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Abstract
Semi-supervised learning (SSL) has witnessed re-
markable progress, resulting in the emergence of
numerous method variations. However, practi-
tioners often encounter challenges when attempt-
ing to deploy these methods due to their subpar
performance. In this paper, we present a novel
SSL approach named FINESSL that significantly
addresses this limitation by adapting pre-trained
foundation models. We identify the aggregated
biases and cognitive deviation problems inherent
in foundation models, and propose a simple yet
effective solution by imposing balanced margin
softmax and decoupled label smoothing. Through
extensive experiments, we demonstrate that FI-
NESSL sets a new state of the art for SSL on
multiple benchmark datasets, reduces the train-
ing cost by over six times, and can seamlessly
integrate various fine-tuning and modern SSL al-
gorithms. The source code is available at https:
//github.com/Gank0078/FineSSL.

1. Introduction
Semi-supervised learning (SSL) has emerged as a promi-
nent learning paradigm of machine learning, which aims
to train models using a combination of a large amount of
unlabeled data and a limited number of labeled samples.
Recently, numerous SSL algorithms have been proposed to
address this challenge by automatically generating pseudo-
labels for unlabeled samples using the model and selecting
reliable ones for subsequent training (Lee et al., 2013; Bach-
man et al., 2014; Laine & Aila, 2016; Sajjadi et al., 2016;
Xie et al., 2020; Rizve et al., 2021; Wang et al., 2022c).
Specifically, these algorithms consider model predictions
with confidence higher than a specified threshold as reliable
pseudo-labels, which are then used to calculate the unsuper-
vised loss. Modern SSL methods like FixMatch (Sohn et al.,
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Figure 1. Left: Fine-tuning pre-trained ViT significantly outper-
forms training Wide ResNet starting from scratch. Right: VPT
improves full fine-tuning and linear probing by a large margin. Ex-
periments are conducted on CIFAR-100 using FixMatch. Through-
out the paper, we denote the setting with 4 labeled samples for
each class as “N4”, and other settings are defined accordingly.

2020) and FlexMatch (Zhang et al., 2021) determine the
use of pseudo-labels based on a fixed threshold of 0.95 or
dynamic thresholds, employing consistency regularization
to enforce consistent predictions between weak and strong
augmented views of an image.

While current SSL algorithms have shown promising per-
formance on various tasks, there is still a gap when it comes
to deploying them in real-world applications, especially in
scenarios with extremely limited labeled data. To address
this issue, we propose to develop a more effective SSL ap-
proach based on foundation models, e.g., CLIP (Radford
et al., 2021), instead of training models from scratch. These
foundation models are pre-trained on large-scale pretext
datasets and possess the ability to learn generalizable repre-
sentations that can be transferred to different tasks. In fact,
the adaptation of foundation models has already demon-
strated effectiveness in various downstream tasks, including
few-shot learning (Liu et al., 2022), long-tail learning (Shi
et al., 2023), and natural language understanding (Yang
et al., 2022b). However, the potential of foundation models
in improving SSL remains unexplored. To motivate our
approach, we first find that visual prompt tuning (VPT) (Jia
et al., 2022), a representative parameter-efficient fine-tuning
(PEFT) method, is better suited for SSL tasks compared to
commonly used full fine-tuning (FFT) and linear probing
(LP). Note that PEFT keeps the pre-trained model frozen
and only learns a small set of task-specific parameters for
adaptation, while FFT updates the entire neural network
and LP modifies only the linear classifier. As depicted in
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Figure 2. Left: The distribution of pseudo-labels for unlabeled data.
Classes are sorted by the frequencies of pseudo-labels for each
class. Right: The average confidence across settings with different
numbers of labeled samples per class based on FixMatch. “DLS”
denotes the decoupled label smoothing proposed in Section 4.2.
Experiments are conducted on CIFAR-100.

Figure 1, fine-tuning pre-trained vision Transformer yields
significantly better results than training Wide ResNet from
scratch (Zagoruyko & Komodakis, 2016), and VPT outper-
forms other fine-tuning methods across all SSL settings.

Considering that PEFT helps improve the performance of
pre-trained models in downstream tasks, we are intrigued
by its potential as a versatile approach for combining main-
stream SSL methods and leveraging the full potential of
unlabeled data. However, upon investigating this question,
we uncover that fine-tuning foundation models is a double-
edged sword. While it improves performance over random
initialization, it can also have adverse effects on the selec-
tion of reliable pseudo-labels during training. We identify
two perspectives from which this issue arises.

One of the perspectives we identified is that foundation
models can exhibit biases among different groups of classes
due to the inherent imbalances in their pre-training datasets
(Zhu et al., 2023). Consequently, they tend to generate more
pseudo-labels for classes that occur more frequently, par-
ticularly when employing strategies like VPT, enabling the
reservation of more pre-trained representations (Yang et al.,
2022b). This confirmation bias (Arazo et al., 2020; Wang
et al., 2021) becomes more pronounced as the training pro-
gresses, leading to the selection of incorrect pseudo-labels
with high model predictive confidence. We refer the amplifi-
cation of the foundation model’s inherent imbalances during
the training of SSL methods due to conformation bias as ag-
gregated biases. We illustrate its impact on the distribution
of pseudo-labels generated by FixMatch and FlexMatch in
the left panel of Figure 2. The figure clearly shows that
FixMatch exhibits a significantly imbalanced distribution
of pseudo-labels, while FlexMatch partially mitigates this
issue by dynamically adjusting confidence thresholds based
on the learning difficulties of different classes. However,
there is still significant room for improvement in addressing
the challenge of aggregated biases.

The second perspective we identified is that the predictive

confidence of foundation models is not reliable. More con-
cretely, this can be manifested in holistic and individual as-
pects. From the holistic aspect, we observe that confidence
scores cannot accurately reflect the true learning difficulties
of different SSL tasks. The right panel of Figure 2 provides
an intuitive demonstration of this finding. In this experiment,
we compare the average predictive confidence of FixMatch
using Wide ResNet and VPT across three different settings
representing varying levels of learning difficulties. Overall,
the Wide ResNet model tends to become more confident
in its predictions as the number of labeled samples in the
training data increases. However, VPT tends to be overcon-
fident (Thulasidasan et al., 2019; Chan et al., 2020) even
when each class only has four labeled samples, i.e., the
“N4” setting. Moreover, the model’s confidence level in the
“N25” setting surpasses that of the “N100” setting, leading
to inaccurate estimates of learning difficulties. In addition,
from the individual aspect, we find that the confidence score
fails to effectively distinguish between correctly labeled
pseudo-labels, incorrectly labeled pseudo-labels, and out-of-
distribution (OOD) samples. As depicted in Figure 4b, the
distribution of the confidence score across various samples
exhibits substantial overlap, which impedes the ability to
reliably select high-quality pseudo-labels. We term the phe-
nomenon as cognitive deviation which makes it challenging
to choose confidence thresholds for pseudo-label selection.

In this paper, we propose a novel approach called FINESSL
to address the issues of aggregated biases and cognitive
deviation caused by pre-trained foundation models simulta-
neously. To mitigate the problem of aggregated biases, FI-
NESSL incorporates a balanced margin softmax to compen-
sate for the learning of hard classes and encourage the model
to generate more balanced pseudo-labels. The class margins
are updated adaptively during the training process. Unlike
previous SSL methods (Xu et al., 2021; Wang et al., 2022c;
Chen et al., 2023), which manipulate confidence thresholds
to achieve class-balanced pseudo-labels, FINESSL takes
a different approach to rectify model preferences directly.
To address the issue of cognitive deviation, FINESSL in-
troduces the decoupled label smoothing to regularize the
learning pace of an auxiliary classifier, which helps to align
the model’s confidence with the learning difficulties of tasks.
Additionally, FINESSL employs a reweighting strategy to
utilize all unlabeled data better. In doing so, it prevents
the selection of inaccurate pseudo-labels by thresholding
unreliable model confidence. As shown in Figure 2, FI-
NESSL significantly improves the baselines in terms of both
pseudo-label distribution and average model confidence. In
summary, our key contributions are:

• We identify the aggregated biases and cognitive devia-
tion problems caused by fine-tuning foundation models.
We find that PEFT significantly outperforms FFT and
LP in SSL tasks.
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• We propose the balanced margin softmax to erase ag-
gregated biases, decoupled label smoothing to reduce
cognitive deviation, and a reweighting strategy to take
full advantage of unlabeled data.

• We propose a general fine-tuning framework for SSL,
which can smoothly incorporate various PEFT and
leading SSL methods for improving performance.

• Extensive experimental analyses show that FINESSL
achieves state-of-the-art performance on multiple SSL
benchmarks. Moreover, FINESSL obtains significant
reductions in the training cost.

2. Related Works
Semi-Supervised Learning. Modern SSL methods typi-
cally combine multiple techniques for leveraging unlabeled
data, including entropy minimization (Grandvalet & Bengio,
2004), consistency regularization (Sohn et al., 2020), distri-
bution alignment (Kim et al., 2020; Wei & Gan, 2023), and
contrastive learning (Lee et al., 2022; Yang et al., 2022a).
Most of them involve selecting reliable pseudo-labels dur-
ing the training process. Initially, FixMatch selects pseudo-
labels with confidence higher than a fixed threshold of 0.95.
Recently, some works mention that a fixed threshold can
be too strict for classes that are hard to learn, and pro-
pose to dynamically adjust the threshold as the training
progresses. For example, FlexMatch (Zhang et al., 2021)
assigns distinct thresholds to each class based on their levels
of learning difficulty as well as the overall learning pace.
FreeMatch (Wang et al., 2022c) integrates global and lo-
cal threshold adjustments while incorporating class-fairness
regularization, which encourages the model to make more
diverse predictions. SoftMatch (Chen et al., 2023) achieves
a quantity-quality trade-off through unified sample reweight-
ing by employing a soft confidence threshold mechanism.
In contrast, this paper encourages the model to explicitly
produce class-balanced pseudo-labels rather than adjusting
confidence thresholds.

SSL based on Foundation Models. A few prior efforts
have been made to leverage pre-trained models to improve
the performance of SSL tasks. As a representative, Sim-
CLRv2 (Chen et al., 2020b) employs a pre-trained ResNet
model (He et al., 2016) using self-supervised learning, and
fine-tunes it using the labeled data. Zhou et al. (2018) delve
comprehensively into the performance dynamics of SSL
methods originating from pre-trained models, exploring
their effectiveness across varying conditions. USB (Wang
et al., 2022b) introduces pre-trained Transformers (Vaswani
et al., 2017) into SSL, which reduces 80% training steps
without hurting the performance. However, USB merely
explores the FFT to adapt the pre-trained model, which is
inferior to PEFT in SSL tasks. Recently, DebiasPL (Wang
et al., 2022a) integrates large-scale multi-modal pre-trained

model CLIP (Radford et al., 2021) into FixMatch by pseudo-
labeling the discarded unlabeled instances with CLIP and
effectively adjusts the distribution of pseudo-labels by logit
adjustment (Menon et al., 2020) according to the distribu-
tion of pseudo-labels. However, how to effectively fine-tune
the foundation models in SSL tasks remains underexplored.

3. Preliminaries
3.1. Background of Semi-Supervised Learning

First of all, we describe the problem setup and define no-
tations frequently used throughout the paper. The goal of
SSL is to learn a C-class classifier using a large number of
unlabeled samples coupled with a few labeled ones. Let
Dl = {(xi, yi)}Ni=1 denote the labeled dataset of size N
and Du = {uj}Mj=1 denote the unlabeled dataset of size
M . Here, xi,uj ∈ Rd are the d-dimensional feature vec-
tors. For each labeled sample xi, we have access to its
ground-truth class label yi ∈ {0, 1}C . Typically, we have
N ≪ M in SSL tasks. Then, our goal is to learn a model
f(x) parameterized by θ utilizing Dl and Du.

Modern SSL approaches usually have two components in
their learning objectives, i.e., the supervised and unsuper-
vised losses (Sohn et al., 2020). Specifically, the standard
cross-entropy H is utilized to optimize the supervised loss
ℓs using labeled dataset:

ℓs =
1

B

B∑
i=1

H(yi, p(y | xi)) (1)

where p(y | xi) = Softmax(f(xi; θ)) denotes the poste-
rior probability of xi being classified into class y, and B
represents the batch size for labeled data.

Regarding the unsupervised loss, the majority of existing
methods rely on pseudo-labeling (Lee et al., 2013; Berthelot
et al., 2019; Sohn et al., 2020; Zhang et al., 2021; Wang
et al., 2022c; Chen et al., 2023). To ensure the quality of
generated pseudo-labels, these methods commonly employ
a thresholding mechanism to choose pseudo-labels with
higher confidence and impose consistency regularization on
them. The widely used consistency regularizer proposed in
FixMatch (Sohn et al., 2020) is defined as follows:

ℓu =
1

µB

µB∑
j=1

I
(
max

(
qj

)
≥ τ

)
H(q̂j , p(y | Ω(uj))) (2)

where µ is a hyperparameter used to control the relative
batch size ratio between labeled and unlabeled data, qj =
p(y | ω(uj)), and q̂j = argmaxk(qjk) is the pseudo-label
of uj . τ is a threshold to select reliable pseudo-labels for
calculating the loss and I(·) is the indicator function. Since
applying the consistency regularizer needs two different
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views of images, we use ω(·) and Ω(·) to represent the weak
and strong augmented versions of uj , respectively.

3.2. Fine-tuning Foundation Models

The prevailing trend in modern deep learning is the fine-
tuning of large-scale pre-trained vision Transformers (Doso-
vitskiy et al., 2020; Radford et al., 2021; Jia et al., 2021) by
leveraging rich semantic information to augment the perfor-
mance of downstream tasks. Common fine-tuning strategies
are FFT and LP, wherein the former involves adjusting the
parameters of the entire pre-trained model, while the latter
entails solely fine-tuning the final linear classifier of the
neural networks. As depicted in Figure 1, FFT achieves
inferior performance because the limited supervisory infor-
mation available in SSL is not enough to guide the training
of a big model. In comparison, LP performs reasonably
well by freezing the pre-trained parameters except the lin-
ear classifier. However, since there exists a gap between
pre-training datasets and our downstream SSL dataset, the
learned representations can be suboptimal, which hinders
the improvement of performance. Therefore, we propose to
employ PEFT to effectively adapt the representations and
the classifier. Although many PEFT methods can be utilized,
we use VPT (Jia et al., 2022) as the default choice without
loss of generality. The rationale of VPT is simple. The
Transformers divide an input image into multiple patches
of the same size and we denote [cl;El] as the input for l-th
layer of ViT for simplicity. Here, cl is the extra learnable
token for classification and El denotes the collection of im-
age patch embeddings. VPT prepends learnable prompts P l

at each layer to extend [cl;El] to [cl;P l;El]. VPT has two
variations: 1) VPT-shallow, where prompts are appended
solely at the first layer; 2) VPT-deep, characterized by the
extension of prompts to all layers. In this paper, we focus on
VPT-deep for its stronger generalization capability. More
analyses on different PEFT methods can be found in Sec-
tion 5.3. To simplify the mathematical notation, we denote
the parameters of the pre-trained foundation model as Θ
and the parameters of the PEFT modules, including the final
linear classifier, as θ.

4. The Proposed FINESSL Framework
In this section, we present the FINESSL framework in detail
by introducing two of its core components, i.e., balanced
margin softmax and decoupled label smoothing.

4.1. Balanced Margin Softmax

Our empirical studies in Figure 2 highlight that employing
dynamic thresholds for classes based on learning difficulties
may not sufficiently mitigate aggregated biases. Instead of
focusing on pseudo-label selection, we propose to explicitly
intervene in the model training process. Drawing inspiration

from previous works in class-imbalanced learning (Cao
et al., 2019; Menon et al., 2020; Ye et al., 2023), we devise a
balanced margin softmax loss with enforced dynamic class
margins into the standard cross-entropy. For each training
sample (x, y), we define:

Hm(y,z) = − log
ezy

ezy +
∑

k ̸=y e
zk+αt∆t

y
(3)

where k ∈ {1, . . . , C}, z = f(x; {Θ, θ}) denotes the out-
put logits, and ∆t

k is the margin for class k at t-th training
iteration. αt is a scaling hyperparameter of class margins
which is adaptively updated during training. Instead of us-
ing a constant margin for all classes, the incorporation of
class-specific margins helps improve inter-class discrimi-
nation and makes it more flexible to control the learning
pace of classes. In Equation (3), we impose a large positive
margin ∆t

y when the model exhibits weak preference for
predicting class y. This encourages the model to be more
confident in its predictions in the next training iteration,
gradually erasing the inherent bias of the foundation model
and aggregated biases.

Next, we present a simple approach to automatically as-
sign class margins based on model dynamics. We start
by introducing the concept of learning pace for each class,
which describes the model’s capability of producing accu-
rate pseudo-labels.

Definition 4.1. Class Learning Pace. The learning pace of
the k-th class σt(k) at timestamp t is defined as the number
of unlabeled samples predicted as class k with confidence
surpassing a constant ζ, i.e.,

σt(k) =
∑M

j=1 I
(
max

(
qj

)
≥ ζ

)
· I

(
argmax

(
qj

)
= k

)
. (4)

The learning pace effectively reflects the model’s abilities
in each class, with classes having fewer predicted pseudo-
labels above the threshold indicating slower learning paces,
and vice versa. A similar concept of learning pace is ex-
plored in FlexMatch (Zhang et al., 2021), where confidence
thresholds for classes are assigned based on a similar prin-
ciple. In our implementation, we fix the threshold ζ = 0.7
for simplicity, and the learning paces can be calculated by
counting the number of confident pseudo-labels for each
class. To normalize the learning paces across all classes,
we define βt(y) =

σt(y)
maxk σt(k)

and let ∆t
y = 1 − βt(y). In

doing so, the model pays more attention to classes of slow
learning paces.

Additionally, we use the parameter αt in Equation (3) to con-
trol the magnitude of the margin ∆t

y . Ideally, αt is supposed
to be 0 if the learning pace of all classes is approximately
equal and the balanced margin softmax reduces to the stan-
dard cross-entropy. Conversely, a large αt is desired to
enhance the effect of the balanced margin softmax. Given a
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base scaling parameter α, we propose to dynamically adjust
its value at the t-th iteration based on learning paces via:

αt = (max
k

(βt(k))−min
k

(βt(k)))α. (5)

Once obtaining αt and ∆t
y, we can improve the balanced-

ness of pseudo-labels and reduce aggregated biases by mini-
mizing Equation (3). While the learning paces are estimated
based on unlabeled data, they effectively capture the learn-
ing dynamics of the model. By imposing balanced margins
over the labeled data, we can further improve the model’s
generalization capabilities. To achieve this, we replace the
standard cross-entropy with the balanced margin softmax
for both the supervised loss and consistency regularization.

4.2. Decoupled Label Smoothing

While the balanced margin softmax alleviates the imbalance
issue caused by pre-trained foundation models, the presence
of cognitive deviation in the training process can still lead to
suboptimal performance in selecting reliable pseudo-labels
based on confidence thresholds. To address this, we pro-
pose a simple yet effective approach called decoupled label
smoothing to overcome the mismatched model confidence
and task difficulties. Label smoothing is a well-known tech-
nique that has been successfully applied across a range of
tasks to regularize model training and mitigate overconfi-
dence issues (Müller et al., 2019; Zhong et al., 2021). In
a nutshell, label smoothing regularizes the model training
by softening the ground-truth labels. However, directly
applying label smoothing to the learning objective can neg-
atively impact representation learning, as demonstrated in
our ablation studies. To overcome this limitation, we in-
troduce an auxiliary classifier faux(x), which is a single
fully connected layer appended to the feature extractor. To
distinguish faux(x) from f(x), we denote its output logits
using faux((x); {Θ, θ′}), where θ′ contains parameters for
PEFT modules and the auxiliary classifier. This auxiliary
classifier is learned by minimizing the supervised loss ℓs
and the soft version of consistency regularization:

ℓlsu =
1

µB

µB∑
j=1

Hm(q̃j , faux(Ω(uj); {Θ, θ′})) (6)

where q̃j denotes the continuous pseudo-label vector for
uj , q̃jk equals (1 − λ) + λ/C if k = q̂j , otherwise λ/C.
λ ∈ (0, 1) is the label smoothing parameter.

It is crucial to note that the auxiliary classifier is intention-
ally decoupled from the main branch of neural networks.
This ensures that the gradients of the auxiliary classifier’s
loss function do not propagate to the earlier layers during
backpropagation. As a result, this prevents label smoothing
from damaging the representation learning and allows it to
focus solely on generating discriminative weights between
correct and incorrect pseudo-labels.

Algorithm 1 The Proposed FINESSL

1: Input: labeled dataset Dl and unlabeled dataset
Du, pre-trained foundation model, hyperparameters
{ζ, α, λ}, number of iterations T

2: for t = 1 to T do
3: Update learning pace σt(y) by Equation (4)
4: if maxy(σt(y)) > 0 then
5: βt(y) =

σt(y)
maxk σt(k)

▷ Normalization
6: ∆t

y = 1− βt(y) ▷ Obtain class-specific margin
7: else
8: ∆t

y = 1
9: end if

10: Compute scaling parameter αt by Equation (5)
11: Compute unlabeled sample weights ψ(u)
12: Compute ℓms and ℓ̃mu for the main branch
13: Compute ℓs and ℓlsu for the auxiliary classifier
14: Compute the total loss L by Equation (8)
15: Update θ based on ∇L using SGD
16: end for

Next, we aim to resolve another substantial disadvantage of
pseudo-label selection, which merely utilizes unlabeled data
of high confidence, and low-confidence data are discarded.
Obtaining discriminative predictive probabilities from the
auxiliary classifier, we take full advantage of unlabeled data
to optimize the model by incorporating sample reweighting
into consistency regularization. Specifically, we define the
weighted consistency regularizer as follows:

ℓ̃mu =
1

µB

µB∑
j=1

ψ(uj)Hm(q̂j , f(Ω(uj); {Θ, θ})) (7)

where ψ(uj) = γ · max(paux(y | ω(uj)) represents the
importance weight for the j-th unlabeled sample, and γ is a
tunable hyperparameter. The output probabilities paux(y |
ω(uj)) = Softmax(faux(ω(uj); {Θ, θ′})). Notice that
the auxiliary classifier is solely employed for generating
sample weights, which facilitates the learning of the main
branch. In return, better representations learned by the main
branch improve the training of the auxiliary classifier. We
analyze model confidence used for sample reweighting in
Appendix C.3.

To sum up, the overall loss for the proposed method com-
prises two parts, i.e., losses for the main branch and auxiliary
classifier, which are formulated as follows:

L = ℓms + ℓ̃mu︸ ︷︷ ︸
main branch

+ ℓs + ℓlsu︸ ︷︷ ︸
auxiliary classifier

. (8)

Here, we denote ℓms as the balanced margin softmax loss
over labeled data. We present the pseudo-code of the pro-
posed FINESSL algorithm in Algorithm 1.
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Table 1. Performance comparisons on CIFAR-10, CIFAR-100, and FOOD-101 datasets: mean ± std of accuracy over 3 trials are reported.
The best performance is highlighted in bold and the second-best performance is underlined.

CIFAR-10 CIFAR-100 FOOD-101

SETTINGS N1 N2 N4 N4 N25 N100 N2 N4 N10

SUPERVISED 68.41 ±6.60 78.54 ±4.94 86.94 ±4.17 64.18 ±0.33 80.23 ±0.14 84.45 ±0.29 61.42 ±0.21 73.74 ±0.22 82.10 ±0.13

PL
FIXMATCH
FLEXMATCH
FREEMATCH
SOFTMATCH
DEBIASPL

48.45 ±2.99
60.27 ±1.89
61.71 ±15.07
60.41 ±1.78
59.74 ±11.44
78.30 ±16.85

74.33 ±10.97
87.31 ±0.10
92.71 ±7.31
87.04 ±0.06
90.72 ±5.28
96.83 ±0.14

92.80 ±0.38
97.43 ±0.14
97.41 ±0.10
97.26 ±0.14
97.35 ±0.06
97.39 ±0.06

66.17 ±0.30
77.10 ±1.04
79.19 ±0.23
76.19 ±0.82
75.94 ±0.46
79.57 ±0.32

81.45 ±0.30
84.05 ±0.16
83.77 ±0.13
83.60 ±0.16
83.85 ±0.06
84.01 ±0.07

84.65 ±0.20
86.17 ±0.03
86.23 ±0.25
86.34 ±0.30
86.31 ±0.07
86.16 ±0.13

58.22 ±1.18
74.92 ±1.09
80.96 ±1.68
74.31 ±4.56
75.82 ±5.24
86.51 ±0.74

77.57 ±0.93
84.93 ±0.70
88.51 ±0.13
84.69 ±1.11
85.05 ±1.05
88.60 ±0.34

84.62 ±0.12
88.72 ±0.02
89.24 ±0.11
88.97 ±0.24
89.01 ±0.08
89.32 ±0.17

FINESSL 96.15 ±0.13 96.87 ±0.10 97.39 ±0.05 80.44 ±0.24 84.51 ±0.01 86.66 ±0.18 87.04 ±0.43 89.28 ±0.14 89.69 ±0.15

5. Experiments
5.1. Experiment Setup

Datasets and Evaluation Metrics. We conduct extensive
experiments on five publicly available datasets to evaluate
the performance of FINESSL. The datasets are CIFAR-10,
CIFAR-100 (Krizhevsky et al., 2009), FOOD-101 (Bossard
et al., 2014), Semi-Aves (Su et al., 2021), and ImageNet
(Deng et al., 2009). For each dataset, we consider different
numbers of labeled samples to cover various SSL scenar-
ios. Following previous works (Wang et al., 2022c; Chen
et al., 2023), we select {1, 2, 4} labeled samples per class
for CIFAR-10, {4, 25, 100} labeled samples per class for
CIFAR-100, and {2, 4, 10} labeled samples per class for
FOOD-101. For Semi-Aves, we consider two scenarios
of unlabeled data, i.e., unlabeled data consists of either
in-distribution samples or mixed in-distribution and OOD
samples. Finally, for ImageNet, we consider the settings
where 1% and 10% training samples are labeled follow-
ing SimCLR (Chen et al., 2020a). In our experiments, we
compare FINESSL with existing state-of-the-art SSL meth-
ods, including Pseudo-Label (PL) (Lee et al., 2013), Fix-
Match (Sohn et al., 2020), FlexMatch (Zhang et al., 2021),
FreeMatch (Wang et al., 2022c), SoftMatch (Chen et al.,
2023), and DebiasPL (Wang et al., 2022a). All compet-
ing methods are implemented in our proposed framework.
The classification performance is evaluated using the Top-1
accuracy on the test dataset.

Implementation details. We use the publicly available
CLIP model1 as our backbone. Model parameters of CLIP
are all frozen, and only the image encoder is used during
training and inference. In our experiments, we use VPT
(Jia et al., 2022) by default to fine-tune the CLIP model due
to its effectiveness and efficiency. The length of learnable
prompts is set to 50. We also provide the results for more
PEFT methods in Section 5.3. We employ the Stochastic

1https://github.com/mlfoundations/open_
clip

Gradient Descent (SGD) optimizer with a learning rate of
0.03, utilizing a batch size of 32 alongside a weight decay
set at 5×10−4, and a momentum factor of 0.9. We fine-tune
the model for 30 epochs, with each epoch comprising 500
steps. It is noteworthy that all competing methods share
the same setting of those hyperparameters. All experiments
are conducted in PyTorch with a single NVIDIA RTX 3090
24GB GPU. More details can be found in Appendix A.

5.2. Main Results

Results on standard datasets. Table 1 reports the test ac-
curacy of competing methods over CIFAR-10, CIFAR-100,
and FOOD-101 datasets. Overall, FINESSL achieves su-
perior performance, substantially outperforming the other
seven methods in most datasets and settings. FINESSL
presents a relatively low performance in N4 setting on
CIFAR-10. This is partly because the task is simple such
that several methods achieve comparably high performance
(Wang et al., 2022a). Notably, FINESSL outperforms com-
peting methods by nearly 18% in accuracy with only 1 la-
beled sample per class on CIFAR-10, showing its robust
performance in scenarios where labels are extremely scarce.
The weak performance of Pseudo-Labeling and FixMatch
in low-label regimes can be attributed to the biases and over-
confidence issues of the model. By dynamically adjusting
the confidence threshold, FlexMatch and FreeMatch achieve
better results. DebiasPL addresses the class-imbalanced
pseudo-labels and achieves comparable results with FI-
NESSL in two settings on CIFAR-10. However, in other
cases, FINESSL surpasses DebiasPL by an average of 3%
in accuracy, showing that FINESSL can perform much more
accurately across different settings.
Results on complex datasets. To evaluate the generaliza-
tion ability of our model, we further examine FINESSL on
two more challenging datasets, i.e., Semi-Aves and Ima-
geNet. Table 2 and Table 3 show the results for FINESSL
and five competeing methods. Semi-Aves (Su et al., 2021)
is a dataset of hundreds of bird species. Data exhibits con-
siderable class imbalance, and the unlabeled data contains
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Figure 3. (3a and 3b): The accuracy and entropy of pseudo-labels for FixMatch, FlexMatch, DebiasPL, and FINESSL on CIFAR100 with
4 labeled data per class. (3c and 3d): The sensitivity of λ and α0 under various settings on CIFAR-100.

Table 2. Top-1 accuracy for Semi-Aves. Du
in denotes that unla-

beled data are sampled from the same classes as labeled data, and
Du

out contains OOD samples.

SETTINGS Du = Du
in Du = Du

in ∪ Du
out

FIXMATCH
FLEXMATCH
FREEMATCH
SOFTMATCH
DEBIASPL

65.52 ±0.30
64.60 ±0.25
64.57 ±0.23
64.75 ±0.27
66.82 ±0.35

60.15 ±0.16
57.96 ±0.11
58.01 ±0.38
57.79 ±0.52
60.85 ±0.37

FINESSL 67.25 ±0.11 61.12 ±0.07

Table 3. Top-1 accuracy for ImageNet. We consider two settings,
distinguished by 1% and 10% labeled data.

SETTINGS 1% LABELED 10% LABELED

FIXMATCH
FLEXMATCH
FREEMATCH
SOFTMATCH
DEBIASPL

73.19
73.21
72.94
72.92
73.58

78.77
78.71
78.49
78.56
78.72

FINESSL 74.22 79.21

images from novel classes, which makes the task partic-
ularly challenging. We consider both settings where the
unlabeled data comes from the same classes with labeled
data or contains new classes. FixMatch achieves much bet-
ter performance than its three sophisticated counterparts,
especially when OOD data is present in the unlabeled data.
This is attributed to the selection of more OOD samples by
decreasing the threshold during training. Our method FI-
NESSL outperforms FixMatch and DebiasPL by 1.4% and
0.35% in accuracy on average. For the ImageNet dataset,
we randomly choose 1% and 10% images as labeled data
following SimCLR (Chen et al., 2020a). Overall, all five
competing methods achieve similar performance. By em-
ploying FINESSL, we observe a 0.57% relative performance
increase over DebiasPL. This demonstrates the superior per-
formance of FINESSL in large-scale datasets.

5.3. A Deeper Look into FINESSL

In this subsection, we conduct qualitative analyses of FI-
NESSL in comparison to other SSL methods. Additionally,
we examine the sensitivity of hyperparameters to show the
robustness of our method. The comparative evaluations with
alternative PEFT strategies and the analysis of training costs
are also included.

Quality of Pseudo-Labels. From Figure 3a, it is noteworthy
that the pseudo-labels generated by FINESSL consistently
exhibit higher accuracy during training compared to other
methods, and it is obvious that the accuracy of pseudo-
labels plays a pivotal role in enhancing the performance
of SSL tasks (Chen et al., 2023). In addition, FINESSL
shows higher entropy in the pseudo-label distribution during
training, indicating that our method effectively mitigates
aggregated biases and achieves a more balanced distribution
of pseudo-labels.

Hyperparameter Sensitivity. Despite the commendable
performance achieved by our method, the inclusion of some
significant parameters prompts us to question whether the
outstanding results are attributed to parameter tuning. There-
fore, we are interested in exploring the robustness of these
parameters and their impact on model performance. Specif-
ically, as illustrated in Figures 3c and 3d, we observe that
variations in both λ and α do not result in significant fluctu-
ations in the performance of FINESSL across three settings
on CIFAR-100, indicating that the efficacy of FINESSL
stems from its thoughtful design rather than an extensive
reliance on parameter tuning. More analysis for hyperpa-
rameter sensitivity can be found in Appendix C.1.

Table 4. Results for PEFT strategies on FINESSL.

CIFAR-100 SEMI-AVES

SETTINGS N4 N25 N100 Du
in Du

in ∪ Du
out

VPT
LORA
ADAPTER
ADAPTFORMER

80.44
79.71
79.91
81.02

84.51
85.56
84.24
85.44

86.66
87.29
86.25
87.50

67.25
68.30
65.94
68.39

61.12
61.13
60.04
60.73

More PEFT Strategies. While we use VPT for most ex-
periments, it is noteworthy that various PEFT strategies are
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Table 5. The comparison for training time consumption (in sec-
onds) on the CIFAR-100 dataset.

PER STEP # STEPS TOTAL

FIXMATCH (WIDE RESNET)
FIXMATCH (VPT)
FINESSL (VPT)

0.053
0.616
0.642

1024 × 1024
30 × 500
30 × 500

55574.5
9240.0
9630.0

Table 6. Ablation studies. We study the impact of core components
of FINESSL on CIFAR-100 and Semi-Aves datasets.

CIFAR-100 SEMI-AVES

SETTINGS N4 N25 N100 Du
in Du

in ∪ Du
out

FINESSL
W/O BMS
W/O MARGIN IN ℓms
W/O DYNAMIC α
W/O DLS
W/O LS
W/O DETACH

80.44
76.70
80.52
80.30
80.29
80.48
79.85

84.51
83.71
84.34
84.34
84.36
84.40
84.23

86.66
86.21
86.60
86.75
86.36
86.49
86.78

67.25
65.83
66.88
67.10
67.02
67.22
67.11

61.12
59.91
58.94
61.00
58.58
59.49
61.05

applicable. In Table 4, Adaptformer (Chen et al., 2022b)
exhibits an average performance surpassing VPT by up to
0.62%. Another widely adopted PEFT strategy, Lora (Hu
et al., 2021), presents significant advantages in scenarios
with a larger quantity of labeled data. Nevertheless, its
performance is 0.73% inferior to VPT in the N4 setting of
CIFAR-100, which is characterized by a limited amount of
labeled data. Adapter (Houlsby et al., 2019) also performs
reasonably well, yet they show an averaged 0.72% decline
in comparison to VPT. While it is acknowledged that Adapt-
former yields superior performance in Table 4, we choose
VPT as the fine-tuning strategy in our primary results, con-
sidering its broader impact and potential applications (Han
et al., 2024).

Time Consumption. Our method stands out not just for its
superior and robust performance but also for its training ef-
ficiency. Table 5 shows that our proposed method FINESSL
only requires about 1/6 training time to converge compared
with the consumption of training Wide ResNet from scratch.
Additionally, FixMatch implemented in our framework, i.e.,
fine-tuning the foundation model via VPT, exhibits com-
parable time consumption with FINESSL which increases
negligible training costs by introducing an auxiliary lin-
ear classifier to the original neural networks. The efficient
framework we propose can be beneficial for promoting the
deployment of SSL in real-world applications.

5.4. Ablation Analysis

To better understand FINESSL, we tease apart the factors
that contribute significantly to its success in Table 6.

Impact of balanced margin softmax. The balanced margin
softmax loss (denoted by “BMS” in Table 6) serves as a
crucial component for alleviating aggregated biases in our
method. Upon removing the dynamic adjustments to the

margins, we notice a significant performance decline across
all settings, and particularly noteworthy is the substantial
3.74% decrease in performance observed in the “N4” setting
on CIFAR-100, where the labeled data is quite limited. This
shows that BMS can effectively erase model biases.

Impact of balanced margin softmax in supervised loss.
In our method, we also incorporate dynamically computed
margins based on unlabeled data into the labeled loss Lm

s ,
thereby enhancing the balance and stability of the model.
The exclusion of the margins introduced in Lm

s resulted
in an average performance drop of 1.28% on Semi-Aves,
emphasizing the necessity of incorporating the margins into
the labeled loss.

Impact of dynamic scaling parameter α. The dynamic
scaling parameter αt in Equation (5) plays a crucial role
in adjusting the magnitude of class margins. To examine
its impact, we set αt to a constant value in this experiment.
From Table 6, we observe a decrease in accuracy across
most settings. This suggests that the dynamic adjustment
of α is essential for improving the model’s ability to handle
imbalanced pseudo-label distributions.

Impact of decoupled label smoothing. In this experiment,
we remove the auxiliary classifier and reweight unlabeled
data using confidence scores generated by the main branch.
We observe a consistent performance drop across all settings,
averaging 0.67%. Especially in the presence of OOD data
on Semi-Aves, the performance decreases by 2.54%. This
highlights that discriminative model probabilities play an
important role in sample reweighting.

Impact of label smoothing in the auxiliary classifier. We
employ label smoothing for learning the auxiliary classifier
to address cognitive deviation. Removing label smoothing,
which means training the auxiliary classifier using hard
pseudo-labels directly, leads to performance deterioration
in most settings. Particularly, we observe a 1.63% decrease
in accuracy on Semi-Aves when the unlabeled data contains
OOD samples.

Impact of the auxiliary classifier on representations. In
FINESSL, the auxiliary classifier is detached to prevent hurt-
ing the representation learning. We investigate the impact of
the auxiliary branch on representation learning by allowing
gradient backpropagation to the former layers of the model.
The results are denoted by “w/o Detach” in Table 6. We
observe a substantial performance drop when the number
of labeled samples is extremely scarce, e.g., a 0.59% de-
crease in the “N2” setting on CIFAR-100. This shows that
mitigating overconfidence may hurt representations.

5.5. Tasks with OOD Samples

In Section 5.4, we observe that DLS exhibits significant per-
formance improvement on Semi-Aves with OOD samples.
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Table 7. Results for fine-tuning pre-trained ResNet CLIP on CIFAR-100.

STRATEGIES BN TUNING BITFIT SSF

SETTINGS N4 N25 N100 N4 N25 N100 N4 N25 N100

FIXMATCH
FLEXMATCH
FREEMATCH
SOFTMATCH
DEBIASPL

37.49
38.22
30.51
28.70
42.72

62.98
51.96
61.48
61.32
60.62

71.48
69.52
70.11
68.80
69.76

52.67
55.69
53.28
53.34
52.90

66.15
66.33
66.52
66.46
66.62

70.19
69.58
69.07
69.38
70.34

36.49
36.42
36.29
36.11
38.83

53.47
51.89
52.01
52.09
52.54

60.44
57.49
57.35
57.51
58.44

FINESSL 48.32 65.87 72.38 55.21 67.06 70.60 39.40 54.14 59.51
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Figure 4. (4a): The accuracy for N5 and N10 OpenSSL setting on
CIFAR-100 for different methods. (4b to 4d): The distribution of
confidence score for ID and OOD samples of FixMatch, FINESSL
w/o DLS, and FINESSL for N5 OpenSSL setting.

Notably, the presence of OOD samples is prevalent in SSL
(Cao et al., 2022; Guo et al., 2022). Motivated by this find-
ing, we conduct further experiments to investigate the role
of DLS in handling OOD samples. Specifically, following
OpenSSL settings in (Cao et al., 2022), we divide the classes
on CIFAR-100 into 50% seen classes (ID samples) and 50%
novel classes (OOD samples). We select 5 and 10 labeled
samples per seen class (i.e., N5 and N10 settings), with the
remaining samples unlabeled. We show the accuracy for
seen classes of the test set in Figure 4a. The results clearly
demonstrate that removing the DLS leads to an average per-
formance decline of 1.87%, indicating the effectiveness of
DLS in mitigating the impact of OOD samples.

Why DLS can benefit tasks with OOD samples? We
show the confidence score distribution of accurate, incorrect,
and OOD samples in Figures 4b to 4d. For FixMatch and

FINESSL w/o DLS, we observe significant overlap in the
distribution regions of the three types of samples, suggesting
that the model faces challenges in distinguishing them using
confidence scores. However for FINESSL, there exists
much more clearer confidence boundary, which enables
the model to assign more reliable weights to each sample,
leading to performance improvements for ID and OOD
samples.

5.6. Results for pre-trained ResNet model

Although this paper primarily focuses on improving the
CLIP model based on ViT structure, we still conduct experi-
ments using the pre-trained ResNet CLIP model. As VPT
and other PEFT strategies are not applicable to ResNet,
we employ BN Tuning (fine-tuning batchnorm parame-
ters), BitFit (Zaken et al., 2021) (fine-tuning solely the bias
terms), and SSF (Lian et al., 2022) for fine-tuning. The
results in Table 7 consistently demonstrate the superiority
of FINESSL over other comparative methods. Notably,
FINESSL achieves an average improvement of 2.19% com-
pared to DebiasPL, highlighting its significant performance
advantages in fine-tuning the ResNet structure model.

6. Conclusion
This paper proposes a novel SSL approach FINESSL to
improve the generalization performance by efficiently fine-
tuning pre-trained foundation models. We identify the inher-
ent aggregated biases and cognitive deviation issues in the
foundation model, which hinder the generation and selection
of reliable pseudo-labels. We introduce the balanced margin
softmax to erase the model biases across different classes.
Further, to take full advantage of unlabeled data, we devise
a decoupled label smoothing to regularize model confidence
and reweight unlabeled samples. Extensive experimental
results on five public datasets demonstrate that FINESSL
achieves superior performance over the previous state of the
arts and decreases the training cost by six times. Moreover,
The framework we implemented can smoothly incorporate
many fine-tuning and SSL methods.

9



Erasing the Bias: Fine-Tuning Foundation Models for Semi-Supervised Learning

Acknowledgements
This work was supported by the National Science Foun-
dation of China (62206049), and the Big Data Computing
Center of Southeast University

Impact Statement
This paper presents work whose goal is to advance the field
of machine learning. Specifically, we propose a new semi-
supervised learning algorithm to improve the performance
on low-label regimes by fine-tuning pre-trained foundation
models. In classification tasks, since pre-trained models can
be biased toward certain groups of classes, this paper makes
a substantial attempt to erase such inherent prediction biases.
There are many potential societal consequences of our work,
none of which we feel must be specifically highlighted here.

References
Arazo, E., Ortego, D., Albert, P., O’Connor, N. E., and

McGuinness, K. Pseudo-labeling and confirmation bias
in deep semi-supervised learning. In IJCNN, pp. 1–8,
2020.

Bachman, P., Alsharif, O., and Precup, D. Learning with
pseudo-ensembles. NeurIPS, 27, 2014.

Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N.,
Oliver, A., and Raffel, C. A. Mixmatch: A holistic ap-
proach to semi-supervised learning. NeurIPS, 32, 2019.

Bossard, L., Guillaumin, M., and Van Gool, L. Food-101–
mining discriminative components with random forests.
In ECCV, pp. 446–461, 2014.

Cao, K., Wei, C., Gaidon, A., Arechiga, N., and Ma,
T. Learning imbalanced datasets with label-distribution-
aware margin loss. NeurIPS, 32, 2019.

Cao, K., Brbic, M., and Leskovec, J. Open-world semi-
supervised learning. In International Conference on
Learning Representations, 2022.

Chan, A., Alaa, A., Qian, Z., and Van Der Schaar, M. Un-
labelled data improves bayesian uncertainty calibration
under covariate shift. In ICML, pp. 1392–1402, 2020.

Chen, G., Liu, F., Meng, Z., and Liang, S. Revisiting
parameter-efficient tuning: Are we really there yet? arXiv
preprint, 2022a.

Chen, H., Tao, R., Fan, Y., Wang, Y., Wang, J., Schiele, B.,
Xie, X., Raj, B., and Savvides, M. Softmatch: Addressing
the quantity-quality trade-off in semi-supervised learning.
arXiv preprint, 2023.

Chen, S., Ge, C., Tong, Z., Wang, J., Song, Y., Wang, J., and
Luo, P. Adaptformer: Adapting vision transformers for
scalable visual recognition. NeurIPS, 35:16664–16678,
2022b.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. A
simple framework for contrastive learning of visual rep-
resentations. In ICML, pp. 1597–1607, 2020a.

Chen, T., Kornblith, S., Swersky, K., Norouzi, M., and
Hinton, G. E. Big self-supervised models are strong semi-
supervised learners. NeurIPS, 33:22243–22255, 2020b.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In CVPR, pp. 248–255, 2009.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., et al. An image is worth 16x16
words: Transformers for image recognition at scale. arXiv
preprint, 2020.

Grandvalet, Y. and Bengio, Y. Semi-supervised learning by
entropy minimization. NeurIPS, 17, 2004.

Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q. On
calibration of modern neural networks. In International
conference on machine learning, pp. 1321–1330. PMLR,
2017.

Guo, L.-Z., Zhang, Y.-G., Wu, Z.-F., Shao, J.-J., and Li, Y.-
F. Robust semi-supervised learning when not all classes
have labels. In Neural Information Processing Systems,
2022.

Han, C., Wang, Q., Cui, Y., Wang, W., Huang, L., Qi, S., and
Liu, D. Facing the elephant in the room: Visual prompt
tuning or full finetuning? arXiv preprint, 2024.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In CVPR, pp. 770–778,
2016.

He, K., Fan, H., Wu, Y., Xie, S., and Girshick, R. Mo-
mentum contrast for unsupervised visual representation
learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 9729–9738,
2020.

Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B.,
De Laroussilhe, Q., Gesmundo, A., Attariyan, M., and
Gelly, S. Parameter-efficient transfer learning for nlp. In
ICML, pp. 2790–2799, 2019.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. Lora: Low-rank adaptation
of large language models. arXiv preprint, 2021.

10



Erasing the Bias: Fine-Tuning Foundation Models for Semi-Supervised Learning

Jia, C., Yang, Y., Xia, Y., Chen, Y.-T., Parekh, Z., Pham, H.,
Le, Q., Sung, Y.-H., Li, Z., and Duerig, T. Scaling up
visual and vision-language representation learning with
noisy text supervision. In ICML, pp. 4904–4916, 2021.

Jia, M., Tang, L., Chen, B.-C., Cardie, C., Belongie, S.,
Hariharan, B., and Lim, S.-N. Visual prompt tuning. In
ECCV, pp. 709–727, 2022.

Kim, J., Hur, Y., Park, S., Yang, E., Hwang, S. J., and
Shin, J. Distribution aligning refinery of pseudo-label
for imbalanced semi-supervised learning. NeurIPS, 33:
14567–14579, 2020.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

Kumar, A., Raghunathan, A., Jones, R., Ma, T., and Liang,
P. Fine-tuning can distort pretrained features and under-
perform out-of-distribution. arXiv preprint, 2022.

Laine, S. and Aila, T. Temporal ensembling for semi-
supervised learning. arXiv preprint, 2016.

Lee, D., Kim, S., Kim, I., Cheon, Y., Cho, M., and Han, W.-
S. Contrastive regularization for semi-supervised learning.
In CVPR, pp. 3911–3920, 2022.

Lee, D.-H. et al. Pseudo-label: The simple and efficient
semi-supervised learning method for deep neural net-
works. In ICML Workshop, pp. 896, 2013.

Lian, D., Zhou, D., Feng, J., and Wang, X. Scaling & shift-
ing your features: A new baseline for efficient model
tuning. Advances in Neural Information Processing Sys-
tems, 35:109–123, 2022.

Liu, H., Tam, D., Muqeeth, M., Mohta, J., Huang, T., Bansal,
M., and Raffel, C. A. Few-shot parameter-efficient fine-
tuning is better and cheaper than in-context learning.
NeurIPS, 35:1950–1965, 2022.

Menghini, C., Delworth, A., and Bach, S. Enhancing clip
with clip: Exploring pseudolabeling for limited-label
prompt tuning. Advances in Neural Information Pro-
cessing Systems, 36:60984–61007, 2023.

Menon, A. K., Jayasumana, S., Rawat, A. S., Jain, H., Veit,
A., and Kumar, S. Long-tail learning via logit adjustment.
arXiv preprint, 2020.

Müller, R., Kornblith, S., and Hinton, G. E. When does
label smoothing help? NeurIPS, 32, 2019.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J.,
et al. Learning transferable visual models from natural
language supervision. In ICML, pp. 8748–8763, 2021.

Rizve, M. N., Duarte, K., Rawat, Y. S., and Shah, M. In de-
fense of pseudo-labeling: An uncertainty-aware pseudo-
label selection framework for semi-supervised learning.
arXiv preprint, 2021.

Sajjadi, M., Javanmardi, M., and Tasdizen, T. Regularization
with stochastic transformations and perturbations for deep
semi-supervised learning. NeurIPS, 29, 2016.

Shi, J.-X., Wei, T., Zhou, Z., Han, X.-Y., Shao, J.-J., and Li,
Y.-F. Parameter-efficient long-tailed recognition. arXiv
preprint, 2023.

Sohn, K., Berthelot, D., Carlini, N., Zhang, Z., Zhang, H.,
Raffel, C. A., Cubuk, E. D., Kurakin, A., and Li, C.-L.
Fixmatch: Simplifying semi-supervised learning with
consistency and confidence. NeurIPS, 33:596–608, 2020.

Su, J.-C., Cheng, Z., and Maji, S. A realistic evaluation of
semi-supervised learning for fine-grained classification.
In CVPR, pp. 12966–12975, 2021.

Thulasidasan, S., Chennupati, G., Bilmes, J. A., Bhat-
tacharya, T., and Michalak, S. On mixup training: Im-
proved calibration and predictive uncertainty for deep
neural networks. NeurIPS, 32, 2019.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Attention
is all you need. NeurIPS, 30, 2017.

Wang, X., Gao, J., Long, M., and Wang, J. Self-tuning for
data-efficient deep learning. In ICML, pp. 10738–10748,
2021.

Wang, X., Wu, Z., Lian, L., and Yu, S. X. Debiased learning
from naturally imbalanced pseudo-labels. In CVPR, pp.
14647–14657, 2022a.

Wang, Y., Chen, H., Fan, Y., Sun, W., Tao, R., Hou, W.,
Wang, R., Yang, L., Zhou, Z., Guo, L.-Z., et al. Usb: A
unified semi-supervised learning benchmark for classifi-
cation. NeurIPS, 35:3938–3961, 2022b.

Wang, Y., Chen, H., Heng, Q., Hou, W., Fan, Y., Wu,
Z., Wang, J., Savvides, M., Shinozaki, T., Raj, B.,
et al. Freematch: Self-adaptive thresholding for semi-
supervised learning. arXiv preprint, 2022c.

Wei, T. and Gan, K. Towards realistic long-tailed semi-
supervised learning: Consistency is all you need. In
CVPR, pp. 3469–3478, 2023.

Weng, Z., Yang, X., Li, A., Wu, Z., and Jiang, Y.-G. Semi-
supervised vision transformers. In European conference
on computer vision, pp. 605–620. Springer, 2022.

11



Erasing the Bias: Fine-Tuning Foundation Models for Semi-Supervised Learning

Xie, Q., Luong, M.-T., Hovy, E., and Le, Q. V. Self-training
with noisy student improves imagenet classification. In
CVPR, pp. 10687–10698, 2020.

Xu, Y., Shang, L., Ye, J., Qian, Q., Li, Y.-F., Sun, B., Li, H.,
and Jin, R. Dash: Semi-supervised learning with dynamic
thresholding. In ICML, pp. 11525–11536, 2021.

Yang, F., Wu, K., Zhang, S., Jiang, G., Liu, Y., Zheng, F.,
Zhang, W., Wang, C., and Zeng, L. Class-aware con-
trastive semi-supervised learning. In CVPR, pp. 14421–
14430, 2022a.

Yang, Z., Ding, M., Guo, Y., Lv, Q., and Tang, J. Parameter-
efficient tuning makes a good classification head. arXiv
preprint, 2022b.

Ye, B., Gan, K., Wei, T., and Zhang, M.-L. Bridging the
gap: Learning pace synchronization for open-world semi-
supervised learning. arXiv preprint, 2023.

Zagoruyko, S. and Komodakis, N. Wide residual networks.
arXiv preprint arXiv:1605.07146, 2016.

Zaken, E. B., Ravfogel, S., and Goldberg, Y. Bitfit:
Simple parameter-efficient fine-tuning for transformer-
based masked language-models. arXiv preprint
arXiv:2106.10199, 2021.

Zhang, B., Wang, Y., Hou, W., Wu, H., Wang, J., Oku-
mura, M., and Shinozaki, T. Flexmatch: Boosting semi-
supervised learning with curriculum pseudo labeling.
NeurIPS, 34:18408–18419, 2021.

Zhong, Z., Cui, J., Liu, S., and Jia, J. Improving calibra-
tion for long-tailed recognition. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, pp. 16489–16498, 2021.

Zhou, H.-Y., Oliver, A., Wu, J., and Zheng, Y. When semi-
supervised learning meets transfer learning: Training
strategies, models and datasets. arXiv preprint, 2018.

Zhou, K., Yang, J., Loy, C. C., and Liu, Z. Learning to
prompt for vision-language models. International Jour-
nal of Computer Vision, 130(9):2337–2348, 2022.

Zhu, B., Tang, K., Sun, Q., and Zhang, H. Generalized logit
adjustment: Calibrating fine-tuned models by removing
label bias in foundation models. arXiv preprint, 2023.

12



Erasing the Bias: Fine-Tuning Foundation Models for Semi-Supervised Learning

A. Implementation Details
A.1. Implementation Details

To ensure the reproducibility of our method’s performance, we present experimental details below, and default configs
for the experiments are shown in Table 8. For most settings, a batch size of 32 is utilized. However, due to the limited
availability of labeled data in the CIFAR-10 “N1” and “N2” settings, batch sizes of 8 and 16 are chosen, respectively. The
relative batch size ratio µ between unlabeled and labeled data is set to 2 for the ImageNet dataset, and it is consistently
set to 1 for the remaining datasets. Note that training is performed for 30 epochs with each epoch consisting of 500 steps,
which is significantly less than the 1024 × 1024 steps employed by previous training from scratch methods (Sohn et al.,
2020; Wang et al., 2022c). For certain datasets, such as ImageNet, additional training epochs and steps are expected to yield
further performance improvements, which we intend to explore in the future. For competing methods implemented in our
general fine-tuning framework for SSL, we find that the performance achieved with a higher threshold, specifically 0.95, is
unsatisfactory. Hence, in our experiments, we adopt a smaller threshold of 0.7 for them, which can achieve superior results.

Table 8. The default parameter configs employed in the experiments.

Configuration Default Value

Optimizer
Learning rate

Scheduler for lr
Weight decay

Momentum factor
Batch Size

Model
Epochs
Steps
µ

PEFT strategy
VPT length

λ
α
γ

SGD
0.03

Cosine decay
5× 10−4

0.9
32

CLIP-ViT
30

500
1

VPT deep
50
0.5
8.0
3.0

B. Additional Experiments
B.1. Long-Tailed Semi-Supervised Learning

Most of the experiments outlined above assume a uniform distribution of labeled and unlabeled data, whereas data in the real
world often exhibits a long-tailed distribution. Therefore, we integrate some long-tailed semi-supervised learning (LTSSL)
settings to further validate the effectiveness of FINESSL. It is noteworthy that, given our discovery of the existence of
aggregated biases, combining long-tailed data distributions makes these settings particularly challenging.

In Table 9, N1 and M1 mean the number of samples for the first class in labeled and unlabeled data, and typically, we have
N1 ≥ N2 ≥ · · · ≥ NC and M1 ≥M2 ≥ · · · ≥MC . We use ρ to represent the imbalance ratio for labeled and unlabeled
data, where ρ = N1

NC
and Nk = N1 × ρ−

k−1
C−1 for class k ∈ [1, C]. The results indicate that FINESSL exhibits a significant

advantage over all comparative methods, averaging a 2.95% performance improvement over SoftMatch, which suggests
the superior robustness of our method against data imbalance. It is noteworthy that DebiasPL also demonstrates favorable
performance in LTSSL settings, which is attributed to its incorporation of techniques specifically addressing long-tailed
challenges (Menon et al., 2020). Nevertheless, FINESSL still surpasses DebiasPL across the majority of settings.

B.2. Can FFT Behave More Effective?

In Figure 1, we observe that FFT achieves inferior performance in semi-supervised learning settings, particularly when
labeled data is extremely scarce. However, we find that a simple modification can enhance the performance of FFT.
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Table 9. Comparison for long-tailed semi-supervised learning settings on CIFAR-100 dataset.

SETTINGS
N1 = 50
M1 = 400

N1 = 150
M1 = 300

ρ 10 20 10 20

FIXMATCH
FLEXMATCH
FREEMATCH
SOFTMATCH
DEBIASPL

78.94
78.81
79.05
78.42
81.60

72.04
73.36
72.82
72.39
78.23

81.63
81.75
81.49
81.52
83.12

78.21
78.53
78.42
78.90
80.89

OURS 81.63 77.75 83.44 81.35

Specifically, (Kumar et al., 2022) argues that a two-step strategy of linear probing and then full fine-tuning (LP-FT), can
achieve great improvement in ID and OOD accuracy. Interestingly, LP-FT can also achieve excellent performance in SSL
settings. From Table 10, FixMatch with LP-FT can achieve an averaged 48.99% enhancement in performance compared to
the FFT of FixMatch.

In addition, following PEL (Shi et al., 2023), we find that semantic-aware initialization for the linear classifier can also
help FFT achieve better performance. Specifically, we employ textual features associated with class labels to initialize the
classifier weights. This straightforward strategy facilitates the classifier to attain a more optimal initial state without incurring
additional computational overhead, which accelerates model convergence and maintains a more stable training process. In
Table 10, the performance of FFT† closely approximates that of VPT, exhibiting an average superiority of 47.30% over FFT.
It is noteworthy that we search the learning rate from {0.0005, 0.0003, 0.0001, 0.00005, 0.00003, 0.00001} and choose the
best performance for all experiments related to FFT. In addition, it is obvious that FINESSL outperforms FixMatch across all
fine-tuning strategies listed in Table 10, averaging 4.59%, indicating the broad applicability and effectiveness of our method.

Overall, LP-FT and FFT† both yield a well-suited weight initialization for the classifier, which aids in stabilizing the model
during training. The guidance provided by a well-initialized classifier prevents the model from collapsing, thereby avoiding
low performance. We suggest that the question of why initialization assists in achieving superior performance in FFT
deserves more attention and research in future work to reveal more profound reasons.

Table 10. More results for LP and FFT on CIFAR-100 dataset. FFT† denotes using semantic-aware initialization.

SETTINGS N4 N25 N100

FIXMATCH W/ LP
FINESSL W/ LP

63.64
68.22

73.66
75.57

78.01
78.59

FIXMATCH W/ FFT
FINESSL W/ FFT

6.56
8.07

32.93
41.64

49.76
59.88

FIXMATCH W/ LP-FT
FINESSL W/ LP-FT

70.80
77.45

80.25
83.18

85.16
86.04

FIXMATCH W/ FFT†

FINESSL W/ FFT†
67.77
78.03

79.82
84.04

83.56
86.33

B.3. ImageNet-21k Pre-Trained Model

Our experiments predominantly focus on the pre-trained ViT by initializing weights using the image encoder of CLIP.
Here we delve into the performance of the model pre-trained with weights derived from ImageNet-21k (Deng et al., 2009).
From Table 11, we can see that the fine-tuning of the model pre-trained on ImageNet-21k yields superior performance
compared to the CLIP pre-trained model. We assert that this phenomenon can be attributed to the substantial correlation and
similarity in image features between the ImageNet-21k and CIFAR-100 as well as Semi-Aves. This further clarifies why we
predominantly employ the CLIP as the pre-trained model in most experiments, given its broader semantic feature space
and substantially reduced feature similarity between pre-training and downstream training data. In addition, the ViT from
Clip is trained using contrastive loss, which might bring a gap for direct downstream fine-tuning for image classification.
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Examining the specific numerical results in Table 11, FINESSL continues to show its robust performance superiority,
surpassing DebiasPL by an average of 0.36%.

Table 11. Results for fine-tuning the foundation model pre-trained on ImageNet-21k dataset.

CIFAR-100 SEMI-AVES

SETTINGS N4 N25 N100 Du
in Du

in ∪ Du
out

FIXMATCH
FLEXMATCH
FREEMATCH
SOFTMATCH
DEBIASPL

87.05
88.99
82.82
82.93
89.96

90.69
90.95
90.76
90.99
91.00

91.43
91.88
91.70
91.59
91.57

67.89
66.63
66.86
66.55
69.40

63.63
61.25
61.36
61.34
63.93

OURS 90.30 91.24 91.87 70.01 64.25

B.4. Performance comparisons for ViT training from scratch

Previous work (Weng et al., 2022) has found that training ViTs from scratch fails to yield satisfactory performance on SSL
tasks, particularly with limited labeled data. Furthermore, the significantly longer training time required for training ViTs
from scratch is often impractical in real-world scenarios.

To validate this, we conduct experiments comparing the performance of training a ViT-small from scratch using FixMatch
for 500 epochs, which is significantly longer than the 30 epochs used for VPT. Actually, ViT-base tends to show inferior
performance due to more parameters (Wang et al., 2022b), which provides reason for our adoption of ViT-small. The
performance of training from scratch is observed to be considerably poorer, with a 54.77% decrease compared to fine-tuning
by VPT.

Additionally, we include a comparison between our proposed method, FINESSL and Semiformer (Weng et al., 2022),
a method specifically designed for SSL tasks with ViTs. We focus on comparing results for the ImageNet dataset with
10% labeled data. The results demonstrate a 3.71% performance advantage of FINESSL over Semiformer in this setting,
indicating significant advantages over training from scratch.

B.5. Additional comparisons with previous research

We incorporate thorough comparison with the strategies Few-PseudoLabels (FPL), Iterative Refinement of FPL (IFPL), and
Grow and Refine Iteratively Pseudolabels (GRIP) as proposed in (Menghini et al., 2023). To ensure fair comparisons, we
compare these strategies in both single-modality settings using VPT and multiple-modality settings using CoOp (Zhou et al.,
2022) and VPT.

Our results show that FINESSL exhibits significant performance advantages, particularly in scenarios with limited labeled
data, such as N4 and N25. It is worth noting that the use of a large volume of unlabeled data by FPL and IFPL is
constrained due to the selection of a fixed number of unlabeled samples for each class. Moreover, the selected unlabeled
data primarily consists of easy samples that are relatively simple to classify, thereby contributing only marginally to
performance improvement. Furthermore, aggregated biases can negatively impact GRIP, resulting in substantial imbalance
in pseudo-labels.

C. Further Analysis on FINESSL
C.1. Sensitivity Studies for Hyperparameters

First, we investigate the impact of γ, which is a hyperparameter employed to scale the sample weights when calculating the
consistency regularizer in Equation (7). From Figure 5a, we can see that changing the value of γ does not lead to substantial
fluctuations in the generalization performance, indicating the robustness of our method.

Next, we study the influence of prompt length for VPT in Figure 5b. We observe a marginal performance enhancement as the
VPT length increases, which means the performance can be further improved by adding more learnable model parameters.
In our implementation, we set the VPT length to 50, which balances the effectiveness and efficiency.
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Table 12. Results for FPL, IFPL, and GRIP in three settings (N4 / N25 / N100) on CIFAR-100 dataset.

DATASET CIFAR-100

SETTINGS N4 N25 N100

FPL W/ VPT
IFPL W/ VPT
GRIP W/ VPT
FPL W/ VPT + COOP
IFPL W/ VPT + COOP
GRIP W/ VPT + COOP
FINESSL

74.80
74.71
70.24
74.94
74.72
68.65
80.44

80.23
80.93
80.83
80.72
81.10
79.94
84.51

84.24
84.28
84.32
84.49
84.69
84.17
86.66

Finally, Figure 5c depicts the performance curve as a function of the number of training epochs. Generally, the test accuracy
continues to rise as the training progresses. However, the performance stabilizes after training for 30 epochs. Therefore, we
choose to fine-tune the model for 30 epochs in our experiments, which is adequate to obtain sufficiently well performance.
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Figure 5. (5a to 5c): The sensitivity for γ, prompt length and training epochs under various settings on CIFAR-100.

C.2. Alleviation of Aggregated Biases and Cognitive Deviation

We present additional figures to depict the alleviating effects on aggregated biases and cognitive deviation in Figure 6a
and Figure 6b. Again, we observe that FINESSL generates a more balanced distribution of pseudo-labels compared to
FixMatch and FlexMatch, which is a key factor enabling our method to alleviate aggregated biases. Additionally, as depicted
in Figures 7a and 7b, the incorporation of DLS enables the model to more accurately assess the learning difficulty of
various SSL tasks, thereby alleviating cognitive deviation. In contrast, the combination of VPT with FixMatch may lead to
significant cognitive deviation, as shown in Figure 7a, leading to notable performance deterioration.
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Figure 6. Distribution of pseudo-labels for FixMatch, FlexMatch, and FINESSL in the “N2” setting.
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Figure 7. Average confidence in tasks of different numbers of labeled samples for models with and without DLS.

C.3. Discussion on Cognitive Deviation and Calibration

Model calibration (Guo et al., 2017) is to modify the predictive probability which can reflect true correctness likelihood.
However, cognitive deviation means the model does not exhibit corresponding confidence across settings of various learning
difficulties. While there are indeed certain similarities between these two concepts, we show that mitigating cognitive
deviation is better than improving calibration to boost performance. First, we rectify the model output confidence to align
with the accuracy of pseudo-labels. We denote κ = ACC/ 1

µB

∑µB
j=1 max(qj), where “ACC” denotes the accuracy of

pseudo-labels, then rectify confidences by κ · max(qj). Next, we show that the DLS proposed to overcome cognitive
deviation can generate more reasonable sample weights for unlabeled data than models with better calibration. Figure 8a
shows the expected calibration error (ECE) of different models, i.e., FixMatch, FINESSL with λ = 0.05 and λ = 0.5 set
in DLS. It can be seen that applying weak DLS (λ = 0.05) improves calibration, but it hurts when applying strong DLS
(λ = 0.5). However, in Figures 8b to 8d, we observe that FixMatch exhibits significant overconfidence even in wrong
predictions. Although applying weak DLS in FINESSL can partially alleviate this issue, the model assigns high weights for
many unlabeled samples with wrong pseudo-labels. In contrast, strong DLS distinguishes correct and wrong pseudo-labels
with a much clearer confidence boundary. To sum up, we show that DLS does not improve the calibration, but helps correlate
the model confidence with learning difficulties and generate conservative certainty for pseudo-labels.
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Figure 8. (8a): ECE for FixMatch and FINESSL on CIFAR-100. “0.05DLS” denotes λ = 0.05 in label smoothing, and “0.5DLS” denotes
λ = 0.5. (8b to 8d): Distribution of rectified confidences of FixMatch, FINESSL with λ = 0.05 and λ = 0.5, respectively.

C.4. Why VPT is better than full fine-tuning?

We will provide reasons from two perspectives. Firstly, a similar issue has been discussed in (Han et al., 2024), which
suggests that full fine-tuning can outperform VPT only when the pre-trained task and downstream task share similar
objectives but have dissimilar data feature distributions. It is evident that SSL tasks fall outside the scope of this scenario,
indicating that VPT is expected to perform better. Secondly, when considering full fine-tuning, the target tasks often require
a substantial amount of data for effective adaptation (Dosovitskiy et al., 2020; Chen et al., 2022a). However, SSL tasks
typically operate under the assumption of extremely limited labeled data availability. Therefore, VPT is considered more
suitable for SSL tasks compared to full fine-tuning.

D. Limitations of the work
We conclude our limitations concisely below:
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• Our work primarily focuses on the pre-trained CLIP model. However, it is important to note that there are other
self-supervised pre-training methods available, such as SimCLR (Chen et al., 2020a) and MOCO (He et al., 2020). In
future work, we plan to investigate the impact of these alternative pre-training methods on performance.

• Our current approach only utilizes the image encoder in CLIP, neglecting the use of the text encoder. Considering the
potential benefits of incorporating the text encoder, we believe it is worth exploring how its inclusion can augment the
model’s performance.
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