
Distribution Alignment Optimization through Neural Collapse
for Long-tailed Classification

Jintong Gao 1 He Zhao 2 Dandan Guo 1 Hongyuan Zha 3

Abstract
A well-trained deep neural network on balanced
datasets usually exhibits the Neural Collapse (NC)
phenomenon, which is an informative indicator of
the model achieving good performance. However,
NC is usually hard to be achieved for a model
trained on long-tailed datasets, leading to the de-
teriorated performance of test data. This work
aims to induce the NC phenomenon in imbal-
anced learning from the perspective of distribu-
tion matching. By enforcing the distribution of
last-layer representations to align the ideal distri-
bution of the ETF structure, we develop a Distri-
bution Alignment Optimization (DisA) loss, act-
ing as a plug-and-play method can be combined
with most of the existing long-tailed methods, we
further instantiate it to the cases of fixing classi-
fier and learning classifier. The extensive experi-
ments show the effectiveness of DisA, providing
a promising solution to the imbalanced issue. Our
code is available at DisA.

1. Introduction
Deep neural networks on balanced datasets have become
well-established with many techniques for solving various
tasks in several domains (Zeng et al., 2022; Hu et al., 2023;
Allingham et al., 2023). However, new challenges arise
when we venture into imbalanced/long-tailed datasets. In
long-tailed classification, for example, the majority classes
have a substantial number of samples while the minority
classes have fewer. Traditional classification methods with-
out considering such class imbalance tend to overly focus
on the majority classes, resulting in insufficient learning for
the minority classes.

Recently, studies in Papyana et al. (2020); Kothapalli et al.
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(2023); Rangamani et al. (2023) show a well-trained neural
network with cross-entropy loss on a given balanced clas-
sification task usually exhibits the Neural Collapse (NC)
phenomenon, meaning that the last-layer features collapsing
into within-class means and the classifier weight vectors
converge to the simplex Equiangular Tight Frame (ETF)
geometric structure. However, on long-tailed datasets, a
model can hardly achieve NC if trained in the same way as
on balanced datasets (Fang et al., 2021; Thrampoulidis et al.,
2022). The mean feature vectors no longer form an ETF
structure with Cross-Entropy (CE) or Mean Squared Error
(MSE) losses (Hong & Ling, 2023; Dang et al., 2023) and an
unexpected phenomenon (Minority Collapse) (Fang et al.,
2021) occurs that the learned representations and the clas-
sifier weights of minority classes will converge to similar
directions in ETF. As NC indicates the characteristics that a
good classifier should have, it is a natural idea to “force” a
model on long-tailed datasets to satisfy NC so that it may
achieve better performance (Xie et al., 2023; Fang et al.,
2021; Hong & Ling, 2023). For example, Yang et al. (2022)
indicates that neural collapse optimally can be induced even
in imbalanced learning as long as the learnable classifier is
fixed as a random simplex ETF. Representation-Balanced
Learning Framework (Peifeng et al., 2023) also maintains
the geometric structure of ETF as the classifier but learns
orthogonal matrices in ETF for feature learning instead of
random directions. Different from them, Liu et al. (2023b)
additionally proposes two explicit regularization terms to
induce the NC phenomenon in imbalanced learning.

Leveraging the above observations of the NC phenomenon
and ETF structure, we aim to induce the NC phenomenon
in imbalanced learning from the perspective of distribu-
tion matching. In this work, we propose the Distribution
Alignment Optimization (DisA) method for imbalanced
classification based on Optimal Transport (OT) (Peyré &
Cuturi, 2019; Cuturi, 2013). Specifically, we first consider
the last-layer imbalanced representations as a discrete empir-
ical distribution P . We then assume an ideal ETF structure,
which is naturally balanced for each class, presented as an-
other discrete empirical distribution Q. According to Yang
et al. (2022) indicates that the features and classifier vectors
are aligned with the same simplex ETF, we can enforce the
distribution P over last-layer representations to be close to
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the ideal and balanced distribution Q of the ETF structure.
Notably, different from existing NC-based long-tailed meth-
ods (Yang et al., 2022; Liu et al., 2023b; Xie et al., 2023;
Peifeng et al., 2023), our method is able to not only fix the
classifier with the above-mentioned ETF structure (only the
encoder is learnable) but also optimize the classifier and
encoder simultaneously. Due to its flexibility, we can easily
combine DisA with commonly used long-tailed and NC-
based long-tailed methods as a regularization term. The
contributions of this paper can be summarized as follows:

• We propose a Distribution Alignment Optimization
loss function as regularization for narrowing the gap
between imbalanced learning representations and bal-
anced ETF structure from the perspective of distribu-
tion for imbalanced classification.

• We point out that our method can be readily integrated
into cross-entropy loss, imbalanced loss functions, and
NC-based frameworks.

• Extensive experiments show our method can effectively
improve the performance with various baselines on im-
balanced classification against most existing methods.

2. Related Work
2.1. Imbalanced Classification

The common imbalanced classification strategies include
re-weighting, re-sampling, two-stage algorithms, and oth-
ers. The re-weighting approaches allocate different weights
to each instance according to the sample numbers of dif-
ferent classes (Hong et al., 2021; Ren et al., 2020; Guo
et al., 2022a; Shu et al., 2019). For example, Label-
Distribution-Aware Margin (LDAM) loss (Cao et al., 2019)
minimizes a margin-based generalization bound to encour-
age larger margins for minority classes. Furthermore, the
re-sampling methods mainly consist of under-sampling and
over-sampling. Under-sampling (Buda et al., 2018; Haix-
iang et al., 2017) discards a large portion of the data, nor-
mally causes under-fitting and deletes valuable data of the
majority class by mistake. Over-sampling expands the sam-
pling frequency and effectively improves the generalization
of minority classes (Kim et al., 2020; Liu et al., 2019; Chou
et al., 2020; Zhang et al., 2021; Gao et al., 2023). Moreover,
two-stage algorithms are also in the spotlight (Shu et al.,
2019; Li et al., 2021; Wang et al., 2021b; Zhong et al., 2021).
Bilateral Branch Network (BBN) (Zhou et al., 2020) adjusts
the whole model to learn from the conventional learning
branch and dynamically move to the re-balancing branch.
Besides, several methods also utilize contrastive learning,
which implements unsupervised learning for imbalanced
classification (Kang et al., 2021; Li et al., 2022; Wang et al.,
2021a). The key idea is to learn a hidden space by closing

the distance between similar samples and shrinking the dis-
tance between different samples. For example, Targeted Su-
pervised Contrastive learning (TSC) (Li et al., 2022) makes
the features of different classes converge to these distinct
and uniformly distributed targets on the hypersphere. Our
approach as regularization can be combined effectively with
these various imbalanced loss functions.

2.2. Neural Collapse

Neural Collapse (NC) was observed that a linear classifi-
cation model trained on a balanced dataset experienced a
phenomenon (Papyana et al., 2020) where the last-layer
features collapse into within-class means and the classifier
weight vectors converge to the simplex Equiangular Tight
Frame (ETF) geometric structure during the final stage of
training. In Section 3.2, we give a detailed description of
NC. Since then, researchers have been dedicated to theo-
retically digging deeper into this phenomenon (Liu et al.,
2023a; Xu & Liu, 2023; Yang et al., 2023a). Recently, NC
methods for imbalanced data have been proposed in class-
incremental learning (Yang et al., 2023c;b), semantic seg-
mentation (Zhong et al., 2023), large-scale vision-language
(Zhu et al., 2023), and specifically long-tailed classification
(Fang et al., 2021; Thrampoulidis et al., 2022; Hong & Ling,
2023; Dang et al., 2023).

In long-tailed classification, Yang et al. (2022) studies
the potential of training a network with the last-layer lin-
ear classifier randomly initialized as a random simplex
ETF and fixed during training. Considering the fixed
directions of ETF can affect the generalization of the
deep model, Representation-Balanced Learning Framework
(RBL) (Peifeng et al., 2023) introduces orthogonal matrices
to learn directions while maintaining the geometric struc-
ture of ETF. Notably, these two approaches initialize and
fix the linear classifier in imbalanced learning with simplex
ETF structure. Different from them, Xie et al. (2023) ana-
lyzes the reason for the performance drop under long-tailed
distributions and proposes Attraction-Repulsion-Balanced
Loss (ARB) to balance the gradients among the components
from different classes. To induce Neural Collapse in deep
long-tailed learning, Liu et al. (2023b) proposes two explicit
feature regularization terms to learn compact within-class
and maximally distinct between-class features for class-
imbalanced data. Conversely, our approach matches imbal-
anced learning representation distribution and balanced ETF
structure distribution from the perspective of distribution.
We need no restriction on classifiers and can be trained on
either the learnable classifier or using ETF as a classifier.

2.3. Optimal Transport

Optimal Transport (OT) was originally developed to solve
the problem of how to select the transport matrix that would
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incur the lowest cost when transporting multiple goods
(Monge, 1781). Recently, OT has drawn widespread at-
tention in different fields (Chen et al., 2023; Guo et al.,
2022c; Maretic et al., 2022; Shi et al., 2023b), such as gener-
ative model (Genevay et al., 2018; Huynh et al., 2021; Arjun
et al., 2019; Lénaı̈c & Francis, 2018) and domain adaptation
(Rakotomamonjy et al., 2022; Turrisi et al., 2022; Asadu-
laev et al., 2023). Simultaneously, several approaches apply
OT to solve long-tailed classification task from different
views, such as the automatic re-weighting method (Guo
et al., 2022a) and the data augmentation method (Gao et al.,
2023). Different from them, we introduce a general regular-
ization term for imbalanced classification by matching the
last-layer representation distribution and the balanced ETF
distribution through the NC theory.

3. Preliminaries
3.1. Imbalanced Classification

Let D= {(xi, yi)}Ni=1 be the training set for a multi-class
imbalanced classification problem with K classes, where
N =

∑K
k=1nk denotes total sample size, nk is the size

of class k and we assume n1 ≥ n2 ≥ · · · ≥ nK . We
decouple the deep learning model into the feature extrac-
tor f parameterized with θ for the learned representation
H := {h1,h2, . . . ,hN} ∈ Rd×N and the classifier W :=
{w1,w2, . . . ,wK} ∈ Rd×K , where hi = f(xi;θ) ∈ Rd

is the last-layer representation. Training {θ,W } on D with
standard cross-entropy ignoring such class imbalance will
perform poorly on the minority classes (Fang et al., 2021).

3.2. Neural Collapse

Papyana et al. (2020) reveals the Neural Collapse (NC)
phenomenon during the terminal phase of training (TPT)
on balanced datasets. It indicated that the last-layer rep-
resentation will converge to their within-class means, and
these within-class means together with the classifier vec-
tors will collapse to the vertices of a simplex Equiangular
Tight Frame (ETF). Before describing the characteristics of
Neural Collapse, we first introduce the definition of simplex
ETF and statistics in deep neural networks.

Definition 1 (Simplex Equiangular Tight Frame) A
general Simplex Equiangular Tight Frame matrix (ETF)
M ∈ Rd×K is a collection of vectors specified by the
columns of:

M =

√
K

K − 1
U(I− 1

K − 1
1K1⊤

K), (1)

where I ∈ RK×K is the identity matrix and 1K ∈
RK×1 is an all-ones vector, and U ∈ Rd×K (d ≥ K)
is a rotation orthogonal matrix (U⊤U = I). M :=
{m1,m2,m3, . . . ,mK} ∈ Rd×K includes K classes
with the mk weight.

Statistics For a given classification task, we can formu-
late the class-mean features µk = 1

nk

∑nk

i=1 hi,k and the

global-mean feature µG = 1
K

∑K
k=1 µk on the last-layer.

Then the within-class covariance matrix can be computed as∑
W = 1

K

∑K
k=1

∑nk

i=1
1
nk

(hi,k − µk)(hi,k − µk)
⊤. The

between-class covariance matrix is computed as
∑

B =
1
K

∑K
k=1(µk −µG)(µk −µG)

⊤. The total covariance ma-
trix is

∑
T = 1

K

∑K
k=1

∑nk

i=1
1
nk

(hi,k−µG)(hi,k−µG)
⊤.

We use the l2-norm of the mean features µ̃k = µk−µG

∥µk−µG∥2
.

M̃ = [µk − µG] ∈ Rd×K is the matrix obtained by stack-
ing the class-means into the columns of a matrix. During
the terminal phase of training, there are four interrelated
characteristics of the following conditions:

(NC1) Variability Collapse. As the training progresses,
the within-class variation of the last-layer will collapse to
class-means:

∑
W → 0.

(NC2) Convergence to Simplex ETF. The vectors of the
class-means converge to a simplex ETF structure with the
equal l2 norm and the same pair-wise angle:

∥µk − µG∥ − ∥µk′ − µG∥ → 0 ∀k ̸= k
′
, (2)

⟨µ̃k, µ̃k′ ⟩ = − 1

K − 1
∀k ̸= k

′
. (3)

(NC3) Convergence to Self-duality. The Frobenius norm
of the classifier with K weights aligns with the correspond-
ing class-means:∥∥∥∥∥ W⊤

∥W ∥F
− M̃

∥M̃∥F

∥∥∥∥∥
F

→ 0, (4)

(NC4) Simplification to Nearest Class-Center (NCC).
Given a feature, the network classifier converges to the
nearest class-mean (NCC):

argmax
k
⟨wk,h(x)⟩ → argmin

k
∥h(x)− µk∥2. (5)

3.3. Optimal Transport

Optimal Transport (OT) problem has recently been used as
a powerful geometric tool to measure the minimum cost
of the transport matrix between distribution, with rich ap-
plications in machine learning and related areas (Ge et al.,
2021; Zhao et al., 2021; Nguyen et al., 2021; Wang et al.,
2022; Guo et al., 2022b; Bui et al., 2022; Vuong et al., 2023;
Zhao et al., 2023; Ye et al., 2024; Vo et al., 2024). We
give a brief overview of OT and more details can be found
in Peyré & Cuturi (2019). Considering two discrete prob-
ability distributions p =

∑n
i=1aiδxi

and q =
∑m

j=1bjδyj
,

where xi and yj are in the same space arbitrarily and δ
is a Dirac function. Then, the optimal transport distance
can be defined as: OT(p, q) = min

T∈Π(p,q)
⟨T,C⟩, where the

cost matrix C ∈ Rn×m
+ is constructed by Cij =C(xi, yj)
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Figure 1. The training processes of our method under two scenarios. The upper part trains only with the ETF as a fixed classifier, while
the bottom part trains with the learnable classifier and the ETF. (The cardinalities of the majority classes (the red and blue classes) are
much larger than minority classes (the green and brown classes)).

which reflects the cost between xi and yj . The trans-
port probability matrix T ∈ Rn×m

+ satisfies Π(p, q) :={
T |

∑n
i=1Tij=bj ,

∑m
j=1Tij=ai

}
. The Sinkhorn algo-

rithm (Cuturi, 2013) is usually applied by the entropy reg-
ularization constraints H(T) = −

∑
ij Tij log Tij with a

hyper-parameter ϵ > 0 for fast optimization above problem.

4. Our Proposed Method
This work proposes a Distribution Alignment Optimization
(DisA) method based on OT through Neural Collapse for im-
balanced classification. The motivation for our work derives
from NC phenomenon that the last-layer features collapse
into an ETF structure in balanced learning. Nevertheless,
the training model on the imbalanced dataset is difficult to
activate the condition, where the learned representations of
some classes are usually entangled with each other (Fang
et al., 2021), resulting in poor performance for the minority
classes. In the following, we introduce the details of our
proposal that learn better representations with the help of
the ETF structure by a distribution matching approach.

4.1. Distribution Alignment Optimization

To illustrate the above problem as a matching one between
two distributions, we view the last-layer representations
of N data samples within the training set as discrete N -
dimensional distribution P and represent the balanced ETF
structure M in 3.2 of K classes as another K-dimensional
distribution Q. The distribution P and distribution Q can
be formulated as:

P =
1

N

N∑
i=1

δhi
, (6)

Q =
1

K

K∑
k=1

δmk
, (7)

where hi = f(xi;θ) ∈ Rd is the last-layer feature of the
input xi, and mk is the k-th weight vector of the balanced
ETF structure M in (1).

On the one hand, P is a discrete uniform distribution over
the latent representations by construction, but the data sam-
ples in the training set are long-tailed, making P “imbal-
anced” in terms of the classes. On the other hand, a vector
of the simplex ETF matrix M can be viewed as a perfect
prototype of its corresponding class, and the prototypes are
balanced and well separated according to the properties of
NC. Therefore, Q is a balanced distribution. To learn high-
quality representation by the feature extractor parameterized
by θ in an imbalanced classification task, we aim to enforce
the to-be-learned distribution P over the last-layer repre-
sentations to stay close to the balanced distribution Q over
the ETF structure. Here, we explore the distribution align-
ment optimization method by minimizing the OT distance
between P and Q:

min
θ

OT(P,Q)
def.
= min

θ
min

T∈Π(P,Q)
⟨T,C⟩, (8)

where the element Cik in the cost matrix C ∈ RN×K
+ in-

dicates the distance between feature hi and weight mk,
which can be flexibly computed with commonly used
distance measures. We define Cik = 1 − cos(hi,mk)
with cosine distance although other choices are possi-
ble. The transport plan matrix T satisfies Π(P,Q) :={
T ∈ RN×K

+ |
∑K

k=1Tik = 1
N ,
∑N

i=1Tik = 1
K

}
.

Intuitively, minimizing this expected moving cost encour-
ages the sample features and ETF weights to be aligned
given their cost function. Since directly optimizing the
transport plan in (8) requires a significant time overhead,
we can adopt the entropy regularized OT loss (Cuturi, 2013)
to solve the problem, where (8) can be re-written as the
following optimization problem:
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min
θ
LDisA = ⟨T∗,C⟩,

subject to T∗ = argmin
T∈Π(P,Q)

⟨T,C⟩ − ϵH(T),
(9)

where ϵ > 0 is a hyper-parameter of controlling the weight
of the entropic regularization. We can first optimize the
entropy regularized OT loss to learn the transport plan T∗,
which further allows one to learn the parameter θ of feature
extractor by minimizing the DisA loss.

Notably, minimizing the LDisA loss defined by the repre-
sentation distribution P and ETF distribution Q provides a
principled and unsupervised way to encourage the feature
extractor to learn more balanced representations. Therefore,
our proposed the plug-and-play LDisA loss can be easily
combined with the supervised losses with a linear classifier,
where LDisA plays the role of regularizing the penultimate
layer embedding. Now, the total loss for the imbalanced
classification loss can be expressed as:

Ltotal = Lsup + λLDisA, (10)

where Lsup indicates a supervised loss function, which will
be described below, and λ indicates the hyper-parameter for
balancing the supervised loss and regularization loss.

4.2. Combination with Existing Methods

Thanks to its flexibility, our proposed loss can be naturally
combined with existing methods. We investigate the follow-
ing two ways to solve the imbalanced problem according to
the concerned classifier W .

Fixing Classifier W with ETF. In Yang et al. (2022) and
Peifeng et al. (2023), the linear classifier is initialized as
simplex ETF and fixed during training, where the former
proposes a Dot-Regression (DR) loss to learn the feature
extractor in imbalanced problem. When our method is in-
corporated with them, we define the classifier W ∈ Rd×K

with an ETF structure M in (1), i.e., W = M. Fig.1 (upper)
shows this setting with a fixed classifier from ETF structure,
where we use the learnable feature extractor for extracting
the representations and assume an ideal ETF structure as a
fixed classifier. During the training process, we only need to
optimize the feature extractor f parameterized by θ without
classifier W , which can be expressed as follows:

min
θ
Ltotal = min

θ
Lsup + λ ·min

θ
LDisA, (11)

where the supervised loss Lsup can be the standard cross-
entropy loss or the DR loss specially designed for the fixed
classifier with ETF structure by Yang et al. (2022).

Learning Classifier W . We can also consider the case
where the concerned classifier W is learnable, which is a

more common setting for solving the long-tailed problem.
Now, ours can be combined with most of the existing long-
tailed methods as discussed in 2.1. Interestingly, for the
NC-based long-tailed methods which learn the classifier W ,
such as Inducing Neural Collapse (INC) (Liu et al., 2023b),
ours is still applicable as an additional regularization term.
Although INC introduces regularization terms to compact
within-class representations and distinct between-class rep-
resentations based on NC properties, our method is derived
from the perspective of distribution matching optimization,
which is complementary to INC. As shown in Fig.1 (bot-
tom), the samples are fed into the trainable feature extractor
followed by a learnable classifier W and an ETF structure
(also termed as fixed classifier in Fig.1 (upper)), where the
ETF structure is used for distribution alignment optimiza-
tion loss LDisA and the classifier W for the supervised loss
Lsup. Now, the model optimizes both θ and classifier W
with the following loss:

min
θ,W
Ltotal = min

θ,W
Lsup + λ ·min

θ
LDisA (12)

Detailed formulations of Ltotal can be found in Appendix A.
In summary, the main difference between equations 11 and
12 lies in the to-be-learned parameters, where the former
only learns the encoder and the latter learns both the encoder
and the classifier. Since the number of samples can be large
in real-world datasets, it is less practical to have P over
all samples in (6). We implement the proposed DisA in
mini-batches by uniformly subsampling from all samples,
which empirically works well in our tasks. Theoretically
analyzed in Fatras et al. (2020), the mini-batch OT enjoys
appealing properties of unbiased estimators, gradients, and a
concentration bound around the expectation. We summarize
our proposed method in Algorithm 2 of Appendix D.

4.3. Why does DisA Work for Imbalanced Datasets?

Here we intuitively analyze why DisA based on OT works
for imbalanced datasets. As discussed before, P is a discrete
uniform distribution over the training samples but is quite
“imbalanced” in terms of the labels of the samples in a long-
tailed dataset. Recalling Q is a balanced distribution over
ETF vectors, DisA learns the transport plan T between
P and Q. Specifically, Tik indicates the weight between
sample i and ETF vector k. With L ∈ RN×K as the one-
hot encoding of the ground-truth classes of N samples, we
can have: A ∈ RK×K = L⊤T, where Ak,k′ indicates the
weights between class k and ETF vector k′ summed over
all the samples belonging to class k. We show A computed
from DisA with a fixed classifier as ETF structure on CIFAR-
LT-10 in Fig.2. Note that there are much more samples from
the majority classes than those from minority classes in
P . If DisA assigned similar Tik for every sample ignoring
the imbalance, we would see Ak1,k′ > Ak2,k′ where k1
indicates one majority class and k2 indicates a minority one.
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However, Fig.2 shows that the weights of A focus on the
diagonal (meaning that the latent representations of samples
are well aligned to their corresponding ETF vectors) and
the diagonal values are quite similar (i.e., Ak1,k′ ≈ Ak2,k′

for all k1 and k2). This is suggesting that DisA can balance
between majority and minority classes in an adaptive way
by assigning (relatively) larger weights to minority samples
than majority ones.

Figure 2. Our learned align matrix A on CIFAR-LT-10 combined
with the ETF classifier of the majority classes (0-4) and minority
classes (5-9).

5. Experiments
5.1. Experimental Setting

Datasets. To evaluate the effectiveness of our method,
we conduct experiments on benchmark datasets for long-
tailed classification, including CIFAR-LT-10 (Cui et al.,
2019), CIFAR-LT-100 (Cui et al., 2019), and ImageNet-LT
(Deng et al., 2009). The imbalance factor is defined as the
ratio of data points between the most and least frequent
classes, denoted as ρ = nmax

nmin
. Specifically, CIFAR-LT-

10 (CIFAR-LT-100) are derived from CIFAR-10 (CIFAR-
100) (Krizhevsky et al., 2009) with imbalance factors ρ=
{200, 100, 50, 10}, respectively. ImageNet-LT has 1,000
classes with the imbalance factor of ρ = 256, which is
constructed from ImageNet (Deng et al., 2009).

Implementation Details. For all experiments, our method
is implemented in PyTorch and using an SGD optimizer with
a momentum of 0.9. In CIFAR-LT-10 and CIFAR-LT-100,
we use ResNet-32 (He et al., 2016) as the backbone and use
200 epochs on a single Tesla A10 GPU and set the initial
learning rate as 0.1, which is divided by 10 at 160th and
180th epochs. We utilize mixup (Zhang et al., 2018) as
data augmentation following Yang et al. (2022) during the
training with these baseline methods except Peifeng et al.
(2023), which performs AutoAugment (Cubuk et al., 2019).
The hyper-parameter α for sampling combination ratio in
the beta distribution used for mixup is set as 1.0.

For ImageNet-LT, we conduct experiments with ResNet-50
following Yang et al. (2022); Xie et al. (2023) and ResNeXt-

Table 1. Top-1 test accuracy (%) of ResNet-32 on CIFAR-LT-10.
∗ denotes our reproduced baselines with mixup augmentation. †

and ‡ are reported from Yang et al. (2022) and Gao et al. (2023),
respectively. The remaining methods are from the original paper.

Method 200 100 50 10

KCL / 77.6 81.7 88.0
TSC / 79.7 82.9 88.7
BBN / 79.9 82.2 88.4
HCL / 81.4 85.4 91.1
RIDE (3 experts)‡ / 81.6 84.0 86.3
MiSLAS / 82.1 85.7 90.0
ARB / 83.3 85.7 90.2

CE† 67.3 72.8 78.6 87.7
CE+DisA 69.2 74.7 79.6 88.3
CE-DRW∗ 75.1 80.9 81.8 88.8
CE-DRW+DisA 77.7 82.1 84.1 89.8
LDAM-DRW∗ 77.1 78.8 82.7 88.2
LDAM-DRW+DisA 78.0 80.4 84.8 88.3
INC-DRW 75.8∗ 81.9 82.7∗ 89.8
INC-DRW+DisA 78.7 82.3 84.5 90.2
INC-DRW-cRT 76.8∗ 82.6 83.3∗ 90.2
INC-DRW-cRT+DisA 79.1 82.8 84.9 90.5

ETF-CE 60.6 67.0 77.2 87.0
ETF-CE+DisA 62.4 68.4 78.9 87.8
ETF-DR 71.9 76.5 81.0 87.7
ETF-DR+DisA 73.7 78.5 81.4 87.8
RBL∗ 80.2 83.6 87.0 92.0
RBL 81.2 84.7 87.6 /
RBL+DisA 82.0 85.1 87.9 92.6

50 following Liu et al. (2023b); Peifeng et al. (2023). We
train 200 epochs with the batchsize of 128 and weight de-
cay of 5e-4 on four Tesla A10 GPUs. The learning rate is
initialized as 0.1 and decays to zeros by cosine annealing
schedule during training. According to Peifeng et al. (2023),
we also report the test accuracy on three subsets: Many-shot
classes with more than 100 training samples, Medium-shot
classes with 20 to 100 samples, and Few-shot classes with
less than 20 samples. For different baselines, we follow the
same data augmentation as the combined methods.

We report the average results of three repeated experiments
with different random seeds. Besides, we set λ for regular-
ization weight in (10) as 0.1 and ϵ for entropic regularization
in (9) as 1. To straightforwardly express the setting of the
implementation of baseline methods with NC phenomenon,
we report the implementation details of previous methods
and our method of neural collapse in Tables 8 and 9 of the
Appendix E.

Baselines. We consider following baselines: (1) Cross-
entropy loss (CE) and imbalanced re-weighting learning
methods: DRW, LDAM-DRW (Cao et al., 2019); (2) Two-
stage methods: BBN (Zhou et al., 2020), RIDE (Wang
et al., 2021b), cRT (Cao et al., 2019), MiSLAS (Zhong
et al., 2021); (3) Contrastive learning methods: KCL (Kang
et al., 2021), TSC (Li et al., 2022), HCL (Wang et al.,
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2021a); (4) Imbalanced NC-based methods: fixed classi-
fier with ETF (ETF-CE, ETF-DR loss (Yang et al., 2022),
RBL (Peifeng et al., 2023)); and learnable classifier (INC
(Liu et al., 2023b), ARB (Xie et al., 2023)).

5.2. Comparison on Long-Tailed Classification

Comparison on CIFAR-LT. We first compare the perfor-
mance of the proposed method with existing state-of-the-art
long-tailed classification methods on the CIFAR-LT datasets.
For a fair comparison, we implement CE, CE-DRW, and
LDAM-DRW with mixup augmentation. We report the
performance of different methods with various imbalance
factors on CIFAR-LT-10 and CIFAR-LT-100.

Table 1 presents that our method shows the best overall per-
formance, outperforming previous state-of-the-art methods
significantly on CIFAR-LT-10. It confirms the validity of
DisA as regularization by distribution matching optimiza-
tion. Besides, combining DisA with different losses and
NC-based methods can yield superior performance com-
pared with the original baselines, no matter whether the
classifier is learnable or fixed. For example, replacing the
classifier with a fixed ETF classifier, ETF-DR+DisA, per-
forms better than ETF-DR. The performance improvement
is more significant when the imbalance factor is higher
(the dataset is more imbalanced), where ETF-DR+DisA
achieves 1.8% and 2.0% improvement with ρ = 200, 100,
respectively. The reason behind this might be the last-layer
representation has approximately converged to a balanced
ETF structure in relative balance setting and vice versa in ex-
treme imbalance, which is consistent with the phenomenon
reported by Yang et al. (2022). It indicates the benefit of
aligning the distribution of last-layer representation with the
distribution of the ETF structure in imbalanced learning.

Moreover, DisA also outperforms previous competing meth-
ods under different imbalance factors except RBL, which
demonstrates the effectiveness and flexibility of DisA in Ta-
ble 2. Compared with INC-DRW, we achieve 1.1% and 2.6%
improvement with ρ = 100, 10, respectively. CE+DisA has
the 1.5% improvement over CE in both ρ = 100, 50. These
results illustrate the proposed method can be effectively
combined with most long-tailed methods. Additionally,
since the discrepancy between our reproduced RBL∗ and
the results reported by RBL in the original paper is too large,
RBL+DisA is unsatisfactory. However, RBL+DisA per-
forms significantly better than RBL∗ (on which RBL+DisA
is implemented). We also combine ours with other classical
long-tailed loss functions, such as Focal loss (Lin et al.,
2017) and CB Softmax loss (Cui et al., 2019), and report
the detailed results in Table 4 of Appendix B.

Comparison on ImageNet-LT. We further conduct the
comparison experiments with several long-tailed classifica-
tion methods on the ImageNet-LT dataset in Table 3. For a

Table 2. Top-1 test accuracy (%) of ResNet-32 on CIFAR-LT-100.
∗ and † denote our reproduced baselines and the results from Yang
et al. (2022) with mixup, respectively. The results of other methods
are from their original papers.

Method 200 100 50 10

BBN / 42.6 47.1 59.2
KCL / 42.8 46.3 57.6
TSC / 43.8 47.4 59.0
HCL / 46.7 51.9 63.1
ARB / 47.2 52.6 62.1
MiSLAS / 47.0 52.3 63.2
RIDE (3 experts) / 48.6 51.4 59.8

CE 38.7† 43.0† 48.1† 58.5∗

CE+DisA 39.8 44.5 49.6 63.2
LDAM-DRW∗ 41.1 45.0 48.8 58.3
LDAM-DRW+DisA 43.0 47.0 52.5 64.1
CE-DRW∗ 41.5 45.4 51.1 61.5
CE-DRW+DisA 44.4 49.2 54.0 65.7
INC-DRW 42.5∗ 48.6 51.7∗ 63.1
INC-DRW+DisA 44.8 49.7 54.2 65.7
INC-DRW-cRT 42.8∗ 48.7 51.8∗ 63.6
INC-DRW-cRT+DisA 45.2 49.8 54.4 65.9

ETF-CE∗ 35.4 40.0 44.1 60.7
ETF-CE+DisA 36.5 40.7 45.2 61.2
ETF-DR 40.9 45.3 50.4 /
ETF-DR+DisA 41.5 45.9 51.0 63.4
RBL∗ 47.3 52.0 56.1 66.0
RBL 48.9 53.1 57.2 /
RBL+DisA 48.9 53.2 57.4 66.6

fair comparison, we use the ResNet-50 following Xie et al.
(2023); Yang et al. (2022) and ResNeXt-50 following Liu
et al. (2023b); Peifeng et al. (2023). We can find that our
DisA surpasses related NC-based methods and various loss
functions and enhances the imbalanced classification. DisA
achieves higher accuracy in all classes with ResNeXt-50,
which demonstrates the generalization ability to align imbal-
anced learning representations and balanced ETF structure.
Besides, we report the performance on the balanced dataset
in Table 6 and computational cost in Table 10 in Appendix.

5.3. Analytical Experiments

To explore how our proposed DisA narrows the gap between
the representation distribution and fixed ETF structure dis-
tribution, we display the visualization results and analysis.

Figure 3. The covariance traces of the INC-DRW and INC-
DRW+DisA with different imbalanced ratios on CIFAR-LT-10.
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Covariance Trace. Considering the characteristics of NC,
we investigate the suppression of three covariance traces
of the INC-DRW and INC-DRW+DisA with different im-
balanced ratios on CIFAR-LT-10 in Fig.3. We consider
the normalized within-class covariance Tr(ΣW ) (dotted),
between-class covariance Tr(ΣB) (solid), and total covari-
ance Tr(ΣT ) (dashed) in 3.2.

Table 3. Top-1 test accuracy (%) of ResNet-50 and ResNeXt-50
on ImageNet-LT. ∗ denotes our reproduced baselines with mixup
augmentation. The results of other methods are from their original
papers.

Method Many Med Few All

R
es

N
et

-5
0

FCL 61.4 47.0 28.2 49.8
KCL 61.8 49.4 30.9 51.5
TSC 63.5 49.7 30.4 52.4
MiSLAS 61.7 51.3 35.8 52.7
CE∗ 68.4 37.8 4.8 44.3
CE+DisA 67.7 38.6 7.3 44.8
LDAM-DRW 57.4 47.2 23.8 47.7
LDAM-DRW+DisA 57.5 48.5 25.5 48.6
CE-DRW∗ 53.8 47.4 28.8 47.1
CE-DRW+DisA 64.4 51.4 27.7 53.2
ETF-DR∗ 66.8 37.5 10.6 44.5
ETF-DR / / / 44.7
ETF-DR+DisA 65.2 39.9 12.8 45.3

R
es

N
eX

t-
50

CE-DRW 52.6 45.7 31.5 46.4
CE-LWS 57.1 45.2 29.3 47.7
LADE 65.1 48.9 33.4 53.0
RBL 64.8 49.6 34.2 53.3
RBL+DisA 64.8 49.8 34.7 53.5
INC-DRW∗ 66.4 48.5 28.7 52.7
INC-DRW 67.1 49.7 29.0 53.6
INC-DRW+DisA 67.6 49.2 31.6 53.9
INC-DRW-cRT 65.6 51.2 35.4 54.2
INC-DRW-cRT+DisA 65.0 52.1 33.0 54.5

When the model tends to achieve the NC phenomenon,
the traces of within-class covariance, between-class covari-
ance, and total covariance become lower, which means the
last-layer representation will converge to their within-class
means (compact within-class representation), and these
within-class means will collapse to the vertices of a sim-
plex ETF. From the normalized plots, we can observe that
INC-DRW+DisA outperforms INC-DRW on all covariance
traces. As the degree of imbalance ratios increases, the
gaps of covariance traces between ours and baselines are
larger, indicating the effectiveness of ours especially in the
extremely imbalanced problems.

t-SNE Visualization. We show the t-SNE visualizations
of the representations of the feature extractor learned from
INC-DRW-cRT and INC-DRW-cRT+DisA on CIFAR-LT-
10 in Fig.4. We can find that introducing our DisA loss
can extract more compact within-class and distant between-
class representations, which explains the improvement of
classification performance with our method. The samples

in ours are more tightly clustered around their correspond-
ing class-mean feature (✩) and classifier weight (△). Be-
sides, the distance between the class-mean feature and the
classifier weight for each class is smaller in ours than in
INC-DRW-cRT. These results illustrate that enforcing the
representation distribution to be aligned with the balanced
distribution from the ETF structure based on the NC the-
ory benefits the higher-quality representation learning in
imbalanced problem.

(a) INC-DRW-cRT

(b) INC-DRW-cRT+DisA

Figure 4. t-SNE visualizations of INC-DRW-cRT and INC-DRW-
cRT+DisA on CIFAR-LT-10, which contain the features (dots ◦),
class-means (✩), and the classifier weights (△) for each class.

Transport Plan. We show the learned transport plan with
the fixed ETF classifier on CIFAR-LT-10, where the rows
denote the labels of 55 images from the current mini-batch
and columns mark ETF weights in Fig.5. We observe that
the representations can be aligned to their corresponding
ETF weight vectors in the mini-batch level. DisA usually
assigns larger transport plan for the minority samples than
majority samples, which explains why our DisA can bal-
ance between majority and minority classes in an adaptive
way. Therefore, the diagonal values of A in Fig. 2 are quite
similar even the training set is imbalanced. To further verify
whether our method ameliorates the performance of minor-
ity classes, we plot the confusion matrices and class-means
angle matrices on CIFAR-LT-10 in Appendix C.

Figure 5. The learned transport plan on CIFAR-LT-10, where the
rows denote the labels of 55 images from the current mini-batch
and columns mark ETF weights.
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6. Conclusion
In this paper, we aim to enforce the NC phenomenon for im-
balanced classification and propose distribution alignment
optimization based on optimal transport that encourages the
alignment between the learned representations and fixed-
balanced ETF structures distributionally. Our method can
be used as a regularization term that is integrated into most
loss functions for optimizing the classifier and encoder si-
multaneously. Moreover, it can be used with fixed classifier
with the ideally balanced ETF structure for learning high-
quality representations. Extensive experiments demonstrate
that our method can enhance the generalization power of ex-
isting methods in imbalanced datasets. However, due to the
intrinsic constraint of NC, when exists on high-dimension
models or large-classes datasets, our method hardly satisfies
the dimension condition of ETF. We believe that it is an
open problem of NC, which we leave as a future work.
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A. More Formulations of Total Classification Losses
To completely understand the combination of our approach with various imbalance loss functions, we present mathematical
formulations of them in detail.

Combined the Label-Distribution-Aware Margin (LDAM) (Cao et al., 2019) Loss with Our Method:

min
θ,w
LTotal((x, y); f(θ,w)) = LLDAM + λLDisA

= − 1

N

K∑
k=1

nk∑
i=1

log

(
exp(hT

i wk −△k)

exp(hT
i wk −△k) +

∑K
k′ ̸=k exp(h

T
i wk′)

)
+ λ min

T∈Π(P,Q)
⟨T,C(H,M)⟩ − ϵH(T),

(13)

where ∆k = C

n
1/4
k

for k ∈ {1, . . . ,K} with constant C.

Combined the Balanced Meta-Softmax (BALMS) (Ren et al., 2020) Loss with Our Method:
min
θ,w
LTotal((x, y); f(θ,w)) = LBALMS + λLDisA

= − 1

N

K∑
k=1

nk∑
i=1

log

(
nk exp(h

T
i wk)∑K

k′=1 nk′ exp(hT
i wk′)

)
+ λ min

T∈Π(P,Q)
⟨T,C(H,M)⟩ − ϵH(T).

(14)

Combined the Focal Loss (Lin et al., 2017) with Our Method:
min
θ,w
LTotal((x, y); f(θ,w)) = LFocal + λLDisA

= − 1

N

K∑
k=1

nk∑
i=1

(
1− exp(hT

i wk)∑K
k′=1 exp(h

T
i wk′)

)γ

log

(
exp(hT

i wk)∑K
k′=1 exp(h

T
i wk′)

)
+ λ min

T∈Π(P,Q)
⟨T,C(H,M)⟩ − ϵH(T),

(15)

where γ is the modulating factor (We adopt γ = 2 in our experiments).

Combined the Class-Balanced (CB) Sigmoid Loss (Cui et al., 2019) with Our Method:

min
θ,w
LTotal((x, y); f(θ,w)) = LCB−Sigmoid + λLDisA

= − 1

N

K∑
k=1

nk∑
i=1

(
1− β

1− βnk
) log

(
1

1 + exp(−hT
i wk) + exp(

∑K
k′ ̸=k h

T
i wk′)

)
+ λ min

T∈Π(P,Q)
⟨T,C(H,M)⟩ − ϵH(T),

(16)

where we set hyperparameter β = 0.999.

Combined the Class-Balanced (CB) Softmax Loss (Cui et al., 2019) with Our Method:
min
θ,w
LTotal((x, y); f(θ,w)) = LCB−Softmax + λLDisA

= − 1

N

K∑
k=1

nk∑
i=1

(
1− β

1− βnk
) log

(
exp(hT

i wk)∑K
k′=1 exp(h

T
i wk′)

)
+ λ min

T∈Π(P,Q)
⟨T,C(H,M)⟩ − ϵH(T),

(17)

where we set hyperparameter β = 0.999.
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Combined the Attraction-Repulsion-Balanced (ARB) Loss (Xie et al., 2023) with Our Method:

min
θ,w
LTotal((x, y); f(θ,w)) = LARB + λLDisA

= − 1

N

K∑
k=1

nk∑
i=1

log

(
exp(hT

i wk)∑K
k′=1

nk′
nk

exp(hT
i wk′)

)
+ λ min

T∈Π(P,Q)
⟨T,C(H,M)⟩ − ϵH(T).

(18)

From the formulas, it can be seen that the equations of Attraction-Repulsion-Balanced (ARB) loss and Balanced Meta-
Softmax (BALMS) loss are nearly the same, so combining our method with the Balanced Meta-Softmax (BALMS) loss can
be viewed as combining our method with Attraction-Repulsion-Balanced (ARB) loss.

Combined the Dot-Regression (DR) Loss (Yang et al., 2022) with Our Method:

min
θ
LTotal((x, y); f(θ)) = LDR + λLDisA

=
1

2
√
EHEM

(
hT
i mk −

√
EHEM

)2
+ λ min

T∈Π(P,Q)
⟨T,C(H,M)⟩ − ϵH(T),

(19)

where EH and EM are the ℓ2 norm constraints for feature hi and ETF weight vector mk, respectively.

Combined the Deferred Re-Weighting (DRW) (Cao et al., 2019) with Our Method: Following the proposed training
method in Cao et al. (2019), we first use the standard ERM optimization schedule in (12) until the last learning rate decay
with β = 0, and then apply re-weighting for optimization in the second stage with Class-Balanced (CB) Softmax loss with
β = 0.999 in (17).

B. More Experiments
B.1. Comparison on Imbalanced Classification

Combined with Various Loss Functions on CIFAR-LT and Places-LT In this section, we report complete comparison
studies with imbalanced long-tailed methods, including CE, CE-DRW (Cao et al., 2019), LDAM-DRW (Cao et al., 2019),
BALMS (Ren et al., 2020), Focal loss (Lin et al., 2017), CB Softmax loss (Cui et al., 2019), and CB Sigmoid loss (Cui
et al., 2019) with mixup augmentation. We summarize the results of the different imbalanced ratios on CIFAR-LT-10 and
CIFAR-LT-100 in Table 4. We also run more experiments on Places-LT with some baselines in Table 5. Places-LT (Liu et al.,
2019) is also a long-tailed dataset constructed from Places-365 (Zhou et al., 2018) with the imbalance ratio ρ = 996. We
can find that our DisA, combined with several loss functions, improves the performance of the original loss for imbalanced
classification. These results reveal the effectiveness of our proposed method when combined with other loss functions.

B.2. Comparison on Balanced Classification

To explore whether our proposed method can be used for the balanced classification task, we report on the results of
CIFAR-10 (Krizhevsky et al., 2009) and CIFAR-100 (Krizhevsky et al., 2009) in Table 6. In this experiment, we compare
the performance of ResNet-32 backbone. CE+DisA has grown by 7.1 % against CE in CIFAR-100, and no significant
decrease in CIFAR-10. It indicates the benefit of our method of narrowing the gap between representation distribution and
fixed ETF structure distribution through the neural collapse phenomenon on the balanced datasets.

B.3. Comparison on Several Neural Network Architectures

We conduct an additional experiment on neural network architectures with different imbalanced ratios on long-tailed
classification in Table 7. We can see that, with the development of the layer in network structure, the performance of CE and
CE+DisA becomes better. It thus indicates that the quality of last-layer features is related to the neural network architecture.
This is reasonable since the quality of representation of DNNs depends on the depth and width of the network. Besides,
whether the network structure is complex or not, introducing our DisA loss can achieve better performance than the baseline
(CE), indicating the effectiveness of our method on different network architectures.
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Table 4. Comparison results on CIFAR-LT-10 and CIFAR-LT-100 with imbalanced ratios ρ = {200, 100, 50, 10}. The best is marked in
bold.

Method CIFAR-LT-10 CIFAR-LT-100

200 100 50 10 200 100 50 10

CB Sigmoid 59.1 70.8 78.2 87.1 35.2 39.2 44.8 56.3
CB Sigmoid+DisA 59.6+0.5 71.3+0.5 79.0+0.8 88.4+1.3 38.3+3.1 41.2+2.0 47.1+2.3 57.6+1.3

CB Softmax 62.8 71.2 78.0 87.4 36.0 40.0 45.0 56.1
CB Softmax+DisA 63.4+0.6 72.1+0.9 80.7+2.7 88.0+0.6 38.2+2.2 41.9+1.9 47.3+2.3 57.1+1.0

CE 67.3 72.8 78.6 87.7 38.7 43.0 48.1 58.5
CE+DisA 69.2+1.9 74.7+1.9 79.6+1.0 88.3+0.6 39.8+1.1 44.5+1.5 49.6+1.5 63.2+4.7

LDAM 68.1 73.9 78.7 86.7 38.2 40.8 44.4 54.6
LDAM+DisA 68.8+0.7 74.5+0.6 79.5+0.8 87.0+0.3 38.9+0.7 41.3+0.5 45.1+0.7 54.9+0.3

CE-DRW 75.1 80.9 81.8 88.8 41.5 45.4 51.1 61.5
CE-DRW+DisA 77.7+2.6 82.1+1.2 84.1+2.3 89.8+1.0 44.4+2.9 49.2+3.8 54.0+2.9 65.7+4.2

LDAM-DRW 77.1 78.8 82.7 88.2 41.1 45.0 48.8 58.3
LDAM-DRW+DisA 78.0+0.9 80.4+1.6 84.8+2.1 88.3+0.1 43.0+1.9 47.0+2.0 52.5+3.7 64.1+5.8

BALMS 77.4 79.6 84.6 88.4 39.2 44.9 49.7 62.0
BALMS+DisA 78.1+0.7 81.8+2.2 85.1+0.5 89.8+1.4 41.8+2.6 46.5+1.6 51.3+1.6 62.8+0.8

Table 5. Comparison results of ResNet-152 on Places-LT. The best is marked in bold.

Method Many Medium Few All

CE 45.2 21.7 5.2 26.9
CE+DisA 45.7+0.5 23.3+1.6 5.8+0.6 28.0+1.1

CE-DRW 40.8 35.6 22.1 34.9
CE-DRW+DisA 41.6+0.8 36.7+1.1 23.0+0.9 35.8+0.9

LDAM-DRW 37.0 34.9 18.8 32.5
LDAM-DRW+DisA 37.4+0.4 35.7+0.8 19.1+0.3 33.0+0.5

BALMS 41.2 36.5 24.3 35.8
BALMS+DisA 41.6+0.4 37.4+0.9 24.8+0.5 36.5+0.7

Table 6. Comparison results on balanced datasets. The results of the compared methods are obtained from their respective original papers.
The best is marked in bold.

Method CIFAR-10 CIFAR-100

CE (Yang et al., 2022) 93.6 /
ETF-DR (Yang et al., 2022) 92.0 /

CE (Xie et al., 2023) 92.0 68.7
ARB (Xie et al., 2023) 92.6 68.6

CE (Liu et al., 2023b) 93.4 71.8
INC (Liu et al., 2023b) 93.3 72.1

CE 93.5 70.1
CE+DisA 93.5 77.2
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Table 7. The performance of several neural network architectures with different imbalanced ratios on long-tailed classification.

Network Method 200 100 50 10

ResNet-20 CE 66.7 71.7 76.9 86.7
CE+DisA 68.8 72.9 78.4 86.9

ResNet-32 CE 67.3 72.8 78.6 87.7
CE+DisA 69.2 74.7 79.6 88.3

ResNet-44 CE 68.2 74.0 80.4 88.8
CE+DisA 69.8 76.1 81.9 89.4

ResNet-56 CE 68.8 74.3 80.7 88.9
CE+DisA 69.0 75.1 81.4 89.6

ResNet-110 CE 69.6 75.2 81.1 89.6
CE+DisA 70.2 75.8 81.7 90.3

C. More Analytical Results
Confusion Matrix To verify whether our method improves the performance of minority classes, we show the confusion
matrices of CE-DRW, INC-DRW, and INC-DRW+DisA on CIFAR-LT-10 with ρ = 200 in Fig.6. We can observe that
CE-DRW can almost perfectly classify the samples in majority classes and suffers a severe performance drop in the minority
classes. INC-DRW contributes to increased accuracy in the minority classes but needs improvement. The incorporation of
DisA goes a step further by enhancing the generalization of the minority class while maintaining the performance of the
majority class. Compared with the powerful baseline, the improvement results in superior overall performance.

Class-means Angle We compare the pair-wise angles of the centered class means with the RBL and RBL+DisA
learned on CIFAR-LT-10 of imbalanced ratios ρ = {200, 100, 50, 10}. The optimal pair-wise angle for 10 classes is
arccos −1

10−1 ≈ 96.4◦. Fig.7 shows that the pair-wise angles of RBL+DisA are more closely matched to 96.4◦ than RBL. For
example, the angle between class 9 and 1 widens from 41◦ to 49◦ with ρ = 200. The angle between class 4 and 1 shrinks
from 123◦ to 113◦ with ρ = 100. It shows the consistency of our proposed DisA between neural collapse convergence and
classification performance.

Figure 6. Confusion matrices of CE-DRW, INC-DRW, and INC-DRW+DisA on CIFAR-LT-10 with ρ = 200.

Hyper-parameter λ Discussion To analyze the effect of hyper-parameter λ of DisA, we conduct analytical experiments
on CIFAR-LT-10 with ρ = {200, 100, 50, 10}. λ in (10) indicates the hyper-parameter for balancing the supervised loss
and regularization loss. As shown in Fig.8, the larger the value of λ is, the more accurate the model. The best λ of four
imbalanced ratios are λ = 8, λ = 8, λ = 0.8, and λ = 6, respectively.
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Figure 7. The pair-wise angles of the centered class means with RBL and RBL+DisA learned on CIFAR-LT-10 of different imbalanced
ratios. The optimal pair-wise angle for 10 classes is arccos −1

10−1
≈ 96.4◦.

(a) ρ = 200 (b) ρ = 100

(c) ρ = 50 (d) ρ = 10

Figure 8. Hyper-parameter λ discussion with different imbalanced ratios.
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D. Algorithm
We summarize the complete procedure of our DisA method in Algorithm 2.

Algorithm 1 Distribution Alignment Optimization
Input: Distributions P and Q, hyper-parameter ϵ, iteration step E;
Output: LDisA(P,Q)
1: Compute the distance C between representation H and ETF tructure M;
2: Set scaling vectors u← 1

N · 1N ,v ← 1
K · 1K ;

3: for iteration i = 1, 2, ..., E do
4: u(i) = u/

(
(exp(−C/ϵ)v(i−1)

)
;

5: v(i) = v/
(
(exp(−C/ϵ)⊤u(i−1)

)
;

6: end for
7: Compute T = diag(u) exp(−C/ϵ)diag(v);
8: LDisA(P,Q) = ⟨T,C⟩.

Algorithm 2 Overall Algorithm
Input: Training dataset D, model f with parameter θ and classifier W , ETF structure M, a supervised learning method A,

number of epochs T , hyper-parameters {β, λ, ϵ};
Output: Model parameters;
1: Initialize θ randomly;
2: if fixed classifier with ETF then
3: Define the classifier W with the ETF structure M, W = M.
4: else
5: Initialize W randomly;
6: end if
7: for epoch t = 1, 2, ..., T do
8: Build discrete distributions P with (6) and Q with (7);
9: Compute Lsup according to A and the proposed LDisA(P,Q) by Algorithm 1;

10: if fixed classifier with ETF then
11: Update θ∗ ← θ − β∇θLtotal by minimizing Lsup + λLDisA with (11).
12: else
13: Update θ∗ ← θ − β∇θLtotal and W ∗ ←W − β∇wLtotal by minimizing Lsup + λLDisA with (12).
14: end if
15: end for

E. Training Details
We report implementation details of previous methods and our method of neural collapse for long-tailed classification on
the three datasets, CIFAR-LT-10, CIFAR-LT-100, and ImageNet-LT with three architectures, ResNet-32, ResNet-50, and
ResNeXt-50 in Tables 8 and 9.

Table 8. Implementation details on CIFAR-LT of ResNet-32 by the SGD optimizer with a momentum of 0.9.

Method Augment Epochs Batch LR Decay Scheduler Dim GPU

ETF (Yang et al., 2022) Mixup 200 128 0.1 2e-4 Step 64 / 128 1
INC (Liu et al., 2023b) Mixup 200 128 0.1 5e-3 Step / 4
+ DisA Mixup 200 128 0.1 2e-4 Step 64 / 128 1
RBL (Peifeng et al., 2023) AutoAug 600 256 0.1 5e-4 Cosine 256 1
+ DisA AutoAug 600 256 0.1 5e-4 Cosine 256 1
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Table 9. Implementation details on ImageNet-LT by the SGD optimizer with a momentum of 0.9 and cosine schedule.
Method Backbone Augment Epochs Batch LR Decay Dim GPU

ETF (Yang et al., 2022) ResNet-50 Mixup 180 1024 0.1 5e-4 4096 8
+ DisA ResNet-50 Mixup 180 128 0.1 5e-4 4096 4
INC (Liu et al., 2023b) ResNeXt-50 Mixup + RandAug 200 256 0.05 5e-3 / 4
+ DisA ResNeXt-50 Mixup + RandAug 200 128 0.1 5e-4 2048 4
RBL (Peifeng et al., 2023) ResNeXt-50 CommonAug 200 64 0.25 5e-4 512 1
+ DisA ResNeXt-50 CommonAug 200 64 0.25 5e-4 512 1

F. Computational Cost
The optimal transport (OT) problem in our method between probability distributions is computed by the Sinkhorn algorithm
(Cuturi, 2013), which introduces the entropic regularization term for fast computation. We compare the computational
cost of different methods on a Pentium PC with a single GTX A10 GPU. As shown in Table 10, imbalanced NC-based
methods (ETF-DR, INC-DRW, and RBL) usually take more time than traditional methods (CE and CE-DRW). The reason
behind this is the model computes additional information. For example, INC needs to compute the class-mean features and
the global-mean feature for regularization. The process of optimizing the rotation orthogonal matrix of RBL also brings
large expenses. Therefore, it is reasonable that NC-based methods have a higher computational cost. Besides, DisA spends
more time than these NC-based methods since we solve an OT problem to match imbalanced and ETF distributions for
representation learning. However, combining ours with others produces a better performance on long-tailed datasets with
an acceptable cost. Moreover, we also conduct an experiment on the model computational overhead with various feature
dimensions(d) and classes on long-tailed datasets. As shown in Table 11, we can find that when the dimensions and classes
are larger, more computational cost is required by all baselines and DisA, where the model requires more memory to learn
representation.

Table 10. Computational cost (s) per training epoch on long-tailed datasets.
Method CIFAR-LT-10 CIFAR-LT-100 ImageNet-LT

CE 2.44 2.33 323.52
CE+DisA 2.68 3.21 337.48

CE-DRW 2.49 2.73 334.12
CE-DRW+DisA 2.74 3.38 357.33

ETF-DR 3.49 4.92 367.55
ETF-DR+DisA 3.61 5.31 397.26

INC-DRW 3.78 4.51 365.24
INC-DRW+DisA 3.82 4.86 381.11

RBL 7.40 7.91 472.13
RBL+DisA 7.61 8.41 510.64

Table 11. The computational overhead (s) per training epoch with various feature dimensionality and classes on long-tailed datasets. ∗:
our implementation dimension in the paper.

Datasets CIFAR-LT-10 CIFAR-LT-100

Dimension 16 32 64 128 256 16 32 64 128 256

CE 2.41 2.42 2.44∗ 2.84 3.25 2.32 2.35 2.34 2.33∗ 2.87
CE+DisA 2.67 2.68 2.68∗ 3.03 3.47 2.74 2.81 2.89 3.21∗ 3.51

CE-DRW 2.42 2.46 2.49∗ 2.88 3.64 2.58 2.61 2.67 2.73∗ 3.79
CE-DRW+DisA 2.68 2.71 2.74∗ 3.06 3.75 2.79 2.83 3.11 3.38∗ 3.94

ETF-DR 3.21 3.33 3.49∗ 4.87 5.21 3.66 3.71 3.78 4.92∗ 5.41
ETF-DR+DisA 3.34 3.56 3.61∗ 5.02 5.35 3.75 3.91 4.56 5.31∗ 5.73

INC-DRW 3.48 3.56 3.78∗ 4.31 4.72 3.74 3.86 4.12 4.51∗ 4.97
INC-DRW+DisA 3.63 3.79 3.82∗ 4.63 4.87 3.93 4.15 4.56 4.86∗ 5.22

RBL 7.21 7.33 7.40 8.06 8.78∗ 7.35 7.47 7.66 7.91 8.45∗

RBL+DisA 7.35 7.58 7.61 8.36 8.90∗ 7.78 7.92 8.24 8.41 9.03∗
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