
Speech Self-Supervised Learning Using Diffusion Model Synthetic Data

Heting Gao 1 Kaizhi Qian 2 Junrui Ni 1 Chuang Gan 2 Mark Hasegawa-Johnson 1 Shiyu Chang 3

Yang Zhang 2

Abstract
While self-supervised learning (SSL) in speech
has greatly reduced the reliance of speech process-
ing systems on annotated corpora, the success of
SSL still hinges on the availability of a large-scale
unannotated corpus, which is still often impracti-
cal for many low-resource languages or under pri-
vacy concerns. Some existing work seeks to alle-
viate the problem by data augmentation, but most
works are confined to introducing perturbations to
real speech and do not introduce new variations
in speech prosody, speakers, and speech content,
which are important for SSL. Motivated by the
recent finding that diffusion models have superior
capabilities for modeling data distributions, we
propose DIFFS4L, a pretraining scheme that aug-
ments the limited unannotated data with synthetic
data with different levels of variations, generated
by a diffusion model trained on the limited unan-
notated data. Finally, an SSL model is pre-trained
on the real and the synthetic speech. Our exper-
iments show that DIFFS4L can significantly im-
prove the performance of SSL models, such as re-
ducing the WER of the HuBERT pretrained model
by 6.26 percentage points in the English ASR task.
Notably, we find that the synthetic speech with all
levels of variations, i.e. new prosody, new speak-
ers, and even new content (despite the new content
being mostly babble), accounts for significant per-
formance improvement. The code is available at
github.com/Hertin/DiffS4L.

1. Introduction
Self-supervised learning (SSL) in speech has greatly re-
duced the reliance of speech processing systems on large-
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scale annotated corpora. By pretraining a speech represen-
tation network on a large-scale unannotated dataset, SSL
models only require a relatively small annotated dataset
for finetuning, which has significantly improved the effi-
ciency and feasibility of speech processing, particularly for
low-resource languages. However, the success of such meth-
ods still hinges on the availability of a large-scale unan-
notated corpus. For example, the training of HuBERT
(Hsu et al., 2021), one of the most widely-used speech
pretraining models, typically requires that the unannotated
corpus contains at least 1,000 hours of speech. If the dataset
size drops to 100 hours, it tends to perform significantly
worse. Yet, in many scenarios, obtaining such a large-scale
dataset is impractical due to various constraints, e.g., low-
resource languages, privacy concerns, etc. There have been
many research attempts that perform data augmentation on
training/pre-training data, but most of them perform pertur-
bations to the real speech data, such as adding noise, and do
not introduce many new speech variations, such as prosody,
speaker, and content, which are important for SSL.

In situations where the pretraining dataset is limited, it be-
comes crucial to maximize the amount of information cap-
tured from the dataset to achieve the best performance in
downstream tasks. Data augmentation can be regarded as in-
troducing new variations/combinations in speech, which can
supply new information to SSL. This raises the question –
do existing SSL techniques have a high enough information
efficiency? Could there be additional information that SSL
models fail to capture, which would otherwise contribute to
a better performance in downstream tasks? If so, could we
design a data augmentation technique that can supply the
overlooked information?

On the other hand, generative models are also often consid-
ered models that capture distributional information about
data. Recently, diffusion models (Ho et al., 2020; Song et al.,
2021), with their superior performance in computer vision,
have quickly attracted wide research attention. Researchers
have found that compared to other generative models, diffu-
sion models can generate samples with much better global
coherence (Li et al., 2022b) and local details (Dhariwal &
Nichol, 2021), an indication that diffusion models may be
able to capture more complete information from a limited
dataset that could complement those learnable by existing
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SSL methods.

Motivated by this, in this paper, we conduct an extensive
exploration of using synthetic data generated by diffusion
models to improve the performance of existing SSL meth-
ods in a low-resource setting. In particular, we propose a
Synthetic Speech Self-Superised Learning algorithm called
DIFFS4L. DIFFS4L introduces a diffusion model, which
learns from a given small pretraining dataset and then ex-
pands it into a much larger synthetic dataset. The new
dataset contains synthetic speech utterances with different
levels of variations from the original annotated speech, in-
cluding speech with 1) novel prosody, 2) novel speakers,
and 3) novel content compared with the original speech.
Finally, the synthetic dataset is used to pretrain SSL models
using existing algorithms. Since the diffusion model only
has access to the information in the original real dataset, the
entire process can be viewed as restructuring and recreating
the information in the original pretraining dataset into a
more digestible form for existing SSL methods.

Our experiments on DIFFS4L reveal many interesting find-
ings. DIFFS4L can significantly improve the performance
of existing SSL algorithms over models pretrained on the
real data alone across low-resource and high-resource sce-
narios. In English ASR, for example, with 100 hours of
real data, DIFFS4L can reduce the WER by 6.26 percentage
points for HuBERT pretrained models, which is a 26.4%
relative improvement. For low-resource language, we show
that by further pretraining multi-lingual pretraining mod-
els, XLSR, on 100 hours of real speech plus 860 hours of
DIFFS4L augmented speech in the low-resource language
before fine-tuning it on ASR in that language, the WER
can be improved by 1-3 percentage points compared to di-
rectly finetuning XLSR on low-resource ASR. Notably, the
babbles generated by diffusion models, which are complete
nonsense to humans, can account for a significant portion of
the performance improvement, while babbles generated by
other generative models, such as WaveNet (van den Oord
et al., 2016), only deteriorate the performance. These find-
ings suggest the information in pretraining datasets has been
under-utilized, and diffusion models are very effective in
capturing the information that has been overlooked by exist-
ing SSL training methods and other generative models.

2. Related Work
Data Augmentation with Synthetic Data Training neural
networks with synthetic data to improve performance has
been extensively studied in various computer vision tasks
such as visual representation learning (Baradad Jurjo et al.,
2021; Jahanian et al., 2021; Wu et al., 2022; Kataoka et al.,
2022), image classification (Gan et al., 2021; Mikami et al.,
2021), object detection (Peng et al., 2015; Prakash et al.,
2019; Chattopadhyay et al., 2022), anomaly detection (Tsai

& Wang, 2022), semantic segmentation (Ros et al., 2016;
Wang et al., 2020), action recognition (De Souza et al.,
2017; Varol et al., 2021), visual reasoning (Johnson et al.,
2017), and embodied perception (Kolve et al., 2017; Savva
et al., 2019; Xia et al., 2018). Recently this direction is also
studied in NLP tasks such as machine translation (Downey
et al., 2022) and language model pretraining (Yao et al.,
2022) and finetuning (Steinert-Threlkeld et al., 2022).

Augmenting datasets with synthetic data has been shown
effective in improving speech processing systems. One
research direction modifies speech waveforms by adding
random noise (Amodei et al., 2015), warping spectrogram,
masking blocks of spectrograms in frequency and time do-
mains (Park et al., 2019), modifying pitch and adding rever-
beration (Kharitonov et al., 2020), and disentangling speaker
information from speech content (Qian et al., 2022).

Another line of research augments the dataset using speech
data generated from speech synthesizers and reports im-
provement on speech translations (Zhao et al., 2022), fake
audio detection (Li et al., 2022a), and speech recognition
(Hayashi et al., 2018; Mimura et al., 2018; Li et al., 2018;
Rossenbach et al., 2020; Violeta et al., 2022; Jin et al., 2022;
Krug et al., 2022; Zevallos et al., 2022), etc. Zheng et al.
(2021) use synthetic data to improve the recognition of out-
of-vocabulary words in ASR systems. Zhao et al. (2022)
generate synthetic training data by retrieving and stitching
clips from a spoken vocabulary bank. Li et al. (2018) train
a TACOTRON-2 (Shen et al., 2018) conditioned on Global
Style Tokens (Wang et al., 2018) to generate speech with
different speaking styles. Jin et al. (2022) use a GAN-based
generator conditioned on dysarthric speech characteristics
to generate synthetic speech for dysarthric ASR. Krug et al.
(2022) generate articulatory speech for phoneme recogni-
tion. These works improve traditional task-specific speech
systems by generating additional paired speech and text
data while our work aims to improve general-purpose self-
supervised speech representations without additional text
data that benefits downstream ASR and other speech-related
tasks.

Denoising Diffusion Probabilistic Models for Speech
Denoising diffusion probabilistic models (DDPMs) have
recently demonstrated great power in image synthesis (Ho
et al., 2020; Dhariwal & Nichol, 2021) and image impaint-
ing (Lugmayr et al., 2022) tasks. Recently various DDPM-
based vocoders and text-to-speech (TTS) synthesizers have
been proposed (Chen et al., 2021a;b; Kong et al., 2020b;
Lam et al., 2022; Huang et al., 2022a;b) and achieved high
quality. WAVEGRAD (Chen et al., 2021a) and DIFFWAVE
(Kong et al., 2020b) are two concurrent works that study
the DDPM-based vocoder to synthesize audio waveform
from spectrograms; WAVEGRAD uses a neural architecture
inspired by GAN-TTS (Bińkowski et al., 2019) and DIF-
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Figure 1. The algorithm overview. Solid arrows represent the data flow that generates the synthetic dataset. Dashed arrows mark the
dataset on which each network is trained.

FWAVE inspired by WAVENET. FASTDIFF (Huang et al.,
2022a) and PRODIFF (Huang et al., 2022b) are end-to-end
TTS systems that use FASTSPEECH (Ren et al., 2020), a
transformer-based TTS encoder, to extract text feature to
condition the DDPM and adopts the noise scheduling algo-
rithm proposed in BBDM (Lam et al., 2022) to shorten the
sampling steps for fast speech synthesis. Our work utilizes
a DDPM-based unit-to-speech synthesizer that is adapted
from the DDPM synthesizer in Huang et al. (2022a) by ex-
panding its conditioning on discrete speech units extracted
from true speech to allow for fine-grained control over the
synthesized content.

3. The DIFFS4L Algorithm
In this section, we will formally introduce our proposed
DIFFS4L algorithm to improve the speech self-supervised
learning problem under a low-resource scenario.

3.1. The Algorithm Overview

Assume that we have an unannotated corpus for pre-training
an SSL model, denoted as D′ potentially with limited data
size. Denote a speech utterance from this corpus as X.
For example, assume that the speech dataset contains an
utterance saying ‘How are you?’, then X represents the
speech waveform or spectrogram of this utterance, depend-
ing on what input feature the SSL model takes. The goal of
DIFFS4L is to generate multiple synthetic speech utterances
based on each of the real speech utterances X. The resulting
synthetic speech forms a much larger dataset Dsyn, which
is then used to pre-train the speech representation network.
As shown in Figure 1, the algorithm consists of four steps.

Step 1: Use D0 to train an initial speech representation
network f0(·), which can produce a primitive speech repre-
sentation, denoted as R0 = f0(X).

Step 2: Use D0 to train a diffusion-model-based speech
synthesizer g(·), which generates synthetic speech X̃ con-
ditional on the partially masked primitive speech represen-
tation R0 and speaker identity, denoted as I, i.e., X̃ =

g(R0, I). The speaker identity I can be obtained in two
ways. If D0 comes with speaker labels, then I can be a one-

hot embedding of the speaker label, or a learned speaker
embedding corresponding to the speaker label. If D0 does
not have speaker labels, then I can be produced by feed-
ing the seed utterance to a pre-trained speaker encoding
network, such as GE2E (Wan et al., 2018), which would
produce a speaker embedding.

Step 3: For each utterance X in D0, manipulate its speech
representation R0 and speaker identity I, and then fed to
the speech synthesizer to generate utterances with different
levels of variations. Denote the resulting dataset as Dsyn.

Step 4: Use Dsyn to train a new speech representation
network.

It is worth noting that the diffusion model only has access to
the original pretraining dataset D0 during training and gener-
ation, so the synthetic dataset Dsyn would contain no more
information than D0, but may restructure and recreate it in a
way that is more beneficial for SSL with existing methods.
The following subsection will provide more details on steps
1-3, respectively.

3.2. Primitive Speech Representation

In our setting, the size of D0 is very small. We adopt the
WAV2VEC2.0 (Baevski et al., 2020) for our primitive speech
representation learning because it has stable performance
in low-resource scenarios. Note that the algorithm used to
train the final speech representation network (step 4) need
not be the same as the one for the primitive speech repre-
sentation learning. After the WAV2VEC2.0 is trained, we
elicit the 5th-layer feature and quantize it into 500 classes
using k-means, which becomes the primitive speech repre-
sentation R0 for the subsequent steps. The resulting discrete
speech representation is shown to preserve content informa-
tion while obscuring speaker identity (Polyak et al., 2021)
and pitch information (Choi et al., 2021). A discussion on
choosing the number of clusters is provided in Appendix A.

3.3. Diffusion-Model-Based Speech Synthesizer

Diffusion models refer to a family of generative models
that denoise from noise signals into clean signals through
multiple denoising steps. In this work, we adopt the canon-

3



Speech Self-Supervised Learning Using Diffusion Model Synthetic Data

Original $ Original #! Replaced $Original #!

& = 10

Masked #!

& = 5 & = 3 & = 0

Figure 2. The intermediate denoising spectrograms of a 20-step DDPM denoising process. As t decreases to zero, the spectrograms
transform from white noise to a speech spectrogram.

ical denoising diffusion probabilistic model (DDPM) (Ho
et al., 2020) to generate a speech spectrogram. Specifically,
DDPM introduces a set of intermediate variables forming a
Markov process, denoted as X0:T , where X0 is the original
speech spectrogram, and Xt is corrupted from Xt−1 with
Gaussian noise:

q(Xt|Xt−1) = N (Xt;
√

1− βtXt−1, βtI), (1)

where βt is a hyperparameters. It can be shown that with
a proper βt schedule, XT is very close to standard Gaus-
sian noise. To generate X0, we randomly sample XT from
the standard Gaussian distribution, and sequentially recover
XT−1 through X0, as visualized in Figure 2, via the follow-
ing denoising process:

pθ(Xt−1|Xt,C) = N (Xt−1;µθ(Xt, t,C), σtI), (2)

where µθ is produced by a (reparameterized) denoising
network, and σt can be computed from βt.

C represents the conditioning information for the denois-
ing network. In this paper, we introduce two models with
different levels of conditioning: a fully-conditional model
and a partially-conditional model. For the fully-conditional
model, the denoising network is conditioned upon the en-
tire primitive speech representation R0, so that the diffusion
model will generate speech that follows the content depicted
in R0. For the partially-conditional model, the denoising
network is still conditioned upon R0, but with a consecutive
span of 80% of the frames masked out. In this case, the
diffusion model will follow the content in R0 only where
it is unmasked, and try to generate novel content that fits
into the given context at the remaining frames. These two
models are both crucial in generating synthetic data with
different levels of variations.

Besides R0, both models are also conditional on speaker
labels I, which can be either one-hot vectors or speaker
embeddings produced by a pre-trained speaker embedding
network, depending on whether D0 comes with speaker
labels. We will compare different conditioning settings in
Section 4.

To convert the spectrograms into speech waveforms, we
adopt a HifiGAN (Kong et al., 2020a), which is also trained
only on the small dataset D0.

3.4. Synthetic Speech Generation

The synthetic speech generation uses the original speech
dataset D0 as seeds. Specifically, we first draw a speech
utterance from D0 as the seed speech, eliciting its primitive
speech representation R0 and speaker identity I, and then
generate a synthetic utterance by feeding a modified version
of these conditioning variables to the diffusion model syn-
thesizer. When designing the modification schemes for the
conditioning variables, we primarily consider the tradeoff
between novelty and naturalness – if the generated speech
is identical to the original utterance, we can achieve maxi-
mum naturalness but introduces no new information to the
dataset; if the generated speech is a complete babble, we
can introduce maximum novelty but may significantly com-
promise naturalness. Therefore, we introduce the following
four different levels of novelty, as shown in Figure 3:

• Original Speech (O): The seed speech is directly copied
to the synthetic dataset without modification, as shown in
Figure 3(a). No resynthesis is involved for this level.

• Same Speaker (SS): R0 and I are fed as is to the fully-
conditional diffusion model. The resulting synthetic
speech is almost the same as the seed speech. However,
since R0 tends to obscure the pitch information, the syn-
thetic speech will be in a different intonation, as shown in
Figure 3(b).

• Novel Speaker (NS): R0 is still fed as is to the fully-
conditional diffusion model, but I is replaced with a dif-
ferent speaker ID. As a result, the synthetic would still
have the same content, but in a different voice and intona-
tion, as shown in Figure 3(c).

• Novel Content (NC): We mask out a consecutive span
of 80% frames in R0 and replace I before feeding them
to the partially-conditional diffusion model. As shown
in Figure 3(d), the synthetic speech is almost completely
different from the seed speech in terms of content, speaker,
and prosody, except for the content information in the 20%
unmasked frames. The utterances are almost nonsensical
babbles to human listeners. We are thus interested in
seeing whether utterances at this high level of randomness
could still contribute to SSL.

As we will show, all four levels of the speech are beneficial
for the subsequent speech pretraining and thus should all
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Figure 3. An example of synthetic utterances at different levels of variations. The transcription of the original utterance is ‘There were no
ferries and hobgoblins about’. The yellow dashed lines on the spectrogram in (d) mark the boundaries of the masks on R0.

be included into Dsyn with appropriate ratios. We have
included additional spectrograms in Appendix B, as well as
some generated audio files in the supplemental materials.
We also perform 1) an ASR experiment, which verifies
that the content in NC speech is different from the original
speech, while that in NS is the same; and 2) an automatic
speaker verification (ASV) experiment, which verifies that
the speakers in NC and NS speech are different from the
original speakers. The results are listed in Appendix C.

4. Experiments
In this section, we will present our experimental results
on training different SSL models integrating DIFFS4L.
Some additional experimental results are presented in the
appendix.

4.1. Configurations

Pretraining Dataset For the experiments in En-
glish, the methods to be evaluated are pretrained on
Librispeech-960 dataset (Panayotov et al., 2015). We
consider two settings, the low-resource setting and the high-
resource setting. For the low-resource setting, the seed
dataset D0 for training Steps 1 and 2 contains only 100
hours of real speech from the train-clean-100 subset.
The synthetic dataset Dsyn contains 1) 100 hours of real
speech; 2) 430 hours of SS/NS speech, which is generated
by replacing the speaker ID with a uniformly randomly cho-
sen one from all the speakers in D0 can be the same as the
original speaker); and 3) 430 hours of NC speech. We de-
liberately make the total hours of speech in Dsyn equal to
960 so that we can compare to the common setting with 960
hours of real speech. In the following, we will use x+ y+ z

notation to represent the hours of real speech (x), SS/NS
speech (y), and NC speech (z) respectively. So the above
Dsyn composition is represented as 100 + 430 + 430. For
the high-resource setting, D0 contains all 960 hours of real
speech from Librispeech-960 and the dataset compo-
sition of Dsyn is 960 + 960 + 480. We explore other dataset
compositions in Section 4.6.

Evaluation Tasks We consider two sets of tasks, auto-
matic speech recognition (ASR) and the SUPERB bench-
mark (Yang et al., 2021). For ASR, we use the ‘base 10h’
configuration file in FAIRSEQ for WAV2VEC2.0 and HU-
BERT fine-tuning on a 10-hour limited supervision dataset.
We follow the same finetuning procedure as in Baevski et al.
(2020) and Hsu et al. (2021) where we add a linear pro-
jection layer on top and finetune with the CTC loss. For
SUPERB, which is a collection of speech-processing tasks,
we evaluate our models on KS (keyword spotting), IC (intent
classification), SID (speaker identification), ER (emotion
recognition), Qbe (query by example spoken term detec-
tion), SF (slot filling), ASV (automatic speaker verification)
and SD (speaker diarization), We did not include the ASR
and PR (phoneme recognition), because they overlap with
the first task.

Evaluation Models For both the high-resource (960h real)
and low-resource (100h real) settings, we compare the fol-
lowing four models:

• WAV2VEC2/HUBERT-DIFFS4L: WAV2VEC2.0
(Baevski et al., 2020) and HUBERT (Hsu et al., 2021)
pretrained on the synthetic dataset produced by the
proposed DiffS4L procedure;

• WAV2VEC2/HUBERT-REAL: WAV2VEC2.0 and HU-
BERT pretrained on real speech only.

In addition, for the low-resource setting, we add three mod-
els for better comparison:

• WAV2VEC2/HUBERT-ONEHOT: In DIFFS4L Models,
we use the pretrained GE2E speaker embedding (Wan
et al., 2018). To study whether this would leak informa-
tion of more real speech data, we replace it with one-hot
speaker embedding.

• WAV2VEC2-AUG: Wav2vec2.0 pretrained on 100-hour
real data augmented by adding reverberation, Gaussian
noise, and modifying the pitch of the speech samples
(Sriram et al., 2022).
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Table 1. Main results on (a) English automatic speech recognition and (b) SUPERB benchmark. The bolded results show the best
performance among all but the topline models.

ENGLISH SUPERB
ASR KS IC SID ER QBE SF ASV SD

TASK/METRIC CER↓ WER↓ ACC↑ ACC↑ ACC↑ ACC↑ MTWV↑ F1↑ CER↓ EER↓ DER↓
HIGH-RESOURCE SETTING (960-HOUR REAL SPEECH)
WAV2VEC2-REAL 3.18 10.49 96.23 92.35 66.20 60.55 0.0233 87.64 25.37 6.67 6.65
HUBERT-REAL 3.03 10.30 96.30 98.26 66.27 60.74 0.0736 88.53 25.20 5.80 6.30
WAV2VEC2-DIFFS4L 2.98 9.93 96.17 94.73 65.79 61.29 0.0630 88.50 24.71 6.60 6.63
HUBERT-DIFFS4L 2.95 9.87 96.47 98.50 64.36 61.40 0.0766 88.93 24.03 5.78 6.26

LOW-RESOURCE SETTING (100-HOUR REAL SPEECH)
WAV2VEC2-REAL 7.37 23.48 91.92 88.64 47.68 58.99 0.0311 81.31 37.06 8.78 8.45
HUBERT-REAL 7.43 23.71 91.82 78.43 57.53 61.84 0.0419 78.87 40.69 8.91 8.53
WAV2VEC2-AUG 6.92 22.06 92.18 92.83 48.65 58.34 0.0377 81.99 36.39 8.37 8.84
WAV2VEC2-DIFFS4L 5.19 16.67 93.57 91.01 45.41 59.86 0.0331 83.13 33.60 8.02 7.14
WAV2VEC2-ONEHOT 5.19 16.65 93.23 91.41 48.94 61.64 0.0364 83.00 34.64 8.14 7.28
HUBERT-DIFFS4L 5.33 17.45 94.68 95.94 44.22 62.02 0.0469 84.61 32.68 7.42 7.09
HUBERT-ONEHOT 5.36 17.47 94.26 95.89 44.25 62.60 0.0445 83.98 32.33 7.64 7.44

Implementation Details The entire training pipeline
is constructed based on two existing code repositories:
FAIRSEQ (Ott et al., 2019) and PRODIFF (Huang et al.,
2022b). The code and configuration files are uploaded to
GitHub1. We follow the same procedure as in Baevski
et al. (2020) and Hsu et al. (2021) to pretrain all the
WAV2VEC2.0 and HUBERT models using FAIRSEQ. All
the WAV2VEC2.0/HUBERT models are trained for 400k
updates with a learning rate of 5× 10−4. We use the base
model of WAV2VEC2.0 and HUBERT, which contain 12
Transformer layers and 95M parameters. For HUBERT, we
adopt two rounds of training; the first round uses a K-Means
teacher of 500 clusters on the 80-bin mel-spectrogram and
the second round uses a K-Means teacher of 500 clusters on
the HUBERT feature from the first round.

The speech synthesizer is based on the code of the PRODIFF-
TTS model implemented in PRODIFF, which consists of
a FASTSPEECH2 encoder and a DDPM. We remove the
Energy Predictor, Pitch Predictor in the FASTSPEECH2 en-
coder, and replace the Duration Predictor that aligns the text
with mel-spectrogram with an upsampling network that re-
samples the HUBERT units from 50Hz to 62.5Hz to match
the length of mel-spectrogram. The DDPM models a 20-
time-step forward and reverse Gaussian diffusion process
on the mel-spectrogram, conditioned on the FASTSPEECH2
encoder outputs. Both the fully- and partially-conditional
diffusion models are trained for 200k iterations. To convert
the mel-spectrogram into a speech waveform, we apply the
HIFIGAN vocoder (Kong et al., 2020a), which is trained on
the same real dataset D0 for 1M iterations.

More implementation details are included in Appendix D.

1https://github.com/Hertin/DiffS4L

4.2. Main Results

Table 1 reports the character error rate (CER) and word error
rate (WER) of the ASR task and the performance on the
SUPERB tasks. There are four key observations. First, in
both low-resource and high-resource scenarios, pretraining
on DIFFS4L-synthetic data consistently improve the perfor-
mance of almost all downstream tasks, compared to pretrain-
ing on the real speech portion only. Second, performance
improvement is particularly significant in low-resource sce-
narios. This confirms that DIFFS4L more thoroughly uti-
lizes the information in the same real speech dataset that is
otherwise overlooked by SSL models. Third, Wav2vec2.0-
based systems perform slightly better in ASR tasks, whereas
HuBERT-based systems do better in SUPERB tasks. Ad-
ditional results in Appendix E and F further verify that the
performance advantage is consistent with and without lan-
guage models, across different sizes of the finetuning dataset,
and with different choices of diffusion models. Appendix G
presents the results of DIFFS4L trained with just 20 hours
of real speech, which further demonstrate the advantage of
DIFFS4L in low-resource settings.

Second, models utilizing one-hot speaker embeddings
demonstrate similar performance to those using GE2E em-
beddings, confirming that the performance advantage of
DIFFS4L does not come from the leakage of the GE2E
pretraining dataset. To be fair, DIFFS4L does need speaker
information or labels whereas the baseline pretraining meth-
ods do not. It is worth emphasizing, though, that DIFFS4L
only converts the speaker identity to the seen speakers in
the original real dataset. It does not introduce new speakers.

Third, DIFFS4L systems consistently outperform
WAV2VEC2-AUG, suggesting that DIFFS4L better capture
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Figure 4. CER/WER across data compositions by varying the ratios
of SS/NS and NC speech, ranging from 100+860+0 to 100+0+860.

the information and variations in the real speech than signal-
processing-based augmentation. Since WAV2VEC2-AUG is
designed for WAV2VEC2.0 and does not have a HUBERT
counterpart implementation, we self-implemented a
HUBERT version denoted as HUBERT-AUG and test it on
English ASR task under low-resource setting. The resulting
CER/WER is 7.012/22.716, which is worse than that of
HUBERT-DIFFS4L .

Finally, comparing WAV2VEC2-REAL in 960-hour setting
and WAV2VEC-DIFFS4L in 100-hour setting which aug-
ments the dataset to 960 hours, we would like to note that
the DIFFS4L models trained on the synthetic dataset still
underperform those trained on the same amount of the real
speech data.

4.3. Extension to Other Languages

To test whether the performance improvement of DIFFS4L
can generalize to other languages, we select all the
seven non-English languages from the Mulingual
LibriSpeech (MLS) dataset (Pratap et al., 2020) and six
languages from the Commonvoice dataset (Ardila et al.,
2019). The languages in the Commonvoice dataset are
chosen based on the criterion that they have just over 100
hours of validated data in the dataset. For each language in
MLS, we sample 100 hours from training split for pretain-
ing and use the limited supervision subset for finetuning.
Both cases use the provided dev and test split for valida-
tion and testing. For each language in CommonVoice, we
create a 100-hour split for pretraining, and a 10-hour split
for finetuning. The provided dev and test split are used for
validation and testing, respectively. We only evaluate the
WAV2VEC2.0 systems due to the substantial time cost for
pretraining and due to our observation that the relative im-
provements in both WAV2VEC2.0 and HUBERT are similar.
Also, since most of these languages do not have 960 hours
of data, we cannot compute the topline results, so we show
only the baseline and DIFFS4L models.
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Figure 5. Performance over different synthetic dataset sizes,
100+x+0, where x ranges from 0 to 1820.

Table 2 demonstrates a consistent performance advantage of
DIFFS4L across all the languages. In particular, DIFFS4L
can reduce the CER by an average of 2.6 percentage points,
and WER by an average of 8.3 percentage points, which is
a significant improvement for ASR. Notice that these lan-
guages are from different language families and each has
very unique phonetic, lexical, and syntactic structures, so
these results show that the diffusion models can successfully
capture various structures in all these languages. Additional
results in Appendix H show that the performance gain is
consistent across different dataset partitions and composi-
tions.

4.4. Extension to Large Multi-lingual Pretraining

So far, all our experiments are performed on models pre-
trained in at most 960 hours of English only. We would like
to find out whether DIFFS4L is still useful if the pre-trained
model sees even more data in many languages. To this end,
we select a multilingual pre-trained model XLSR-128 (Babu
et al., 2021), which is pretrained on 128 languages. We then
use the six low-resource languages from Commonvoice
for finetuning. For each language, we derive two other
pre-trained models, one by further pre-training the XLSR
models on 100 hours of the low-resource data, and the other
by further pre-training on 100 hours of low-resource data
plus the DIFFS4L-augmented data. All three pre-trained
models are then finetuned on the ASR task with 10 hours of
labeled data, and the results are reported in Table 4, which
shows a clear advantage of DIFFS4L despite the abundance
of pre-training data.

Appendix I presents additional multilingual experiments
using XLSR-53 (Conneau et al., 2020) pretrained on 53
languages and Appendix J presents cross-lingual pretaining
experiments using WAV2VEC2 models pretrained on 60k-
hour English corpora and the results of both yield a similar
conclusion. Appendix K provides the training schemes in to-
tal numbers of hours of pretraining and finetuning resources
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Table 2. ASR results (CER/WER) on selected languages from MLS and CommonVoice. The languages are (from left to right, top to
bottom) English, German, Spanish, French, Italian, Dutch, Polish, Portuguese, Bashki, Central Kurdish, Welsh, Meadow Mari, Swahili,
and Tamil.

LANGUAGES EN DE ES FR IT NL PL

WAV2VEC-100R 7.4/23.5 8.3/30.4 7.1/27.2 16.2/45.5 8.3/35.1 17.8/50.9 11.4/44.2
WAV2VEC-DIFFS4L 5.2/16.8 6.4/23.3 4.5/16.7 11.9/34.8 6.2/27.2 14.7/44.8 7.1/31.0

LANGUAGES PO BA CKB CY MHR SW TA

WAV2VEC-100R 13.8/45.8 10.2/43.8 7.2/39.0 20.6/62.1 10.7/45.4 8.8/31.5 9.2/47.2
WAV2VEC-DIFFS4L 8.9/37.1 8.9/37.1 6.7/29.7 16.7/52.3 9.4/37.5 7.0/25.9 7.5/41.0

Table 3. ASR Performance on improving multilingual XLSR-128 models.
MODEL BA CKB CY MHR SW TA

XLSR-128 6.69/31.28 4.62/24.46 11.05/41.11 7.51/33.31 6.04/24.49 6.94/41.26
XLSR-128-100R 6.45/30.28 4.59/25.00 10.81/40.68 7.09/31.66 5.81/24.48 6.81/41.09
XLSR-128-DIFFS4L 6.32/29.77 4.29/21.69 10.44/39.31 6.91/30.10 5.73/24.20 6.79/40.86

Table 4. ASR Performance of WAVLM, DIFFS4L and WAVLM-
DIFFS4L pretrained on 100 and 960 hours of real speech.

100H REAL 960H REAL

WAVLM 5.88/18.38 2.98/9.92
HUBERT-DIFFS4L 5.19/16.65 2.95/9.87
WAVLM-DIFFS4L 4.31/13.69 2.89/9.62

for multilingual experiments.

4.5. Combination with Other Augmentation Techniques

Since DIFFS4L is a generic approach that can be applied to
many SSL procedures, it can be combined with approaches
that consider other speech variations, such as noises and
recording conditions. We introduce an experiment that com-
bines DIFFS4L with WAVLM (Chen et al., 2021c), an SSL
approach considering additive interference. The combined
model is denoted as WAVLM-DIFFS4L. The results are in
Table 4. From the table, there are two observations. First,
DIFFS4L can outperform WAVLM in both low- and high-
resource scenarios, and the performance gap is greater as
the resource gets more scarce. Second, when the two ap-
proaches are combined, we achieve an even more significant
performance gain, which indicates that DIFFS4L can indeed
complement the conventional additive data augmentation
and further improve the performance.

4.6. Dataset Composition

In the low-resource setting, the dataset composition is fixed
to 100+430+430 (recall the three numbers are the hours of
real speech, SS/NS speech, and NC speech respectively).
To better understand the contribution of each component,

we perform an ablation study where we change the dataset
composition. To keep our computation tractable, we only
perform experiments on WAVE2VEC2.0 and on the English
ASR tasks in all the remaining ablation studies.

In our first experiment, we fix the total hours of the dataset
to 960 and fix hours of real data to 100, but we vary the
ratio of the SS/NS and NC from 100+860+0 to 100+0+860.
The results are shown in Figure 4. There are two important
observations. First, the performance curve exhibits a U-
shape, with the lowest CER and WER achieved when both
SS/NS and NC are of comparable amounts. This indicates
that both the recombination of speaker information and the
innovation of content plays a crucial role in improving the
performance of SSL models. In particular, note that NC
data is essentially nonsensical babbles reflecting the limited
knowledge of phone transitions learned by the diffusion
models from the small real dataset, and that one of the
purposes of SSL models is also to learn the phone transition
structures. The fact that the nonsensical babble can still
help the SSL performance implies that the existing SSL
algorithms cannot effectively utilize all the phone transition
information in the original real dataset.

Our second observation of Figure 4 is that comparing the
two extreme cases, the performance without the SS/NS data
(the left endpoint) is worse than that without the NC data
(the right endpoint). Recall that SS/NS data are generated
conditional on the true content information and therefore are
of high quality, whereas NC data generally sound messier
and noisier. This observation may be ascribed to the quality
differences in the synthetic data.

Now that we have verified the contribution of synthesizing
novel content, we will investigate the effect of synthesizing
novel speaker combinations in the next experiment. In par-
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Table 5. English ASR performance of WAV2VEC pretrained on
DIFFS4L-generated data versus that on WAVENET-generated data.

COMPOSITION DIFFS4L WAVENET

100+860+0 5.58/17.43 6.07/18.95
100+430+430 5.19/16.67 6.71/21.90
100+0+860 7.88/24.91 12.57/39.02

Table 6. Performance over different augmentation schemes.

MODEL ENGLISH ASR

WAV2VEC-DIFFS4L 5.19/16.67
WAV2VEC-SS 6.91/21.69
WAV2VEC-NOREAL 18.26/52.79

ticular, we start with the standard dataset composition, i.e.
100+430+430, but instead, we do not replace the speaker
in any of the synthesis types; hence there is no longer NS
data and the NC data has reduced speaker variations. The
result, shown in Table 6 (WAV2VEC-SS), shows a marked
performance degradation (1.7 percentage points in CER and
5.0 percentage points in WER) compared to the standard
dataset composition, which verifies that the novel speaker
combination is crucial to the performance.

Finally, to test the contribution of including the original
dataset, we remove the real data and expand the synthetic
data proportionally to 960 hours, i.e. 0+480+480. The result,
as shown in Table 6 (WAV2VEC-NOREAL), shows an even
larger performance degradation. In fact, we find that without
the real data, the SSL training is hard to converge. This
shows that including the real data is essential for successful
SSL training with synthetic data.

4.7. Dataset Size

Since we have verified that synthetic data improve SSL train-
ing, a natural follow-up question is whether the more syn-
thetic data the better. To answer this question, we fix the real
data to 100 hours and NC data to 0 hours but vary the hours
of SS/NS data, i.e., 100+x+0, with x ranging from 0 to 1820.
Figure 5 shows the corresponding WAV2VEC results on
English ASR. As shown, the performance does not always
improve as the amount of synthetic data increases. When
synthetic data is small, increasing synthetic data can dras-
tically improve performance. However, as synthetic data
continues to increase, the performance gradually saturates
and then starts to degrade, with the optimal performance
achieved at around 630 hours. Combining the previous re-
sults, we can conclude that although adding synthetic data
can inject new knowledge and variations, adding too much
can dilute the contribution of the real data, which have been
shown essential for the training, and hence will negatively
impact the performance.

4.8. Comparison with WaveNet

To generate the NC babbles, we randomly select 3 seconds
of real speech as the prompt and use the partially conditional
WAVENET to generate the subsequent waveforms condi-
tional on I. We then pretrain WAV2VEC2.0 using three
synthetic data compositions, 100+860+0, 100+430+430,
and 100+0+860, and compare the English ASR results with
the diffusion model counterparts, as shown in Table 5. As
shown, both WaveNet results are worse than the correspond-
ing diffusion model ones, which suggests that WAVENET-
generated speech may have a lower overall quality. Ap-
pendix L compares the distributional distance of DIFFS4L-
and WAVENET-generated speech to the source real speech
and provides additional evidence for this hypothesis. More
importantly, unlike the case of diffusion models, where
an adequate amount of NC babble improves performance,
WAVENET-generated NC babbles are always detrimental
to performance. This comparison underlines the unique
advantage of the diffusion model in generating babble that
better captures the inherent structure in speech.

5. Conclusion
In this study, we examined SSL from an information ef-
ficiency perspective and found that performance can be
greatly improved by utilizing the information present in
the pretraining dataset, particularly in low-resource settings.
We discovered that synthetic data is an effective way to
extract information and enhance SSL performance. Specifi-
cally, diffusion models were found to be particularly capable
of capturing complex structures in speech that traditional
pretraining methods cannot; thus even synthetic babbles
contain valuable information for SSL training. DIFFS4L
opens the door to a new approach to speech SSL. One lim-
itation of DIFFS4L is that it is a time-consuming process,
as it involves training of multiple networks sequentially. As
a next step, we plan to investigate more efficient methods
of information sharing between diffusion models and SSL
models to reduce the need for synthetic data generation and
prolonged pretraining.

Impact Statement
This paper presents work whose goal is to improve the per-
formance of speech processing systems, including speech
recognition, speaker identification, etc., particularly for low-
resource languages. Therefore, this work is expected to
benefit low-resource languages by extending the AI process-
ing capabilities to these languages. There is no significant
negative impact associated with this work.
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A. Number of Clusters for Speech Units

Table 7. ASR performance across the number of clusters for speech units.

#CLUSTERS 100 200 300 500

CER/WER 32.9/51.0 27.9/43.7 28.3/42.2 23.0/34.1

In the preliminary experiment, we train a WaveNet conditioned on the speech units of 100, 200, 300 and 500 clusters, to
synthesize the English speech. We then measure the quality of synthesized speech using a WAV2VEC2-CTC model. The
results are show in Table 7. The 500-cluster speech units yield the best ASR performance, indicating the 500-cluster units
better capture the speech information.

In addition, we perform the ABX test from Zero Resource Speech Challenges 2020 (Dunbar et al., 2020; Lakhotia et al.,
2021) on the 500-cluster units and get the ABX within/across speaker score of 7.87/10.29, which is not too far away from
the 200-cluster ‘hubert l6’ units reported in Lakhotia et al. (2021), which has an ABX score of 5.99/7.31.

B. More Example Spectrograms of the Synthetic Speech
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Figure 6. Eight examples of synthetic utterances at different levels of variation. Each row is one utterance and each column is one variation,
original (O), same speaker (SS), new speaker (NS) and new content (NC) from left to right.

Figure 6 shows the spectrograms of some generated speech at different novelty levels. Each row represents the generated
audios from one seed speech. Each column represents a novelty level. As can be observed, as the novelty level progresses
from SS to NC, the generated speech becomes increasingly dissimilar to the original speech. In particular, the NC speech
barely preserves any structures in the original speech and is very close to babbles. We have also included some generated
audios in the supplemental materials. We encourage the readers to listen to these audios to get a more direct sense of the
quality and stochasticity of the synthetic speech.
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C. Verification of Novel Content and Speaker Information in NC and NS Speech
For the speaker information, previous works (Polyak et al., 2021) have established that by having a discrete R0, the resulting
synthetic speech will follow the speaker control by I. If I is the same as the original speech, so would the voice in the
synthetic speech; if I is a different speaker, the voice would be in a different speaker as well. For the content information,
R0 provides the content information of the source speech if R0 is masked, the synthesizer would have no access to the
content information in the source speech, and thus the synthetic content would be random.

We perform ASR and ASV experiments to test whether the speaker and content are different from the original speech.
Specifically, to test whether the content is the same as the source speech, we perform ASR on the synthetic speech against
the transcription of the source speech. If the WER is high, that means the content in the synthetic speech is different from
the source speech.

Table 8. ASR error rates for NC and NS speech.

ASR NC NS

CER/WER 66.5/84.9 5.1/12.7

Table 8 shows the CER/WER results. As can be seen, NC has a very high CER/WER, indicating that its content is
significantly different from the original speech. On the other hand, NS, which only changes the speaker embedding while
retaining the conditioning on speech representation R0, has a low CER/WER, indicating that it has almost the same content
as the original speech.

Next, to test if the generated speech follows the control of the speaker embedding, we perform a speaker classification
experiment on the generating speech, using the speaker whose speaker embedding is conditioned upon to generate the
speech as the ground-truth labels. If the speaker classification accuracy is high, that means the voice of synthetic speech
follows the control of the speaker embedding.

Table 9. ASV Accuracy for NC and NS speech.

ASV NC NS

ACCURACY 88.7 89.3

Table 9 shows the speaker classification accuracy results. As can be seen, both accuracies are very high, confirming that the
voice follows the control of the speaker embedding. Consequently, if we feed the same speaker embedding as the original
speech, the synthesized speech will be in the same voice. If we feed a different speaker embedding, the synthesized speech
will be in a different voice.

D. Additional Implementation Details
The entire training pipeline is constructed based on two existing code repositories: FAIRSEQ2 (Ott et al., 2019), PRODIFF3

(Huang et al., 2022b).

Pretraining SSL models We use FAIRSEQ (Ott et al., 2019) to pretrain all the speech SSL models. In particular, We use
the same hyperparameter as specified in the ‘wav2vec2 base librispeech’ and ‘hubert base librispeech.yaml’ configuration
file in FAIRSEQ to pretrain WAV2VEC2 and HUBERT respectively. The training of WAV2VEC2 models requires 64 Tesla
V100-SXM2-32GB GPUs and that of HUBERT models requires 32 GPUs. The pretraining dataset for both models is
the 100-hour seed dataset, D0 for the initial speech representation network and is the augmented dataset Dsyn for the final
speech representation network as described in Sec 4.6 Dataset Composition. The SSL models are trained for 400k updates
with a learning rate of 5× 10−4. Each batch contains 1.4M audio samples. The checkpoint with the best validation loss is
selected for downstream tasks.

2https://github.com/facebookresearch/fairseq
3https://github.com/Rongjiehuang/ProDiff
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Finetuning SSL models We use the ‘base 10h’ configuration file in FAIRSEQ for WAV2VEC2.0 and HUBERT fine-tuning
on a 10-hour limited supervision dataset. We follow the same finetuning procedure as in Baevski et al. (2020) and Hsu et al.
(2021) where we add a linear projection layer on top and finetune with the CTC loss. The model is trained for 40k updates
on two V100-SXM2-32GB GPUs with each batch containing 3.2M audio samples and a learning rate of 5× 10−5. The
checkpoint with the best CER on the validation set is selected for further evaluation.

Training Diffusion Speech Synthesizer The speech synthesizer consists of a FASTSPEECH2 encoder and a 20-step
DDPM model. The FASTSPEECH2 encoder contains 4 Transformer encoder layers each with 4 heads. Using the initial
speech representation network, we extracted the speech units from D0 and substitute them for the text inputs. We replace
the Duration Predictor with an upsampling network consisting of a transposed convolution with a kernel size of 9, a stride
of 5, and a padding of 2, followed by a convolution layer with a kernel size of 8, a stride of 5, and a padding of 2, that
resamples the HUBERT units from 50Hz to 62.5Hz to match the length of 80-bin mel-spectrogram. The FASTSPEECH2
encoder encodes the speech units into hidden embeddings, which are combined with the broadcasted speaker embeddings to
condition the training and inference of the DDPM model. The speech synthesizer is trained for 200k iterations using one
V100-SXM2-32GB GPU with a batch size of 64 and a learning rate of 1. The synthesizer is optimized for the weighted sum
of L1 reconstruction loss and structural similarity index (SSIM) loss (Huang et al., 2022b) with the weight being 0.5 for
each loss. We use adam optimizer with β1 = 0.9, β2 = 0.98, and ϵ = 10−9 and inverse square root scheduler with 2000
warmup updates.

We use a HIFIGAN vocoder4 (Kong et al., 2020a) to convert mel-spectrogram to waveform. The vocoder is trained on the
same seed dataset D0 for 1M iteration using four V100-SXM2-32GB GPU.

E. Full ASR results on Librispeech English
We provide the full ASR results on Librispeech English dataset in Table 10, including the CER/WER evaluated on
dev-clean, dev-other, test-clean and test-other subset of LibriSpeech-960 dataset. The experiments
are labeled as ‘EN-X-Y’, where ‘X’ denotes the number of hours of untranscribed real speech for pretraining and ‘Y’
denotes the number of hours of transcribed real speech for finetuning. We use the 10-hour limited supervision set from
LibriLight for Y=10 and the ‘train-clean-100’ subset from LibriSpeech for Y=100. We additionally provide the results of
WAV2VEC-AUG in EN-100-10 for comparison with WAV2VEC2.0 and WAV2VEC-DIFFS4L.

Language Models It has been widely known that introducing language models will rectify the ASR results, and thus tend
to obscure the performance gap between different ASR algorithms. We therefore would like to see whether DIFFS4L is still
helpful in the presence of a language model. To this end, we introduce a 4-gram language model to the English ASR task.
As can be observed from the rows marked with ‘4-GRAM’ in Table 13, not only does the performance advantage persist
when the 4-gram language model is introduced, but also the gap is largely the same as that without the language model.
These results verify the robustness of DIFFS4L regardless of the use of the language models.

Size of Finetuning Dataset To study the impact of the size of the finetuning dataset on performance, we finetune SSL
models on the train-clean-100 subset of LibriSpeech-960 dataset and compare the results to those obtained from
the 10-hour supervision set of LirbriLight. We observe that in the 100-hour low-resource setting (EN-100-100) WAV2VEC-
DIFFS4L systems still have a relatively large gain compared to the baseline WAV2VEC-REAL. In the high-resource setting
(EN-960-100) where there is a sufficient amount of labeled speech, the gain diminishes.

F. Additional Experiment using EDM
We experiment with another diffusion model EDM (Karras et al., 2022) instead of DDPM to generate synthetic data.
The dataset configurations and evaluation procedures are exactly the same as described in Section 4 except that the
diffusion process is changed. The architecture of the speech synthesizer remains the same while the diffusion training and
inference pipeline follow the official implementation of EDM5. We keep the default hyperparameters of the original EDM
implementation except for the data standard deviation, which is calculated from our training data. The diffusion model
is trained for 300k iterations on eight V100-SXM2-32GB GPU with a batch size of 32 per GPU and a learning rate of

4https://github.com/jik876/hifi-gan
5https://github.com/NVlabs/edm
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Table 10. Full ASR results on Librispeech English dataset, including the CER/WER of WAV2VEC2.0 model pretrained on 100/960 hours
and fine-tuned on 10/100 hours. Results of WAV2VEC-AUG are included for EN-100-10 experiment for a comparison with WAV2VEC2.0
and WAV2VEC-DIFFS4L.

DEV-CLEAN DEV-OTHER TEST-CLEAN TEST-OTHER

MODEL LM CER WER CER WER CER WER CER WER

EN-100-10
WAV2VEC-REAL NONE 7.13 22.17 15.06 37.57 7.17 22.62 15.74 39.24

4-GRAM 9.79 19.91 18.45 36.05 9.80 20.20 19.40 37.71
WAV2VEC-AUG NONE 6.92 22.06 14.83 37.17 6.95 22.48 15.64 39.01

4-GRAM 9.24 19.36 18.28 36.02 9.47 19.64 19.22 37.35
WAV2VEC-SS/NS NONE 5.58 17.43 12.84 32.58 5.59 17.78 13.31 33.99

4-GRAM 7.84 15.41 15.92 31.26 7.91 15.74 16.47 32.54
WAV2VEC-DIFFS4L NONE 5.19 16.67 11.85 30.03 5.31 17.39 12.17 31.27

4-GRAM 7.70 15.00 14.99 28.73 7.57 15.01 15.40 29.91

EN-960-10
WAV2VEC-REAL NONE 3.18 10.49 6.69 18.03 3.07 10.39 6.64 18.53

4-GRAM 5.17 9.14 9.35 16.98 5.1 9.06 9.31 17.43
WAV2VEC-DIFFS4L NONE 2.98 9.93 6.31 17.19 3.03 10.14 6.27 17.55

4-GRAM 4.97 8.42 8.80 15.91 5.08 8.76 8.92 16.36

EN-100-100
WAV2VEC-REAL NONE 4.44 13.95 14.43 34.47 4.56 14.60 15.50 36.90

4-GRAM 6.42 12.25 17.62 33.44 6.67 12.87 18.81 35.75
WAV2VEC-DIFFS4L NONE 2.93 9.56 10.51 25.94 3.03 9.98 10.74 26.77

4-GRAM 4.81 8.22 13.32 24.76 5.02 8.69 13.75 25.91

EN-960-100
WAV2VEC-REAL NONE 1.65 5.60 5.03 13.62 1.65 5.74 4.76 13.4

4-GRAM 3.33 4.60 7.33 12.77 3.43 5.07 6.98 12.49
WAV2VEC-DIFFS4L NONE 1.61 5.58 4.80 12.91 1.63 5.66 4.63 12.93

4-GRAM 3.33 4.60 7.19 12.26 3.41 5.01 7.02 12.16

5× 10−4. We use adam optimizer with β1 = 0.9, β2 = 0.999, and ϵ = 10−8 and inverse square root scheduler with 32000
warmup updates. The sampling process for data generation uses 18 steps.

The results of WAV2VEC-DIFFS4LEDM and HUBERT-DIFFS4LEDM trained using synthetic data are shown in Table
11. We get similar ASR and SUPERB performances as using DDPM, suggesting that the diffusion models consistently
generate babble that better captures the inherent speech structure.

G. Additional 20-Hour Pretraining Experiments
We conduct experiments on English ASR with the pre-training data further reduced to 20 hours. We used DIFFS4L to
augment the data to 200 hours. The results are shown in Table 12. As can be observed, DIFFS4L does significantly improve
the performance with only 20 hours of pre-training data available. Also, the performance advantage tends to be more
significant when there is less data.

H. Full ASR results on MLS and CommonVoice
We provide the full ASR results on MLS and Commonvoice dataset in Table 13. To better examine the robustness of
DIFFS4L under different settings, we perform some additional experiments on the MLS ASR task (WAV2VEC-SS/NS in
Table 13).

Additional Test Set The MLS and Commonvoice datasets come with a dev set and a test set for each language, both of
which can be utilized as test sets to evaluate the ASR performance. In the main paper, we reported the dev set performance.
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Table 11. Results of EDM on (a) English automatic speech recognition and (b) SUPERB benchmark. The WAV2VEC-960R and
HUBERT-960R are topline models.

(A) ENGLISH (B) SUPERB
ASR KS IC SID ER QBE SF ASV SD

TASK/METRIC CER↓ WER↓ ACC↑ ACC↑ ACC↑ ACC↑ MTWV↑ F1↑ CER↓ EER↓ DER↓
WAV2VEC-DIFFS4LEDM 5.20 16.81 92.99 93.94 47.28 61.24 0.0327 81.66 35.15 7.88 7.30
HUBERT-DIFFS4LEDM 5.21 17.03 94.55 95.94 43.78 61.80 0.0501 82.68 34.32 7.42 7.26

Table 12. ASR Performance of WAV2VEC2-REAL and WAV2VEC2-DIFFS4L pretrained on 20, 100 and 960 hours of real speech.

MODEL 20-HOUR REAL 100-HOUR REAL 960-HOUR REAL

WAV2VEC2-REAL 22.794/62.525 7.37/23.48 3.18/10.49
WAV2VEC2-DIFFS4L 13.425/41.067 5.19/16.67 2.98/9.93

Here, we include the results on the test set to show the statistical significance of the performance advantage of DIFFS4L. As
shown in the columns under ‘TEST’ in Table 13, DIFFS4L maintains a consistent advantage over the baseline, which is
trained on the 100 hours of real speech alone, and the performance gaps are similar to that in the dev set. These results
confirm the significance of the benefit induced by DIFFS4L-generated data.

Dataset Compositions In the main paper, we only examined the effect of varying dataset compositions for English
ASR. In this section, we extend the experiment to different languages by introducing the WAV2VEC-SS/NS, we were
trained on the 100+860+0 dataset composition, i.e., without NC speech. As can be observed from the rows marked
with ‘WAV2VEC-SS/NS’ in Table 13, the performance always deteriorates when NC speech is removed. This is a rather
impressive finding because different languages have different structures, some of which are easier to capture than others.
The fact that NC speech is able to improve the performance for all these languages indicates that the diffusion model can
successfully capture all the different types of structural information.

I. Additional Multi-lingual Pretraining Experiments
Following the same setting as in Section 4.4, we conduct additional experiments on another multilingual pre-trained model
XLSR-53 (Conneau et al., 2020), which is pretrained on 53 languages. The XLSR-53 model is finetuned on two low-resource
languages: Bashki and Central Kurdish. The results are shown in Table 14, which exhibit the same trend as the XLSR-128
results.

J. Scaling Up to 10k-100k Hours of Pretraining Data
We would like to investigate, in the cross-lingual setting, where there is abundant high-resource language data but only a
small amount of low-resource language data (both annotated and unannotated), whether DIFFS4L can still improve the
performance when the amount of high-resource language is large. To study this, we conducted an experiment where we
further scaled up the data for the high-resource language. We adopt the LV-60K model in Baevski et al. (2020), which is
pretrained on 60k hours of English. We choose the same two languages as in Section I. For each low-resource language, we
train three models: 1) WAV2VEC2L-LV60K, derived by directly finetuning the LV-60K on the low-resource language ASR
with 10 hours of transcribed data; 2) WAV2VEC2L-LV60K-100R, derived by further pre-training the LV-60K with 100
hours of low-resource language before fine-tuning on 10 hours of ASR data in the low-resource language; 3) WAV2VEC2L-
LV60K–DIFFS4L, derived by further pretraining the LV-60K on the 960-hour augmented data for the low-resource language
using DIFFS4L , before fine-tuning on 10 hours of ASR data in the low-resource language. Table 15 shows the performance
of these three models, and DIFFS4L augmented models continue to demonstrate superior performance.
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Table 13. ASR performance of WAV2VEC pretrained on DIFFS4L-generate data on LibriSpeech, MLS and CommonVoice dataset

DEV TEST

LANG MODEL LM CER WER CER WER

EN WAV2VEC-100R NONE 7.13 22.17 7.17 22.62
WAV2VEC-SS/NS NONE 5.58 17.43 5.59 17.78
WAV2VEC-DIFFS4L NONE 5.19 16.67 5.31 17.39

DE WAV2VEC-100R NONE 8.33 30.44 9.93 33.83
WAV2VEC-SS/NS NONE 6.67 24.48 7.96 27.45
WAV2VEC-DIFFS4L NONE 6.37 23.27 7.55 26.11

ES WAV2VEC-100R NONE 7.10 27.22 7.08 27.33
WAV2VEC-SS/NS NONE 6.20 23.46 6.29 23.44
WAV2VEC-DIFFS4L NONE 4.49 16.65 4.48 16.83

FR WAV2VEC-100R NONE 16.16 45.50 14.49 41.84
WAV2VEC-SS/NS NONE 12.12 35.80 10.61 31.65
WAV2VEC-DIFFS4L NONE 11.91 34.77 10.61 31.13

IT WAV2VEC-100R NONE 8.33 35.08 7.80 33.62
WAV2VEC-SS/NS NONE 8.09 34.39 7.35 32.10
WAV2VEC-DIFFS4L NONE 6.24 27.22 5.54 24.43

NL WAV2VEC-100R NONE 17.83 50.92 11.55 39.09
WAV2VEC-SS/NS NONE 15.31 46.78 9.49 33.85
WAV2VEC-DIFFS4L NONE 14.69 44.83 9.37 33.25

PL WAV2VEC-100R NONE 11.42 44.22 9.92 43.20
WAV2VEC-SS/NS NONE 7.80 32.75 7.67 35.72
WAV2VEC-DIFFS4L NONE 7.14 30.95 7.56 34.90

PO WAV2VEC-100R NONE 13.83 45.75 16.48 50.92
WAV2VEC-SS/NS NONE 10.37 35.17 12.45 40.16
WAV2VEC-DIFFS4L NONE 9.88 34.60 11.96 39.78

BA WAV2VEC-100R NONE 10.16 43.81 11.82 47.99
WAV2VEC-DIFFS4L NONE 8.90 37.07 9.12 37.09

CKB WAV2VEC-100R NONE 7.23 39.04 7.75 40.86
WAV2VEC-DIFFS4L NONE 6.71 29.70 6.48 26.65

CY WAV2VEC-100R NONE 20.58 62.05 17.25 49.37
WAV2VEC-DIFFS4L NONE 16.70 52.28 12.48 37.45

MHR WAV2VEC-100R NONE 10.74 45.41 12.91 49.43
WAV2VEC-DIFFS4L NONE 9.44 37.52 10.04 39.19

SW WAV2VEC-100R NONE 8.80 31.54 8.83 29.71
WAV2VEC-DIFFS4L NONE 6.99 25.92 7.55 24.55

TA WAV2VEC-100R NONE 9.16 47.20 11.19 54.07
WAV2VEC-DIFFS4L NONE 7.51 40.98 8.58 45.17

Table 14. ASR Performance on improving multilingual XLSR-53 models.
MODEL BA CKB

XLSR-53 6.98/32.54 5.29/26.99
XLSR-53-100R 6.94/31.91 5.05/26.41
XLSR-53-DIFFS4L 6.61/30.11 4.71/24.55

K. Training Schemes of Multilingual Experiments
We provide the total number of hours of pretraining and finetuning resources for multilingual experiments (Section 4.3, 4.4,
I and J) in Table 16.
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Table 15. ASR Performance on improving LV-60K models in cross-lingual setting.
LANG WAV2VEC2L-LV60K WAV2VEC2L-LV60K-100R WAV2VEC2L-LV60K–DIFFS4L

BA 9.21/41.01 7.43/33.97 7.38/33.67
CKB 6.85/35.57 5.81/30.60 5.55/26.94

Table 16. Total number of hours of pretraining and finetuning resources for multilingual experiments.
MODEL PRETRAINING FURTHER PRETRAINING FINETUNING

WAV2VEC-100R (SEC. 4.3) 100 N/A 10
WAV2VEC-DIFFS4L (SEC. 4.3) 100+860 N/A 10

XLSR-128 (SEC. 4.4) 436K N/A 10
XLSR-128-100R (SEC. 4.4) 436K 100 10
XLSR-128-DIFFS4L (SEC. 4.4) 436K 100+860 10

XLSR-53 (SEC. I) 56K N/A 10
XLSR-53-100R (SEC. I) 56K 100 10
XLSR-53-DIFFS4L (SEC. I) 56K 100+860 10

WAV2VEC2L-LV60K (SEC. J) 60K N/A 10
WAV2VEC2L-LV60K-100R (SEC. J) 60K 100 10
WAV2VEC2L-LV60K-DIFFS4L (SEC. J) 60K 100+860 10

L. Further Analysis of Generated Speech

Table 17. FID of synthetic speech with different levels of variation generated by DIFFS4L and WAVENET.
DIFFS4L-SS DIFFS4L-NS DIFFS4L-NC WAVENET-NS WAVENET-NC

FID↓ 0.12 0.13 0.34 0.65 0.69

Table 18. PESQ and STOI of synthetic speech generated by DIFFS4L and WAVENET.
DIFFS4L WAVENET

PESQ↑ 0.66 0.34
STOI↑ 1.09 1.06

Distributional analysis of the synthetic speech To investigate the benefit brought by DIFFS4L, we conduct experiments
investigating how the distribution changes as we increase the level of variations from real speech to random babble.
Specifically, we follow Su et al. (2023) and compute the FID score between the 100 hours of real speech and: 1) DIFFS4L
-SS, which only contains the reconstruction with the same speakers (but with novel prosody), 2) DIFFS4L-NS, which
contains reconstruction with new speakers, 3) DIFFS4L-NC, which contains synthetic speech with novel content (babble), 4)
WAVENET-NS, WAVENET generation with novel speakers, and 5) WAVENET-NC, WAVENET-generated babble. To compute
the FID, we replaced the feature extractor in Su et al. (2023) with the HUBERT feature with mean-pooling, because the
original feature extractor was tailored for sound classification. Table 17 shows the results.

There are two observations. First, as the level of variations increases, the FID increases, implying an increasing distributional
discrepancy with the 100-hour real speech. In particular, the increase brought by introducing novel content is most
significant. Second, even when the novel content is introduced, the FID score for DIFFS4L is still much lower than the
WAVENET-generated audio, implying that DIFFS4L can generate speech that can follow the ground truth speech distribution
much better.

Quality of Synthetic Speech Also, to better compare DIFFS4L and WAVENET synthesis, we conduct experiments to
compare the audio quality of DIFFS4L- and WAVENET-generated speech in terms of two objective metrics, PESQ and STOI,
and the results are shown in Table 18. These results confirm that DIFFS4L has a better speech quality than WAVENET.
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Figure 7. Performance over different masking ratios when synthesizing NC speech.

M. Masking Length
Recall that the NC data is generated by conditioning on R0 with 80% frames masked out, as shown in Figure 3(d). We would
like to investigate whether the masking length has an impact on the performance. We thus retrain two partially-conditional
diffusion models, one with 50% masking length and the other with 100% (which becomes totally unconditional). We then
generate two synthetic datasets, whose compositions are both 100+430+430, but whose NC data are generated with 50% and
100% masking length, respectively. The corresponding WAVE2VEC English ASR results are shown in Figure 7. As shown,
there are only slight differences in the performance, with the optimal achieved by 80% masking length. We conjecture that
two factors influence the performance when changing the mask length. One is the amount of novel content, which increases
as masking length increases; the other is the quality of generated speech, which decreases as masking length increases.
Therefore, pushing the mask length to both extremes negatively impact the performance.
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