
Leverage Class-Specific Accuracy to Guide Data Generation for Improving
Image Classification

Jay Gala 1 Pengtao Xie 1 2

Abstract
In many image classification applications, the
number of labeled training images is limited,
which leads to model overfitting. To mitigate
the lack of training data, deep generative models
have been leveraged to generate synthetic training
data. However, existing methods generate data
for individual classes based on how much training
data they have without considering their actual
data needs. To address this limitation, we propose
needs-aware image generation, which automati-
cally identifies the different data needs of indi-
vidual classes based on their classification perfor-
mance and divides a limited data generation bud-
get into these classes according to their needs. We
propose a multi-level optimization based frame-
work which performs four learning stages in an
end-to-end manner. Experiments on both imbal-
anced and balanced classification datasets demon-
strate the effectiveness of our proposed method.

1. Introduction
Image classification (He et al., 2016b) is a fundamental
problem in computer vision and machine learning. In many
applications, due to the high annotation cost (Tian et al.,
2020), it is challenging to obtain large amounts of labeled
training images. Trained on small-sized datasets, models
tend to overfit the training data and generalize poorly on test
data (Neyshabur et al., 2017). To address this problem, many
approaches (Azizi et al., 2023; Trabucco et al., 2023; Zhou
et al., 2023a; Zheng et al., 2023; Li et al., 2023; Antoniou
et al., 2017; Mariani et al., 2018; Such et al., 2020) have
been proposed to leverage deep generative models (Ho et al.,
2020; Song et al., 2021; Goodfellow et al., 2014; Kingma
et al., 2019; Rezende & Mohamed, 2015) to generate syn-
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thetic training images, augmenting the limited real training
data, and have demonstrated promising effectiveness.

Different classes within a classification task may require
varying amounts of synthetic training data, with these needs
often being dictated by the classification performance of in-
dividual classes. For instance, in class-imbalanced datasets,
the number of training examples can vary greatly between
classes, leading to performance disparities (Cui et al., 2019b;
Huang et al., 2016; Zhang et al., 2018; Kim et al., 2020).
Those classes with poorer performance often need more
synthetic training data. Even in class-balanced datasets,
classification accuracy can differ between classes (He et al.,
2016a; 2019). Some classes may possess more complex or
diverse features, making them more challenging for clas-
sifiers to learn and accurately distinguish. This variation
in classification accuracy results in different classes having
distinct requirements for synthetic data.

Due to computation and memory constraints, there is a limit
to the number of synthetic images that can be generated,
referred to as the data generation budget. It is crucial to
allocate more of this budget to worse-performing classes
that require more synthetic training data and less to better-
performing ones. However, existing data generation meth-
ods (Azizi et al., 2023; Trabucco et al., 2023; Zhou et al.,
2023a; Zheng et al., 2023; Li et al., 2023; Antoniou et al.,
2017; Mariani et al., 2018; Such et al., 2020) cannot prop-
erly divide a limited data generation budget between classes
based on their actual data needs. They simply distribute the
budget based on the number of training examples in each
class, assuming that a class with fewer training examples
needs more synthetic training data. However, this assump-
tion does not always hold in many real-world applications.
For example, a class with similar data examples, which are
distinct from other classes, may already exhibit excellent
classification performance even if the amount of training
data is limited. In such a case, there would be less need for
synthetic training data for this class.

To address the limitations of existing methods, we propose
a multi-level optimization (MLO) (Sato et al., 2021) based
framework for needs-aware data generation. Instead of re-
lying on the number of training images in each class, our
framework assesses the data needs of individual classes
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based on their classification performance. The framework
executes an end-to-end learning process, consisting of three
stages: 1) training an initial classifier to measure the perfor-
mance of individual classes, thereby determining their data
needs; 2) allocating a limited data generation budget among
classes based on these identified needs, and subsequently
generating data in accordance with this allocation; and 3)
utilizing the generated data to enhance classification perfor-
mance. Each stage corresponds to one level of optimization
problem in the MLO formulation and different stages are
performed jointly by solving different levels of interdepen-
dent optimization problems collectively, to achieve the best
overall performance.

The major contributions of this work include:

• We propose a multi-level optimization based frame-
work which conducts needs-aware data generation to
mitigate the lack of labeled training data in image clas-
sification. Compared with previous works, our method
has two major novelties. First, previous works are
based on a simple assumption that infrequent classes
need more data. Such an assumption cannot cover the
cases that balanced classes may also have imbalanced
performance. In contrast, our method goes beyond
such a simplified assumption. It measures the perfor-
mance of individual classes and generates more data
for worse-performing classes. Second, some baselines
perform a sequence of tasks, including measuring class-
specific performance, generating data, using generated
data to train classifiers, in a separate manner. Later
tasks have no influence on earlier tasks, which leads
to suboptimal overall performance. In contrast, our
method performs the three tasks end-to-end in a multi-
level optimization framework, where all tasks can mu-
tually influence each other to achieve the overall best
performance.

• We demonstrate our framework’s effectiveness on both
imbalanced and balanced image classification datasets.

2. Related Works
Synthetic data generation. The feasibility of utilizing
generated data to train more accurate machine learning mod-
els has been demonstrated in several works (Azizi et al.,
2023; Trabucco et al., 2023; Zhou et al., 2023a; Zheng et al.,
2023; Li et al., 2023). Many deep generative models have
been developed for data generation (or augmentation) (Az-
izi et al., 2023; Trabucco et al., 2023; Zhou et al., 2023a),
including diffusion models (Sohl-Dickstein et al., 2015; Ho
et al., 2020; Song et al., 2021; Saharia et al., 2022), genera-
tive adversarial networks (Goodfellow et al., 2014; Mirza
& Osindero, 2014; Zhu et al., 2017; Lin et al., 2022), vari-
ational autoencoders (Kingma & Welling, 2014; Bowman

et al., 2016), normalizing flows (Tabak & Vanden-Eijnden,
2010; Rezende & Mohamed, 2015), GPT3 (Brown et al.,
2020), etc. Particularly in the field of image generation,
numerous methods have been devised. For example, An-
toniou et al. (Antoniou et al., 2017) leveraged conditional
Generative Adversarial Networks (GANs) to perform data
augmentation. Mariani et al. (Mariani et al., 2018) proposed
a balancing GAN to generate images for infrequent classes
in imbalanced datasets to achieve balance among classes.
Frid-Adar et al. (Frid-Adar et al., 2018) leveraged GANs
to generate synthetic medical images for liver lesion clas-
sification. Huang et al. (Huang et al., 2018) proposed a
GAN-based data augmentation method for cross domain
adaptation. Such et al. (Such et al., 2020) proposed to gen-
erate synthetic images for improving neural architecture
search. Li et al. (Li et al., 2022e) proposed a GAN-based
method for extremely imbalanced data augmentation. Dif-
ferent from these methods which determine how much data
to generate for a class based on the number of real training
examples that the class has, our method measures classes’
actual needs of data based on their classification perfor-
mance and generates data according to the needs.

Bi-level and multi-level optimization. Our method is
based on multi-level optimization, which is an extension of
bi-level optimization (BLO) (Dempe, 2002). BLO has been
applied for formulating many machine learning methods,
including model-agnostic meta learning (Finn et al., 2017),
neural architecture search (Liu et al., 2019a), hyperparame-
ter tuning (Feurer et al., 2015), data reweighting (Shu et al.,
2019; Ren et al., 2020; Wang et al., 2020b), etc. In these
methods, there are learnable model weights and meta param-
eters. Model weights are trained by minimizing a training
loss while meta parameters are learned by minimizing a
validation loss. The optimization problem defined on model
weights is on the constraint of the optimization problem
defined on meta parameters.

3. Method
Our framework (Figure 1) consists of an initial classifier
W1, a refined classifier W2, and a class-to-image conditional
generative adversarial network (CGAN) (Mirza & Osindero,
2014; Brock et al., 2018). They share learnable meta param-
eters A (e.g., neural architectures). The CGAN takes a class
name as input and generates a set of images belonging to
this class. Let D(tr)

cls = {(xi, yi)}Ni=1 denote the training set
of an image classification dataset and D

(val)
cls denote a vali-

dation set, where xi is an input image and yi is its class label.
After training W1 on D

(tr)
cls , we measure its performance for

individual classes on D
(val)
cls and divide a data generation

budget based on these classes’ performance. If W1 does not
perform well on a certain class c, the CGAN will generate
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Figure 1. Overview of our framework.

more images belonging to c. Then these generated images
will be used to train W2. Table 1 shows notations.

Table 1. Notations of our method.

Notation Meaning
W1 Weight parameters of the initial classifier
W2 Weight parameters of the refined classifier
A Meta parameters
D

(tr)
cls Training set of an image classification

dataset
D

(val)
cls Validation set of an image classification

dataset
xi Input image
yi Class label
Lcls Classification loss
G Generator in the conditional GAN
H Weights of the discriminator in the condi-

tional GAN
Dcgan Training data for the conditional GAN
Lgan Loss of the conditional GAN

3.1. A Multi-level Optimization Based Framework

Our framework consists of the following four stages which
are performed end-to-end.

Stage I. At the first stage, we train W1 on D
(tr)
cls by mini-

mizing a cross-entropy based classification loss Lcls. The
corresponding optimization problem is:

W ∗
1 (A) = minW1 Lcls(W1, A,D

(tr)
cls ). (1)

The meta parameters A are needed to define the training
loss. They are tentatively fixed at this stage and will be
updated later on. W ∗

1 (A) denotes that W ∗
1 depends on A,

since W ∗
1 depends on Lcls which is a function of A.

Stage II. At the second stage, we train a conditional
GAN (CGAN) consisting of a generator and a discrimi-
nator (Goodfellow et al., 2014). The generator G takes
a class name as input and generates an image. The dis-
criminator H takes an image as input and predicts whether
it is synthetic or real. The training dataset for CGAN is
Dcgan = {(yi, xi)}Ni=1, which is obtained by switching the
order of images and labels in D

(tr)
cls . When training a clas-

sifier with the image classification dataset D(tr)
cls , images

serve as the input, and their corresponding class labels are
the output. Conversely, when training a conditional GAN
model using Dcgan, the roles are reversed: class labels are
the input, and images are the output. While both D

(tr)
cls and

Dcgan utilize the same collection of images and labels, their
assignments of inputs and outputs are distinct. We train G
and H by solving a mini-max problem where the objective
Lgan is from GAN (Goodfellow et al., 2014):

G∗(A), H∗ = minG maxH Lgan(G,H,A,Dcgan). (2)

Similar to Eq.(1), the conditional GAN’s meta parameters
A (shared with the classifiers) are tentatively fixed at this
stage and will be updated later on.

Stage III. In the third stage, we measure the validation
performance of the optimally trained W ∗

1 (A) on the valida-
tion set D(val)

cls . The budget of generating synthetic train-
ing data is divided into classes based on their performance
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(validation losses). For worse-performing classes (with
larger validation losses), more synthetic images are gener-
ated. Specifically, we generate an image for class c with
a probability proportional to the average validation loss
lc(W

∗
1 (A), A,D

(val)
cls ) of c. We define a categorical variable

s which can have values from 1 to C (C is the total number
of classes). s = c denotes that class c is selected. The
probability of p(s = c) is defined as:

p(s = c) =
lc(W

∗
1 (A), A,D

(val)
cls )∑C

b=1 lb(W
∗
1 (A), A,D

(val)
cls )

. (3)

The following procedure is performed to generate an im-
age. First, we sample a class c from p(s) according to
the probability defined in Eq.(3). Then we feed the class
name nc of class c and a random noise vector δ into the
generator f parameterized by G∗(A), which generates an
image x̂ = f(nc, δ, G

∗(A)). Given a total budget of gener-
ating M images, this procedure repeats M times, yielding
a generated set {(x̂m, om)}Mm=1 where x̂m is a generated
image and om is the class from which x̂m is generated.
These generated images are then used to train W2, where
training loss is defined as

∑M
m=1 Lcls(W2, A, x̂m, om). We

use the Gumbel-Softmax (Jang et al., 2016) reparameteriza-
tion to approximate

∑M
m=1 Lcls(W2, A, x̂m, om). Let bm

denote exp((log p(s = om) + g
(m)
1 )/T )/(exp((log p(s =

om)+ g
(m)
1 )/T )+ exp((log(1− p(s = om))+ g

(m)
2 )/T )),

where p(s = om) is given in Eq.(3) and (g
(m)
1 , g

(m)
2 ) are

samples drawn from a Gumbel distribution. T ∈ (0,∞)
is a temperature parameter. During training, T is set via
annealing. We have the approximation as:

La(W2, A,W ∗
1 (A), G∗(A))

=
M∑

m=1
bmLcls(W2, A, x̂m, om).

(4)

In this stage, the optimization problem is:

W ∗
2 (A,W

∗
1 (A), G∗(A))

= min
W2

Lcls(W2, A,D
(tr)
cls ) + λLa(W2, A,W ∗

1 (A), G∗(A))

(5)
where λ is a tradeoff parameter.

Stage IV. In the fourth stage, we validate
W ∗

2 (A,W
∗
1 (A), G∗(A)) and W ∗

1 (A) on the valida-
tion dataset and learn A by minimizing validation
losses:

minA Lcls(W
∗
2 (A,W ∗

1 (A), G∗(A)), A,D
(val)
cls )

+γLcls(W
∗
1 (A), A,D

(val)
cls ),

(6)

where γ is a tradeoff parameter.

A multi-level optimization framework. Putting these
pieces together, we have the following overall formulation.

minA Lcls(W
∗
2 (A,W ∗

1 (A), G∗(A)), A,D
(val)
cls )

+γLcls(W
∗
1 (A), A,D

(val)
cls )

s.t. W ∗
2 (A,W ∗

1 (A), G∗(A))

= min
W2

Lcls(W2, A,D
(tr)
cls ) + λLa(W2, A,W ∗

1 (A), G∗(A))

G∗(A), H∗ = minG maxH Lgan(G,H,A,Dcgan)

W ∗
1 (A) = minW1 Lcls(W1, A,D

(tr)
cls )

(7)
The optimization algorithm is deferred to Appendix A.

3.2. Reducing Search Cost and Memory Cost

Before running our framework in Eq.(7), we pretrain the
CGAN on Dcgan. The sum of runtime of these two steps
is reported as the total computation cost of our method in
the sequel. The following techniques are applied to reduce
computation and memory costs.

• Parameter tying is performed. For W1, W2, and H ,
each of them consists of a data encoder and a classifica-
tion head. We let W1, W2 and H share the same data
encoder and have different classification heads. Typi-
cally, the classification heads are set to be linear vectors
with a few thousand dimensions or less. Their memory
consumption and computational costs are neglectable
compared with those of the data encoder. With param-
eter tying, the total number of model parameters and
the computation cost of updating these parameters can
be substantially reduced.

• Instead of updating the meta parameters A and the gen-
erator G in each iteration (mini-batch), we reduce their
update frequency to every 8 iterations. Empirically, this
substantially reduced computation costs while achiev-
ing similar convergence quality compared to updating
A and G in each iteration. The update frequency of
other parameters is still set to be per-iteration.

• On data generated by the CGAN in stage III, a decor-
relation regularizer (Cogswell et al., 2015) is applied.
With this regularizer, our algorithm converged to a low
loss value in 25 epochs. To reach a similar loss value,
it took about 50 epochs without this regularizer.

• By leveraging the core-sets based approach for speed-
ing up GAN training (Sinha et al., 2020a) and top-k
training strategy of GANs (Sinha et al., 2020b) and de-
creasing epoch number by half, we managed to greatly
decrease the pretraining time of the CGAN on various
datasets.
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Table 2. Test accuracy (%) on imbalanced CIFAR datasets. Results of baselines in the last panel are taken from their original papers.

Dataset CIFAR10-LT CIFAR100-LT
Imbalance factor 200 100 50 20 10 200 100 50 20 10

Focal loss (Lin et al., 2017) 65.29 70.38 76.71 82.76 86.66 35.62 38.41 44.32 51.95 55.78
Class balance (Cui et al., 2019b) 68.89 74.57 79.27 84.36 87.49 36.23 39.60 45.32 52.59 57.99
L2RW (Ren et al., 2018) 66.51 74.16 78.93 82.12 85.19 33.38 40.23 44.44 51.64 53.73
Meta weight (Shu et al., 2019) 68.91 75.21 80.06 84.94 87.84 37.91 42.09 46.74 54.37 58.46

Vanilla ResNet (He et al., 2016a) 65.68 70.36 74.81 82.23 86.39 34.84 38.32 43.85 51.44 55.71
Reciprocal 68.85 75.96 79.67 83.29 87.50 37.27 42.36 47.13 54.05 57.92
Separate 67.29 76.04 80.21 82.79 87.94 37.87 41.95 46.36 54.28 57.70
MTL 68.14 76.11 79.33 83.92 87.46 37.95 42.49 47.90 54.74 58.39
Ours 73.41 79.25 83.09 87.52 90.76 40.95 46.10 50.77 57.28 61.62

MiSLAS (Zhong et al., 2021b) 77.31 82.06 85.16 - 90.00 42.33 47.50 52.62 - 63.2
GCL (Li et al., 2022b) 79.03 82.68 85.46 - - 44.88 48.71 53.55 - -
GCL + CR (Ma et al., 2023) 79.9 83.5 86.8 - - 45.6 49.8 55.1 - -
RIDE (Wang et al., 2020a) - - - - - - 48.6 51.4 - 59.8
RIDE + CMO (Park et al., 2022) - - - - - - 50.0 53.0 - 60.2
RIDE + CMO + CR (Ma et al., 2023) - - - - - - 50.7 54.3 - 61.4
CC-SAM (Zhou et al., 2023b) 80.94 83.92 86.22 - - 45.66 50.83 53.91 - -
CC-SAM + Ours 81.89 84.77 88.15 - - 47.09 52.36 55.80 - -

4. Experiments
We evaluated our method on four imbalanced dataset and
one balanced dataset. This diverse selection was intended to
test our method’s ability to identify the performance-based
data needs of classes, irrespective of the class balance within
these datasets. We used BigGAN (Brock et al., 2018) as
the CGAN. Weight parameters of BigGAN were optimized
using Adam (Kingma & Ba, 2014a), with a learning rate of
2e-4. The tradeoff parameters λ and γ in Eq.(7) were set to
1. We tuned them in {0.1, 0.5, 1, 2, 3} on 5K held-out exam-
ples. The budget M of data examples to be generated was
set to be the same as the number of real training examples.

4.1. Experiments on Imbalanced Datasets

Datasets. We used three class-imbalanced datasets:
CIFAR10-LT (Cui et al., 2019b), CIFAR100-LT (Cui et al.,
2019b), and ImageNet-LT (Liu et al., 2019b), where LT
denotes long tail. They were curated from the original
balanced CIFAR-10 (Krizhevsky et al., 2009), CIFAR-
100 (Krizhevsky & Hinton, 2010), and ImageNet (Deng
et al., 2009), by randomly sampling skewed number of
images from different classes. CIFAR10-LT and CIFAR100-
LT have different versions with different imbalance factors,
which are defined as the ratio between the numbers of train-
ing examples in the largest and smallest classes. ImageNet-
LT has an imbalance factor of 256. It contains 115.8K
images from 1,000 categories.

Experimental Settings. We set the meta parameters A
in our method to be the shared weight parameters of the
last two layers in the initial classifier, refined classifier, and
the CGAN’s discriminator. The rationale is as follows. A
typical neural network-based image classifier is composed
of two main components: an image encoder that extracts
representations from an input image, and a classification
head that predicts the class label. Generally, the classifica-
tion head consists of the last two layers of the network. Our
method learns the image encoder using the training dataset
and the classification head using the validation set.

For experiments on CIFAR10-LT and CIFAR100-LT, we
used ResNet-32 (He et al., 2016a) as the classifier, following
(Shu et al., 2019). The number of epochs was set to 100.
The initial learning rate was set to 0.001, which was reduced
by 10 after 80 and 90 epochs. Adam (Kingma & Ba, 2014b)
was used as the optimizer. Batch size was set to 64. For
experiments on ImageNet-LT, we used ViT-B (Dosovitskiy
et al., 2021) as the classifier, with an image patch size of
16. The image encoder in ViT-B employs a Transformer
architecture with 12 layers, alternating between multiheaded
self-attention and multi-layer perceptron (MLP) blocks. The
classification head in ViT-B is an MLP with one hidden layer
and a logits layer.

We compared our method with the following baselines.

• Reciprocal (Mariani et al., 2018; Li et al., 2022e). For a
class with n training examples, the number of synthetic
images generated for this class is proportional to 1

n .
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Table 3. Class-specific accuracy and generated data for CIFAR-10 (imbalance factor = 50).

Number of real Accuracy before using Number of Accuracy after using
Class training images generated data generated images generated data

Truck 5000 97.3 237 98.7
Cat 3237 90.9 394 93.1
Frog 2096 91.4 466 92.9
Car 1357 92.6 401 94.3
Plane 878 83.3 924 87.0
Dog 568 59.5 2280 78.5
Horse 368 74.4 1468 83.4
Ship 238 78.1 1173 88.1
Bird 154 41.8 3245 58.6
Deer 100 38.6 3407 55.9

Mean - 74.8 - 83.1
Standard deviation - 21.3 - 14.8

• Separate (Antoniou et al., 2017; Frid-Adar et al., 2018).
CGAN and classification model are trained separately.
We use a pretrained CGAN to generate images instead of
training it in our framework.

• Multi-task learning (MTL). CGAN and the refined clas-
sifier W2 are trained by minimizing the weighted sum of
their loss functions in an MTL framework.

Results on Imbalanced CIFAR Datasets. Table 2 shows
the results. From this table, we make the following obser-
vations. First, our framework which generates synthetic
labeled images to train ResNet achieves significantly bet-
ter performance than vanilla ResNet which does not use
synthetic training data. This demonstrates that labeled im-
ages generated by our framework are effective for training
better classification models. Second, our method outper-
forms Reciprocal significantly, which demonstrates that our
method’s strategy of dividing a data generation budget into
classes is superior to Reciprocal. Reciprocal makes the as-
sumption that classes with less training data would perform
worse and hence need more synthetic training data. As
discussed in Section 1, this assumption is not always true.
In contrast, our method does not rely on this assumption
and dynamically measures individual classes’ classification
performance and generates more data for worse-performing
classes. Third, our method outperforms Separate. In Sepa-
rate, CGAN and classification models are trained separately,
where the CGAN training is not guided by classification
performance. In contrast, our method trains CGAN and
classification models jointly. The CGAN is trained to gen-
erate data that is effective for improving the classification
model. Fourth, our method performs better than MTL. In
MTL, CGAN and W2 are trained jointly by minimizing
the weighted sum of their losses. It is difficult to prop-

erly balance these two loss terms: achieving more decrease
of one loss renders less decrease of the other loss. Our
method avoids this problem by training CGAN and W2 in
two separate optimization problems (but still in an end-to-
end framework).

We compared with another six recent baselines, including
Mixup Shifted Label-Aware Smoothing (MiSLAS) (Zhong
et al., 2021b), Gaussian Clouded Logit (GCL) (Li et al.,
2022b), Curvature Regularization (CR) (Ma et al., 2023),
RoutIng Diverse Experts (RIDE) (Wang et al., 2020a),
Context-rich Minority Oversampling (CMO) (Park et al.,
2022), and Class-Conditional Sharpness-Aware Minimiza-
tion (CC-SAM) (Zhou et al., 2023b). Following (Wang et al.,
2020a; Park et al., 2022), the number of experts in RIDE is
set to 3. Our method is applied on top of CC-SAM. The last
panel of Table 2 shows the comparison between our method
and these baselines. The performance numbers of baseline
methods are taken from their original papers. As can be
seen, our method outperforms these baselines, which further
demonstrates the effectiveness of our proposed needs-aware
image generation mechanism.

Table 3 presents the number of images generated by our
method for each class in CIFAR-10 (imbalance factor = 10),
alongside the accuracy before and after using the generated
data for training. Notably, there is an approximate inverse
relationship between the number of generated images and
the accuracy of each class before using generated data, indi-
cating that our method preferentially generates more images
for worse-performing classes. After using the generated im-
ages for training, there is a significant increase of accuracy
for each class. The magnitude of increase is more prominent
on worse-performing classes. This demonstrates that the
images generated by our method are effective for improv-

6



Improve Image Classification by Generating Data Guided by Class-Specific Accuracy

Table 4. Top-1 accuracy (%) on ImageNet-LT. ResNet-50 is used
as the classifier. Results marked with † use ResNeXt-50 (Xie et al.,
2017) as the classifier.

Method Many Med. Few Acc

CE (Cui et al., 2019a) 64.0 33.8 5.8 41.6
LDAM (Cao et al., 2019) 60.4 46.9 30.7 49.8
c-RT (Kang et al., 2020) 61.8 46.2 27.3 49.6
τ -Norm (Kang et al., 2020) 59.1 46.9 30.7 49.4
Causal (Tang et al., 2020) 62.7 48.8 31.6 51.8
Logit Adj. (Menon et al., 2021) 61.1 47.5 27.6 50.1
RIDE(4E)† (Wang et al., 2021) 68.3 53.5 35.9 56.8
MiSLAS (Zhong et al., 2021a) 62.9 50.7 34.3 52.7
DisAlign (Zhang et al., 2021a) 61.3 52.2 31.4 52.9
ACE† (Cai et al., 2021) 71.7 54.6 23.5 56.6
PaCo† (Cui et al., 2021) 68.0 56.4 37.2 58.2
TADE† (Zhang et al., 2021b) 66.5 57.0 43.5 58.8
TSC (Li et al., 2022d) 63.5 49.7 30.4 52.4
GCL (Li et al., 2022c) 63.0 52.7 37.1 54.5
TLC (Diego, 2022) 68.9 55.7 40.8 55.1
BCL† (Zhu et al., 2022) 67.6 54.6 36.6 57.2
NCL (Li et al., 2022a) 67.3 55.4 39.0 57.7
SAFA (Hong et al., 2022) 63.8 49.9 33.4 53.1
DOC (Wang et al., 2022a) 65.1 52.8 34.2 55.0
DLSA (Xu et al., 2022) 67.8 54.5 38.8 57.5
LiVT (Xu et al., 2023) 73.6 56.4 41.0 60.9
LiVT + Ours 74.3 57.8 43.9 61.8

ing classification performance, particularly for the worse-
performing ones. Furthermore, after training with generated
images, there is a noticeable decrease in the performance
variance among the classes, with the standard deviation of
the accuracy dropping from 21.3% to 14.8%. This reduction
underscores the effectiveness of our method in mitigating
the performance disparities across classes by generating
more training data for the worse-performing ones.

Another noteworthy finding is that classes with fewer real
training examples do not necessarily have worse perfor-
mance. For instance, although there are fewer real training
samples in the horse category compared to the dog category,
the accuracy for the horse category before using generated
data surpasses that of the dog category. This underscores
the paper’s premise that data generation budget should be
allocated based on the performance of each class rather than
their frequency.

Results on Imbalanced ImageNet. Table 4 shows results
on the imbalanced ImageNet-LT dataset. Following (Liu
et al., 2019b), besides reporting top-1 accuracy on the en-
tire test set, we also report accuracy on three categories
of classes: Many (classes with more than 100 images),
Medium (classes with 20 to 100 images), and Few (classes
with less than 20 images). After applying our method to
LiVT (Xu et al., 2023), the classification accuracy is im-
proved notably. In particular, the improvement is more

prominent on classes marked as Few. This further demon-
strates that the data synthesized by our method is effective
for improving the performance of imbalanced classification.

4.2. Experiments on Balanced Dataset

To demonstrate the broad applicability of our method to
various scenarios, we used a setting which automatically
searches for neural architectures (Zoph & Le, 2017; Liu
et al., 2019a) to perform image classification. Neural ar-
chitecture search (NAS) requires more training data than
training fixed-architecture neural networks since NAS in-
volves optimizing both the architecture and the weights of a
neural network. This requires more data to sufficiently ex-
plore and evaluate the search space of possible architectures.
Following the standard practice of the NAS literature which
treats the architecture as hyperparameters, our method sets
the meta parameters A to be the shared learnable architec-
ture of the two classifiers and the CGAN’s discriminator.

Dataset. We used the original ImageNet (Deng et al.,
2009) dataset, which is class balanced. It contains 1.3M
training images and 50K test images, belonging to 1000
classes.

Experimental Settings. Similar to (Xu et al., 2020), from
the original 1.3M training images, we randomly sample 10%
as training data and another 2.5% as validation data, to per-
form architecture search. Following (Liu et al., 2019a), each
experiment consists of two phrases - architecture search and
architecture evaluation. In the search phrase, an optimal cell
is searched. In the evaluation phase, the cell is used to com-
pose a larger network, which is trained from scratch on the
combination of training and validation data. For the search
algorithm and space, we followed PC-DARTS (Xu et al.,
2020), which is computationally efficient. We compared our
method with the Separate and MTL baselines mentioned in
Section 4.1. In addition, we compared with a baseline (Such
et al., 2020) denoted as Equal where an equal number of
synthetic images are generated for each class. We conducted
all experiments on Nvidia 1080Ti GPUs. Each experiment
ran for 10 times with different random initializations. We
report the mean and standard deviation of results.

Results. In Table 5, we show the top-1 and top-5 errors
on the test set of ImageNet. From this table, we make the
following observations. First, when applied to PCDARTS,
our method achieves significant improvement over this base-
line. This shows that the data generated by our method
is highly useful for improving image classification. Sec-
ond, our method performs better than Equal, which fur-
ther demonstrates the effectiveness of our proposed needs-
awarere data generation mechanism. In Equal, the same
number of images are generated for different classes. For
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Table 5. Top-1 and top-5 classification errors (%) on the test set of
ImageNet. Results marked with * are taken from DARTS− (Chu
et al., 2020), DrNAS (Chen et al., 2020), and β-DARTS (Ye et al.,
2022).

Method Top-1 Top-5

*Inception-v1 (Szegedy et al., 2015) 30.2 10.1
*MobileNet (Howard et al., 2017) 29.4 10.5
*ShuffleNet 2× (v2) (Ma et al., 2018) 25.1 7.6
*NASNet-A (Zoph et al., 2018) 26.0 8.4
*AmoebaNet-C (Real et al., 2019) 24.3 7.6
*SNAS-CIFAR10 (Xie et al., 2019) 27.3 9.2
*DFNAS (Liu et al., 2022) 26.4 -
*DSNAS-ImageNet (Hu et al., 2020) 25.7 8.1
*PCDARTS-CIFAR10 (Xu et al., 2020) 25.1 7.8
*ProxylessNAS-ImageNet (Cai et al., 2019) 24.9 7.5
*FairDARTS-ImageNet (Chu et al., 2019) 24.4 7.4
*DOTS (Gu et al., 2021) 24.3 7.4
*ZARTS (Wang et al., 2022b) 24.3 -
*DrNAS-ImageNet (Chen et al., 2020) 24.2 7.3
*PR-DARTS (Zhou et al., 2020) 24.1 7.3
*DARTS−-ImageNet (Chu et al., 2020) 23.8 7.0
∗β-DARTS (Ye et al., 2022) 23.9 7.0
*RF-PCDARTS (Zhang et al., 2023) 23.9 7.1
*Pcdarts (Xu et al., 2020) 24.2 7.3
Equal-pcdarts 23.9 7.2
Separate-pcdarts 24.1 7.3
MTL-pcdarts 24.4 7.4
Ours-pcdarts 23.2 6.6

Table 6. Test accuracy (%) achieved by performing different stages
sequentially and end-to-end, on imbalanced CIFAR datasets, with
an imbalance factor of 200.

Method CIFAR10-LT CIFA100-LT
Sequential 69.24 37.79
End-to-end (ours) 73.41 40.95

certain classes which already have good performance, it
is a waste of effort to generate more images for them. In
contrast, our method focuses on generating more images
for worse-performing classes, which can help to improve
the performance of worse-performing classes. Third, our
method outperforms Separate and MTL. The analysis of
reasons is similar to that for Table 2. Fourth, our method
outperforms all other baselines.

4.3. Ablation Studies

Ablation on End-to-End Learning. To investigate the
effectiveness of performing all stages in our framework in
an end-to-end manner, we compare with an ablation setting
called Sequential, where different stages are performed se-
quentially. We first train a classifier and CGAN. Then we
measure the validation performance of the classifier on indi-

Table 7. Test accuracy (%) in the ablation study of different
CGANs, on imbalanced CIFAR datasets, with an imbalance factor
of 200.

Method Imb. CIFAR-10 Imb. CIFAR-100
VCGAN 72.33 39.88
ACGAN 72.06 40.07
BigGAN 73.41 40.95

Table 8. Human evaluation of generated images.

Method Natural Correct
Ours 4.2±0.3 4.3±0.3
Separate 3.6±0.4 3.7±0.3
Equal 3.7±0.3 3.9±0.4

vidual classes. For classes with worse performance, more
data is generated for them using the CGAN. On generated
data, we train another classifier. The study was performed
on imbalanced CIFAR datasets, both with an imbalance
factor of 200. Table 6 shows the results. Our end-to-end
method achieves higher test accuracy than Sequential. The
reason is: in our method, W1 and W2 mutually influence
each other during training. In the Sequential ablation setting,
W2 cannot influence W1.

Ablation on CGANs. We experimented with different
CGANs, including the vanilla conditional GAN (Mirza &
Osindero, 2014) (VCGAN), ACGAN (Odena et al., 2017),
BigGAN (Brock et al., 2018), and investigated how they
affect classification performance on test data. We conducted
the experiments on the imbalanced CIFAR datasets, with
an imbalance factor of 200. Table 7 shows the results. As
can be seen, BigGAN performs better than VCGAN and
ACGAN. This is because BigGAN has better capability in
generating high-fidelity data.

4.4. Evaluation of Generated Images

The evaluation was conducted on images generated by Big-
GAN in our method trained on the balanced ImageNet.

Human Evaluation. Given 500 randomly sampled im-
ages, we asked 5 undergraduate students to annotate whether
these images are 1) visually natural (i.e., look like real im-
ages); 2) semantically correct (i.e., content is consistent
with class label). The ratings are 1-5. Higher is better.
Table 8 shows the results. As can be seen, our method
outperforms baselines. In our method, the quality of gener-
ated data is evaluated directly by applying them for training
classification models in the same framework. Classification
performance can inform BigGAN whether the generated
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Table 9. Automatic evaluation of generated images.

Method Inception↑ FID↓
Separate 92.4 9.1
Equal 96.2 8.8
Ours 108.5 7.9
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Towtruck

Basketball
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bridge
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Figure 2. Exemplar images generated by BigGAN in our method
trained on the balanced ImageNet.

data is useful. In Separate, such a feedback loop is missing.
In Equal, BigGAN generates the same number of images for
different classes. For a class where the classifier is already
performing well, continuing to generate data for this class
is a waste of effort.

Automatic Evaluation. In addition to human evaluation,
we also performed an automatic evaluation of generated
images, using metrics including inception score (Salimans
et al., 2016) and Frechet inception distance (FID) (Heusel
et al., 2017). Table 9 shows that our method outperforms
baselines. The reason is: the data generated by our method
is explicitly encouraged to be useful for training the clas-
sifier. If a generated image has poor quality, the classifier
trained by it will perform worse. Our framework minimizes
classification losses to ensure generated images are of high
quality.

Qualitative Evaluation. Figure 2 shows some randomly
sampled generated images. As can be seen, the generated
images are natural and semantically meaningful.

Table 10. Computation costs (GPU days on Nvidia 1080Ti GPUs).

Method Top-1 Error Top-5 Error Runtime

Pcdarts (Xu et al., 2020) 24.2 7.3 3.8
Original (ours) 23.2 6.6 5.1
Reduce (ours) 23.4 6.7 3.9

4.5. Computation Costs

Let Reduce denote our method after applying cost reduc-
tion methods outlined in Section 3.2. Let Original denote
our original method without using cost reduction methods.
Table 10 compares the computation costs (in GPU days) of
Reduce and Original in the experiments on balanced Ima-
geNet. From this table, we make two observations. First,
the computation cost of our Reduce method is similar to
that of vanilla PCDARTS, while the classification errors of
Reduce are much smaller than those of PCDARTS. Second,
compared with Original, the computation cost of Reduce is
much smaller without substantially increasing classification
errors. This demonstrates that the cost reduction methods
can greatly decrease computation costs without significantly
compromising classification performance. We applied these
cost reduction methods to PCDARTS as well, including re-
ducing architecture’s update frequency from every iteration
to every 8 iterations and decreasing the number of epochs
by half, which resulted in significantly poorer performance.
Therefore, we maintained PCDARTS’ default hyperparame-
ter settings. The rest of cost reduction methods, including
parameter tying and decreasing CGAN pretraining time, are
not applicable to PCDARTS.

5. Conclusions and Future Works
We propose a multi-level optimization based framework
to conduct needs-aware image generation. Our framework
trains an initial classification model and measures its class-
specific performance on a validation set. A conditional GAN
is trained to generate training data for less well-performing
classes. Generated data is used to improve classification
performance. All these steps are performed end-to-end. Ex-
periments on both imbalanced and balanced datasets demon-
strate our method’s effectiveness.

In future work, we plan to extend the framework to machine
learning applications beyond classification, such as semantic
segmentation, object detection, named entity recognition.

Impact Statement
One potential negative societal impact of our work is: if the
images generated by our method are not meaningful, models
trained using these images may make incorrect predictions,
which are not acceptable in application areas such as health-
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care and finance. One major limitation of this work is that
it cannot be applied to reinforcement learning and evolu-
tionary algorithm based neural architecture search methods
since they are not differentiable.
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A. Full Description of Optimization Algorithm
We use a well-established algorithm developed in (Liu et al., 2019a) to solve the proposed multi-level optimization problem.
Theoretic convergence of this algorithm has been broadly analyzed in (Ghadimi & Wang, 2018; Grazzi et al., 2020; Ji et al.,
2021; Liu et al., 2021; Yang et al., 2021). At each level of optimization problem, the optimal solution (on the left-hand
side of the equal sign, marked with ∗), its exact value is computationally expensive to compute. To address this problem,
following (Liu et al., 2019a), we approximate the optimal solution using a one-step gradient descent update and plug the
approximation into the next level of optimization problem. In the sequel, ∂·

∂· denotes partial derivative. d·
d· denotes an

ordinary derivative.

Following (Liu et al., 2019a), we approximate W ∗
1 (A) using one-step gradient descent update of W1 w.r.t

Lcls(W1, A,D
(tr)
cls ):

W ∗
1 (A) ≈W ′

1 = W1 − ηw1
∇W1

Lcls(W1, A,D
(tr)
cls ). (8)

We approximate G∗(A) using one-step gradient ascent update of G w.r.t Lgan(G,H,A,Dcgan):

G∗(A) ≈ G′ = G+ ηg∇GLgan(G,H,A,Dcgan). (9)

For H , it can be updated using gradient descent:

H = H − ηh∇HLgan(G,H,A,Dcgan). (10)

Plugging W ∗
1 (A) ≈ W ′

1 and G∗(A) ≈ G′ into Lcls(W2, A,D
(tr)
cls ) + λLapprox(W2, A,W ∗

1 (A), G∗(A)), we get an
approximated objective. Then we approximate W ∗

2 (A,W ∗
1 (A), G∗(A)) using one-step gradient descent update of W2 w.r.t

the approximated objective:

W ∗
2 (A,W

∗
1 (A), G∗(A)) ≈W ′

2 = W2 − ηw2∇W2(Lcls(W2, A,D
(tr)
cls ) + λLapprox(W2, A,W ′

1, G
′)). (11)

Finally, we plug W ∗
2 (A,W ∗

1 (A), G∗(A)) ≈ W ′
2 and W ∗

1 (A) ≈ W ′
1 into Lcls(W

′
2, A,D

(val)
cls ) + Lcls(W

′
1, A,D

(val)
cls ) and

get an approximated objective. We update A using gradient descent w.r.t the approximated objective:

A← A− ηa∇A(Lcls(W
′
2, A,D

(val)
cls ) + Lcls(W

′
1, A,D

(val)
cls )). (12)

∇ALcls(W
′
2, A,D

(val)
cls ) can be computed as:

∇ALcls(W
′
2, A,D

(val)
cls ) = (

dW ′
1

dA
∂W ′

2

∂W ′
1
+ dG′

dA
∂W ′

2

∂G′ )
∂Lcls(W

′
2,A,D

(val)
cls )

∂W ′
2

+
∂Lcls(W

′
2,A,D

(val)
cls )

∂A , (13)

where ∂·
∂· denotes partial derivative and d

d denotes total derivative, and further

∂W ′
2

∂W ′
1
= −ηw2λ∇2

W ′
1,W2

Lapprox(W2, A,W ′
1, G

′) (14)

∂W ′
2

∂G′ = −ηw2λ∇2
G′,W2

Lapprox(W2, A,W ′
1, G

′) (15)

dW ′
1

dA = −ηw1∇2
A,W1

Lcls(W1, A,D
(tr)
cls ) (16)

dG′

dA = ηg∇2
A,GLgan(G,H,A,Dcgan) (17)

For ∇ALcls(W
′
1, A,D

(val)
cls ), it can be calculated as:

∇ALcls(W
′
1, A,D

(val)
cls ) =

dW ′
1

dA

∂Lcls(W
′
1, A,D

(val)
cls )

∂W ′
1

+
∂Lcls(W

′
1, A,D

(val)
cls )

∂A
(18)

where dW ′
1

dA is given in Eq.(16). In Eq.(18) and Eq.(13), matrix-vector multiplication is approximated using finite-difference
approximation similar to (Liu et al., 2019a).
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Table 11. Model calibration results.

Method ECE Accuracy

GCL (Li et al., 2022b) 8.47 54.5
LiVT (Xu et al., 2023) 9.33 60.9
Our method 6.15 61.8

The gradient descent update of A in equation 5 can run one or more steps. After A is updated, the one-step gradient-descent
approximations (in equation 1-4), which are functions of A, change with A and need to be re-updated. Then, the gradient of
A, which is a function of one-step gradient-descent approximations, needs to be re-calculated and is used to refresh A. In
sum, the update of A and the updates of one-step gradient-descent approximations mutually depend on each other. These
updates are performed iteratively until convergence. Algorithm 1 shows the algorithm.

Algorithm 1 Optimization algorithm
While not converged
1. Update the approximation W ′

1 of W ∗
1 using Eq.(8)

2. Update the approximation G′ of G∗ using Eq.(9)
3. Update H using Eq.(10)
4. Update the approximation W ′

2 of W ∗
2 using Eq.(11)

5. Update A using Eq.(12)

B. Additional Settings of Experiments on Balanced Dataset
During architecture search, each network was a stack of 8 cells and each cell had 7 nodes. Initial channel number was set to
16. Weight parameters were optimized using SGD, with a learning rate of 0.025, a weight decay of 3e-4, and a momentum of
0.9. Learning rate was reduced using a cosine scheduler. Architecture variables were optimized using Adam (Kingma & Ba,
2014a), with a learning rate of 3e-4 and a weight decay of 1e-3. The algorithm ran for 50 epochs. Batch size was set to 64.

During architecture evaluation, 14 copies of the optimally searched cell were stacked to form a large network. Initial channel
number was set to 40. Network weights were optimized using SGD, with an initial learning rate of 0.5, a weight decay of
3e-5, a batch size of 1024, and a momentum of 0.9. The algorithm ran for 250 epochs.

C. Analysis of Model Calibration
We evaluated our method’s Expected Calibration Error (ECE) (Zhong et al., 2021b) on the ImageNet-LT dataset, as presented
in Table 11. Our method demonstrates a lower ECE compared to baseline approaches, signifying enhanced calibration and
reduced over-confidence. This improvement is primarily due to our method’s capability to generate more training data for
underperforming classes, thereby equalizing accuracy across various classes. This aligns with the results reported in (Zhong
et al., 2021b) which show that balancing the amount of training data and achieving equitable accuracy across classes through
data augmentation can alleviate model miscalibration and reduce overconfidence.

D. Analysis of the connection between image quality per class and incremental accuracy
improvement

We evaluated the Inception Score of images generated for each class within the ImageNet-LT dataset and assessed the
incremental accuracy improvements for each class, before and after using generated data for model training. Higher
Inception Scores are indicative of superior image quality. Subsequently, we calculated the Pearson correlation coefficient
between the Inception Scores and the accuracy enhancements for all classes. A Pearson correlation of 0.52 was observed,
signifying a positive correlation. This indicates that higher quality of generated images contributes to greater enhancements
in accuracy.
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E. Apply Cost Reducing Strategies to NAS Baselines
We applied cost-reducing strategies to DARTS as well, including reducing architecture’s update frequency from every
iteration to every 8 iterations and decreasing the number of epochs from 50 to 25), but this resulted in significantly poorer
performance, as shown in Table 12. Therefore, we maintained DARTS’ default settings.

The rest of cost reduction strategies, including parameter tying and decreasing the pretraining time of the CGAN, are not
applicable to DARTS.

Table 12. Apply cost reduction to DARTS.

Method Error on Cifar-100 Error on Cifar-10 Search cost (GPU days)
Darts 20.58± 0.44 2.76± 0.09 4.0
Darts + Cost Reduction 26.31± 0.27 4.59± 0.17 1.5

F. Limitations and potential solutions
One major limitation of this work is that it is difficult to be applied to reinforcement learning (RL) and evolutionary algorithm
based neural architecture search (NAS) methods since they are not differentiable. To address this limitation and apply our
method to RL based NAS methods, we can calculate the policy gradient of the validation losses in the fourth stage w.r.t to A
and update A using policy gradient descent.

G. Additional Discussion
Does the success of our method highly depend on the quality of CGANs? Our framework is orthogonal to CGANs. Any
CGAN can be plugged into our framework to perform needs-aware data generation. The primary source of our framework’s
performance improvement is the needs-aware data generation mechanism, rather than the specific CGAN employed.

H. Instructions Given to Participants in Human Studies
Figure 3 shows the screenshot of instructions given to participants in human studies.

I. Full Lists of Hyperparameter Settings
Table 14 shows the hyperparameter settings used in the search phase on balaced ImageNet. Table 15 shows the hyperparam-
eter settings used in the evaluation phase. Notations used in these tables are given in Table 13.

Notation Meaning
W1 The first set of weight parameters of the classification model
W2 The second set of weight parameters of the classification model
G Generator of the GAN model
H Discriminator of the GAN model
A Architecture of the classification model
D(tr) Training data
D(val) Validation data

Table 13. Notations in our method

17



Improve Image Classification by Generating Data Guided by Class-Specific Accuracy

Figure 3. Screenshot of instructions given to participants in human studies.
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Name Value
Optimizer for W1, W2, G, H SGD

Initial learning rate for W1, W2, G, H 0.5
Learning rate scheduler for W1, W2, G, H Cosine decay
Minimum learning rate for W1, W2, G, H 0.0

Momentum for W1, W2, G, H 0.9
Weight decay for W1, W2, G, H 0.0003

Optimizer for A Adam
Learning rate for A 0.006
Weight decay for A 0.001

Initial channels for W1, W2 16
Layers for W1, W2 8

Gradient Clip for W1, W2, G, H 5
Batch size 768

Epochs 50
λ 1

Table 14. Hyperparameter settings in Ours-pcdarts on ImageNet during architecture search

Name Value
Optimizer SGD

Initial learning rate 0.5
Learning rate scheduler Cosine decay

Momentum 0.9
Weight decay 0.00003

Initial channels 48
Layers 14

Auxiliary weight 0.4
Label smooth 0.1

Drop path prob 0.0
Gradient Clip 5

Batch size 1024
Epochs 250

Table 15. Hyperparameter settings on ImageNet during architecture evaluation
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J. Visualization of Searched Architectures
We visualize the architectures searched by our methods in Figure 4.

Figure 4. Architectures searched by Ours-PCDARTS on ImageNet.

20


