
Bring Your Own (Non-Robust) Algorithm to Solve Robust MDPs
by Estimating The Worst Kernel

Uri Gadot * 1 Kaixin Wang * 1 Navdeep Kumar 1 Kfir Y. Levy 1 Shie Mannor 1 2

Abstract
Robust Markov Decision Processes (RMDPs) pro-
vide a framework for sequential decision-making
that is robust to perturbations on the transition
kernel. However, current RMDP methods are
often limited to small-scale problems, hindering
their use in high-dimensional domains. To bridge
this gap, we present EWoK, a novel online ap-
proach to solve RMDP that Estimates the Worst
transition Kernel to learn robust policies. Un-
like previous works that regularize the policy or
value updates, EWoK achieves robustness by sim-
ulating the worst scenarios for the agent while
retaining complete flexibility in the learning pro-
cess. Notably, EWoK can be applied on top of any
off-the-shelf non-robust RL algorithm, enabling
easy scaling to high-dimensional domains. Our
experiments, spanning from simple Cartpole to
high-dimensional DeepMind Control Suite envi-
ronments, demonstrate the effectiveness and ap-
plicability of the EWoK paradigm as a practical
method for learning robust policies.

1. Introduction
In reinforcement learning (RL), we are concerned with learn-
ing good policies for sequential decision-making problems
modeled as Markov Decision Processes (MDPs) (Puterman,
1994; Sutton & Barto, 2018). MDPs assume that the transi-
tion model of the environment is fixed across training and
testing, but this is often violated in practical applications.
For example, when deploying a simulator-trained robot in re-
ality, a notable challenge is the substantial disparity between
the simulated environment and the intricate complexities of
the real world, leading to potential subpar performance upon

Code is available at link. *Equal contribution .
1Technion 2NVIDIA Research. Correspondence to: Uri
Gadot <uri.gad@campus.technion.ac.il>, Kaixin Wang
<kaixin96.wang@gmail.com>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

deployment. Such a mismatch may significantly degrade the
performance of the trained policy (in testing). To deal with
this issue, the robust MDP (RMDP) framework has been
introduced in (Iyengar, 2005; Nilim & El Ghaoui, 2005;
Wiesemann et al., 2013), aiming to learn policies that are
robust to any perturbation of the transition model provided
it lies within an uncertainty set.

Existing works on learning robust policies in RMDPs of-
ten suffer from poor scalability (to high-dimensional do-
mains). Specifically, model-based methods that solve
RMDPs (Wiesemann et al., 2013; Ho et al., 2021; Behzadian
et al., 2021; Derman et al., 2021; Grand-Clément & Kroer,
2021; Kumar et al., 2022) require access to the nominal
transition probability, making it difficult to scale beyond tab-
ular settings. While some recent works (Wang et al., 2022;
Wang & Zou, 2022; Kumar et al., 2022; 2023) introduce
model-free methods that add regularization to the learning
process, the effectiveness of their methods is not validated in
high-dimensional environments. In addition, these methods
are based on particular RL algorithms (e.g., policy gradient,
Q learning), limiting their general applicability. We defer a
more detailed discussion on related works to Section 5.

In this work, we tackle the problem of learning robust poli-
cies in RMDPs from an alternative direction. As shown in
Figure 1, unlike previous works that explicitly regularize
the learning process, we propose to approximately sam-
ple next states from an Estimated Worst transition Kernel
(EWoK) while leaving the RL part untouched. In RMDPs,
a worst transition kernel is one within the uncertainty set
that leads to the minimal possible return (see Definition 3.1).
Intuitively, EWoK aims to situate the agent in the worst
scenarios for learning policies robust to perturbations. It
can be applied on top of any (deep) RL algorithm, offering
good scalability to high-dimensional domains.

Specifically, EWoK builds upon our theoretical insights into
the relationship between a worst transition kernel and the
nominal one. Our characterization of the worst kernel for a
KL-regularized uncertainty set concludes that it essentially
modifies the next-state transition probability of the nominal
kernel, discouraging the transitions to states with higher
values while encouraging transitions to lower-value states.
Using this connection, we are able to sample the next states

1

https://github.com/Ugadot/EWoK

Bring Your Own (non-robust) Algorithm to Solve Robust MDPs by Estimating The Worst Kernel

Figure 1. The agent-environment interaction loop during training. Left: Existing methods typically regularize how an agent updates its
policy to improve robustness. Right: Our work estimates a worst transition kernel, so the agent essentially learns its policy under the
worst scenarios and can use any non-robust RL algorithm.

such that they are approximately distributed according to
the worst transition probability. We establish convergence
of the estimated worst kernel to the true worst kernel and
present a practical algorithm suitable for high-dimensional
domains.

To verify the effectiveness of our method, we conduct exper-
iments on multiple environments ranging from small-scale
classic control tasks to high-dimensional DeepMind Control
tasks (Tunyasuvunakool et al., 2020). The agent is trained
on the nominal environment and tested in environments with
perturbed transitions. Since our method is agnostic to the
underlying RL algorithm, we showcase the applicability
of our method on top of different non-robust algorithms.
Experiment results demonstrate that with our method, the
learned policy suffers from less performance degradation
when the transition kernel is perturbed, even when the per-
turbation is situated within an uncertainty set that is either
coupled or non-KL based.

In summary, our paper makes the following contributions:

• To learn robust policies in RMDPs, we propose to ap-
proximately simulate the “worst” transition kernel, in-
stead of regularizing the learning process. This opens up
a new paradigm for learning robust policies in RMDPs.

• We theoretically characterize the “worst” kernel for KL
uncertainty sets, which is amenable to approximate sim-
ulation for environments with large state spaces.

• Our method is not tied to a particular RL algorithm
and can be easily integrated with any deep RL method.
This flexibility translates to the good scalability of our
method in complex high-dimensional domains. To the
best of our knowledge, our work is the first that enjoys
such flexibility among related works in RMDPs.

2. Preliminaries
Notations. For a finite set Z , we write the probability sim-
plex over it as ∆Z . Given two real functions f, g : Z → R,
their inner product is ⟨f, g⟩ =

∑
z∈Z f(z)g(z). For distri-

butions P,Q, we denote the Kullback–Leibler (KL) diver-
gence of P from Q by DKL(P ∥Q). For a vector, we use
⪰ and ⪯ to denote entry-wise comparison.

2.1. Markov Decision Processes

A Markov decision process (MDP) (Sutton & Barto, 2018;
Puterman, 1994) is a tuple (S,A, P,R, γ, µ), where S and
A are the state space and the action space respectively, P :
S ×A → ∆S is the transition kernel, R : S ×A → R is
the reward function, γ ∈ [0, 1) is the discount factor, and
µ ∈ ∆S is the initial state distribution. A stationary policy
π : S → ∆A maps a state to a probability distribution over
A. We use P (·|s, a) ∈ ∆S to denote the probabilities of
transiting to the next state when the agent takes action a
at state s. For a policy π, we denote the expected reward
Rπ(s) ∈ R| S | and transition Pπ(s′|s) ∈ ∆

| S |
S by:

Rπ(s) =
∑
a∈A

π(a|s)R(s, a),

Pπ(s′|s) =
∑
a∈A

π(a|s)P (s′|s, a), ∀s, s′ ∈ S

The value function vπ : S → R maps a state to the expected
cumulative reward when the agent starts from that state and
follows policy π, i.e.,

vπ(s) = Eπ,P

[∞∑
t=0

γtR(st, at)

∣∣∣∣∣ s0 = s

]
.

It is known that vπ is the unique fixed point of the Bell-
man operator Tπ

P v := Rπ + γPπv (Puterman, 1994)
(Tπ

P : R|S| → R|S|). The agent’s objective is to obtain

2

Bring Your Own (non-robust) Algorithm to Solve Robust MDPs by Estimating The Worst Kernel

a policy π∗ that maximizes the discounted return

Jπ = Eµ,π,P

[∞∑
t=0

γtR(st, at)

]
= ⟨µ, vπ⟩.

2.2. Robust Markov Decision Processes

In MDPs, the system dynamics P is usually assumed to
be constant over time. However, in real-life scenarios, it
is subject to perturbations, which may significantly impact
the performance in deployment (Mannor et al., 2007). Ro-
bust MDPs (RMDPs) provide a theoretical framework for
taking such uncertainty into consideration, by taking P as
not fixed but chosen adversarially from an uncertainty set
P (Iyengar, 2005; Nilim & El Ghaoui, 2005). Since we
may consider different dynamics P in the RMDPs context,
in the following, we will use subscript P to make the de-
pendency explicit. The objective in RMDPs is to obtain a
policy π∗

P that maximizes the robust return

Jπ
P = min

P∈P
Jπ
P .

However, this problem is NP-hard for general uncertainty
sets while an optimal policy can be non-stationary (Wiese-
mann et al., 2013). To make RMDPs tractable, we need to
make some assumptions about the uncertainty set.

2.3. Rectangular uncertainty set

One commonly used assumption to enable tractability for
RMDPs is rectangularity. Specifically, we assume that the
uncertainty set P can be factorized over states-actions:

P = ×
(s,a)∈(S ×A)

Psa, (sa-rectangularity)

where Psa ⊆ ∆S . In other words, the uncertainty in
one state-action pair is independent of that in another state-
action pair.

Under this assumption, RMDPs admit a deterministic op-
timal policy as in standard MDPs (Iyengar, 2005; Nilim
& El Ghaoui, 2005). The rectangularity assumption also
allows the robust value function to be defined as below:

vπP = min
P∈P

vπP , and v∗P = max
π

vπP .

Here, since there exists a single P that achieves the mini-
mum simultaneously for all states (Iyengar, 2005), we can
safely abuse min a little bit. In addition, vπP and v∗P are
the unique fixed points of the robust Bellman operator Tπ

P

and the optimal robust Bellman operator T ∗
P respectively,

(which are) defined as

Tπ
Pv(s) = min

P∈P
Tπ
P v(s) andT ∗

Pv(s) = max
π

Tπ
Pv(s).

Figure 2. An illustration of how next states are sampled in the
estimated worst kernel.

To model perturbations on the environment dynamics, the
(rectangular) uncertainty set is often constructed (to be cen-
tered) around a nominal kernel P̄ . Since we want to measure
the divergence between probability distributions, it is natu-
ral to use KL divergence (Panaganti & Kalathil, 2022; Xu
et al., 2023; Shi & Chi, 2022), i.e.,

Psa = {Psa ∈ ∆S | DKL(Psa ∥ P̄sa) ≤ βsa}.

Here Psa is a shorthand for P (·|s, a) and βsa is the uncer-
tainty radius that controls the level of perturbation.

3. Method
As introduced earlier, our work proposes to learn robust
policies by approximately simulating a worst transition ker-
nel, (which is) defined as the one within the uncertainty set
that achieves minimal robust return. We formalize it below.

Definition 3.1. For an uncertainty set P and a policy π, a
worst kernel is defined as

Pπ
P ∈ argmin

P∈P
Jπ
P .

Training policies under this worst kernel will give us a ro-
bust policy with respect to the uncertainty set. Note that Pπ

P

itself is nothing more than a regular transition kernel. Learn-
ing a policy under Pπ

P is no different from the standard
MDP setting and we can adopt any non-robust RL algo-
rithms to solve it. The challenge is how to approximately
simulate this worst kernel Pπ

P . For a general uncertainty set
P , it requires an additional minimization process to find a
worst kernel and it is also unclear how we can parameterize
and learn Pπ

P effectively.

To tackle this challenge, we characterize the connection
between the nominal transition kernel and a worst one. With
such a connection, we are able to obtain the next states that
are approximately distributed according to Pπ

P(·|s, a), by

3

Bring Your Own (non-robust) Algorithm to Solve Robust MDPs by Estimating The Worst Kernel

properly resampling the next states from the nominal kernel
(Figure 2). Formally, the following theorem describes this
connection. All proofs are deferred to Appendix A.

Theorem 3.2. For a KL uncertainty set P and a policy π,
a worst kernel is related to the nominal kernel through:

Pπ
P(s′|s, a) = P̄π(s′|s, a)e−δπ(s′),

where δπ is of the form

δπ(s′) =
vπP(s′)− ωsa

κsa
, (1)

and satisfies∑
s′∈S

P̄π(s′|s, a)e−δπ(s′) = 1,∑
s′∈S

P̄π(s′|s, a)e−δπ(s′)(−δπ(s′)) = βsa.
(2)

Here, ωsa and κsa are implicitly defined by Eqn. (2). While
they do not have closed forms, we can view ωsa as a thresh-
old, encouraging transitions to states with robust values
lower than ωsa (i.e., δπ(s′) < 0), and discouraging tran-
sitions to states with higher robust values. κsa works as
a temperature parameter to control how much we discour-
age/encourage transitions to states with high/low robust
value. More specifically, the following proposition expli-
cates the relationship between ωsa and κsa and the uncer-
tainty radius βsa.

Proposition 3.3. ωsa, κsa and βsa satisfy

ωsa = ⟨Pπ
P(·|s, a), vπP⟩+ βsaκsa,

Based on theoretical results, we arrive at a method to approx-
imately simulate a worst kernel. As illustrated in Figure 2,
we first draw a batch of states from the nominal kernel
P̄ (·|s, a) , then resample the next state with probability
proportional to e−δπ(s′). This way, next states will be ap-
proximately distributed according to Pπ

P(·|s, a). In practice,
we approximate δπ(s′) by

δ̂π(s′) =
v(s′)− 1

N

∑N
i=1 v(s

i)

κ
,

where v is the robust value function approximated with
neural networks, and κ is a hyperparameter controlling the
robustness level (for all s, a, we assume κsa = κ). We
implement the threshold ω as the average value, a choice
supported by the following proposition.

Proposition 3.4. ωsa is bounded as follows,

⟨Pπ
P(·|s, a), vπP⟩ ≤ ωsa ≤ ⟨P̄π(·|s, a), vπP⟩.

Algorithm 1 EWoK - Learning robust policy by Estimating
Worst Kernel
Input: sample size N , robustness parameter κ
Initialize: initial state s0, policy π and value function v,
data buffer

1: for t = 0, 1, 2, · · · do
2: Play action at ∼ π(·|st).
3: Simulate next state si ∼ P̄ (·|st, at), i = 1, · · · , N ,

with the nominal environment dynamic.
4: Choose st+1 = si with probability proportional to

e−
v(si)− 1

N

∑N
i=1 v(si)

κ .
5: Add (st, at, st+1) to the data buffer.
6: Train π and v with data from the buffer using any

non-robust RL method.
7: end for

Since the N next states are sampled from the nominal kernel,
we can approximate an upper bound of ωsa and use it as a
proxy to compute δ̂π . Putting it together, we summarize our
method in Algorithm 1.

Convergence. The core of our method is the estimation of
a worst transition kernel. In practice, however, we do not
have the true robust value function as in Eqn. (1). We start
with a randomly initialized value function and expect it to
gradually converge to the robust value over training. Here,
we give some theoretical analysis on the convergence of
this process. Let Pn denote the estimated worst transition
kernel at iteration n and vπPn

denote the (non-robust) value
function for the transition kernel Pn. We are interested in
the convergence of the following updates:

Pn+1(s
′|s, a) = P̄ (s′|s, a)e−

vπ
Pn

(s′)−ωn

κn . (3)

ωn and κn are associated with the worst-case transition
kernel corresponding to the value function vπPn

. For clarity,
we omit their subscript sa (even though they depend on
βsa). The following theorem shows that the value converges
to the robust value and the estimated kernel converges to a
worst kernel Pπ

P .
Theorem 3.5. For the updating process in Eqn. (3), we have

∥vπPn
− vπP∥∞ ≤ γn∥vπP̄ − vπP∥∞.

Note that using the robust value function, a worst kernel Pπ
P

can be computed as Pπ(·|s, a) = P̄P(·|s, a)e−
vπ

P−ωsa
κsa as

in Theorem 3.2. This worst kernel (or the samples from
it) can be used with any non-robust RL method for policy
improvement as described in Figure 2.

3.1. A Cliff Walking Example

To check if our algorithm can reliably learn the robust value
function, we test it on a toy task based on OpenAI’s Cliff

4

Bring Your Own (non-robust) Algorithm to Solve Robust MDPs by Estimating The Worst Kernel

Figure 3. Cliff-Walking environment and experiment results. In
the bottom 3 plots, the color indicates the learned value and the
arrows indicate the actions under the policy.

Walking environment (Brockman et al., 2016). As shown in
Figure 3(a), the agent must reach the goal state as quickly
as possible by moving in 4 cardinal directions on a grid. If
the agent falls off a cliff then it will suffer a penalty and be
teleported to the initial state. The nominal transition kernel
is modified to incorporate stochasticity; specifically, with a
small probability the agent may go to other adjacent states
instead of the state indicated by its action. The uncertainty
is implemented by varying such probabilities within some
range. Please refer to Appendix B.2 for details.

Since this environment is tabular, we can obtain the ground-
truth optimal robust value and policy by solving an opti-
mization problem (see Appendix B.1.2). Then, for both the
nominal and the worst transition kernels, we compute their
optimal value functions and policies using value iteration.
The results are plotted in Figure 3(b) and (c). We can see
that even though there is a small chance that the agent would
fall off the cliff, the optimal policy of the nominal kernel still
advises the agent to move right. However, under the worst
kernel, the optimal policy tends to avoid walking adjacent

Figure 4. An illustration of the experimental setting. Grey earth
denotes the unperturbed (nominal) environment while colored
earths denote perturbed environments.

to the cliff.

Next, we apply EWoK on top of Q-learning (Watkins &
Dayan, 1992) to learn the optimal robust value and pol-
icy, only using samples from the nominal kernel. As Fig-
ure 3(d) shows, EWoK learns a policy closely resembling
the optimal robust one, advising the agent to stay away from
the cliff. This preliminary experiment acts as a proof-of-
concept, demonstrating the efficacy of the proposed method.
In the subsequent section, we will conduct a more thorough
evaluation of EWoK in environments of greater complexity.

4. Experiments
4.1. Setting

To evaluate the effectiveness of our method in learning ro-
bust policies, we conduct experiments that train the agent
online under nominal dynamics and test its performance un-
der perturbed dynamics. We consider two high-dimensional
domains including both discrete and continuous control
tasks, to demonstrate that our algorithm can be “plugged and
played” with any RL method. Specifically, we experiment
on Cartpole - a classic control environment from OpenAI’s
Gym (Brockman et al., 2016) and 3 continuous control tasks
(Walker-run, Walker-stand, Walker-walk) from DeepMind
Control Suite (Tunyasuvunakool et al., 2020). For baseline
RL algorithms, we use Double DQN (van Hasselt et al.,
2016) and PPO (Schulman et al., 2017) for Cartpole, and
SAC (Haarnoja et al., 2018) and TD3 (Fujimoto et al., 2018)
for continuous control environments. It is worth mention-
ing that these realistic perturbations do not adhere to the
KL uncertainty assumptions. Experimenting with realistic
uncertainties (e.g., coupled or non-KL-based) would demon-
strate the general applicability of EWoK, beyond the scope
of its theoretical motivation.

As existing methods in RMDPs literature do not scale well
(see discussions in Section 5), we can not clearly compare
“apples-to-apples”. Therefore, we consider another com-
monly used robust RL approach as a reference: domain ran-
domization (DR) (Tobin et al., 2017), and conduct the same
set of experiments. DR trains the agent under diverse scenar-
ios by perturbing the parameter of interest during training,
such that the trained agent can be robust to similar perturba-
tions during testing. Figure 4 highlights the fact that both the

5

Bring Your Own (non-robust) Algorithm to Solve Robust MDPs by Estimating The Worst Kernel

Figure 5. Evaluation results on Cartpole with noise and environment parameters perturbations for both DDQN and PPO algorithms.

non-robust RL methods and their EWoK-augmented coun-
terparts solely interact with the (unperturbed) nominal envi-
ronment dynamics (e.g., a particular value of pole-length)
during training. After training completion, we fix the pol-
icy and subsequently evaluate it across various perturbed
environments. In contrast, the DR baseline benefits from
exposure to diverse perturbed environments during training,
giving it a privileged edge over our method.

To obtain stable results, we run each experiment with multi-
ple random seeds, and report the interquartile mean (IQM)
and 95% stratified bootstrap confidence intervals (CIs) as
recommended by (Agarwal et al., 2021). More details about
environments, implementations, training, and evaluation can
be found in Appendix B.

4.2. Noise perturbation

In this subsection, we evaluate our method in scenarios
where perturbations on the transition dynamics are imple-
mented as noise perturbations. Specifically, we consider
stochastic nominal kernels in which the stochasticity is con-
trolled by some (observation or action) noise. The agent
is trained under a fixed noise (i.e., the nominal kernel) and
tested with varying noises (i.e., perturbed kernels).

On Cartpole, we implement the stochasticity by adding
Gaussian noise to the state after applying the original deter-
ministic dynamics of the environment, i.e., s̃t+1 = st+1 + ϵ
where ϵ ∼ N (0, σ). Then, s̃t+1 is considered as the next
state output from the stochastic nominal kernel. The noise
scale σ is fixed during training and varies during testing.
The agent’s test performance across different perturbed val-
ues is depicted in the rightmost plot in Figure 5. When
the noise scale deviates from the nominal value, EWoK
achieves better performance than the baseline non-robust

RL algorithm and the domain randomization mechanism.

Next, we evaluate our method on continuous control tasks
in the DeepMind Control Suite. The stochasticity is imple-
mented by adding Gaussian noise to the action since directly
adding noise to the state might lead to an invalid physical
state. During testing, we perturb the mean of the Gaussian
noise. Figure 6 shows the agent’s performance across differ-
ent perturbed values. We can see that EWoK suffers from
less performance degradation as the noise mean deviates
from zero (the nominal value), clearly outperforming the
baseline non-robust RL algorithm. In the walker-run task,
EWoK achieves lower reward under the nominal dynamic
but performs better under perturbed ones, which indicates a
trade-off between the performance under the nominal kernel
and robustness under perturbations.

4.3. Perturbing environment parameters

To further validate the effectiveness of our method, we con-
sider a more realistic scenario where some physical/logical
parameters in the environment (e.g., pole length in Cartpole)
are perturbed. Similarly, the agent is trained with a fixed
parameter, and tested under perturbed parameters.

For Cartpole, we perturb cart mass, pole mass, pole length,
and gravity. Figure 5 summarizes the testing results of the
agents trained under the nominal dynamics. Again, EWoK
achieves better performance than the baseline non-robust RL
algorithm and the domain randomization technique when
the environment parameters deviate from the nominal value.
It is noteworthy that for every environmental parameter (e.g.,
pole mass), we train a separate domain randomization agent
that undergoes perturbations only on that parameter during
training. In comparison, EWoK is trained only once and
then tested on different parameters.

6

Bring Your Own (non-robust) Algorithm to Solve Robust MDPs by Estimating The Worst Kernel

Figure 6. Evaluation results on DeepMind Control environments with noise and environment parameter (joint damping) perturbations for
both SAC and TD3 algorithms.

For DeepMind control tasks, we implement the perturba-
tions on the environment parameters using the Real-World
Reinforcement Learning Suite (Dulac-Arnold et al., 2020).
Specifically, we perturb joint damping, thigh length, and
torso length. For all of the results, please refer to Ap-
pendix D. As shown in Figure 6, EWoK generally works
better than the baseline under model mismatch, improving
the robustness of the learned policy. Similar to our observa-
tions in the previous section, the walker-run task emphasizes
the inherent trade-off of solving RMDPs: optimizing the
worst-case scenario can lead to suboptimal performance
under the nominal model.

4.4. Ablation studies

In this subsection, we conduct ablation experiments to inves-
tigate the effects of our hyperparameters on the performance.
Recall that κ controls the skewness of the distribution for
resampling, while N controls the number of next-state sam-
ples. Intuitively, when we decrease κ, we are essentially
considering a higher level of robustness. If κ is very small,
then with a high probability the environment dynamic will

transit to the “worst” state (i.e., one with the lowest value).
In addition, by increasing N we effectively improve our
empirical estimation of the nominal kernel’s next state dis-
tribution, which should improve the worst kernel estimation.

We experiment on the DeepMind Control tasks under noise
perturbation setting, using different κ and N when we train
the agent. For clarity, we plot the performance difference
between our method and the baseline instead of the absolute
performance and defer the original results with CIs (shaded
areas) to Appendix D. Figure 7 shows the results of chang-
ing the values of κ. In the walker domain, decreasing κ
makes our algorithm perform better in perturbed environ-
ments, which aligns with our expectations. Figure 8 shows
the results of changing the values of N . We can see that a
small sample size will result in limited performance gain
compared to the baseline, but increasing the sample size
may not bring monotonic improvements. In addition, more
samples will incur longer simulation time in each environ-
ment step. In our experiments, we observed minimal impact
on walk-clock time, due to fast simulation. In practical sce-
narios where sampling next states could be slow, however,

7

Bring Your Own (non-robust) Algorithm to Solve Robust MDPs by Estimating The Worst Kernel

Figure 7. Evaluation results on DeepMind Control tasks with noise
perturbations for different κ. The y-axis represents the perfor-
mance difference between our method and the baseline

we need to take this factor into consideration. Nonetheless,
we believe should not significantly increase simulation time
to a prohibitive extent.

It is worth mentioning that the influence of κ depends on
the environment. Decreasing it too much can lead to too
conservative policies and may not always work well. In
addition, we observe the robustness-performance trade-off
in the walker-run task once again. While large κ achieves
high performance under the nominal kernel, it significantly
underperforms when the kernel is perturbed.

5. Related works
Early works in RMDPs lay the theoretical foundations for
solving RMDPs with robust dynamic programming (Wiese-
mann et al., 2013; Iyengar, 2005; Nilim & El Ghaoui, 2005;
Kaufman & Schaefer, 2013; Bagnell et al., 2001). Recent
works attempt to reduce the time complexity for certain
uncertainty sets, such as L1 uncertainty (Ho et al., 2018;
2021) and KL uncertainty (Grand-Clément & Kroer, 2021).
However, they require full knowledge of the nominal model.

One line of work aims to design methods that can be ap-
plied in the online robust RL setting where we do not have
full knowledge about the transition model. Derman et al.
(2021) define new regularized robust Bellman operators that
suggest a possible online sample-based method. However,
the contraction of the Bellman operators implicitly assumes
that the state space can not be very large. On regularizing
the learning process, Kumar et al. (2022; 2023) introduce Q-
learning and policy gradient methods for Lp uncertainty sets,
but do not experimentally evaluate their methods with exper-
iments. Another type of uncertainty is the R-contamination,
for which previous works have derived a robust Q-learning
algorithm (Wang & Zou, 2021) and a regularized policy
gradient algorithm (Wang & Zou, 2022). R-contamination
uncertainty assumes that the adversary can take the agent

Figure 8. Evaluation results on DeepMind Control tasks with noise
perturbations for different N . The y-axis represents the perfor-
mance difference between our method and the baseline

to any state, which is too conservative in practice. In addi-
tion, all of those methods are tied to a particular type of RL
algorithm. Our work, however, aims to tackle the problem
from a different perspective by approximating a worst ker-
nel and can adopt any non-robust RL algorithm to learn an
optimal robust policy. A recent work (Wang et al., 2023) has
shown that the worst kernel can be computed using gradient
descent, but their method takes more iterations to converge.

Outside of RMDP literature, perturbing the training environ-
ment was previously discussed in unsupervised environment
design (Dennis et al., 2020; Jiang et al., 2021), domain ran-
domization (Peng et al., 2018; Tobin et al., 2017), robust
adversarial RL (Pinto et al., 2017; Rigter et al., 2022) and
risk aversion (Greenberg et al., 2022; Pan et al., 2019). How-
ever, their focus on robustness differs from our perspective.
They either assume access to environment parameters or
aim for better generalization. Our method is theoretically
driven as a solution to RMDPs.

Our work is also closely related to (Kumar et al., 2023),
which characterizes the worst kernel for Lp uncertainty set.
Different from their work, we propose to approximately
simulate this worst kernel, opening a new paradigm for
learning robust policies in RMDPs. The work of (Zhou
et al., 2023) ran parallel to ours. They employ a sample
method to establish a new manageable uncertainty set, en-
abling the computation of a robust Bellman operator through
both value-based and policy-based methods. In contrast, our
approach involves estimating the worst kernel through sam-
pling from the nominal one to address the problem.

6. Conclusions and discussion
In this paper we introduce an approach that tackles the
RMDP problem from a new perspective, by approximately
simulating a worst transition kernel while leaving the RL
part untouched. The highlight of our method is that it can

8

Bring Your Own (non-robust) Algorithm to Solve Robust MDPs by Estimating The Worst Kernel

be applied on top of any existing non-robust deep RL algo-
rithms to learn robust policies, exhibiting attractive scala-
bility to high-dimensional domains. We believe this new
perspective will offer some insights for future works on
RMDPs.

One limitation of our work is that we require the ability to
sample next states from the transition model multiple times.
In future work, we will study how to combine our method
with a learned transition model (i.e., world models (Hafner
et al., 2020; Ha & Schmidhuber, 2018)) where the challenge
of next-state sampling is mitigated. We also believe that
using EWoK for model-based or offline setups might lower
the effect of compounding error issue (Asadi et al., 2018).
Another future direction might involve using EWoK as a
robust solution to the Safe RL framework.

Impact statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

Acknowledgement
This Project has received funding from the European
Union’s Horizon Europe Programme under grant agree-
ment No.101070568 and partially supported by Israel PBC-
VATAT, by the Technion Artificial Intelligent Hub (Tech.AI)
and by the Israel Science Foundation (grant No. 447/20).

Navdeep Kumar developed the initial idea and formulated
the theories. Kaixin Wang and Uri Gadot refined the idea
into a practical algorithm, conducted all experiments, and
wrote the paper. Kfir Y. Levy and Shie Mannor provided
supervision for this project.

References
Agarwal, R., Schwarzer, M., Castro, P. S., Courville, A.,

and Bellemare, M. G. Deep reinforcement learning at
the edge of the statistical precipice. Advances in Neural
Information Processing Systems, 2021.

Asadi, K., Misra, D., and Littman, M. Lipschitz continuity
in model-based reinforcement learning. In International
Conference on Machine Learning, pp. 264–273. PMLR,
2018.

Bagnell, J. A., Ng, A. Y., and Schneider, J. G. Solving
Uncertain Markov Decision Processes. Technical Report,
1 2001. doi: 10.1184/R1/6560927.v1. URL https:
//kilthub.cmu.edu/articles/journal_
contribution/Solving_Uncertain_
Markov_Decision_Processes/6560927.

Behzadian, B., Petrik, M., and Ho, C. P. Fast algorithms
for l∞-constrained s-rectangular robust MDPs. Advances
in Neural Information Processing Systems, 34:25982–
25992, 2021.

Borkar, V. S. Stochastic Approximation: A Dynamical
Systems Viewpoint. Hindustan Book Agency, 2022.
doi: 10.1007/978-81-951961-1-1. URL https://
doi.org/10.1007%2F978-81-951961-1-1.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. OpenAI Gym.
ArXiv preprint, abs/1606.01540, 2016. URL https:
//arxiv.org/abs/1606.01540.

Dennis, M., Jaques, N., Vinitsky, E., Bayen, A., Russell,
S., Critch, A., and Levine, S. Emergent complexity and
zero-shot transfer via unsupervised environment design.
Advances in neural information processing systems, 33:
13049–13061, 2020.

Derman, E., Geist, M., and Mannor, S. Twice regularized
mdps and the equivalence between robustness and regu-
larization. Advances in Neural Information Processing
Systems, 34:22274–22287, 2021.

Dulac-Arnold, G., Levine, N., Mankowitz, D. J., Li, J.,
Paduraru, C., Gowal, S., and Hester, T. An empirical
investigation of the challenges of real-world reinforce-
ment learning. CoRR, abs/2003.11881, 2020. URL
https://arxiv.org/abs/2003.11881.

Fujimoto, S., Hoof, H., and Meger, D. Addressing function
approximation error in actor-critic methods. In Interna-
tional conference on machine learning, pp. 1587–1596.
PMLR, 2018.

Grand-Clément, J. and Kroer, C. Scalable first-order meth-
ods for robust mdps. In Thirty-Fifth AAAI Conference
on Artificial Intelligence, AAAI 2021, Thirty-Third Con-
ference on Innovative Applications of Artificial Intelli-
gence, IAAI 2021, The Eleventh Symposium on Educa-
tional Advances in Artificial Intelligence, EAAI 2021,
Virtual Event, February 2-9, 2021, pp. 12086–12094.
AAAI Press, 2021. URL https://ojs.aaai.org/
index.php/AAAI/article/view/17435.

Greenberg, I., Chow, Y., Ghavamzadeh, M., and Mannor,
S. Efficient risk-averse reinforcement learning. arXiv
preprint arXiv:2205.05138, 2022.

Ha, D. and Schmidhuber, J. Recurrent world models
facilitate policy evolution. In Bengio, S., Wallach, H. M.,
Larochelle, H., Grauman, K., Cesa-Bianchi, N., and
Garnett, R. (eds.), Advances in Neural Information
Processing Systems 31: Annual Conference on Neural
Information Processing Systems 2018, NeurIPS 2018,

9

https://kilthub.cmu.edu/articles/journal_contribution/Solving_Uncertain_Markov_Decision_Processes/6560927
https://kilthub.cmu.edu/articles/journal_contribution/Solving_Uncertain_Markov_Decision_Processes/6560927
https://kilthub.cmu.edu/articles/journal_contribution/Solving_Uncertain_Markov_Decision_Processes/6560927
https://kilthub.cmu.edu/articles/journal_contribution/Solving_Uncertain_Markov_Decision_Processes/6560927
https://doi.org/10.1007%2F978-81-951961-1-1
https://doi.org/10.1007%2F978-81-951961-1-1
https://arxiv.org/abs/1606.01540
https://arxiv.org/abs/1606.01540
https://arxiv.org/abs/2003.11881
https://ojs.aaai.org/index.php/AAAI/article/view/17435
https://ojs.aaai.org/index.php/AAAI/article/view/17435

Bring Your Own (non-robust) Algorithm to Solve Robust MDPs by Estimating The Worst Kernel

December 3-8, 2018, Montréal, Canada, pp. 2455–
2467, 2018. URL https://proceedings.
neurips.cc/paper/2018/hash/
2de5d16682c3c35007e4e92982f1a2ba-
Abstract.html.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S.
Soft actor-critic: Off-policy maximum entropy deep
reinforcement learning with a stochastic actor. In
Dy, J. G. and Krause, A. (eds.), Proceedings of
the 35th International Conference on Machine Learn-
ing, ICML 2018, Stockholmsmässan, Stockholm, Swe-
den, July 10-15, 2018, volume 80 of Proceedings of
Machine Learning Research, pp. 1856–1865. PMLR,
2018. URL http://proceedings.mlr.press/
v80/haarnoja18b.html.

Hafner, D., Lillicrap, T. P., Ba, J., and Norouzi, M. Dream to
control: Learning behaviors by latent imagination. In 8th
International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net, 2020. URL https://openreview.
net/forum?id=S1lOTC4tDS.

Ho, C. P., Petrik, M., and Wiesemann, W. Fast bellman
updates for robust mdps. In Dy, J. G. and Krause, A.
(eds.), Proceedings of the 35th International Conference
on Machine Learning, ICML 2018, Stockholmsmässan,
Stockholm, Sweden, July 10-15, 2018, volume 80 of Pro-
ceedings of Machine Learning Research, pp. 1984–1993.
PMLR, 2018. URL http://proceedings.mlr.
press/v80/ho18a.html.

Ho, C. P., Petrik, M., and Wiesemann, W. Partial policy iter-
ation for l1-robust markov decision processes. The Jour-
nal of Machine Learning Research, 22(1):12612–12657,
2021.

Iyengar, G. N. Robust dynamic programming. Mathematics
of Operations Research, 30(2):257–280, 2005.

Jiang, M., Dennis, M., Parker-Holder, J., Foerster, J., Grefen-
stette, E., and Rocktäschel, T. Replay-guided adversarial
environment design. Advances in Neural Information
Processing Systems, 34:1884–1897, 2021.

Kaufman, D. L. and Schaefer, A. J. Robust modified policy
iteration. INFORMS J. Comput., 25:396–410, 2013.

Kingma, D. P. and Ba, J. Adam: A method for stochas-
tic optimization. In Bengio, Y. and LeCun, Y. (eds.),
3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6980.

Kumar, N., Levy, K., Wang, K., and Mannor, S. Efficient
policy iteration for robust Markov decision processes via
regularization. ArXiv preprint, abs/2205.14327, 2022.
URL https://arxiv.org/abs/2205.14327.

Kumar, N., Derman, E., Geist, M., Levy, K., and Mannor, S.
Policy gradient for s-rectangular robust markov decision
processes. ArXiv preprint, abs/2301.13589, 2023. URL
https://arxiv.org/abs/2301.13589.

Mannor, S., Simester, D., Sun, P., and Tsitsiklis, J. N. Bias
and variance approximation in value function estimates.
Management Science, 53(2):308–322, 2007.

Nilim, A. and El Ghaoui, L. Robust control of Markov
decision processes with uncertain transition matrices. Op-
erations Research, 53(5):780–798, 2005.

Pan, X., Seita, D., Gao, Y., and Canny, J. Risk averse
robust adversarial reinforcement learning. In 2019 Inter-
national Conference on Robotics and Automation (ICRA),
pp. 8522–8528. IEEE, 2019.

Panaganti, K. and Kalathil, D. Sample complexity of ro-
bust reinforcement learning with a generative model. In
International Conference on Artificial Intelligence and
Statistics, pp. 9582–9602. PMLR, 2022.

Peng, X. B., Andrychowicz, M., Zaremba, W., and Abbeel,
P. Sim-to-real transfer of robotic control with dynamics
randomization. In 2018 IEEE international conference on
robotics and automation (ICRA), pp. 3803–3810. IEEE,
2018.

Pinto, L., Davidson, J., Sukthankar, R., and Gupta, A. Ro-
bust adversarial reinforcement learning. In Precup, D.
and Teh, Y. W. (eds.), Proceedings of the 34th Interna-
tional Conference on Machine Learning, ICML 2017,
Sydney, NSW, Australia, 6-11 August 2017, volume 70 of
Proceedings of Machine Learning Research, pp. 2817–
2826. PMLR, 2017. URL http://proceedings.
mlr.press/v70/pinto17a.html.

Puterman, M. L. Markov decision processes: Discrete
stochastic dynamic programming. In Wiley Series in
Probability and Statistics, 1994.

Raffin, A. Rl baselines3 zoo. https://github.com/
DLR-RM/rl-baselines3-zoo, 2020.

Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus,
M., and Dormann, N. Stable-baselines3: Reliable rein-
forcement learning implementations. Journal of Machine
Learning Research, 22(268):1–8, 2021. URL http:
//jmlr.org/papers/v22/20-1364.html.

Rigter, M., Lacerda, B., and Hawes, N. Rambo-rl: Robust
adversarial model-based offline reinforcement learning.
arXiv preprint arXiv:2204.12581, 2022.

10

https://proceedings.neurips.cc/paper/2018/hash/2de5d16682c3c35007e4e92982f1a2ba-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/2de5d16682c3c35007e4e92982f1a2ba-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/2de5d16682c3c35007e4e92982f1a2ba-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/2de5d16682c3c35007e4e92982f1a2ba-Abstract.html
http://proceedings.mlr.press/v80/haarnoja18b.html
http://proceedings.mlr.press/v80/haarnoja18b.html
https://openreview.net/forum?id=S1lOTC4tDS
https://openreview.net/forum?id=S1lOTC4tDS
http://proceedings.mlr.press/v80/ho18a.html
http://proceedings.mlr.press/v80/ho18a.html
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2205.14327
https://arxiv.org/abs/2301.13589
http://proceedings.mlr.press/v70/pinto17a.html
http://proceedings.mlr.press/v70/pinto17a.html
https://github.com/DLR-RM/rl-baselines3-zoo
https://github.com/DLR-RM/rl-baselines3-zoo
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html

Bring Your Own (non-robust) Algorithm to Solve Robust MDPs by Estimating The Worst Kernel

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Shi, L. and Chi, Y. Distributionally robust model-based
offline reinforcement learning with near-optimal sample
complexity. arXiv preprint arXiv:2208.05767, 2022.

Sutton, R. S. and Barto, A. G. Reinforcement Learn-
ing: An Introduction. The MIT Press, second edition,
2018. URL http://incompleteideas.net/
book/the-book-2nd.html.

Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W.,
and Abbeel, P. Domain randomization for transferring
deep neural networks from simulation to the real world.
In 2017 IEEE/RSJ international conference on intelligent
robots and systems (IROS), pp. 23–30. IEEE, 2017.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics
engine for model-based control. In 2012 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems,
pp. 5026–5033. IEEE, 2012. doi: 10.1109/IROS.2012.
6386109.

Tunyasuvunakool, S., Muldal, A., Doron, Y., Liu, S., Bohez,
S., Merel, J., Erez, T., Lillicrap, T., Heess, N., and Tassa,
Y. dm control: Software and tasks for continuous control.
Software Impacts, 6:100022, 2020. ISSN 2665-9638.
doi: https://doi.org/10.1016/j.simpa.2020.100022.
URL https://www.sciencedirect.com/
science/article/pii/S2665963820300099.

van Hasselt, H., Guez, A., and Silver, D. Deep
reinforcement learning with double q-learning. In
Schuurmans, D. and Wellman, M. P. (eds.), Pro-
ceedings of the Thirtieth AAAI Conference on Arti-
ficial Intelligence, February 12-17, 2016, Phoenix,
Arizona, USA, pp. 2094–2100. AAAI Press, 2016.
URL http://www.aaai.org/ocs/index.php/
AAAI/AAAI16/paper/view/12389.

Wang, Q., Ho, C. P., and Petrik, M. Policy gradient in
robust mdps with global convergence guarantee. In
Krause, A., Brunskill, E., Cho, K., Engelhardt, B., Sabato,
S., and Scarlett, J. (eds.), International Conference on
Machine Learning, ICML 2023, 23-29 July 2023, Hon-
olulu, Hawaii, USA, volume 202 of Proceedings of
Machine Learning Research, pp. 35763–35797. PMLR,
2023. URL https://proceedings.mlr.press/
v202/wang23i.html.

Wang, Y. and Zou, S. Online robust reinforcement
learning with model uncertainty. ArXiv preprint,
abs/2109.14523, 2021. URL https://arxiv.org/
abs/2109.14523.

Wang, Y. and Zou, S. Policy gradient method for robust
reinforcement learning. International Conference on Ma-
chine Learning, 162:23484–23526, 2022.

Wang, Y., Miao, F., and Zou, S. Robust constrained re-
inforcement learning. ArXiv preprint, abs/2209.06866,
2022. URL https://arxiv.org/abs/2209.
06866.

Watkins, C. J. and Dayan, P. Q-learning. Machine learning,
8:279–292, 1992.

Wiesemann, W., Kuhn, D., and Rustem, B. Robust markov
decision processes. Mathematics of Operations Research,
38(1):153–183, 2013.

Xu, Z., Panaganti, K., and Kalathil, D. Improved sample
complexity bounds for distributionally robust reinforce-
ment learning. In International Conference on Artificial
Intelligence and Statistics, pp. 9728–9754. PMLR, 2023.

Yarats, D. and Kostrikov, I. Soft actor-critic (sac) im-
plementation in pytorch. https://github.com/
denisyarats/pytorch_sac, 2020.

Zhou, R., Liu, T., Cheng, M., Kalathil, D., Kumar, P., and
Tian, C. Natural actor-critic for robust reinforcement
learning with function approximation. arXiv preprint
arXiv:2307.08875, 2023.

11

http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
https://www.sciencedirect.com/science/article/pii/S2665963820300099
https://www.sciencedirect.com/science/article/pii/S2665963820300099
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12389
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12389
https://proceedings.mlr.press/v202/wang23i.html
https://proceedings.mlr.press/v202/wang23i.html
https://arxiv.org/abs/2109.14523
https://arxiv.org/abs/2109.14523
https://arxiv.org/abs/2209.06866
https://arxiv.org/abs/2209.06866
https://github.com/denisyarats/pytorch_sac
https://github.com/denisyarats/pytorch_sac

Bring Your Own (non-robust) Algorithm to Solve Robust MDPs by Estimating The Worst Kernel

A. Proof
A.1. Proof of Theorem 3.2

Recall that the worst values are defined as
Pπ

P ∈ argmin
P∈P

Jπ
P

for any general uncertainty set P . Further, for sa-rectangular uncertainty set P = ×s∈S,a∈APsa, the robust value function
exists, that is, the following is well defined (Nilim & El Ghaoui, 2005; Iyengar, 2005)

vπP = min
P∈P

vπP .

This implies,

vπP =
(
I − γ(Pπ

P)π
)−1

Rπ

is the fixed point of robust Bellman operator Tπ
P(Nilim & El Ghaoui, 2005; Iyengar, 2005), defined as

Tπ
Pv := min

P∈P
Tπ
P v.

Proposition A.1. The worst values can be computed from the robust value function. That is

argmin
P∈P

Tπ
P v

π
P ⊆ argmin

P∈P
vπP ⊆ argmin

P∈P
Jπ
P .

Proof. Let
P ∗ ∈ argmin

P∈P
Tπ
P v

π
P .

Now, from the fixed point of robust Bellman operator, we have

vπP =Tπ
PvπP = min

P∈P
Tπ
P v

π
P ,

= Tπ
P∗vπP , (by construction),

= Rπ + γ(P ∗)πvπP , (by definition).

The above implies,

vπP =
(
I − γ(P ∗)π

)−1

Rπ.

This implies,
P ∗ ∈ argmin

P∈P
vπP .

The last inclusion is trivial, that is, every minimizer of value function is a minimizer of robust return.

Theorem 3.2. For a KL uncertainty set P and a policy π, a worst kernel is related to the nominal kernel through:

Pπ
P(s′|s, a) = P̄π(s′|s, a)e−δπ(s′),

where δπ is of the form

δπ(s′) =
vπP(s′)− ωsa

κsa
, (1)

and satisfies ∑
s′∈S

P̄π(s′|s, a)e−δπ(s′) = 1,∑
s′∈S

P̄π(s′|s, a)e−δπ(s′)(−δπ(s′)) = βsa.
(2)

12

Bring Your Own (non-robust) Algorithm to Solve Robust MDPs by Estimating The Worst Kernel

Proof. Recall Definition 3.1
Pπ

P ∈ argmin
P∈P

Jπ
P .

From Proposition A.1, for sa-rectangular uncertainty set P , a worst kernel can be computed using robust value function as

Pπ
P ∈ argmin

P∈P
Tπ
P v

π
P .

Recall, our KL-constrained uncertainty P is defined as

P := {P | P ∈ (∆S)
S ×A, DKL(P̄s,a, Psa) ≤ βsa,∀s, a}.

where DKL is KL norm that is defined as

DKL(P,Q) =
∑
s

P (s) log

(
P (s)

Q(s)

)
.

Using Proposition A.1 and definition of uncertainty set P , the worst kernel can be extracted as

Pπ
P(·|s, a) ∈ argmin

DKL(p,P0(·|s,a))≤βsa,
∑

s p(s)=1,p⪰0

⟨p, vπP⟩.

Using the Lemma A.2, we get the desired solution.

In the following lemma, we use p
q as a shorthand for the vector containing entry-wise ratios p(i)

q(i) . For example, p ln(pq) ≤ β

represents
∑

i p(i) ln(
p(i)
q(i)) ≤ β.

Lemma A.2. For q ∈ ∆S , v ∈ RS , β ≥ 0, a solution to

min
p ln(p

q)≤β,1T p=1,p⪰0
⟨p, v⟩.

is given by
p = qe−

v−ω
λ ,

where
p log(

p

q
) =

〈
qe−

v−ω
λ ,

v − ω

λ

〉
= −β

and ∑
s

q(s)e−
v(s)−ω

λ = 1.

Proof. We have the following optimization problem,

min
p ln(p

q)≤β,1T p=1,p⪰0
⟨p, v⟩.

We ignore the constraint p ⪰ 0 for the moment (as we see later, this constrained is automatically satisfied), and focus on

min
p ln(p

q)≤β,1T p=1
⟨p, v⟩.

We define Lagrange multiplier as

L(p, λ, µ) = ⟨p, v⟩+ λ
(
p ln(

p

q
)− β

)
+µ

(
1T p− 1

)
.

13

Bring Your Own (non-robust) Algorithm to Solve Robust MDPs by Estimating The Worst Kernel

We now put the stationarity condition:

∂L

∂p
= v + λ

(
ln(

p

q
) + 1

)
+µ1 = 0

=⇒ p = qe−1e−
v+µ
λ .

With appropriate change of variable µ → ω, we have

p = qe−
v−ω
λ .

We have to find the constants ω and λ, using the constraints

p log(
p

q
) =

〈
qe−

v−ω
λ ,

v − ω

λ

〉
= −β

and ∑
s

p(s) =
∑
s

q(s)e−
v(s)−ω

λ = 1.

We further note that the constraint 1 ≥ p(s) ≥ 0 is automatically satisfied as

p(s) = q(s)e−
v(s)−ω

λ ≥ 0

and
∑

s p(s) = 1, ensures p(s) ≤ 1 ∀s.

A.2. Proof of Proposition 3.3 and 3.4

Proposition A.3. ωsa can be upper-bounded as follows,

ωsa ≤ ⟨P̄ (·|s, a), vπP⟩, ∀s ∈ S, a ∈ A .

Proof. From the constraint in Theorem 3.2, we have∑
s′

P̄ (s′|s, a)e−
vπ

P(s′)−ωsa
κsa = 1

=⇒ e−
∑

s′ P̄ (s′|s,a) vπ
P(s′)−ωsa

κsa ≤ 1 (using Jenson’s inequality)

=⇒ e−
∑

s′ P̄ (s′|s,a) vπ
P(s′)
κsa e

ωsa
κsa ≤ 1

=⇒ ωsa

κsa
≤

∑
s′

P̄ (s′|s, a)v
π
P(s′)

κsa

=⇒ ωsa ≤
∑
s′

P̄ (s′|s, a)vπP(s′).

Proposition 3.3. ωsa, κsa and βsa satisfy

ωsa = ⟨Pπ
P(·|s, a), vπP⟩+ βsaκsa,

Proof. From the constraint in Theorem 3.2, we have∑
s′

P̄π(s′|s, a)e−δπ(s′)(−δπ(s′)) = βsa

=⇒
∑
s′

Pπ
P(s′|s, a)v

π
P(s′)− ωsa

κsa
= βsa

=⇒
∑
s′

Pπ
P(s′|s, a)vπP(s′) = −βsaκsa + ωsa.

14

Bring Your Own (non-robust) Algorithm to Solve Robust MDPs by Estimating The Worst Kernel

Proposition 3.4. ωsa is bounded as follows,

⟨Pπ
P(·|s, a), vπP⟩ ≤ ωsa ≤ ⟨P̄π(·|s, a), vπP⟩.

Proof. The lower bound is direct from Proposition 3.3, as β and κ are positive quantities by definition. The upper bound
comes from Proposition A.3.

A.3. Proof of Theorem 3.5

Given a policy π, let Pn+1 be the updated kernel:

Pn+1 = argmin
P∈P

Tπ
P v

π
Pn

.

We continue to prove the following lemmas.

Lemma A.4. The kernel update process produces monotonically decreasing value functions:

vπPn
⪰ vπPn+1

, ∀n = 1, 2, · · · .

Where ⪰ refers to an entry-wise comparison operator (i.e. ∀s ∈ S : vπPn
(s) ≥ vπPn+1

(s)).

Proof. Recall that vπPn
= Tπ

Pn
vπPn

= Rπ + γPπ
n v

π
Pn

. Since we have

Pn+1 = argmin
P∈P

[Rπ + γPπvπPn
],

we can obtain

Rπ + γPπ
n v

π
Pn

≥ min
P∈P

[Rπ + γPπvπPn
]

⇒ vπPn
≥ Rπ + γPπ

n+1v
π
Pn

⇒ (I − γPπ
n+1)v

π
Pn

≥ Rπ

⇒ vπPn
≥ (I − γPπ

n+1)
−1Rπ = vπPn+1

.

Lemma A.5. The robust bellman operators are monotonic functions, that is:

v ≤ u =⇒ Tπ
Pv ≤ Tπ

Pu

Proof. Since v ≤ u, and the fact that P has only non-negative entries, we know that:

Rπ + γPπv ≤ Rπ + γPπu, ∀P ∈ P

⇒ min
P∈P

(Rπ + γPπv) ≤ min
P∈P

(Rπ + γPπu)

⇒ Tπ
Pv ≤ Tπ

Pu

Theorem 3.5. For the updating process in Eqn. (3), we have

∥vπPn
− vπP∥∞ ≤ γn∥vπP̄ − vπP∥∞.

Proof. We prove it by showing that:

∥vπPn+1
− vπP∥∞ ≤ γ∥vπPn

− vπP∥∞, ∀n.

First, by optimality, we have
vπPn+1

− vπP ≥ 0.

15

Bring Your Own (non-robust) Algorithm to Solve Robust MDPs by Estimating The Worst Kernel

Now we can focus only on the upper bound:

vπPn+1
− vπP = Tπ

Pn+1
vπPn+1

− Tπ
PvπP

≤ Tπ
Pn+1

vπPn
− Tπ

PvπP (Lemma A.4 and A.5)

= min
P∈P

Tπ
P v

π
Pn

− Tπ
PvπP

= Tπ
PvπPn

− Tπ
PvπP

≤ γ∥vπPn
− vπP∥∞ (Tπ

P is a γ-contraction operator).

Putting it together, we have
∥vπPn+1

− vπP∥∞ ≤ γ∥vπPn
− vπP∥∞.

The desired result is proved by applying the above result iteratively.

A.4. Simplification of Algorithm 1

Algorithm 1 is a practical algorithm that updates the policy, value, and estimates worst transition dynamic simultaneously.
It also involves various approximations (e.g., sampling finite N next states, using sample-based updates), making it difficult
to analyze. To facilitate theoretical investigation on the convergence, we isolate the policy improvement part and focus on
the core of our EWoK method: estimating a worst transition kernel Pπ

P for a fixed policy π.

Specifically, in each iteration, we compute the non-robust value function for an estimated worst transition dynamic Pn and
then update the estimated worst dynamic to Pn+1 according to Eqn. (3). For better clarity, we summarize this iterative
process in the following multi-time-scale algorithm:

Input: Fixed policy π, nominal transition dynamic P̄ , reward function R

Output: Robust value function vπP , worst transition dynamic Pπ
P for policy π

Initialize P1 ← P̄

For n = 1, 2, . . . until convergence:

If n = 1, randomly initialize v1, otherwise v1 ← vπPn

For m = 1, 2, . . . until convergence: [Policy evaluation]

vm+1 = Rπ + γPπ
n vm

vπPn
← vm

Pn+1 = P̄ e
−

vπ
Pn

−ωn

κn [Eqn. (3)]

vπP ← vπPn
, Pπ

P ← Pn

Theorem 3.5 establishes the convergence of the above algorithm. In the practical Algorithm 1, the update of vm and Pn are
intertwined. With appropriate conditions (Borkar, 2022), Theorem 3.5 suggests the convergence of the above mentioned
algorithm.

16

Bring Your Own (non-robust) Algorithm to Solve Robust MDPs by Estimating The Worst Kernel

B. Experiment details
B.1. Cliff Walking

B.1.1. ENVIRONMENT DESCRIPTION

Cliff Walking 1 is a tabular environment from OpenAI’s Gym (Brockman et al., 2016). Usually, this environment transition
kernel is deterministic. To create a distributional uncertainty set around the nominal kernel, we We introduced stochasticity
to the transition kernel. Specifically, we decreased the probability of moving in the intended direction from 1 to 0.9.
Additionally, we introduced a 0.02 probability of moving in the opposite direction (e.g., Up instead of Down), and the
remaining 0.08 probability is evenly distributed between moving sideways (e.g., Left or Right instead of Up). Consequently,
there is a 0.04 probability of moving in any of these lateral directions.

In terms of reward - the agent receives a −1 penalty every time step before reaching the goal state. When it does, it
encounters a reward of 100, and each time the agent falls off the cliff, it suffers from a penalty of −10 and will be teleported
to the initial state.

B.1.2. WORST ENVIRONMENT

To determine the worst transition kernel, we computed, for each (s, a) pair, the updated worst transition. This involved
encouraging actions that would move the agent closer to the cliff. For instance, if the agent is positioned adjacent to the cliff
and moves upward, we would try to find a transition kernel such that the probability of moving downward is maximal (while
staying within the bounds of the uncertainty set).

Specifically Given p ∈ ∆S we want to find q by solving the following optimization problem:

max q[i]

s.t.
∑
s∈S

q[s] = 1

q[s] ≥ 0, ∀s ∈ S
DKL(q||p) ≤ β

where i is the outcome of getting closer to the cliff.

B.1.3. Q-LEARNING HYPERPARAMETERS

To obtain the optimal policy we used Value iteration (Puterman, 1994), using the access to the true kernel (either nominal or
worst). To learn the robust policy we used a simple Q-learning algorithm (Watkins & Dayan, 1992) using samples from the
nominal kernel (while allowing multiple samples for any timesteps). The detailed configurations for hyperparameters used
in this experiment are summarized in Table 1.

B.2. Environments

B.2.1. CLASSIC CONTROL TASKS

Cartpole 2 is one of the classic control tasks in OpenAI Gym (Brockman et al., 2016). The task is to balance a pendulum on
a moving cart, by moving the cart either left or right. The state consists of the location and velocity of the cart, as well as the
angle and angular velocity of the pendulum. To make the transition dynamic stochastic, we add Gaussian noises to the cart
position. The detailed configurations for the nominal values and the perturbation ranges are summarized in Table 2.

B.2.2. DEEPMIND CONTROL SUITE

The DeepMind Control Suite (Tunyasuvunakool et al., 2020) is a set of continuous control tasks powered by the MuJoCo
physics engine (Todorov et al., 2012). It is widely used to benchmark reinforcement learning agents. As mentioned in
the main text, we consider 3 tasks in our paper: walker-stand, walker-walk, walker-run. For those tasks, the
observations are 24-dimensional vectors and the actions are 6-dimensional vectors. For noise perturbation, we fix the

1https://gymnasium.farama.org/environments/toy_text/cliff_walking/
2https://gymnasium.farama.org/environments/classic_control/cart_pole/

17

https://gymnasium.farama.org/environments/toy_text/cliff_walking/
https://gymnasium.farama.org/environments/classic_control/cart_pole/

Bring Your Own (non-robust) Algorithm to Solve Robust MDPs by Estimating The Worst Kernel

Table 1. Hyperparameters used in Cliff Walking environment

PARAMETER VALUE

Q-Learning Hyperparameters

Number of episodes 20000
Learning rate 0.01

Discount factor (γ) 0.8
Exploration factor ϵ 0.2

Value Error stopping condition 1e−6

Uncertainty set parameters

β 0.4

EWoK Hyperparameters

Number of samples (N) 5
κ 0.4

Table 2. Perturbation configurations for Cartpole environment.

PARAMETER NOMINAL VALUE PERTURBATION RANGE

NOISE
PERTUBRATION

Cart position noise (std) 0.01 [0, 0.1]

ENV. PARAM.
PERTUBRATION

Pole mass 0.1 [0.15, 3.0]
Pole length 0.5 [0.25, 5.0]
Cart mass 1 [0.25, 5.0]
Gravity 9.8 [0.1, 30]

standard deviation of the Gaussian noise to 0.2. The nominal value and the perturbation range are summarized in Table 3.

Table 3. Perturbation configurations for DeepMind Control Suite tasks.

PARAMETER NOMINAL VALUE PERTURBATION RANGE

NOISE
PERTUBRATION

action noise (mean) 0.0 [−0.3, 0.3]

ENV. PARAM.
PERTUBRATION

thigh length 0.225 [0.1, 0.5]
torso length 0.3 [0.1, 0.7]

joint damping 0.1 [0.1, 10]

B.3. Training and evaluation

For our method and the baseline, we first train the agent under the nominal environment, and then for each perturbed
environment during testing, we calculate the average reward from 30 episodes. We repeat this process with 40 random seeds
for DDQN experiments and 20 random seeds for PPO experiments in the classic control environments. For DeepMind
Control environments we used 10 different seeds for SAC experiments and 5 different seeds for TD3 experiments. Following
the recommended practice in (Agarwal et al., 2021), we report the Interquartile Mean (IQM) and the 95% stratified bootstrap
confidence intervals (CIs), using The IQM metric is measured by discarding the top and bottom 25% of the results, and
averaging across the remaining middle 50%. IQM has the benefit of being more robust to outliers than a regular mean, and
being a better estimator of the overall performance than the median. We use the rliable library3 to calculate IQM and CIs.

3https://github.com/google-research/rliable

18

https://github.com/google-research/rliable

Bring Your Own (non-robust) Algorithm to Solve Robust MDPs by Estimating The Worst Kernel

As mentioned earlier, we use Double-DQN (van Hasselt et al., 2016) and PPO (Schulman et al., 2017) as the vanilla
non-robust RL algorithms for environments with discrete action spaces. Specifically, we follow the implementation in Stable-
Baselines3 (Raffin et al., 2021). For the Cartpole environment, we use the hyperparameters suggested in RL Baselines3
Zoo (Raffin, 2020). The detailed configurations are summarized in Table 4 and Table 5.

Table 4. Hyperparameters for training cartpole with DDQN used in the experiments.

PARAMETER VALUE

batch size 64
buffer size 100000

exploration final epsilon 0.04
exploration fraction 0.16

gamma 0.99
gradient steps 128
learning rate 0.0023

learning starts 1000
target update interval 10

train frequency 256
total time-steps 50000

Table 5. Hyperparameters for training cartpole with PPO used in the experiments.

PARAMETER VALUE

number of parallel environments 1
batch size 32

Number of steps 32
gae lambda 0.98

gamma 0.98
Number of epochs 20
entropy coefficient 0

clip range 0.2
learning rate 0.001

total time-steps 100000

For environments with continuous action spaces, we choose the SAC algorithm (Haarnoja et al., 2018) and TD3 (Fujimoto
et al., 2018) as the vanilla non-robust RL algorithms. For SAC, we follow the implementations and hyperparameters choices
in (Yarats & Kostrikov, 2020). Both the actor and critic use a two-layer MLP neural network with 1024 hidden units per
layer. Table 6 lists the hyperparameters. For TD3, we follow the implementations and hyperparameters choices in (Raffin
et al., 2021). Table 7 lists the hyperparameters.

The configurations for the sample size N and the robustness parameter κ used in our experiments are summarized in Table 8.

B.4. Computational resources and costs

We used the following resources in our experiments:

• CPU: AMD EPYC 7742 64-Core Processor

• GPU: NVIDIA GeForce RTX 2080 Ti

Table 9 lists the training time.

19

Bring Your Own (non-robust) Algorithm to Solve Robust MDPs by Estimating The Worst Kernel

Table 6. Hyperparameters for SAC used in the experiments.

PARAMETER VALUE

Total steps 1e6
Warmup steps 5000

Replay size 1e6
Batch size 1024

Discount factor γ 0.99
Optimizer Adam (Kingma & Ba, 2015)

Learning rate 1e-4
Target smoothing coefficient 0.005

Target update interval 2
Actor update interval 1

Initial temperature 0.1
Learnable temperature Yes

Table 7. Hyperparameters for TD3 used in the experiments.

PARAMETER VALUE

Total steps 1e6
Warmup steps 5000

Replay size 1e6
Batch size 1024

Discount factor γ 0.99
Optimizer Adam (Kingma & Ba, 2015)

Learning rate 1e-4
Target smoothing coefficient 0.005

Target update interval 2
Actor update interval 2

Target policy noise std 0.2
Target policy noise clip 0.5

Table 8. Hyperparameters specific to our method used in the experiments.

ENVIRONMENT SAMPLE SIZE N ROBUSTNESS PARAMETER κ

CLASSIC CONTRO
Cartpole (DDQN) 15 0.1

Cartpole (PPO) 15 0.2

DEEPMIND
CONTROL

SUITE

walker-stand (SAC & TD3) 10 0.2
walker-walk (SAC & TD3) 10 0.2
walker-run (SAC & TD3) 10 0.2

Table 9. Training time per run of our experiments on a single GPU.

ENVIRONMENT BASELINE EWOK(OURS)

CLASSIC CONTROL (DDQN) Cartpole ∼ 4 minutes ∼ 5 minutes
CLASSIC CONTROL (PPO) Cartpole ∼ 60 minutes ∼ 60 minutes

DM CONTROL (SAC) all tasks ∼ 5 hours ∼ 6 hours
DM CONTROL (TD3) all tasks ∼ 6 hours ∼ 7 hours

20

Bring Your Own (non-robust) Algorithm to Solve Robust MDPs by Estimating The Worst Kernel

C. Comparison of EWoK to existing Dynamic programming methods
Even though existing methods do not scale well to high-dimensional environments. To test how EWoK compares to
existing robust model-based methods, we chose the Robust Dynamic Programming (Robust DP) approach in (Nilim &
El Ghaoui, 2005). Their solution for the KL-based rectangular uncertainty set involves a bisection algorithm to solve the
inner optimization problem of the robust Bellman operator. To test how our algorithm compared to the Robust DP approach,
we considered the simple MDP depicted in Figure 9.

Figure 9. Simple MDP used in comparison experiments.

For this simple MDP, under the nominal transition kernel P̄ the optimal action at state s1 is a1. But allowing KL-perturbation
(e.g. DKL(P (·|s, a) ∥ P̄ (·|s, a)) ≤ 0.2, ∀(s, a)) can cause the optimal robust action (under worst possible dynamics) to
change into a2.

Figure 10. Error of estimated robust return, Q-Learning algorithm on the simple MDP.

We applied both EWoK with model-free Q learning and Robust DP with bisection algorithm, we plotted the error of the
estimated robust return w.r.t. the optimal robust return for both methods in Figure 10. The x-axis represents the number of
Q-function updates. (notice that the comparison is not ”apples to apples” since EWoK is a sample-based approach while
Robust DP utilizes the knowledge of the transition kernel) Since the sampling mechanism in EWoK introduces more noise
to the process, we ran this experiment over 5 different seeds and presented the mean and standard deviation. We can see that
EWoK converges into a very similar robust return while achieving the same optimal robust policy as the DP approach.

In addition, we tried the Robust DP approach on the cliff-walking toy environment (with some reward scaling changes for

21

Bring Your Own (non-robust) Algorithm to Solve Robust MDPs by Estimating The Worst Kernel

Figure 11. Experiments on a modified Cliff-Walking environment to compare EWoK with DP method.

numerical considerations). The learned optimal robust policy turned out pretty similar to the one we achieved using EWoK
(as can be seen in Figure 11.

22

Bring Your Own (non-robust) Algorithm to Solve Robust MDPs by Estimating The Worst Kernel

D. Additional results
In section 4.3 we show the result of testing EWoK on different parameters perturbation. Here we show the results of all of
the experimented parameters we have perturbed during test time. The results for SAC algorithm can be seen in Figure 12
and the results for TD3 algorithm can be seen in Figure 13.

In section 4.4, we show the relative performance for the ablation study on parameter κ and N for two environments only. In
Figures 14 and 16 we depict the full results for all of the 3 environments. In Figures 15 and 17 we also include the absolute
results (with the reference baseline algorithm).

Figure 12. Evaluation results on DeepMind Control environments with environment’s parameters perturbations for SAC algorithm.

23

Bring Your Own (non-robust) Algorithm to Solve Robust MDPs by Estimating The Worst Kernel

Figure 13. Evaluation results on DeepMind Control environments with environment’s parameters perturbations for TD3 algorithm.

Figure 14. Evaluation results on DeepMind Control tasks with noise perturbations for different κ.

24

Bring Your Own (non-robust) Algorithm to Solve Robust MDPs by Estimating The Worst Kernel

Figure 15. Evaluation results (absolute) on DeepMind Control tasks with noise perturbations for different κ.

Figure 16. Evaluation results on DeepMind Control tasks with noise perturbations for different N .

Figure 17. Evaluation results (absolute) on DeepMind Control tasks with noise perturbations for different N .

25

