
18: wT ← wT + (nsamples · p(T ))−1 ▷ increase weighting for each occurrence of T
19: end if
20: end while
21: return {Ti}i=1,...,b, {wT }T=T1,...,Tb

B.4. Solving WLS

The WLS problem can be solved analytically as described in Algorithm 5.
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Algorithm 4 Compute Sampling Order
Require: Budget b > 0, sampling weights {q(t)}t=0,...,n

1: initialize q0 = 0
2: for t = 0, . . . ,FLOOR(n/2) do
3: q(t)← q(t)/

∑n−q0
ℓ=q0

q(ℓ) ▷ weight normalization
4: if b · q(t) ≥

(
n
t

)
and b · q(n− t) ≥

(
n
t

)
then ▷ compare expected number of subsets with total number of subsets

5: q0 ← q0 + 1 ▷ increase q0
6: b← b− 2

(
n
t

)
7: else
8: break
9: end if

10: end for
11: return q0

Algorithm 5 SolveWLS
Require: Data X, weights W, response y

1: A← (XTWX)−1 ▷ precision matrix
2: ϕ← AXTWy
3: return ϕ

B.5. Subset Weights SII

We briefly describe the weighting for SII. According to Fumagalli et al. (2023), the SII is represented as

ϕSII(S) =
∑
T⊆N

(−1)s−|T∩S|m(t− |T ∩ S|), where m(t) :=
(n− t− s)!t!

(n− s+ 1)!
.

The weights are therefore assigned to every combinations T, S as outlined in Algorithm 6.

Algorithm 6 SIIWeight
Require: Subset T ⊆ N , interaction S ⊆ N

1: t, s, r ← |T |, |S|, |T ∩ S|
2: ω ← (−1)s−r (n−t−s+r)!(t−r)!

(n−s+1)!
3: return ω

B.6. Aggregate SII to k-SII

This section describes the k-SII weights, i.e. the aggregation of SII to k-SII. It has been shown in Appendix A.2 in (Bordt &
von Luxburg, 2023) that k-SII can be explicitly represented as

Φk(S) =

|S̃|≤k∑
S⊆S̃⊆N

B|S̃|−|S|ϕ
SII(S̃) =

|S̃|≤k∑
S̃⊆N

1S⊆S̃B|S̃|−|S|ϕ
SII(S̃) for 1 ≤ |S| ≤ k.

Hence, we can aggregate SII to k-SII as outlined in Algorithm 7.

Algorithm 7 AggregateSII

Require: SII estimates ϕ̂1, . . . , ϕ̂k

1: (Zk)SS̃ ← 1S⊆S̃B|S̃|−|S| for 1 ≤ |S|, |S̃| ≤ k

2: Φ̂k ← Zk · [ϕ̂1, . . . , ϕ̂k]
T

3: return Φ̂k
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B.7. Baseline Methods: SHAP-IQ, Permutation Sampling and SVARM-IQ

The pseudocode and implementations can be found in the corresponding paper. Permutation sampling (Tsai et al., 2023;
Fumagalli et al., 2023) is described for SII as an extension to permutation sampling of the SV (Castro et al., 2009).
SHAP-IQ (Fumagalli et al., 2023) is implemented using similar sampling weights as KernelSHAP-IQ and extends Unbiased
KernelSHAP (Covert & Lee, 2021) to interactions. SVARM-IQ (Kolpaczki et al., 2024b) extends SVARM (Kolpaczki et al.,
2024a) to interactions.

B.8. Analytic Solution for SII of SOUMs

Proposition B.1. For a unanimity game νR(T ) := 1R⊆T with R ⊆ N , the SII for any S ⊆ N can be explicitly computed as

ϕSII
νR

(S) =
1S⊆R

r − s+ 1
.

Hence for a SOUM, defined as νSOUM(T ) :=
∑M

m=1 amνRm
(T ) with subsets R1, . . . , RM ⊆ N and coefficients

a1, . . . , aM ∈ R, it follows

ϕSII
νSOUM(S) =

M∑
m=1

am
1S⊆Rm

rm − s+ 1
.

Proof. Note that due to linearity the second result follows immediately from the SII of the unanimity game. We thus aim to
compute the SII for a unanimity game νR with subset R ⊆ N . In the following, we give two different proofs.

Proof via Möbius transform and conversion formula. It is well-known in cooperative game theory, cf. p.54 in (Grabisch,
2016), that the Möbius transform of a unanimity game is

aνR
(S) =

∑
T⊆S

(−1)s−tνR(T ) = 1R=S .

Furthermore, the result follows immediately from the conversion formula, cf. Table 3 in (Grabisch et al., 2000), as

ϕSII
νR

(S) =
∑
T⊇S

1

t− s+ 1
aνR

(T ) =
∑
T⊆N

1S⊆T

t− s+ 1
aνR

(T ) = 1R=T
1S⊆T

t− s+ 1
=

1S⊆R

r − s+ 1
.

Proof via computation. We can also give an alternative analytical proof. We compute the discrete derivatives of νR for
S ⊆ N and T ⊆ N \ S as

∆S(T ) =
∑
L⊆S

(−1)s−ℓνR(T ∪ L) =
∑
L⊆S

(−1)s−ℓ1R⊆T∪L = 1R\S⊆T

∑
L⊆S

(−1)s−ℓ1R∩S⊆L

= 1R\S⊆T

s∑
ℓ=|R∩S|

(−1)s−ℓ

(
s− |R ∩ S|
ℓ− |R ∩ S|

)
= 1R\S⊆T

s−|R∩S|∑
ℓ=0

(−1)s−ℓ−|R∩S|
(
s− |R ∩ S|

ℓ

)
︸ ︷︷ ︸

=0, except for |R∩S|=s

= 1R\S⊆T1S⊆R.
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Hence, with q := |R \ S|, the SII is computed as

ϕSII(S) =
∑

T⊆N\S

(n− t− s)!t!

(n− s+ 1)!
∆S(T ) = 1S⊆R

∑
T⊆N\S

(n− t− s)!t!

(n− s+ 1)!
1R\S⊆T

= 1S⊆R

n−s∑
t=q

(n− t− s)!t!

(n− s+ 1)!

(
n− s− q

t− q

)
= 1S⊆R

n−s−q∑
t=0

(t+ q)!

(n− s+ 1)!

(n− s− q)!

t!

= 1S⊆R
(n− s− q)!

(n− s+ 1)!

n−s−q∑
t=0

(t+ q)!

q!
= 1S⊆R

(n− s− q)!

(n− s+ 1)!
q!

n−s−q∑
t=0

(
t+ q

q

)

= 1S⊆R
(n− s− q)!

(n− s+ 1)!
q!

n−s−q∑
t=0

(
t+ q

q

)
= 1S⊆R

(n− s− q)!

(n− s+ 1)!
q!

(
n− s+ 1

n− s− q

)
= 1S⊆R

1

q + 1
=

1S⊆R

r − s+ 1
,

where we used the hockey-stick identity in the second last row to compute the sum and q = r − s, if S ⊆ R.

B.9. Intuition about the KernelSHAP-IQ Weights

The intuition behind Wk is based on common factors in two representations of SII: One being the solution of the WLS
problem from Equation (3)

ϕSII
k = (XT

kWkXk)
−1XT

kWk · yk,

and the other being the representation of Conjecture 3.9 and by Fumagalli et al. (2023)

ϕSII
k = Qk · yk.

In detail, if we consider the final weight of a single subset T ⊆ N with k ≤ |T | ≤ n−k and all interactions S ⊆ N of order
|S| = k, then the common factors for all S are according to the S-row and T -column of Qk, i.e. (−1)k−|T∩S|mk(t−|T∩S|),
determined by the common factors in mk(t−0), . . . ,mk(t−k). By definition of mk(t) =

(n−k−t)!t!
(n−k+1)! , we have mk(t−ℓ) =

(n−k−t+ℓ)!(t−ℓ)!
(n−k+1)! and thus the common factors in Qk for all S-rows given a T -column are (n−k−t)!(t−k)!

(n−k+1)! ∝
(
n−2k
t−k

)−1
. On

the other hand, by Equation (3), the matrix (XT
kWkXk)

−1 is independent of the subset T , and hence µk(t), as it contains
one row and one column for each interaction S of order k. This implies

((XT
kWkXk)

−1XT
kWk)ST ∝ µk(t)

for all interactions S of order k. Combining both proportionality results, we conclude that µk(t) ∝
(
n−2k
t−k

)−1
is a suitable

candidate. Note that this reasoning works for subsets with k ≤ |T | ≤ n− k.
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C. Experimental Setup and Reproducibility
This section contains additional information about the setup and reproducibility of our empirical evaluation. Appendix C.1
contains additional information about the models, datasets and explanation tasks used for evaluation as summarized in
Table 2. Appendix C.2 contains additional information about the environmental impact and computational effort of the
empirical evaluation. All experiments can be reproduced via the technical supplement available at https://github.
com/FFmgll/KernelSHAP_IQ_Supplementary_Materialwhich will be made fully publicly available.

C.1. Model, Datasets and Task Descriptions

This section contains detailed information about the models and datasets used for benchmarking the approximation quality
of KernelSHAP-IQ and the available baseline algorithms. To increase the comparability, we conduct our empirical
evaluation of the approximation quality on settings and tasks presented in the literature (Kolpaczki et al., 2024b; Fumagalli
et al., 2023; Muschalik et al., 2024; Sundararajan et al., 2020; Tsai et al., 2023). For further questions regarding the
technical details, we further refer to the technical supplement at https://github.com/FFmgll/KernelSHAP_
IQ_Supplementary_Materialwhich will be made fully publicly available.

C.1.1. SUM OF UNANIMITY MODELS (SOUM)

The sum of unanimity models (SOUMs) are used in different empirical evaluations of Shapley-based interaction estimators
(Fumagalli et al., 2023; Kolpaczki et al., 2024b; Tsai et al., 2023). This synthetic model class can be used to create explanation
tasks with differing complexity while allowing to compute GT interaction scores analytically even for higher player counts.
For a given player set N := {1, . . . , n} with n many players, we sample M = 50 interactions R1, . . . , RM ⊆ N from
P(N). Next, we draw for each interaction subset Rm a coefficient am ∈ [0, 1] uniformly at random. The value function
is then defined as ν(T ) =

∑M
m=1 am · νRm(T ) for all coalitions T ⊆ N with the unanimity game νRm(T ) := 1T⊇Rm

Similar to Tsai et al. (2023), we limit the highest interaction size |Rm| ≤ 4. Further, we randomly set two features to be
non-informative (dummy player) which are never part of any interaction subset.

C.1.2. LANGUAGE MODEL (LM)

Language models (LMs) are widely investigated with Shapley interactions (Fumagalli et al., 2023; Kolpaczki et al., 2024b;
Tsai et al., 2023; Sundararajan et al., 2020) highlighting that explanations based on interactions are more expressive than
word-level explanations. Similar to the related work, we also investigate KernelSHAP-IQ’s approximation quality in a LM
scenario. The LM used in our experiments is a pre-trained DistilBert (Sanh et al., 2019) sentiment analysis model.
The LM used is available at https://huggingface.co/lvwerra/distilbert-imdb via the transformers
API (Wolf et al., 2020). The transformer was pre-trained on the IMDB movie review dataset (Maas et al., 2011; Lhoest
et al., 2021). Provided a tokenized text input, the model predicts the sentiment of the input with a sentiment score ranging
from negative −1 to positive 1. For explanation purposes, we remove features (tokens) from the tokenized representation of
the input.

C.1.3. CONVOLUTIONAL NEURAL NETWORK (CNN)

Similar to Fumagalli et al. (2023); Kolpaczki et al. (2024b), we evaluate the approximation quality of KernelSHAP-IQ and
the available baselines on a convolutional neural network (CNN) image-input explanation task. The CNN is a ResNet18
(He et al., 2016) fitted on the ImageNet (Deng et al., 2009) dataset. The CNN is available at https://pytorch.org/
vision/main/models/generated/torchvision.models.resnet18.html via pytorch (Paszke et al.,
2019). The task is to explain the predicted label’s probability for random ImageNet images. Individual pixels are grouped
together as superpixels with SLIC (Achanta et al., 2012). Missing features (superpixels) are set to the gray as a method of
mean-imputation.

C.1.4. VISION TRANSFORMER (VIT)

The vision transformer (ViT) setting presented in Kolpaczki et al. (2024b) is similar to the CNN as the task is to explain ran-
dom ImageNet images in terms of the predicted class probability. The specific ViT model operates on “words” of 32x32 pixels
image patches. The ViT model is available at https://huggingface.co/google/vit-base-patch32-384
via the transformers API (Wolf et al., 2020). To create a player set of 16 players (computation of GT SII values already

28

https://github.com/FFmgll/KernelSHAP_IQ_Supplementary_Material
https://github.com/FFmgll/KernelSHAP_IQ_Supplementary_Material
https://github.com/FFmgll/KernelSHAP_IQ_Supplementary_Material
https://github.com/FFmgll/KernelSHAP_IQ_Supplementary_Material
https://github.com/FFmgll/KernelSHAP_IQ_Supplementary_Material
https://github.com/FFmgll/KernelSHAP_IQ_Supplementary_Material
https://github.com/FFmgll/KernelSHAP_IQ_Supplementary_Material
https://github.com/FFmgll/KernelSHAP_IQ_Supplementary_Material
https://huggingface.co/lvwerra/distilbert-imdb
https://pytorch.org/vision/main/models/generated/torchvision.models.resnet18.html
https://pytorch.org/vision/main/models/generated/torchvision.models.resnet18.html
https://huggingface.co/google/vit-base-patch32-384


KernelSHAP-IQ: Weighted Least Square Optimization for Shapley Interactions

requires 216 = 65 536 coalitions) the smaller 32x32 image patches are grouped together into 96x96 pixels super-patches
(3x3 original sized patches make up one larger patch). Similar to the LM, absent players (patches) are removed on the
tokenized representation of the input. The value of a coalition is the ViT’s predicted class probability for the class which has
the highest probability provided the grand coalition (the unmodified image with no patches removed).

C.1.5. BIKE RENTAL (BR)

Based on Muschalik et al. (2024), the bike rental (BR) setting is based on the bike regression dataset (Fanaee-T & Gama,
2014), where the goal is to predict the amount of rented bikes based on features like weather conditions or time of day. The
dataset is retrieved from openml (Feurer et al., 2020) with 42712 as the dataset identifier. We encode categorical features
with ordinal values and scale numeric features. We further logarithmize the target variable to base ten. Based on this dataset,
we train an XGBoost model (Chen & Guestrin, 2016) and explain randomly sampled local instances by removing numerical
and categorical features through mean and mode imputation, respectively.

C.1.6. CALIFORNIA HOUSING (CH)

Like Muschalik et al. (2024), we retrieve the California housing (CH) dataset (Kelley Pace & Barry, 1997) through
scikit-learn library (Pedregosa et al., 2011). The CH regression dataset contains information about property prices
(the continuous target variable) and corresponding property attributes including the location in terms of latitude and longitude.
We standardize all features and, likewise to the BR dataset, logarithmize the target variable to base ten. We train a small
NN with pytorch on the regression task and explain randomly sampled local instances the model by removing missing
features through mean imputation. For the illustration in Figure 2, we fit a gradient boosted tree with scikit-learn.

C.1.7. ADULT CENSUS (AC)

The adult census (AC) classification dataset (Kohavi, 1996) contains socio-demographic features of individuals paired
with their income levels. Similar to Muschalik et al. (2024), we retrieve the AC dataset via openml and 1590 as the
dataset identifier. We transform the dataset by imputing missing numerical attributes with median values and then apply
standard scaling. Categorical features are encoded with ordinal values. We train a random forest (RF) classifier from
scikit-learn on this dataset and explain randomly sampled local instances by removing missing features through mean
and mode imputation for numerical and categorical features, respectively.

C.2. Computational Effort

The computational effort required for evaluating KernelSHAP-IQ in comparison to all available baselines is modest. The
main computational burden lies in the pre-computation of GT values and queries to underlying black box models. The
largest effort for pre-computation of GT values stems from the ViT with d = 16 players requiring 216 = 65 536 queries to
the ViT model for each input image. To alleviate this computational burden, we pre-compute the worth of each coalition for
each instance of each benchmark task, except the synthetic SOUMs. Hence, for each run of the different estimators the
pre-computed coalition values can be looked up from a file. The code for recreating or extending these look-up files is part of
the technical supplement at https://github.com/FFmgll/KernelSHAP_IQ_Supplementary_Material.
All benchmarks are performed on a single a Dell XPS 15 9510 Laptop with an Intel i7-11800H clocking at 2.30GHz. The
experiments consumed around 500 CPU hours.
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D. Additional Empirical Results
D.1. Runtime Analysis

Next to the experiments regarding approximation quality, we also conducted a small runtime analysis of KernelSHAP-IQ and
all available baseline algorithms. The results are summarized in Figure 5. We run KernelSHAP-IQ, SHAP-IQ, SVARM-IQ,
and permutation sampling on the LM and an example sentence consisting of 14 words. We let the approximation algorithms
estimate the SII values of order l = 2. The main computational cost results from the model evaluations (accesses to ν),
which is bounded by the model’s inference time. From Figure 5 it is apparent that with increasing the amount of allowed
model accesses, the runtime scales linearly for all approximation algorithms and all estimators perform equally. Further,
we evaluate the runtime of the different approximation methods jointly with their performance. Table 3 shows the mean
(averaged over 10 runs) runtime of each approximator to reach certain MSE levels. For CH, KernelSHAP-IQ and Inconistent
KernelSHAP-IQ are most efficient in terms of model calls to reach the desired MSE error levels. The runtime is similar
for the other baselines. While Inconsistent KernelSHAP-IQ fails to reach the desired error levels for LM, KernelSHAP-IQ
performs equally well with SVARM-IQ for LM. Permutation sampling generally has a fast runtime, but does not achieve
good estimation qualities in sensible time.

2000 4000 6000 8000 10000
Budget / Accesses to the LM

20

40

60

80

100

120

140

Ru
nt

im
e 

(s
)

Runtime of Approximators for the LM (Averaged over 10 Runs)
Permutation
SHAP-IQ
SVARM-IQ
KernelSHAP-IQ

Figure 5. Runtime analysis of KernelSHAP-IQ and baseline algorithms for calculating l = 2 SII scores for an example sentence with
n = 14 words and the LM. For each approximator we evaluate 10 independent runs. The shaded bands corresponds to the SEM.

Table 3. Mean runtime of each approximator to reach certain MSE error levels in terms of model calls and elapsed time in seconds. The
runtime is averaged over 10 independent runs for two benchmarks. For LM, Inconsistent KernelSHAP-IQ never reaches the MSE error
levels and Permutation requires more than 214 evaluations.

Benchmark Error Metric KernelSHAP-IQ Inc. KernelSHAP-IQ SVARM-IQ SHAP-IQ Permutation

CH
MSE at 2e-3 Model Calls 75 50 130 180 195

Time (s) 0.023 0.012 0.035 0.033 0.024

MSE at 1e-3 Model Calls 85 70 170 240 600
Time (s) 0.026 0.017 0.043 0.037 0.071

LM
MSE at 1e-3 Model Calls 2800 - 2800 5500 >16384

Time (s) 35.5 - 35.6 95.9 -

MSE at 5e-4 Model Calls 4000 - 4000 7200 >16384
Time (s) 70.2 - 71.6 126.1 -

D.2. Validations of Higher-Order Conjecture

In the following, we empirically validate Conjecture 3.8 and Conjecture 3.9. We let the numbers of players be n = 2, . . . , 11
and the order of interactions k = 1, . . . , ⌊n/2⌋, since the conjectures hold for n ≥ 2k.

Validation of Conjecture 3.8 We let µ∞ = 107, generate the matrices Xk and Wk and compute the inverse Ak using
standard numpy functions. We then compare the results with the proposed inverse from Conjecture 3.8. Lastly, we compute
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the MSE of all elements and assert that this error is less than 10−10.

Validation of Conjecture 3.9 To validate Conjecture 3.9, we randomly generate 10 instances of SOUMs containing 1000
randomly generated interactions, where the size of each interaction is uniformly distributed. We compute the GT SIIs for
these games and compare them with the empirically computed scores via Conjecture 3.9. Lastly, we average the MSE over
all SOUM instances and assert again that this error is below 10−10.

D.3. Additional Approximation Results

This section contains additional experimental results and evaluations. Figures 6 and 7 contain additional plots to the
experiments conducted on the CH and BR regression tasks, respectively. KernelSHAP-IQ and inconsistent KernelSHAP-IQ
substantially outperform SVARM-IQ, SHAP-IQ, and permutation sampling, while inconsistent KernelSHAP-IQ does not
converge to the GT. Figures 8 and 9 show the estimation qualities for the image-related tasks. On the CNN, KernelSHAP-IQ
outperforms all existing baselines and inconsistent KernelSHAP-IQ differs greatly from the GT SII values. Interestingly, on
the ViT, SVARM-IQ outperforms KernelSHAP-IQ and inconsistent KernelSHAP-IQ for estimating second order SII scores
while both kernel-based estimators retrieve better first and third order SII values. Figure 10 shows additional estimation
results on the AC classification dataset. On AC, KernelSHAP-IQ, again, achieves state-of-the-art approximation results.
Lastly, Figure 12 shows a detailed view of the experiment conducted on the LM highlight the estimation quality of each
order individually. The results on the LM show that KernelSHAP-IQ and SVARM-IQ both retrieve equally good estimates
for order 2 while KernelSHAP-IQ slightly outperforms SVARM-IQ on order 1 and 3. Lastly, Figure 11 shows the results on
the synthetic SOUMs with higher number of players. In both settings inconsistent KernelSHAP and KernelSHAP clearly
outperform SVARM-IQ, SHAP-IQ, and permutation sampling. Notably, in these higher player settings the inconsistent
version’s drawback of not converging to the GT is yet to materialize.
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Figure 6. SII (top) and k-SII (bottom) approximation quality in terms of MSE (left) and Prec@10 (right) of the CH dataset.
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Figure 7. Approximation quality in terms of MSE (left) and Prec@10 (right) of the BR dataset.
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Figure 8. Approximation quality in terms of MSE (left) and Prec@10 (right) of the ViT.
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Figure 9. Approximation quality in terms of MSE (left) and Prec@10 (right) of the CNN.
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Figure 10. Approximation quality in terms of MSE (left) and Prec@10 (right) of the AC dataset.
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Figure 11. Approximation quality in terms of MSE (left) and Prec@10 (right) for the SOUMs with n = 20 (top) and n = 40 (bottom).
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Figure 12. Approximation quality of KernelSHAP-IQ compared to baseline techniques on the LM.
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