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Abstract
The stochastic proximal gradient method is a pow-
erful generalization of the widely used stochastic
gradient descent (SGD) method and has found nu-
merous applications in Machine Learning. How-
ever, it is notoriously known that this method
fails to converge in non-convex settings where
the stochastic noise is significant (i.e. when only
small or bounded batch sizes are used). In this
paper, we focus on the stochastic proximal gradi-
ent method with Polyak momentum. We prove
this method attains an optimal convergence rate
for non-convex composite optimization problems,
regardless of batch size. Additionally, we rigor-
ously analyze the variance reduction effect of the
Polyak momentum in the composite optimization
setting and we show the method also converges
when the proximal step can only be solved inex-
actly. Finally, we provide numerical experiments
to validate our theoretical results.

1. Introduction
Stochastic gradient descent and its variants are the
workhorse of modern machine learning. The stochastic prox-
imal gradient method is a simple yet powerful extension of
the vanilla stochastic gradient descent method, which aims
to solve the following stochastic composite optimization
problem:

min
x∈Rd
{F (x) := f(x) + ψ(x)} , (1)

where f : Rd → R is smooth and ψ : Rd → R ∪ {+∞} is
not necessarily differentiable, but a simple function. Such
paradigm is ubiquitous in machine learning and beyond, and
it covers a wide range of generalizations of the vanilla opti-
mization problem, including regularized machine learning
problems (Liu et al., 2015), signal processing (Combettes &
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Pesquet, 2010), image processing (Luke, 2020) and many
more. It also naturally covers constrained optimization
problems by considering the indicator function of the con-
straint set, and some recent variants of such ideas have
been applied to distributed and federated machine learning
problems (Mishchenko et al., 2022).

The problem formulation (1) is often used in Machine Learn-
ing as the proximal term ψ allows encoding prior domain
knowledge. For instance, it can impose constraints on the
variables, handle non-differentiability, induce sparsity, or it
can take the form of a regularizer. Recently, there has been
a surge of interest in these preconditioning techniques in the
Deep Learning context (Hendrikx et al., 2020; Woodworth
et al., 2023). Given a loss objective function ℓ : Rd → R, an
auxiliary function (or preconditioner) ℓ̂ is constructed—for
instance, by approximating ℓ with a subset of the data sam-
ples or synthetic samples. This results in the formulation:

min
x∈Rd
{ℓ(x)− ℓ̂(x)︸ ︷︷ ︸

f(x)

+ ℓ̂(x)︸︷︷︸
ψ(x)

} .

This is a special case of Problem (1), with f := ℓ − ℓ̂ and
ψ := ℓ̂. This formulation has the advantage that the training
can be accelerated if the proxy function ℓ̂ remains simple to
optimize. These applications motivate the need to further
our understanding of the stochastic composite optimization
problem in the non-convex regime, especially where large
batches are less preferred or even unavailable (LeCun et al.,
2012; Rieke et al., 2020).

In the convex and strongly convex case, the complexity
of solving Problem (1) is well understood (Ghadimi et al.,
2016; Ghadimi & Lan, 2013a). On the other hand, the ex-
isting theory in the non-convex regime is unsatisfactory. In
particular, when the gradient noise has variance σ2, with
the vanilla algorithm, the squared norm of the gradient of
F is only shown to converge to O(1/K) + Ω(σ2) after K
iterations. This implies that, to converge to an arbitrary ε
error, one needs to take mega batches of size Ω(ε−1) at
each iteration of the algorithm to reduce the stochastic noise
term; and the total number of stochastic gradient oracle calls
is Ω(ε−2). In practice and theory, smaller-batch methods
are often preferred over mega-batch methods. For example,
mega-batch methods follow the full gradient methods much
more closely at each step than smaller batch methods, and
it is observed empirically to be adversarial to the generaliza-
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tion performance (Wilson & Martinez, 2003; LeCun et al.,
2012; Keskar et al., 2017), and theoretically (Sekhari et al.,
2021) for certain Machine Learning tasks. Furthermore, in
many practical settings, mega-batches are unavailable or
intractable to sample, e.g., in medical tasks (Rieke et al.,
2020); federated Reinforcement Learning (Khodadadian
et al., 2022; Jin et al., 2022); and multi-agent Reinforce-
ment Learning (Doan et al., 2019).

In this work, we revisit the stochastic composite optimiza-
tion problem in the non-convex regime and show that the
Polyak momentum technique addresses the aforementioned
mega-batch issue while retaining the optimal convergence
rateO(ε−2). Polyak momentum is the de-facto standard for
training Deep Learning models in practice (Kingma & Ba,
2014), and understanding its theoretical efficacy in various
settings is an active research direction (Cutkosky & Mehta,
2020; Fatkhullin et al., 2023).

1.1. Stochastic Proximal Gradient Method

To solve the stochastic composite optimization problem (1),
we consider the stochastic proximal gradient method, which
solves the following subproblem in each iteration (com-
monly known as the proximal step): find xk+1 such that

Ωk(xk+1) ≤ Ωk(xk) and ∇Ωk(xk+1) = 0,

where Ωk(x) := ⟨gk,x⟩ + ψ(x) + Mk

2 ∥x − xk∥2. Here,
gk denotes a random vector computed at each iteration k
using the stochastic first-order oracle of f , and Mk > 0 is
a regularization (or stepsize) parameter. Mk can be a user
defined constant, or it can be a non-decreasing sequence.
For the vanilla stochastic proximal gradient method, gk is a
stochastic gradient of f at xk.

When ψ is convex, the proximal step is equivalent to mini-
mizing Ωk:

xk+1 = argmin
x∈Rd

{
⟨gk,x⟩+ψ(x)+

Mk

2
∥x−xk∥2

}
. (2)

We note that when ψ ≡ 0, this reduces to the vanilla SGD
with step size 1

Mk
. When ψ ̸≡ 0, it has long been known

that if error-dependent batch sizes are not allowed, then such
a method is only proved to converge to a neighborhood of
the stationary point of F up to the variance of the gradient
noise (Ghadimi et al., 2016). In Section 4 we give a simple
example to illustrate this phenomenon. Therefore, one needs
ε-dependent mini-batches (or mega-batches) to converge to
an ε neighborhood of the stationary point of F .

1.2. Our Contributions

Stochastic Polyak momentum has seen a huge success in
practice (Kingma & Ba, 2014). In this work, we study the
effect of Polyak momentum in the non-convex regime and

provide a theoretical analysis of momentum’s stabilizing
effect in the stochastic composite optimization setting, par-
ticularly in the small batch regime.

• First, we establish a lower bound result for the vanilla
stochastic proximal gradient method, showing that it can-
not converge to the stationary point beyond the variance
of the gradient noise.

• We study the effect of incorporating momentum into
the stochastic proximal gradient method and prove its
optimal convergence to the stationary point without any
error-dependent mega-batch access. We also rigorously
study the variance reduction effect of momentum in the
stochastic composite optimization setting.

• We further extend our analysis to the case where the
proximal steps are solved inexactly and give the same
convergence guarantees, demonstrating the robustness of
the momentum method.

• Finally, we conduct numerical experiments to corrobo-
rate our theoretical findings and demonstrate the algo-
rithm’s practicality.

2. Related Works
There is a huge body of work on stochastic and composite
optimization. Here, we focus on the stochastic and non-
convex regime and do not get into the details of the works
in the convex (e.g. Ghadimi & Lan, 2012; 2013b) or the
deterministic regime (see Nesterov, 2013). The first work
that considers the stochastic composite optimization prob-
lem in the non-convex case appears to be (Ghadimi et al.,
2016), in which they established the convergence of the
stochastic proximal gradient method to a neighborhood of
the stationary point of F up to the variance of the gradient
noise. If mega-batches are allowed, they showed that the
algorithm takes asymptotically O(ε−2) stochastic gradient
oracle calls to converge to an ε neighborhood of the sta-
tionary point of F . It was later extended to incorporate the
acceleration technique, but the convergence still requires
mega-batches. In particular, it requires k samples at the
kth iteration while the total number of oracle calls is not
improved (Ghadimi & Lan, 2013a). Even though these
methods require mega-batches, their upper bounds on the
total number of stochastic gradient oracle calls match the
lower bound asympotically (Arjevani et al., 2023).

In another research direction, to break the O(ε−2) lower
bound for stochastic non-convex optimization, there have
been a long line of works on variance reduction techniques,
including Prox-Spiderboost (Wang et al., 2019) (composite
variant of Spider (Fang et al., 2018)), Hybrid-SGD (Tran-
Dinh et al., 2022), and PStorm (Xu & Xu, 2022) (composite
variant of Storm (Cutkosky & Orabona, 2019)). These meth-
ods achieve a O(ε−3/2) asymptotic complexity at the cost
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of two additional assumptions on the objective and problem
structure:

• f is L̃-average smooth: E[∥∇f(x, ξ)−∇f(y, ξ)∥2] ≤
L̃2∥x− y∥2. Note that this assumption might not be sat-
isfied for some simple smooth functions, and it is strictly
stronger than the standard smoothness assumption.1

• These variance reduction techniques require the access to
two stochastic gradients∇f(xk, ξk) and∇F (xk−1, ξk)
at iteration k, which might not always be available in
practice (e.g. Doan et al., 2019; Chen et al., 2022).

Convergence Criteria The first-order convergence cri-
teria for non-convex optimization problems is an ongoing
research topic. Our work mostly focuses on the convergence
in terms of ∥∇F (xk)∥2, which we think is the most natural
criteria. Many early works study the convergence of prob-
lem (1) in terms of the proximal gradient mapping (Ghadimi
et al., 2016; Ghadimi & Lan, 2013a; Wang et al., 2019;
Tran-Dinh et al., 2022; Xu & Xu, 2022). More recently,
there have been several works proposing to study the con-
vergence in terms of Moreau envelope and discussing how
the different criterias affect the corresponding convergence
complexities (Davis & Drusvyatskiy, 2019; Zhang et al.,
2020). We discuss the differences and connections between
these definitions in Appendix G.

Stochastic Polyak Momentum The idea of using Polyak
momentum (a.k.a. heavy-ball momentum) was first pro-
posed in (Polyak, 1964) for strongly convex quadratic ob-
jective in the deterministic case. The first non-asymptotic
analysis of SGD with Polyak momentum in the smooth
non-convex regime is given in (Yu et al., 2019) and was
later refined in (Liu et al., 2020). Some recent works also
studied how Polyak momentum can be used to remove the
dependence on large batches in various settings, e.g. for nor-
malized SGD (Cutkosky & Mehta, 2020) and for commu-
nication compressed optimization (Fatkhullin et al., 2023).
The analysis of stochastic gradient methods with Polyak
momentum remains an active research topic (Wang & Aber-
nethy, 2020; Sebbouh et al., 2021; Li et al., 2022; Jelassi &
Li, 2022).

3. Problem Formulation and Assumptions
In this work, we consider the composite optimization prob-
lem:

min
x∈Rd
{F (x) := f(x) + ψ(x)} .

In the main body of the paper we study the convergence of
the algorithms in terms of ∥∇F (x)∥2 where we assume that

1By Jensen’s inequality, we have that any L̃-average smooth
function is also L̃-smooth, see also Assumption 3.3. There exists
L-smooth functions that are not average smooth.

ψ is differentiable. We discuss the case where ψ is convex
and non-differentiable in Appendix F. We do not consider
the non-convex and non-differentiable case for ψ, as this is
an exotic scenario in the literature.

Note that most of the existing works on stochastic compos-
ite optimization assume that ψ is convex and analyze the
convergence of their algorithms in terms of the proximal
gradient mapping (Ghadimi et al., 2016; Ghadimi & Lan,
2013a; Wang et al., 2019; Tran-Dinh et al., 2022; Xu & Xu,
2022), which is closely related to what we consider in this
work. In Appendix G, we discuss the proximal gradient
mapping and argue that our definition is more natural in the
non-convex regime.

We first introduce the following assumption on the mono-
tonicity of the proximal step:
Assumption 3.1. We assume that, at each iteration k of the
algorithms, the output xk+1 of the proximal step satisfies
Ωk(xk+1) ≤ Ωk(xk).

This is a technical assumption that provides a more nuanced
characterization of ψ beyond convexity, but all our theories
work with just the simple convexity assumption as well (in
fact, several constants can be improved under the convexity
assumption). It is natural to assume that the proximal step
finds a no worse point than the current iterate, even when ψ
is non-convex.

Next, we introduce the lower boundedness assumption of
the objective function F :
Assumption 3.2. We assume that there exists F ⋆ ∈ R such
that F ⋆ ≤ F (x),∀x ∈ Rd.

Now, we introduce the smoothness assumption on f . Note
that this is a weaker assumption than the average smooth-
ness assumption used in the variance reduction type meth-
ods (Wang et al., 2019; Tran-Dinh et al., 2022; Xu & Xu,
2022).
Assumption 3.3. We assume that the function f has L-
Lipschitz gradient, i.e. for any x,y ∈ Rd, we have:

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥ .

Next, we make an assumption on the noise of the gradient
oracle of f .
Assumption 3.4. We assume that we have access to a gradi-
ent oracle ∇f(x, ξ) for f such that for all x ∈ Rd it holds
that:

E[∇f(x, ξ)] = ∇f(x) ,
E[∥∇f(x, ξ)−∇f(x)∥2] ≤ σ2.

(3)

This is a standard assumption in the analysis of stochastic
gradient methods (Nemirovskij & Yudin, 1983; Bubeck
et al., 2015). Taking mini-batches is equivalent to dividing
the variance by the batch size.
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4. Lower Bound for the Vanilla Stochastic
Proximal Gradient Method

In Section 1.1 we briefly discussed that the vanilla stochastic
proximal gradient method cannot converge to the stationary
point of F beyond the variance of the gradient noise. We
give a simple example to illustrate this phenomenon and
give some intuitions on why momentum resolves the issue.

Proposition 4.1. For any K ≥ 1 and any (predefined)
stepsize coefficients {Mk}K−1

k=0 (possibly depending on the
problem parameters L, σ2 and K), there exists a problem
instance of (1) with f(x) := L

2 ∥x∥
2 and ψ(x) := a

2∥x∥
2,

a := max0≤k≤K−1Mk, satisfying Assumptions 3.2 and 3.3,
and the stochastic gradient oracle∇f(x, ξ) := ∇f(x) + ξ,
ξ ∼ N (0, σ2I), satisfying Assumption 3.4, such that, for the
sequence {xk}Kk=1 generated by method (2) started from
any initial point x0, it holds that E[∥∇F (xk)∥2] ≥ 1

4σ
2 for

any 1 ≤ k ≤ K.

Proof. Clearly, the construction satisfies our assumptions.
Let us fix an arbitrary 0 ≤ k ≤ K − 1. Setting the gradient
of the auxiliary function in (2) to zero, we see that gk +
axk+1 +Mk(xk+1 − xk) = 0. Since gk = Lxk + ξk, it
follows that

xk+1 =
Mk − L
Mk + a

xk −
ξk

Mk + a
.

Substituting ∇F (xk+1) = (L+ a)xk+1, we obtain

E[∥∇F (xk+1)∥2] =
(L+ a)2

(Mk + a)2
E[∥(Mk−L)xk−ξk∥2]

=
(L+ a)2

(Mk + a)2
(
(Mk − L)2E[∥xk∥2] + σ2

)
≥ (L+ a)2σ2

(Mk + a)2
.

If a ≥Mk, then L+a
Mk+a

≥ 1
2 , and the claim follows.

Note that Proposition 4.1 holds for any initial point x0. Even
if we start at the optimal point x0 = 0, the very first step
of the method will already incur an O(σ2) error and no
subsequent steps will be able to reduce it.

It is important that, for the composite optimization prob-
lem (1), we do not make any significant assumptions on ψ.
In particular, we do not assume that ψ is smooth with a
certain smoothness constant. Proposition 4.1 demonstrates
that, without such extra assumptions, for any fixed choice of
parameters for the stochastic proximal gradient method (2),
i.e., the stepsize coefficients Mk and the number of itera-
tions K, there is always a “bad” function in our problem
class (namely, F (x) = f(x) + ψ(x) with f(x) = L

2 ∥x∥
2

and ψ(x) = a
2∥x∥

2 for a sufficiently large a) for which the
method cannot reach any error < 1

4σ
2 after K steps. In

other words, for any given target accuracy ε < 1
4σ

2, it is
impossible to find one specific choice of the parameters for

Algorithm 1 Proximal Gradient Method with Polyak Mo-
mentum

1: Input: x0,m−1 and {Mk}∞k=0 , {γk}
∞
k=−1 , {δk}

∞
k=0,

2: for k = 0, 1, 2, . . . do
3: Compute gk = ∇f(xk, ξk)
4: Update mk = (1− γk−1)mk−1 + γk−1gk
5: Compute approximate stationary point xk+1 of

Ωk(x) := ⟨mk,x⟩ + ψ(x) + Mk

2 ∥x − xk∥2 such
that Ωk(xk+1) ≤ Ωk(xk) and ∥∇Ωk(xk+1)∥2 ≤ δk

6: end for

the method allowing it to reach the ε-error on any problem
from our class.

The problem is that the variance of the gradient noise keeps
the iterates away from the stationary point of F , and we
need some mechanism reducing this variance with time.
One such mechanism is the Polyak momentum which we
discuss next.

5. The Algorithm and Analysis
In this section, we present the stochastic proximal gradi-
ent method with the Polyak momentum and establish its
convergence guarantees in the non-convex regime.

The method is shown in Algorithm 1. In the algorithm, the
stochastic gradient gk at each iteration k is replaced by the
momentum-aggregated gradient mean:

mk = (1− γk−1)mk−1 + γk−1gk .

Our analysis will show that the distance between the mo-
mentum and the full gradient decreases as the number of
iterations increases, which is the key to resolving the issue
of the vanilla stochastic proximal gradient method.

In this section, we assume that the proximal steps are solved
exactly, i.e. we further make the following assumption:
Assumption 5.1. At each iteration k, we have δk = 0, i.e.
∇Ωk(xk+1) = 0.

We relax Assumption 5.1 and discuss the inexact proximal
steps in Section 7.

5.1. Convergence Analysis

We discuss the convergence analysis here, and missing
proofs can be found in Appendix B. The convergence analy-
sis of Algorithm 1 revolves around the following quantities:

Fk := E[F (xk)− F ⋆] ,
∆k := E[∥mk −∇f(xk)∥2] ,
Rk := E[∥xk+1 − xk∥2] .

(4)

Fk quantifies the distance between the current objective
value and the lower bound. ∆k bounds the distance be-

4



Non-convex Stochastic Composite Optimization with Polyak Momentum

tween the current gradient estimate and the full gradient.
Rk bounds the distance between two consecutive iterates.
We start by giving a descent lemma on ∆k, which is key to
analyzing the variance reduction effect of momentum. Sim-
ilar statements can be found in (Cutkosky & Mehta, 2020)
and (Fatkhullin et al., 2023).

Lemma 5.2. Under Assumption 3.4, for any k ≥ 0:

∆k+1 ≤ (1− γk)∆k +
L2

γk
Rk + γ2kσ

2 .

The (1− γk) factor in the above lemma is the key to show
that ∆k decreases in the optimization process. Next, we
discuss the per-iteration descent of Fk.

Recall that in this section, we have Assumption 5.1, which
is equivalent to the following stationarity assumption:

∇ψ(xk+1) +mk +Mk(xk+1 − xk) = 0. (5)

When ψ is convex and non-differentiable, ∇Ωk(xk+1) is
just a subgradient of Ωk at xk+1 that equals to zero, whose
existence is guaranteed as the optimality condition. In
the following lemmas and theorems, we can simply re-
place the gradient of Ω and ψ with such choices of the
subgradients and obtain the same results for convex and
non-differentiable ψ.

In Section 7, we give an approximate stationarity assump-
tion, which is more realistic in practice and shows the same
convergence guarantees.

Now we give the following descent lemma on Fk:

Lemma 5.3. Under Assumptions 3.1, 3.3 and 5.1, for any
k ≥ 0, we have

Fk+1 ≤ Fk −
Mk − L

4
Rk +

∆k

Mk − L
.

Remark 5.4. The constants in Lemma 5.3 can be slightly
improved if Assumption 3.1 is replaced by the convexity
of ψ.

Proof. By Assumption 3.3, we have:

F (xk+1) = f(xk+1) + ψ(xk+1)

≤ f(xk) + ⟨∇f(xk),xk+1 − xk⟩

+
L

2
∥xk+1 − xk∥2 + ψ(xk+1)

= f(xk) + ⟨mk,xk+1 − xk⟩+ ψ(xk+1)

+
Mk

2
∥xk+1 − xk∥2 −

Mk − L
2

∥xk+1 − xk∥2

+ ⟨∇f(xk)−mk,xk+1 − xk⟩ .

Then we apply Assumption 3.1 and notice that Ωk(xk) =
ψ(xk) + ⟨mk,xk⟩:

F (xk+1) ≤ F (xk)−
Mk − L

2
∥xk+1 − xk∥2

+ ⟨∇f(xk)−mk,xk+1 − xk⟩ .

Now we apply Young’s equality and get

F (xk+1) ≤ F (xk)−
Mk − L

4
∥xk+1 − xk∥2

+
∥mk −∇f(xk)∥2

Mk − L
.

We get the desired result by subtracting F ⋆ and taking ex-
pectation on both sides.

Note that these will be enough if we aim to prove con-
vergence in terms of the distance between the iterates,
but not enough to guarantee a convergence in terms of
E[∥∇F (xk)∥2]. Therefore, we relate the distance between
iterates and the norm of the gradient in the following lemma:

Lemma 5.5. Under Assumptions 3.3 and 5.1, for any k ≥ 0,

(M2
k + L2)Rk ≥

1

3
E[∥∇F (xk+1)∥2]−∆k.

Proof. We can split∇F (xk+1) in the following way:

∇F (xk+1) = ∇f(xk+1) +∇ψ(xk+1)

= mk +∇ψ(xk+1) + (∇f(xk)−mk)

+ (∇f(xk+1)−∇f(xk)) .

Therefore,

∥∇F (xk+1)∥2 ≤ 3∥mk +∇ψ(xk+1)∥2

+ 3∥mk −∇f(xk)∥2 + 3∥∇f(xk+1)−∇f(xk)∥2.

Now apply the stationarity condition (5) on the first term,
and use Assumption 3.3 on the third term, we get:

∥∇F (xk+1)∥2 ≤ 3(M2
k + L2)∥xk+1 − xk∥2

+ 3∥mk −∇f(xk)∥2 .

Rearranging and taking expectations, we get the claim.

Now, we can piece together all of the above lemmas and
consider the following Lyapunov function:

Φk := Fk + a∆k , (6)

where a is a constant to be determined later. Note that a
does not have an impact on the algorithm itself, and it only
shows up in the analysis. Now we give the following lemma
on Φk:

5



Non-convex Stochastic Composite Optimization with Polyak Momentum

Lemma 5.6. Let Assumptions 3.1, 3.3, 3.4 and 5.1 hold,
and let a := 3

8L , γk := 3L
Mk−L and Mk > 4L for any k ≥ 0.

Then, for any k ≥ 0,

Φk+1 ≤ Φk −
1

48Mk
E[∥∇F (xk+1)∥2] +

27Lσ2

4M2
k

. (7)

We have the following simple corollary for constant stepsize
coefficients:

Corollary 5.7. Let Algorithm 1 be run for K ≥ 1 iterations
for solving problem (1) under Assumptions 3.3, 3.4 and 5.1,

with constant coefficients Mk = M = 4L + 3
3/2

2

√
KLσ2

Φ0

and γk = 3L
M−L for any 0 ≤ k ≤ K − 1, where Φ0 :=

F (x0)− F ∗ + 3
8LE[∥m0 −∇f(x0)∥2]. Then,

E[∥∇F (xt)∥2] ≤ 48(3
3/2)

√
LΦ0σ2

K
+

192LΦ0

K
, (8)

where t is chosen uniformly at random from {1, . . . ,K}.

It is also possible to use time-varying coefficientsMk which
do not require fixing the number of iterations in advance.
However, in terms of the convergence rate, it incurs an extra
logarithmic factor.

Corollary 5.8. Consider Algorithm 1 for solving prob-
lem (1) under Assumptions 3.3, 3.4 and 5.1 with coefficients

Mk = max
{√ (k+1)Lσ2

Φ0
, 4L

}
, γk = 3L

Mk−L for any k ≥ 0,

where Φ0 := F (x0)−F ∗+ 3
8LE[∥m0−∇f(x0)∥2]. Then,

for any k ≥ 1, we have

E[∥∇F (xt(k))∥2] ≤ 372 ln(ek)
(√LΦ0σ2

k
+
LΦ0

k

)
, (9)

where t(k) is chosen randomly from {1, . . . , k} with prob-
abilities Pr(t(k) = i) ∝ 1

Mi−1
, i = 1, . . . , k, and e :=

exp(1).

Let us point out that using a random iterate as the output of
the algorithm is standard in the literature (see, e.g., (Rakhlin
et al., 2012)) and can be efficiently implemented without
fixing the number of iterations in advance. We discuss this
more carefully in Appendix E.

5.2. Initialization and Convergence Guarantees

As we can see from Corollaries 5.7 and 5.8, the convergence
rate of Algorithm 1 depends on Φ0 := O(F0 + 1

L∆0),
where ∆0 := E[∥m0−∇f(x0)∥2] = E[∥(1− γ−1)m−1 +
γ−1g0 − ∇f(x0)∥2] depends on m−1. There are subtle
differences in how m−1 can be initialized between the non-
composite and composite cases.

Non-Composite Case: When ψ ≡ 0, i.e. F ≡ f , we
set the initial momentum m−1 := − γ−1

1−γ−1
g0, then ∆0 =

E[∥m0 − ∇f(x0)∥2] = ∥∇f(x0)∥2 ≤ 2LF0, where the
last inequality follows from Assumption 3.3 and the fact
that F ≡ f . Therefore, in the non-composite case, we can
initialize the parameters such that Φ0 = O(F0).

Composite Case: The composite case is slightly trickier.
We set m−1 := g0 and get that m0 = g0. Hence ∆0 =

E[∥g0 −∇f(x0)∥2] ≤ σ2. Therefore, Φ0 = O(F0 +
σ2

L ).
When σ2 = O(LF0), we get the same Φ0 = O(F0) as in
the non-composite case.

Mini-Batch Initialization: In the case that σ2 is much
larger than F0, if we have access to a constant size (not
depending on the target error) mini-batch initially, then we
can set g0 = 1

b0

∑b0
i=1∇f(x0, ξi) where b0 := ⌈ σ

2

LF0
⌉, i.e.

g0 is a mini-batch stochastic gradient of size b0. Then we
have Φ0 = O(F0 +

σ2

b0L
) = O(F0), which is the same as in

the non-composite case.

We have thus proved the following convergence guarantee
for Algorithm 1.

Theorem 5.9. Consider Algorithm 1, as applied to solving
problem (1) under Assumptions 3.3, 3.4 and 5.1, run for
K = O

(
LΦ0σ

2

ε2 + LΦ0

ε

)
iterations with constant coefficients

Mk = M = 4L + 3
3/2

2

√
KLσ2

Φ0
and γk = 3L

M−L for any

0 ≤ k ≤ K−1, where Φ0 := F0+
3
8LE[∥m0−∇f(x0)∥2],

F0 := F (x0) − F ∗ and ε > 0 is a given target error.
Then, for the point xt chosen uniformly at random from
{x1, . . . ,xK} it holds that E[∥∇F (xt)∥2] ≤ ε.

If ψ ≡ 0, we can initialize m−1 in such a way that K =

O
(
LF0σ

2

ε2 + LF0

ε

)
. Otherwise, we can initialize m−1 in

such a way that K = O
(
LF0σ

2

ε2 + σ4

ε2 + LF0

ε + σ2

ε

)
. Further,

when the initial mini-batch of size ⌈ σ
2

LF0
⌉ is allowed, we can

initialize m−1 in such a way that K = O
(
LF0σ

2

ε2 + LF0

ε

)
.

When an initial mini-batch is not allowed, the convergence
rate has an extra O(σ

4

ε2 + σ2

ε ) term that is not present in the
non-composite case. One natural question is whether this is
an artifact of our analysis or inherent to the problem and the
algorithm. Note that the first step of the Algorithm 1 coin-
cides with the vanilla stochastic proximal gradient method.
Consider the lower bound construction in Proposition 4.1:
when starting at x0 = 0, which is a stationary point such
that F0 = 0, one such step would incur an O(σ2) error.
Therefore, in the non-composite case without the initial
mini-batch, the convergence rate must have some term that
only depends on σ2. In other words, the extra terms seem
unavoidable.

6
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6. Variance Reduction Effect of Momentum
In Section 4, we demonstrated that the vanilla stochastic
proximal gradient method cannot converge because the gra-
dient noise variance keeps the iterates away from the station-
ary point of F . In this section, we show that the momentum
term in Algorithm 1 can reduce the variance of the gradient
noise at the same rate as the gradient norm. This is the key
to the convergence of Algorithm 1 without batches. This
variance reduction effect has been known in practice and
implicitly used in the analysis of (Cutkosky & Mehta, 2020)
and (Fatkhullin et al., 2023). We precisely characterize such
an effect in the composite optimization setting. Proofs are
deferred to Appendix C.

We begin by refining the result of Lemma 5.6:

Lemma 6.1. Let Assumptions 3.1, 3.3, 3.4 and 5.1 hold,
and let a :=

√
2

8L , γk := 3
√
2L

Mk−L and Mk > (1 + 3
√
2)L for

any k ≥ 0. Then, for any k ≥ 0,

Φk+1 ≤ Φk −
1

48Mk
E[∥∇F (xk+1)∥2]

− 3
√
2

2Mk
∆k +

27
√
2L

4M2
k

σ2. (10)

With Lemma 6.1, we can now precisely quantify the vari-
ance reduction effect of the momentum method.

Theorem 6.2. Consider Algorithm 1, as applied to solving
problem (1) under Assumptions 3.3, 3.4 and 5.1, run for
K = O

(
LΦ0σ

2

ε2 + LΦ0

ε

)
iterations with constant coefficients

Mk = M = (1 + 3
√
2)L + 33/2

23/4

√
KLσ2

Φ0
and γk = 3

√
2L

M−L

for any 0 ≤ k ≤ K − 1, where Φ0 := F0 +
√
2

8LE[∥m0 −
∇f(x0)∥2], F0 := F (x0)− F ∗ and ε > 0 is a given target
error. Then, for the point xt chosen uniformly at random
from {x1, . . . ,xK} it holds that E[∥mt −∇f(xt)∥2] ≤ ε.

In words, the squared distance between the momentum mk

and the full gradient∇f(xk) decreases at the same rate as
the squared norm of the gradient∇F (xk).

7. Inexact Proximal Step
While many existing works (e.g. (Ghadimi et al., 2016;
Ghadimi & Lan, 2013a; Wang et al., 2019; Hendrikx et al.,
2020; Tran-Dinh et al., 2022; Xu & Xu, 2022)) rely on the
assumption that the proximal step can be solved exactly, this
might not always be practically possible (Barré et al., 2023).
In this section, we briefly discuss extending our analysis
to the case where the proximal step is solved inexactly and
give an inexactness criterion similar to that of (Woodworth
et al., 2023).

A crucial element in our previous analysis is the assumption
that∇Ωk(xk+1) = 0, i.e. Equation (5). Therefore, defining

the inexactness criteria as an approximate stationarity con-
dition of Ωk at xk+1 where δk ̸= 0 is natural. In particular,
we define the criteria as follows:

E[∥∇Ωk(xk+1)∥2] ≤
M2
k

16
E[∥xk+1 − xk∥2] + Sk, (11)

where Sk will be decided later. Again, it should be under-
stood that in the non-differentiable case ∇Ωk(xk+1) is a
certain subgradient of Ωk at xk+1 such that Equation (11)
holds.

Now we state the convergence result (proofs are deferred to
Appendix D):

Theorem 7.1. Consider Algorithm 1, as applied to solv-
ing problem (1) under Assumptions 3.1, 3.3 and 3.4, and
the approximate stationarity condition at each iteration k:
E[∥∇Ωk(xk+1)∥2] ≤ M2

16 E[∥xk+1 − xk∥2] + Sk,, run for

K = O
(
LΦ0σ

2

ε2 + LΦ0

ε

)
iterations with constant coeffi-

cients Mk = M = 4L +
√

8KLσ2

Φ0
and γk =

√
152
17

L
M−L

for any 0 ≤ k ≤ K − 1, where Φ + 0 = F0 +√
19
156

E[∥m0−∇f(x0)∥2]
L , F0 := F (x0) − F ⋆ and ε > 0

is a given target error. Then, for the point x − t cho-
sen uniformly at random from {x1, . . . ,xK} it holds that
E[∥∇F (xt)∥2] ≤ ε

2 + 8
K

∑K−1
k=0 Sk. In particular, if for

any 0 ≤ k ≤ K − 1, Sk ≤ ε
16 , then E[∥∇F (xt)∥2] ≤ ε.

It remains to discuss how to minimize Ωk such that the
inexactness criteria (11) is satisfied. There is a line of re-
search on minimizing gradient norm with SGD variants,
e.g. (Allen-Zhu, 2018), and one can also exploit the struc-
ture information in ψ if there is any. Here, we state that
SGD suffices for our purpose and give the following propo-
sition, which is a simple modification of Proposition 2.6
in (Woodworth et al., 2023):

Proposition 7.2. If ψ is convex and Lψ-smooth, and we
have access to an unbiased gradient oracle of ψ with vari-
ance at most σ2

ψ , then after at most

T = O
(
Lψ +M

M
ln
Lψ +M

M
+

(Lψ +M)σ2
ψ

MSk

)
iterations of SGD, the output x̂ of SGD satisfies the condi-
tion (11).

The proof of Proposition 7.2 is simple, and we refer inter-
ested readers to (Woodworth et al., 2023) for the discussions
therein.

8. Experiments
In this section, we conduct numerical experiments to corrob-
orate our theoretical findings and demonstrate the practical
effectiveness of Algorithm 1.

7
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Figure 1: Comparison of Algorithm 1 and the vanilla stochastic proximal gradient method on the synthetic quadratic problem. For the
vanilla stohastic proximal methods, we also highlight the smoothed curves on top of the original curves that oscillate much more. The left,
middle, and right figures correspond to σ = 5, 25, 125, respectively. The vanilla stochastic proximal gradient method uses batch sizes
1, 16, 64. The x-axis represents the number of gradient samples and is truncated to only show the first 105 gradient samples.

8.1. Synthetic Quadratic Problem

We first consider a synthetic quadratic problem inspired by
our lower bound construction in Proposition 4.1. We con-
sider the following problem in Rd: we set f(x) = L∥x∥2

2

and ψ(x) = a∥x∥2

2 , where a is sufficiently large. Note that
the vanilla stochastic proximal gradient method and Algo-
rithm 1 are oblivious to the parameter a. We add Gaussian
noise to the gradients to control the stochastic level σ2 of the
stochastic oracle. We simulate the batch sample by dividing
the variance by the batch size.

In Figure 1, we compare the performance of Algorithm 1
and the vanilla stochastic proximal gradient method. We
set d = 5, L = 1 and a = 104. We run the
vanilla method with batch sizes 1, 16, 64. We set σ =
5, 25, 125 respectively. The parameter M is tuned by a
grid search in {100, 101, 102, 103, 104} for all methods,
and the momentum parameter γ is tuned by a grid search
in {10−1, 10−2, 10−3, 10−4, 10−5}. We set the maximum
number of iterations to be 104, and the tolerance is 0.02.
We see that as σ2 increases, Algorithm 1 still reaches the
desired tolerance, while the vanilla method with batch size
1 fails to converge in all cases, and with batch sizes 16 and
64 only converges when σ = 5. In particular, with batch
size 1, the error of vanilla method oscillates around 22 with
σ2 = 52, around 672 with σ2 = 252, and around 14381
with σ2 = 1252. In other words, the error of the vanilla
method is indeed proportional to σ2, as predicted by our
lower bound result in Proposition 4.1. We also have that for
Algorithm 1, M is set to be 10, 10, 100 and γ is set to be
0.01, 0.001, 0.0001 for σ = 5, 25, 125 respectively, which
is consistent with our theoretical prediction that M should
increase while γ should decrease as σ increases. We also
point out that the momentum method exhibits a jump in
the error in the first several iterations, consistent with our
analysis that the first step of the momentum method incurs
an O(σ2) error as well.

8.2. Regularized Machine Learning Experiment

Now we consider the classical application of composite op-
timization: regularized machine learning (Liu et al., 2015).
We use the ℓ∞,1 regularizer to regularize the weights on
each layer. The proximal step with the ℓ∞,1 regularizer
is implemented in (Murray et al., 2019). We evaluate the
performances of Algorithm 1 and the vanilla stochastic prox-
imal gradient method on the Cifar-10 dataset (Krizhevsky
et al., 2014) with the Resnet-18 (He et al., 2016). The reg-
ularization parameter is set to be 0.1, which is observed
in (Murray et al., 2019) to achive a balance between enforc-
ing sparsity in the model and maintaining the model per-
formance. We use a batch size of 256 and run 300 epochs.
We use the standard step size parameter M = 10 (corre-
sponding to a learning rate of 0.1) for the experiment. We
apply a multi-step learning rate scheduler at 150 epoch and
250 epoch, with a decay factor of 0.1. For Algorithm 1,
momentum parameter γ is set to be 0.1 by a grid search.
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Figure 2: Comparison of Algorithm 1 and the vanilla stochas-
tic proximal gradient method for the ℓ∞,1 regularized machine
learning problem on Cifar-10 dataset, with Resnet-18. The left
and right figures correspond to the training loss and test accuracy,
respectively.

We summarize the performances of the two methods in
Section 8.2. We see that Algorithm 1 outperforms the vanilla
method in terms of both training loss and test accuracy. In
terms of the test accuracy, Algorithm 1 displays a much
smoother curve than that of the vanilla method.

In connection to our theoretical observation that the step size
parameter M should increase while the momentum parame-
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ter γ should decrease as the stochastic level σ increases, we
observe that, grid searches with respect to the train loss lead
to the choices M = 100, 100, 10 and γ = 0.1, 0.1, 0.1 for
batch sizes 64, 128 and 256. It appears that the momentum
parameter γ is less sensitive to the batch size than the step
size parameter M , and setting γ = 0.1 might be a good
choice in practice. We note that while there is certainly a
correlation between the batch size and the stochastic level
σ2, we do not have a direct control over σ2, as compared to
the synthetic problem.

9. Conclusion
In this work we revisit the non-convex stochastic composite
optimization problem, and address its convergence issue in
the small batch regime. We show that the vanilla stochastic
proximal method cannot converge to the stationary point
beyond the variance of the gradient noise. We analyze the
immensely successful Polyak momentum method in this
context and establish its optimal convergence rate without
any batch size requirement, demonstrating its superiority
over the vanilla method. We conduct numerical experiments
to corroborate our theoretical findings. In light of the past
successes of proximal methods in ML, and the recent emerg-
ing application scenarios for proximal methods in DL our
findings reinforce the robustness and the potential of the
Polyak momentum method.
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Figure 3: Comparison of Algorithm 1 and the vanilla stochastic proximal gradient method for the statistical preconditioning technique on
Cifar-10 dataset. The left and right figures correspond to the training loss and test accuracy, respectively.

A. Additional Experiments
In this section we consider the recent statistical preconditioner (proxy training) technique of (Hendrikx et al., 2020;
Woodworth et al., 2023), where for some objective ℓ, we consider f = ℓ− ℓ̂ and ψ = ℓ̂. ℓ̂ is a “statistical preconditioner”
defined on a sub-sample of the training dataset. Here we simulate the setup on Cifar-10 dataset (Krizhevsky et al., 2014).
ℓ is defined on the whole 50000 training images, and ℓ̂ is defined on a subset of 2560 training images. We follow the
implementation of (Woodworth et al., 2023), with one difference: at each iteration k, (Woodworth et al., 2023) computes
the full gradient∇ℓ̂(xk) while we only compute a stochastic gradient of batch size 128. In the experiment, we use batch
size of 512 for ℓ, and a batch size of 128 for the SGD updates on Ωk. We perform a grid-search on the parameters
M and γ. The SGD on Ωk takes 20 iterations and a step-size 0.01, which is tuned in (Woodworth et al., 2023). The
experiments demonstrate that SGD is effective and reliable for solving the proximal step with sufficient accuracy (see also
the experiments in (Woodworth et al., 2023)). We see that the momentum method outperforms the vanilla method, and the
convergence of the momentum method seems smoother than the vanilla method.

B. Missing Proofs in Section 5
We start by giving the proof of Lemma 5.2:

Lemma 5.2. Under Assumption 3.4, for any k ≥ 0:

∆k+1 ≤ (1− γk)∆k +
L2

γk
Rk + γ2kσ

2 .

Proof. Indeed,

∆k+1 = E[∥mk+1 −∇f(xk+1)∥2] = E[∥(1− γk)(mk −∇f(xk+1)) + γk(gk+1 −∇f(xk+1))∥2]
= (1− γk)2E[∥mk −∇f(xk+1)∥2] + E[γ2k∥gk+1 −∇f(xk+1)∥2]
≤ (1− γk)2E[∥mk −∇f(xk) +∇f(xk)−∇f(xk+1)∥2] + γ2kσ

2.

For the second identity, we have used the fact that gk+1 is unbiased. By Young’s inequality, for any α > 0, we have:

∆k+1 ≤ (1− γk)2(1 + α)∆k + (1− γk)2(1 + α−1)E[∥∇f(xk)−∇f(xk+1)∥2] + γ2kσ
2

≤ (1− γk)2(1 + α)∆k + (1− γk)2(1 + α−1)L2Rk + γ2kσ
2,

where the last inequality follows from the smoothness of f . Choosing now α := γk
1−γk , we get the claimed inequality.

Now we give the proof of Lemma 5.6:

Lemma 5.6. Let Assumptions 3.1, 3.3, 3.4 and 5.1 hold, and let a := 3
8L , γk := 3L

Mk−L and Mk > 4L for any k ≥ 0. Then,
for any k ≥ 0,

Φk+1 ≤ Φk −
1

48Mk
E[∥∇F (xk+1)∥2] +

27Lσ2

4M2
k

. (7)

12
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Proof. We put together Lemmas 5.2 and 5.3 and get:

Φk+1 = Fk+1 + a∆k+1 ≤ Fk −
Mk − L

4
Rk +

∆k

Mk − L
+ a

[
(1− γk)∆k +

L2

γk
Rk + γ2kσ

2
]

= Fk −HkRk + aγ2kσ
2 +

(
1− γk +

1

a(Mk − L)

)
a∆k,

where Hk := Mk−L
4 − aL2

γk
. If Hk > 0, then we can plug Lemma 5.5 in and get:

Φk+1 ≤ Fk −
Hk

M2
k + L2

(
1

3
E[∥∇F (xk+1)∥2]−∆k

)
+

(
1− γk +

1

a(Mk − L)

)
a∆k + aγ2kσ

2

= Fk −
Hk

3(M2
k + L2)

E[∥∇F (xk+1)∥2] +
(
1− γk +

1

a(Mk − L)
+

Hk

a(M2
k + L2)

)
a∆k + aγ2kσ

2.

Now let us choose a = γk(Mk−L)
8L2 , so that Hk = Mk−L

8 > 0. Then,

1

a(Mk − L)
+

Hk

a(M2
k + L2)

=
8L2

γk(Mk − L)2
+

L2

γk(M2
k + L2)

=
L2

γk

(
8

(Mk − L)2
+

1

M2
k + L2

)
.

Therefore we need L2

γk

(
8

(Mk−L)2 + 1
M2

k+L
2

)
≤ γk or, equivalently, γ2k ≥ L2

(
8

(Mk−L)2 + 1
M2

k+L
2

)
. Since (Mk − L)2 ≤

M2
k + L2, it suffices to set γ2k = 9L2

(Mk−L)2 , i.e., γk = 3L
Mk−L . Note that this requires Mk > 4L as we want to keep γk < 1.

For our value of γk, we get a = 3
8L . Putting everything together, we obtain

Φk+1 ≤ Φk −
Mk − L

24(M2
k + L2)

E[∥∇F (xk+1)∥2] +
27Lσ2

8(Mk − L)2
.

Since Mk−L
M2

k+L
2 ≥ 1

2(Mk−L) ≥
1

2Mk
, we can further estimate

Φk+1 ≤ Φk −
1

48Mk
E[∥∇F (xk+1)∥2] +

27Lσ2

4M2
k

.

Corollary 5.7. Let Algorithm 1 be run for K ≥ 1 iterations for solving problem (1) under Assumptions 3.3, 3.4 and 5.1,

with constant coefficients Mk = M = 4L + 3
3/2

2

√
KLσ2

Φ0
and γk = 3L

M−L for any 0 ≤ k ≤ K − 1, where Φ0 :=

F (x0)− F ∗ + 3
8LE[∥m0 −∇f(x0)∥2]. Then,

E[∥∇F (xt)∥2] ≤ 48(3
3/2)

√
LΦ0σ2

K
+

192LΦ0

K
, (8)

where t is chosen uniformly at random from {1, . . . ,K}.

Proof. Setting Mk :=M some constant, rearranging and summing Equation (7) from 0 to K − 1, we get

1

48M

K−1∑
k=0

E[∥∇F (xk+1)∥2] ≤ Φ0 +
27KLσ2

4M2

Therefore
1

K

K−1∑
k=0

E[∥∇F (xk+1)∥2] ≤
48MΦ0

K
+

324Lσ2

M

Recall that M > 4L, then for M = 4L+ 3
3/2

2

√
KLσ2

Φ0
. We have:

1

K

K−1∑
k=0

E[∥∇F (xk+1)∥2] ≤
192LΦ0

K
+ 48(3

3/2)

√
LΦ0σ2

K

13
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Therefore, after at most O(LΦ0σ
2

ε2 + LΦ0

ε ) iterations, we have 1
K

∑K−1
k=0 E[∥∇F (xk+1)∥2] ≤ ε.

If t is chosen uniformly at random from {1, . . . ,K}, then E[∥∇F (xt)∥2] = 1
K

∑K−1
k=0 E[∥∇F (xk+1)∥2].

We also discuss the case where Mk is not a constant:

Corollary 5.8. Consider Algorithm 1 for solving problem (1) under Assumptions 3.3, 3.4 and 5.1 with coefficients

Mk = max
{√ (k+1)Lσ2

Φ0
, 4L

}
, γk = 3L

Mk−L for any k ≥ 0, where Φ0 := F (x0) − F ∗ + 3
8LE[∥m0 −∇f(x0)∥2]. Then,

for any k ≥ 1, we have

E[∥∇F (xt(k))∥2] ≤ 372 ln(ek)
(√LΦ0σ2

k
+
LΦ0

k

)
, (9)

where t(k) is chosen randomly from {1, . . . , k} with probabilities Pr(t(k) = i) ∝ 1
Mi−1

, i = 1, . . . , k, and e := exp(1).

Proof. Denote G2
k+1 := E[∥∇F (xk+1)∥2]. According to Lemma 5.6, we have

Φk+1 ≤ Φk −
1

48Mk
G2
k+1 +

27Lσ2

4M2
k

.

Rearranging and summing the above from 0 to K − 1, where K ≥ 1 is arbitrary, we get:

1

48

K−1∑
k=0

1

Mk
G2
k+1 ≤ Φ0 +

27Lσ2

4

K−1∑
k=0

1

M2
k

.

Denoting Ai =
∑i−1
k=0

1
Mk

, we obtain

1

AK

K−1∑
k=0

1

Mk
G2
k+1 ≤

48Φ0 + 324Lσ2
∑K−1
k=0

1
M2

k

AK
,

Hence, for Mk := max
{√ (k+1)Lσ2

ϕ0
, 4L

}
, we have

AK =

K∑
k=1

min

{√
Φ0

kLσ2
,
1

4L

}
≥ Kmin

{√
Φ0

KLσ2
,
1

4L

}
= min

{√
KΦ0

Lσ2
,
K

4L

}
and

48Φ0 + 324Lσ2
K−1∑
k=0

1

M2
k

≤ 48Φ0 + 324Lσ2
K∑
k=1

Φ0

kLσ2
≤ 372Φ0

K∑
k=1

1

k
.

Putting everything together, we get:

1

AK

K−1∑
k=0

1

Mk
G2
k+1 ≤

372Φ0

∑K−1
k=1

1
k

min{
√

KΦ0

Lσ2 ,
K
4L}
≤ 372Φ0(lnK + 1)

min{
√

KΦ0

Lσ2 ,
K
4L}
≤ 372(lnK + 1)

(√LΦ0σ2

K
+
LΦ0

K

)
.

If t(k) is chosen from {1, . . . , k} with probabilities Pr(t(k) = i) = 1
MiAk

, then E[∇F (xt(k))] = 1
Ak

∑k−1
i=0

G2
i+1

Mi
.

C. Missing Proofs in Section 6

Lemma C.1. Under Assumptions 3.1, 3.3, 3.4 and 5.1, for {xk}k>0 generated by Algorithm 1, if γk := 3
√
2L

Mk−L , a :=
√
2

8L ,
and Mk > (1 + 3

√
2)L, we have:

Φk+1 ≤ Φk −
1

48Mk
E[∥∇F (xk+1)∥2]−

3
√
2

2Mk
∆k +

27
√
2Lσ2

4M2
k

.

14
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Proof. We repeat the proof of Lemma 5.6 but now require that L
2

γk

(
8

(Mk−L)2 + 1
M2

k+L
2

)
≤ γk

2 . To satisfy this inequality, it

suffices to choose γk = 3
√
2L

Mk−L , which requires that Mk > (1 + 3
√
2)L. Now we have a =

√
2

8L and:

Φk+1 ≤ Φk −
Mk − L

24(M2
k + L2)

E[∥∇F (xk+1)∥2]−
3
√
2L

2(Mk − L)
∆k +

27
√
2Lσ2

4(Mk − L)2
.

Let Mk = τkL for some τk > (1 + 3
√
2). Note that, for τk > (1 + 3

√
2), we have τk−1

τ2
k+1
≥ 1

2τk
, 1
2(τk−1) ≥

1
2τk

and
1

(τk−1)2 ≤
2
τ2
k

. Therefore, for Mk > (1 + 3
√
2)L:

Φk+1 ≤ Φk −
1

48Mk
E[∥∇F (xk+1)∥2]−

3
√
2

2Mk
∆k +

27
√
2Lσ2

4M2
k

.

D. Missing Proofs in Section 7
First, we notice that, under Assumptions 3.1 and 3.3, Lemma 5.3 still holds in the inexact case. Now we give an analogous
result to Lemma 5.5 in the inexact case:

Lemma D.1. Under Assumption 3.3, for {xk}k>0 generated by Algorithm 1, we have:

(M2
k + L2)Rk ≥

1

4
E[∥∇F (xk+1)∥2]−∆k − E[∥∇Ω(xk+1)∥2].

Proof. Indeed,

∥∇F (xk+1)∥2 = ∥∇f(xk+1) +∇ψ(xk+1)∥2

= ∥mk +∇ψ(xk+1) + (∇f(xk)−mk) + (∇f(xk+1)−∇f(xk))∥2

= ∥Mk(xk − xk+1) +∇Ω(xk+1) + (∇f(xk)−mk) + (∇f(xk+1)−∇f(xk))∥2

≤ 4M2
k∥xk+1 − xk∥2 + 4∥∇Ω(xk+1)∥2 + 4∥mk −∇f(xk)∥2 + 4∥∇f(xk+1)−∇f(xk)∥2

≤ 4(M2
k + L2)∥xk+1 − xk∥2 + 4∥mk −∇f(xk)∥2 + 4∥∇Ω(xk+1)∥2.

Taking expectations and rearranging, we obtain the claim.

Notice that Lemma 5.2 still holds. We continue to use the same Lyapunov function Φk := Fk + a∆k.

Lemma D.2. Under Assumptions 3.1, 3.3 and 3.4, for {xk}k>0 generated by Algorithm 1, if γk :=
√

456
17

L
Mk−L , a :=√

19
408

1
L , that in each iteration condition (11) holds. Then, for Mk > 7L, we have:

Φk+1 ≤ Φk −
1

68Mk
E[∥∇F (xk+1)∥2] +

12Lσ2

M2
k

+
2Sk
17Mk

. (12)

Proof. Denote G2
k+1 := E[∥∇F (xk+1)∥2]. Plugging Equation (11) into Lemma D.1, we obtain

(M2
k + L2)Rk ≥

1

4
G2
k+1 −∆k − E[∥∇Ω(xk+1)∥2] ≥

1

4
G2
k+1 −∆k −

M2
k

16
Rk − Sk.

Rearranging, we get:
17

16
(M2

k + L2)Rk ≥
1

4
G2
k+1 −∆k − Sk. (13)

Recall in the proof of Lemma 5.6, we have:

Φk+1 ≤ Fk −HkRk +

(
1− γk +

1

a(Mk − L)

)
a∆k + aγ2kσ

2,

15
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where Hk := Mk−L
4 − aL2

γk
. If Hk > 0, then we can plug Equation (13) in and get:

Φk+1 ≤ Fk −
16Hk

17(M2
k + L2)

(
1

4
G2
k+1 −∆k − Sk

)
+

(
1− γk +

1

a(Mk − L)

)
a∆k + aγ2kσ

2

= Fk −
4Hk

17(M2
k + L2)

G2
k+1 +

(
1− γk +

1

a(Mk − L)
+

16Hk

17a(M2
k + L2)

)
a∆k + aγ2kσ

2 +
16HkSk

17(M2
k + L2)

.

Now let a = γk(Mk−L)
8L2 , so that Hk = Mk−L

8 . Then,

1

a(Mk − L)
+

16Hk

17a(M2
k + L2)

=
8L2

γk(Mk − L)2
+

16L2

17γk(M2
k + L2)

=
8L2

γk

(
1

(Mk − L)2
+

2

17(M2
k + L2)

)
.

Therefore we need 8L2

γk

(
1

(Mk−L)2 + 2
17(M2

k+L
2)

)
≤ γk or, equivalently, γ2k ≥ 8L2

(
1

(Mk−L)2 + 2
17(M2

k+L
2)

)
. Since

(Mk − L)2 ≤ M2
k + L2, it suffices to set γ2k = 152

17
L2

(Mk−L)2 , i.e., γk =
√

152
17

L
Mk−L . Note that this requires Mk >

(
√
152+

√
17)L√

17
, which is ensured whenever Mk > 4L. For our choice of γk, we get a = 1

8L

√
152
17 =

√
19
156

1
L . Putting

everything together, we get

Φk+1 ≤ Φk −
Mk − L

34(M2
k + L2)

G2
k+1 +

4L

(Mk − L)2
σ2 +

2(Mk − L)Sk
17(M2

k + L2)
.

Let Mk = τkL for some τk > 7. Note that τk−1
τ2
k+1
≥ 1

2τk
, 1
(τk−1)2 ≤

2
τ2
k

and τk−1
τ2
k+1
≤ 1

τk
. Therefore, for Mk > 7L, we get

Φk+1 ≤ Φk −
1

68Mk
G2
k+1 +

8L

M2
k

σ2 +
2Sk
17Mk

.

Setting Mk =M some constant, and rearranging and summing Equation (12) over k = 0, . . . ,K − 1, we get:

1

68M

K−1∑
k=0

E[∥∇F (xk+1)∥2] ≤ Φ0 +
8KL

M2
σ2 +

2

17M

K−1∑
k=0

Sk.

Therefore,
1

K

K−1∑
k=0

E[∥∇F (xk+1)∥2] ≤
68MΦ0

K
+

544Lσ2

M
+

8

K

K−1∑
k=0

Sk.

Then for M = 7L+
√

8KLσ2

Φ0
, we have:

1

K

K−1∑
k=0

E[∥∇F (xk+1)∥2] ≤ O
(√

LΦ0σ2

K
+
Lσ2

K

)
+

8

K

K−1∑
k=0

Sk.

E. Sampling from a Stream of Data
Following Theorem 5.9, we briefly mentioned that one can efficiently sample the desired output point. In this section, we
explain how to perform such sampling at no extra computation and memory cost. This might have been discussed in the
literature, but we still provide a detailed explanation for completeness and the reader’s convenience.
Proposition E.1. Given a stream of points {xk}∞k=1 in Rd and positive scalars {hk}∞k=1, we can maintain, at each step k ≥ 1,
the random variable xt(k), where t(k) is a random index from {1, . . . , k} chosen with probabilities Pr(t(k) = i) = hi

Hk
,

i = 1, . . . , k, where Hk :=
∑k
i=1 hi. This requires only O(d) memory and computation.

Proof. We maintain the variables x̂k ∈ Rd and Hk ∈ R which are both initialized to 0 at step k = 0. Then, at each
step k ≥ 1, we update Hk ← Hk−1 + hk and also, with probability hk

Hk
, we update x̂k ← xk (or, with probability 1− hk

Hk
,

keep the old x̂k = x̂k−1). The memory and computation costs are O(d). Note that, for any 1 ≤ i ≤ k, the event x̂k = xi
happens iff x̂ was updated at step i and then not updated at each step j = i+ 1, . . . , k. Hence, for any 1 ≤ i ≤ k, we have

Pr(x̂k = xi) =
hi
Hi
·

k∏
j=i+1

(
1− hj

Hj

)
=

hi
Hi
·

k∏
j=i+1

Hj−1

Hj
=

hi
Hk

.
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F. Convergence in the Non-Differentiable Case
In this section we briefly discuss the convergence of Algorithm 1 in the non-differentiable case. In this case we assume that
ψ is convex. We assume that each subproblem is solved exactly, i.e. xk+1 = argminx Ωk(x). In particular, this implies
that there exists subgradient gψk+1 ∈ ∂ψ(xk+1) such that:

mk + gψk+1 +M(xk+1 − xk) = 0

Therefore, for convenience, we define ∇ψ(xk+1) := gψk+1 as the specific subgradient of ψ at xk+1 that we use. Similarly,
we define∇F (xk+1) := ∇f(xk+1) + gψk+1 = ∇f(xk+1) +∇ψ(xk+1) as the specific subgradient of F at xk+1 that we
use. This way, all our previous proofs still hold, and we have the following:

Theorem F.1. Under Assumptions 3.1, 3.3 and 3.4, for {xk}k>0 generated by Algorithm 1, if Mk = M some constant,

γ := 3L
M−L , there exists M = 4L+ 3

3/2

2

√
KLσ2

Φ0
such that K = O

(
LΦ0σ

2

ε2 + LΦ0

ε

)
iterations of Algorithm 1 is sufficient to

achieve E[∥∇F (xt)∥2] ≤ ε, where t is chosen from {1, . . . ,K} uniformly at random.

We remark that this can be reformulated in terms of the distance between ∂F and 0: we have dist2(∂F (xt), 0) ≤ ε.

G. Convergence Criterias
In this section, we discuss the differences and connections between the convergence criterias used in the literature.

Proximal Gradient Mapping: The most popular convergenec criteria used in most of the earlier works on non-convex
composite optimization is proximal gradient mapping (Ghadimi et al., 2016; Ghadimi & Lan, 2013a; Wang et al., 2019;
Hendrikx et al., 2020; Tran-Dinh et al., 2022; Xu & Xu, 2022). Proximal gradient mapping is defined in a very general
context, where we consider the constrained composite optimization problem:

min
x∈X

[
F (x) := f(x) + ψ(x)

]
,

with the 1-strongly convex mirror map r : X → R. For any vector g and x, and scalar M > 0, define:

x+ := argmin
x′∈X

{⟨g,x′ − x⟩+ ψ(x) + βr(x
′,x)}

where βr(x′,x) = r(x′)− r(x)− ⟨∇r(x),x′ − x⟩ is the Bregman divergence of r. Then the proximal gradient mapping is
defined as:

PX(x,g,M) :=M(x− x+),

and in the literature, the convergence is studied in terms of ∥PX(x,∇f(x),M)∥2. We point out that it is very easy to prove
analogous versions of Lemmas 5.3 and 5.5 in terms of ∥PX(x,∇f(x),M)∥2 (which implies that our results extend to the
proximal gradient mapping case), but we omit the details here. Instead, we argue that the size of∇F (x) is a more natural
convergence criterion. Consider the simplest situation where ψ is convex and differentiable, X = Rd, and the mirror map
r(x) = 1

2∥x∥
2 (i.e. the Euclidean geometry). Then we have the usual stationarity condition for x+:

∇f(x) +∇ψ(x+) +M(x+ − x) = 0.

Therefore, we have:
PX(x,∇f(x),M) = ∇f(x) +∇ψ(x+).

In other words, the proximal gradient mapping gives the gradient of f at the current point plus the gradient of ψ at the next
point. In contrast, in our analysis, we directly consider the gradient of F at the next point, and we believe that this is more
natural and intuitive.

Moreau Envelope: A closely related convergence criterion that was proposed to address the non-convergence problem
of proximal gradient mapping of the earlier works is the Moreau envelope (Davis & Drusvyatskiy, 2019). In Euclidean
geometry, for some parameter λ, the Moreau envelope is defined as the following:

Fλ(x) := min
y

{
F (y) +

1

2λ
∥y − x∥2

}
,
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and write x̂ = argminy{F (y) + 1
2λ∥y − x∥2}. The convergence criteria is then defined as:

∇Fλ(x) := λ−1(x− x̂).

Equivalently,∇Fλ(x) = ∇F (x̂) in the differentiable case. In other words, the convergence criteria with Moreau envelope
uses a surrogate point x̂ instead of the actual iterates of the algorithm. Note that, the convergence criteria using Moreau
envelop and proximal gradient mapping is with a constant factor of each other for a ρ-weakly convex function (Davis &
Drusvyatskiy, 2019):

1

4
∥∇F1/2ρ(x)∥ ≤ ∥P (x,∇f(x), ρ)∥ ≤

3

2

(
1 +

1√
2

)
∥∇F1/2ρ(x)∥.
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