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Abstract
Autonomous agents trained using deep reinforce-
ment learning (RL) often lack the ability to suc-
cessfully generalise to new environments, even
when these environments share characteristics
with the ones they have encountered during train-
ing. In this work, we investigate how the sampling
of individual environment instances, or levels, af-
fects the zero-shot generalisation (ZSG) ability of
RL agents. We discover that, for deep actor-critic
architectures sharing their base layers, prioritis-
ing levels according to their value loss minimises
the mutual information between the agent’s inter-
nal representation and the set of training levels
in the generated training data. This provides a
novel theoretical justification for the regularisa-
tion achieved by certain adaptive sampling strate-
gies. We then turn our attention to unsupervised
environment design (UED) methods, which as-
sume control over level generation. We find that
existing UED methods can significantly shift the
training distribution, which translates to low ZSG
performance. To prevent both overfitting and dis-
tributional shift, we introduce data-regularised
environment design (DRED). DRED generates
levels using a generative model trained to approx-
imate the ground truth distribution of an initial
set of level parameters. Through its grounding,
DRED achieves significant improvements in ZSG
over adaptive level sampling strategies and UED
methods.

1. Introduction
A central challenge facing modern reinforcement learning
(RL) is learning policies capable of zero-shot transfer of
learned behaviours to a wide range of environment settings.
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Figure 1: The agent (yellow) must navigate to the goal
(green) but cannot pass through walls (grey) and only ob-
serves tiles directly adjacent to itself (highlighted yellow).
An agent trained over levels (a)-(c) will transfer zero-shot
to level (d) if it has learnt a behavior adapted to the task
semantics of following blue tiles to the goal location.

Prior applications of RL algorithms (Agostinelli et al., 2019;
Lee et al., 2020; Rudin et al., 2022) indicate that strong
zero-shot generalisation (ZSG) can be achieved through an
adaptive sampling strategy over the set of environment in-
stances available during training, which we refer to as the
set of training levels. However, the relationship between
ZSG and the level sampling process remains poorly under-
stood. In this work, we draw novel connections between
this process and the minimisation of an upper bound on
the generalisation error. This bound depends on the mutual
information (MI) between the learned policy π and the set
of training levels L,

I(π;L) = H(i) +
∑
i∈L

∫
π̄∈∆A

P (π=π̄, i=i) logP (i=i|π=π̄),

(1)
where i refers to an individual training level, H(i) the en-
tropy of the level distribution and ∆A the output space of the
policy. A model with high I(π;L) outputs action distribu-
tions that are highly correlated to the level identity. In other
words, the model internally predicts the level it is currently
in and learns an ensemble of level-specific policies. In gen-
eral, such an agent will not transfer to new levels zero-shot,
as illustrated in the minimal example in Figure 1. In this
scenario, it is possible to identify a training level from its
initial observation. An agent with high I(π;L) would use
this information to infer the goal location without having to
observe it first. In doing so, it can ignore the task semantics
shared across levels, while still maximising its returns on the

1



Data-Regularised Environment Design

training set. In fact, it can solve level (a) in fewer steps by
ignoring these semantics, as there exists a “shortcut” unique
to (a). When deployed on (d) after training, the agent will
predict it is in (a), since (a) and (d) share the same initial
observation. As a result the agent is likely to follow the
(a)-specific policy, which will not transfer zero-shot.

As extensively demonstrated in prior work, increasing the
number of training levels (Zhang et al., 2018; Cobbe et al.,
2020; Packer et al., 2018) or the amount of data generated
in each level (e.g. performing data augmentation on obser-
vations (Raileanu et al., 2021; Yarats et al., 2021)) reduces
the generalisation error, also called generalisation gap, de-
fined as the difference in episodic returns when evaluating
the agent on the train set and on the full level distribution.
From an information theoretic perspective, these approaches
induce an implicit information bottleneck on I(π;L) by mak-
ing any particular level more difficult to identify for a model
with a fixed representational capacity. However, it is not
clear how certain level sampling strategies achieve smaller
generalisation gaps (compared to uniform sampling) with-
out increasing the number of training levels nor augmenting
the data generated (Jiang et al., 2021b;a). In Section 3, we
show that these strategies may be understood as adaptive
rejection sampling mechanisms that prevent data with high
I(π;L) from being generated. This allows us to build a
connection between these strategies and the minimisation
of an upper bound on the generalisation gap that depends
on I(π;L). We supplement our findings with an empirical
evaluation of different sampling strategies in the Procgen
benchmark (Cobbe et al., 2020), and observe a strong corre-
lation between I(π;L) and the generalisation gap.

We then introduce data-regularised environment design
(DRED) in Section 4. DRED combines adaptive sampling
with data augmentation, but does not perform data augmen-
tation across observations but across levels. It does so by
learning a generative model of the full distribution of levels
we would like the agent to transfer to, trained on a limited
starting set of levels from that distribution. DRED then
employs an adaptive sampling strategy over an augmented
set consisting of the starting levels and the generated levels.

While training on an augmented set is effective in preventing
overfitting, it may cause distributional shift if that set is not
drawn from the same distribution as the original set. We
find that existing environment design methods that rely on
an unsupervised generation process cause significant dis-
tributional shift, and may lead to poor performance at test
time. There is therefore a trade-off between augmenting the
training set to prevent instance-overfitting (i.e. to prevent
learning level-specific policies), and ensuring that this aug-
mented set is consistent with the original distribution (i.e. to
avoid distributional shift). We measure DRED’s capabilities
in a gridworld navigation task that was designed to highlight

this trade-off. We find that DRED achieves a smaller gener-
alisation gap than sampling methods restricted to the starting
levels, and does so while maintaining a small distributional
shift. This differentiates DRED from unsupervised environ-
ment design (UED) methods, which do not account for a
target task or target distribution. DRED achieves significant
improvements in the agent’s ZSG capabilities, reaching 1.2
times the returns of the next best baseline on held-out levels.
It also improves performance by two to three times on more
difficult instantiations of the target task.1

2. Preliminaries
Reinforcement learning. We model an individual level as
a Partially Observable Markov Decision Process (POMDP)
⟨A,O,S, T ,Ω, R, p0, γ⟩ where A is the action space, O is
the observation space, S is the set of states, T : S×A→ ∆S

and Ω : S→ ∆O are the transition and observation kernels
(denoting ∆S as the set of all possible probability distribu-
tions over S), R : S× A→ R is the reward function, p0(s)
is the initial state distribution and γ is the discount factor.
We consider the episodic RL setting, in which the agent
attempts to learn a policy π maximising the expected dis-
counted return V π(st) = Eπ[

∑T
t̄=t γ

t−t̄rt] over an episode
terminating at timestep T , where st and rt are the state
and reward at step t. We use V π to refer to V π(s0), the
expected episodic returns taken from the first timestep of the
episode. In this work, we focus on on-policy actor-critic al-
gorithms (Mnih et al., 2016; Lillicrap et al., 2016; Schulman
et al., 2017) representing the agent policy πθ and value esti-
mate V̂θ with neural networks (we use θ to refer to model
weights). The policy and value networks usually share an
intermediate state representation bθ(ot) (or for recurrent
architectures bθ(Ho

t ), H
o
t = {o0, · · · , ot} being the history

of observations oi).

Contextual MDPs. Following Kirk et al. (2023), we
model the set of environment instances we aim to
generalise over as a Contextual-MDP (CMDP) M =
⟨A,O,S, T ,Ω, R, p0(s|x), γ,XC , p(x)⟩. In a CMDP, the
reward function and the transition and observation kernels
also depend on the context set XC with associated distri-
bution p(x), that is we have T : S × XC × A → ∆S,
Ω : S× XC → ∆O, R : S× XC × A→ R. Each element
x ∈ XC is not observable by the agent and instantiates a
level ix of the CMDP with initial state distribution p0(s|x).
The CMDP is equivalent to a POMDP if we consider its
state space to be S × XC , which means that the agent is
always in a partially observable setting, even when the state
space of individual levels is fully observable.

We assume access to a parametrisable simulator with pa-

1Our code and experimental data are available at https://
github.com/uoe-agents/dred.
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rameter space X, with XC ⊂ X. While prior work expects
XC to correspond to all solvable levels in X (often defined
as the levels in which a positive return is achievable), we
will extend our analysis to the more general setting in which
there may be more than one CMDP within X, whereas we
aim to solve a specific target CMDP. We refer to levels with
parameters x ∈ XC as in-context and to levels outside of
this set as out-of-context.

The generalisation gap. We start training with access to a
limited set of level parameters Xtrain ⊂ XC sampled from
p(x), and evaluate generalisation using a set of held-out
level parameters Xtest, also sampled from p(x). We can es-
timate generalisation error using a formulation reminiscent
of supervised learning,

GenGap(π) :=
1

|Xtrain|
∑

x∈Xtrain

V πix −
1

|Xtest|
∑

x∈Xtest

V πix .

(2)

Bertrán et al. (2020) extend generalisation results in the
supervised setting (Xu & Raginsky, 2017) to obtain an upper
bound for the GenGap.

Theorem 2.1. For any CMDP such that |V πC (Ho
t )| ≤

D/2,∀Ho
t , π, with D being a constant, then for any set

of training levels L, and policy π

GenGap(π) ≤
√

2D2

|L| × I(L;π). (3)

We will show that minimising this bound is an effective
surrogate objective for reducing the GenGap.

Adaptive level sampling. We study the connection between
I(L;π) and adaptive sampling strategies over L. Prioritised
Level Replay (PLR, Jiang et al., 2021b) introduce a scor-
ing function score(τi, π) which compute level scores from
trajectory rollouts τi. Scores are used to define an adaptive
sampling distribution over a level buffer Λ, with

PΛ = (1− ρ) · PS + ρ · PR, (4)

where PS is a distribution parametrised by the level scores
and ρ is a coefficient mixing PS with a staleness distribution
PR that promotes levels replayed less recently. Jiang et al.
(2021b) experiment with different scoring functions, and em-
pirically find that the scoring function based on the ℓ1-value
loss SVi = score(τi, π) = (1/|τi|)

∑
Ho

t ∈τi |V̂ (Ho
t ) −

V πi (Ho
t )| incurs a significant reduction in the GenGap at

test time.

In the remaining sections, we draw novel connections be-
tween the ℓ1-value loss prioritisation strategy and the min-
imisation of I(L;π). We then introduce DRED, a level
generation and sampling framework training the agent over
an augmented set of levels. DRED jointly minimises I(L;π)

while increasing |L| and as such is more effective at min-
imising the bound from Theorem 2.1.

3. How does adaptive level sampling impact
generalisation in RL?

In this section, we establish that adaptive sampling strategies
reduce the GenGap by inducing an information bottleneck
on I(L;π). We begin our analysis by deriving a method
for empirically estimating an upper bound for I(L;π). We
find this upper bound and the generalisation gap to be well
correlated for different sampling strategies in the Procgen
benchmark (Cobbe et al., 2020), a benchmark of 16 games
designed to measure generalisation in RL. As in prior work
(Jiang et al., 2021b), we observe that ℓ1-value loss prioritisa-
tion reduces the GenGap while improving sample efficiency.
Here we take a further step, and aim to understand why value
loss prioritisation minimises the GenGap.2 We do so by es-
tablishing a connection between the value loss and I(L;π).
We conclude this section by highlighting the importance
of maintaining a low distributional shift during training, an
important feature of DRED, which we will introduce in the
next section.

3.1. Mutual information estimation

I(L;π) is often difficult to measure from the model outputs
alone. We estimate instead I(L; b), the mutual informa-
tion at the last shared layer between the actor and critic.
As shown in the following lemma, I(L; b) upper bounds
I(L;π).
Lemma 3.1. (proof in appendix) Given a set of training
levels L and policy π = f ◦ b, where b(Ho

t ) = ht ∈ B is
an intermediate representation function and f : B → ∆A

maps to the agent’s action distribution, we have

I(L;π) ≤ H(i) +
∑
i∈L

∫
B
p(h, i) log p(i|h)dh, (5)

where the right-hand side is equivalent to I(L; b).

This result applies to any state representation function b,
including the non-recurrent case where b(Ho

t ) = b(ot). To
remain consistent with the CMDP, we must set p(i) to p(x),
making the entropy H(i) a constant. However, the second
term in Equation (5) depends on the output of the learned
representation bθ, and may be empirically estimated as∑
i∈L

∫
B
p(h, i) log p(i|h)dh ≈ 1

N

N∑
n

log pθ(i
(n)|h(n)),

(6)
where pθ predicts the current level from representations
ht = bθ(H

o
t ) collected during rollouts.

2For a discussion on the relationship of value loss and sample
efficiency, we refer the reader to Schaul et al. (2016).
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Figure 2: Aggregated I(L; b), GenGap, train and test scores of different sampling strategies over 5 seeds across all Procgen
games, using the rliable library (Agarwal et al., 2021). Coloured boxes indicate the 95% confidence interval. For each game,
the train and test scores and the GenGap are normalised by the mean score of (PS = U) over the test set. Per-game scores,
mutual information and classifier accuracy are reported in Appendix B, and Appendix E.1 provides an extended description
of our experimental setup.

3.2. Comparing adaptive sampling strategies

To evaluate their impact on the GenGap, we compare dif-
ferent adaptive sampling strategies in the “easy” setting of
Procgen (|L| = 200, 25M timesteps). We use the default
PPO (Schulman et al., 2017) architecture and hyperparam-
eters proposed by Cobbe et al. (2020), which uses a non-
recurrent intermediate representation bθ(ot). We measure
I(L; b) using Equation (6), parametrising pθ as a linear clas-
sifier. Figure 2 compares uniform sampling (PS = U) with
adaptive sampling strategies obtained from different level
scoring functions in Equation (7). We compare value loss
scoring (S = SV ) with (S = SMI), a scoring function
that directly prioritises levels with low I(L; b). (S = SMI)
exploits that Equation (6) may be decomposed into level
specific terms Ii =

∑T
t log pθ(i|bθ(ot)) and uses scoring

strategy score(τi, π) = Ii.

We also consider mixed strategies (S = SV , S′ = SMI) and
(S = SV , PS′ = U), which are obtained by introducing a
secondary scoring function to Equation (4),

PΛ = (1− ρ) · ((1− η) · PS + η · PS′) + ρ · PR, (7)

where η is the mixing coefficient, which may be scheduled
over the course of training. We report our main observa-
tions below, with extended analysis and results available in
Appendix B.

First observation. Minimising I(L; b) on the generated
training data using an adaptive distribution results in agent
representations with reduced I(L; b) under the original dis-
tribution.

Second observation. We find this representation to be
highly informative of the level identity. Out of 200 training
levels, our linear classifier predicts the current level with
49% accuracy with (PS = U) and its accuracy only drops
to 35% with (S = SV ) and 19% with (S = SMI). This
indicates that observations get mapped to level-specific clus-
ters in the representation space, which let the agent learn
level-specific policies.

Third observation. We measure a strong positive corre-
lation (ρ = 0.6) and rank correlation (Kendall ξ = 0.5,
p < 1e − 50) between I(L; b) and the GenGap, across all
procgen games and sampling strategies tested. This makes
I(L; b) a useful proxy for the GenGap. I(L; b) has lower
variance, does not require normalisation across environ-
ments and, crucially, does not necessitate a held-out test set
of levels to be measured.

Fourth observation. (S = SMI) achieves the highest re-
ductions in I(L; b) and the GenGap. However, it also sig-
nificantly degrades performance during training, and is the
worst performing strategy when considering final test scores.
This result is consistent with Theorem 2.1 and Lemma 3.1,
as I(L; b) bounds the GenGap and not the test returns.3

(S = SV ) strikes a good balance between improving sam-
ple efficiency and reducing the GenGap. Indeed, our best
performing mixing schedule for (S = SV , S′ = SMI) (re-
ported here) only achieved a very marginal (and not statis-
tically significant) improvement in test score and GenGap
over (S = SV ).

Fifth observation. Under (S = SV , PS′ = U) training
scores are similar to (S = SV ) but both the GenGap and
I(L; b) increase. We hypothesise that the mechanisms re-
sponsible for improving sample efficiency and generalisa-
tion in (S = SV ) are different, and that the latter is achieved
through adaptive I(L; b) regularisation.

3.3. Value loss prioritisation reduces I(L; b)

While it is intuitive that an adaptive strategy such as (S =
SMI) minimises I(L; b) by preventing the agent to train on
informative levels, the relationship between (S = SV ) and
I(L; b) is less evident. To understand this relationship it is
helpful to remember that (S = SV ) rejects levels with low

3Excessive data regularisation is not desirable: in the most
extreme case, destroying all information contained within the train-
ing data would guarantee I(L; b) = GenGap = 0 but it would also
make the performance on the train and test sets equally bad.
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value loss as much as it prioritises levels with high value
loss; and to consider what achieving low value loss means
in the CMDP setting.

We can estimate the value function V πC of a CMDP from
level specific value functions V πi by employing the unbiased
value estimator lemma from Bertrán et al. (2020).

Lemma 3.2. Given a policy π and a set of levels L from
a CMDP, we have ∀Ho

t (t < ∞) compatible with L
(meaning that the observation sequence Ho

t occurs in L),
EL|Ho

t
[V πi (Ho

t )] = V πC (Ho
t ), with V πi (Ho

t ) being the ex-
pected returns under π given observation history Ho

t in a
given level i, and V πC (Ho

t ) being the expected returns across
all possible occurrences of Ho

t in the CMDP.

It follows that the value prediction loss also employs level-
specific targets, with

LV (θ) =
1

N

N∑
n

(V̂θ(H
o
t
(n))− V πi (n))2, (8)

and Lemma 3.2 guaranteeing convergence to an unbiased
estimator for V πC when minimising Equation (8).

Equivalently, we can express each level-specific value func-
tion V πi as a combination of the CMDP value function V πC
and a level-specific function vπi , Lemma 3.2 ensuring that
the vπi functions cancel out in expectation. Nevertheless,
when vπi is not zero everywhere, identifying the current
level i and predicting vπi are both necessary to predict in-
dividual value targets V πi . Perfect value prediction over
the training levels (i.e. overfitting and reaching zero value
loss) therefore necessitates learning an intermediate rep-
resentation from which the current level i is identifiable,
implying high I(L; b). It follows that, by rejecting levels
with low value loss, value loss prioritisation prevents the
agent from collecting data from the levels in which b has
begun to overfit.

In other words, value loss prioritisation acts as a form of
rejection sampling that prevents data with high I(L; b) from
being generated. This rejection sampling is adaptive, as
LV (θ) depends on the current learned weights θ, and thus
continually resists convergence to a representation overfit-
ting to any particular level.

3.4. Distributional shift and the effect of increasing |L|
In 3 out of 16 Procgen games, (S = SV ) does not improve
over (PS = U) on the test set, and does worse on the train
set (per-game results are available in Appendix B.3). As
we are interested in combining adaptive sampling with the
generation of additional levels, we conduct a preliminary
experiment investigating how the inclusion of additional
training levels impacts ZSG in “Miner”, one of the games
in which (S = SV ) underperforms.
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Figure 3: Investigating the effect of increasing |L| when
adaptive sampling induces distributional shift. Top row
reports the test and train performance; the GenGap is on the
bottom left; on the bottom right is compared, for (S = SV ),
the ShiftGap and the score differential with (PS = U) over
the train set. Vertical bars indicate standard error over 5
seeds.

In Figure 3 we observe larger L results in a reduction in
the GenGap and in an increase in test scores under uniform
sampling, as reported in several prior studies (Zhang et al.,
2018; Cobbe et al., 2020; Packer et al., 2018). For (S = SV )
we also observe a reduction in GenGap but it is caused
by scores dropping over the train set instead of improving
over the test set. This phenomenon is not optimisation
related, as train scores for (S = SV ) under its own adaptive
distribution remain in-line with the (PS = U) train scores.
In fact it is caused by distributional shift, a potential pitfall
of adaptive distributions. In Miner, the shifted training
distribution prevents the agent to improve its test scores
further, even as the number of training levels is increased.

As this phenomenon is not captured by the GenGap, we pro-
pose the shift-induced gap, or ShiftGap, a complementary
metric quantifying the performance reduction induced by
distributional shift under non-uniform training distributions,

ShiftGap(π) :=
∑
i∈Λ

PΛ(i) · V πi −
1

|L|
∑
i∈L

V πi . (9)

Unlike the GenGap, the ShiftGap does not necessitates held-
out test levels to be measured, and only relies on scores
being normalised across levels.4 We find that the ShiftGap
for (S = SV ) closely matches (within measurement error)
the performance differential between (S = SV ) and (PS =
U) over the train set. In later experiments, we will show

4Note that using Xtest in the second term makes ShiftGap ≡
GenGap when PΛ = U , whereas it should be 0.
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Figure 4: Overview of the data-regularised environment design framework.

it is important for the ShiftGap to remain small in order to
achieve strong ZSG.

Algorithm 1 Data-regularised environment design

Input: Pre-trained encoder and decoder networks ψθE
,

ϕθD
, level parameters Xtrain, number of pairs M , num-

ber of interpolations per pair K
1: Initialise level buffer Λ to level parameters in Xtrain
2: Initialise agent policy π
3: while not converged do
4: Instantiate levels from batch X ∼ PΛ and collect

rollouts, update level scores S, S′ in Λ
5: Update π using collected rollouts
6: Uniformly sample M pairs from Xtrain
7: for (xi,xj) in pairs do
8: Compute latent parameters using ψθE

and K in-
terpolations between (µz,σz)i and (µz,σz)j

9: for (µz,σz)k in interpolations do
10: Sample embedding z ∼ N (µz,σz)
11: Instantiate x̃← ϕθD

(z) and compute s, s′

12: Add ⟨x̃, s, s′⟩ to Λ

4. Data-regularised environment design
We have established that we can reduce I(L; b) and the
GenGap by increasing |L| or by employing an adaptive sam-
pling strategy. However, we have observed that increasing
|L| may not result in higher test set performance when there
is significant distributional shift during training. As the
CMDP context distribution p(x) is rarely known in practi-
cal applications, artificially generating extra training levels
is an additional source of distributional shift. To capitalise
on the benefits provided by adaptive sampling and level
generation, while limiting distributional shift, we propose
data-regularised environment design (DRED), a framework
that combines adaptive sampling with a level generation
process approximating p(x).

Instead of direct knowledge of p(x), we assume having
access to a limited set of level parameters Xtrain ∼ p(x).
Each x ∈ Xtrain instantiates a level ix from the CMDP. We
are allowed to sample from the full simulator parameter
space X, which means we can augment our set of training
levels with new levels x̃ ∈ X.

DRED consists of two components: a generative phase, in
which an augmented set X̃ is generated from a batch X ∼
U(Xtrain) and is added to the buffer Λ, and a replay phase, in
which we use the adaptive distribution PΛ to sample levels
from the buffer. We alternate between the generative and
replay phases, and only perform gradient updates on the
agent during the replay phase. Algorithm 1 and Figure 4
describe the full DRED pipeline, and we provide further
details on each phase below.

4.1. The generative phase

We initialise the buffer Λ to contain Xtrain levels and grad-
ually add generated levels X̃ over the course of training.
DRED is not restricted to a particular approach to obtain X̃ .
In this work, we use a VAE (Kingma & Welling, 2014;
Rezende et al., 2014) and refer to our method as VAE-
DRED. The VAE models the underlying training data distri-
bution p(x) as stochastic realisations of a latent distribution
p(z) via a generative model p(x | z). The model is pre-
trained on Xtrain by maximising the variational ELBO

LELBO = E
x∼p(x)

[ E
z∼q(z|x;ψθE

)
[log p(x | z;ϕθD

)]

− βDKL(q(z | x;ψθE
) || p(z))],

(10)

where q(z | x;ψθE
) is a variational approximation of

an intractable model posterior distribution p(z | x) and
DKL(· || ·) denotes the Kullback–Leibler divergence, which
is balanced using the coefficient β, as proposed by Higgins
et al. (2017). The generative p(x | z;ϕθD

) and variational
q(z | x;ψθE

) models are parametrised via encoder and
decoder networks ψθE

and ϕθD
.
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Maximising Equation (10) fits the VAE such that
p(x;ϕθD

) =
∫
p(x | z;ϕθD

)p(z) dz ≈ p(x). Out-of-
context levels are less likely with x̃ ∼ p(x;ϕθD

) than
with x̃ ∼ U(X), and we show in Section 5 that this as-
pect is key in enabling DRED agents to outperform UED
agents. We follow White (2016) and interpolate z in the
latent space between the latent representations of a pair
of samples (xi,xj) ∼ Xtrain (instead of sampling z from
p(z)), as this improves the quality of the generated x̃.

After generating a batch of levels parameters X̃ we collect
rollouts (without updating agent weights) to compute their
scores, adding to the buffer Λ any level scoring higher than
the lowest scoring generated level in Λ. We only consider
levels solved at least once during rollouts for inclusion, to en-
sure that unsolvable levels do not get added in. We provide
additional details on the VAE architecture, hyperparameters
and pre-training process in Appendix E.3.

4.2. The replay phase

All levels in Xtrain originate from p(x) and are in-context,
whereas generated levels, which are obtained from an ap-
proximation of p(x), do not benefit from as strong of a
guarantee. As training on out-of-context levels can signif-
icantly harm the agents’ performance on the CMDP, we
control the ratio between Xtrain and augmented levels using
the mixed scoring introduced in Equation (7) for PΛ. The
support of PS and PR is limited to Xtrain, whereas PS′ sup-
ports the entire buffer. We set both S and S′ to score levels
according to the ℓ1-value loss. We find out-of-context levels
to be particularly harmful in the early stages of training, and
limit their occurrence early on by linearly increasing η from
0 to 1 over the course of training.

5. DRED experiments
Our experiments seek to answer the following questions:
1) How important is it to remain grounded to the target
CMDP when generating additional levels, instead of sim-
ply maximising level diversity? 2) Is DRED successful in
grounding the training distribution to the target CMDP, and
does it improve transfer to held-out levels and edge-cases?

5.1. Experimental setup

We choose Minigrid (Chevalier-Boisvert et al., 2018), a
partially observable gridworld navigation domain, for our
experiments. Despite its simplicity, Minigrid has a control-
lable level parameter space (unlike Procgen), and levels are
parameterised to vectors describing the locations, starting
states and appearance of the objects in the grid.

When benchmarking UED methods (and RL algorithms in
general) it is implicitly agreed upon that each (solvable)
level instantiated belongs to the target CMDP. Yet, this is

rarely true in a practical application, as in-context level
parameters XC often correspond to a small and highly struc-
tured region of the simulator parameter space X. With this
is mind, we seek to design a target CMDP with similar
properties in Minigrid. We define the context space of our
target CMDP as spanning the layouts where the location of
green “moss” tiles and orange “lava” tiles are respectively
positively and negatively correlated to their distance to the
goal location. We employ procedural generation to obtain
a set Xtrain of 512 level parameters (we refer the reader to
Figure 17 for a visualisation of levels from Xtrain, and to
Appendix D for extended details on the CMDP specification
and procedural generation processes).

As the agent only observes its immediate surroundings and
does not know the goal location a priori, the optimal CMDP
policy is one that exploits the semantics shared by all levels
in the CMDP, exploring first areas with high perceived moss
density and avoiding areas with high lava density. Other
CMDPs exist in the level space, and may correspond to
incompatible optimal policies (for example a CMDP in
which the correlation of moss and lava tiles with the goal is
reversed). As such, it is important to maintain consistency
with the CMDP semantics when generating new levels.

Our first set of baselines is restricted to sample from Xtrain,
and consists of uniform sampling (U) and sampling using
the ℓ1-value loss strategy (PLR). Our second set uses level
generation, removing this restriction. We consider domain
randomisation (DR) (Tobin et al., 2017) which generates lev-
els by sampling uniformly between pre-determined ranges
of parameters; RPLR (Jiang et al., 2021a), which combines
PLR with DR used as its generator; and the current UED
state-of-the-art, ACCEL (Parker-Holder et al., 2022), an
extension of RPLR replacing DR by a generator making
local edits to currently high scoring levels in the buffer. In
all experiments we train the same PPO (Schulman et al.,
2017) agent for 27k updates. Additional details on our
implementation are provided in Appendix E.2.

5.2. Results

ZSG to held-out levels. As shown in Figure 5 (top), VAE-
DRED achieves statistically significant improvements in
its IQM (inter-quantile mean), mean score, optimality gap
(compared to the level-specific optimal policy) and mean
solved rate over other methods on held-out levels from the
CMDP. VAE-DRED drastically increases the number of
training levels available to the agent while remaining consis-
tent with the target CMDP. VAE-DRED maintains a small
distributional shift, which we quantify in our extended analy-
sis in Appendix C.1, and a low ShiftGap throughout training
(Figure 13). This is thanks to its generative model effec-
tively approximating p(x), and to its mixed sampling strat-
egy ensuring levels from Xtrain are sampled often, and even
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Figure 5: Aggregate final performance and mean solved rate on Xtest, an evaluation set of 2048 levels sampled from p(x)
and held-out during training (top), and on 448 in-context edge cases (bottom). Example layouts from each evaluation set are
plotted on the left. The coloured boxes indicate a 99% confidence interval and the black horizontal bars indicate standard
error across 5 training seeds. We refer the reader to Appendix D for additional details on our evaluation sets.

more-so early-on. Despite small GenGap (Figure 13), UED
baselines achieve low test scores, as they perform poorly on
both the test set and on Xtrain. Further analysis conducted in
Appendix C.1 confirms that, in general, UED methods incur
larger distributional shift than DRED or adaptive sampling
strategies, and result in larger ShiftGap.

ZSG to edge cases. We next investigate whether VAE-
DRED’s level generation improves robustness to in-context
edge cases with a near zero likelihood of occurring in Xtrain
(Figure 5, bottom). We find VAE-DRED to be particularly
dominant in this setting, achieving over three times DR’s
IQM, the next best method, and twice its solved rate and
mean score. VAE-DRED makes the agent robust to edge
cases by introducing additional diversity in the training
levels. These generated levels remain consistent with the
CMDP semantics, as can be observed qualitatively in ren-
derings of generated levels in Figure 19 and quantitatively
in the training distribution metrics reported in in Figure 14.

ZSG to hard levels. In Figures 6 and 16, we evaluate trans-
fer to in-context “Hardcore” levels. Being 9 times larger in
area than training levels, Hardcore levels are significantly
more challenging to solve, even for Humans. This setting is
where the performance gap between VAE-DRED and other
methods is the largest, with VAE-DRED solving three times
as many levels as the next best baseline.

Ablations. To better understand the importance of the pre-
trained generative model, we introduce EL-DRED, which
replaces the VAE with ACCEL’s local edit strategy. EL-
DRED may be viewed as a DRED variant of ACCEL aug-
menting Xtrain using a non-parametric generative method,

or, equivalently, as an ablation of VAE-DRED that does
not approximate p(x), and is therefore less grounded to the
CMDP. EL-DRED outperforms all other methods in each
of the level sets depicted above, with the exception of VAE-
DRED. In Figure 6 (bottom right), we compare the two
methods, and find that VAE-DRED remains significantly
more likely to outperform EL-DRED in each level set. Fi-
nally, ACCEL-D shows that initialising the buffer to Xtrain
isn’t sufficient for preventing ACCEL’s editing mechanism
to rapidly incur significant distributional shift. The only
difference between EL-DRED and ACCEL-D is η being
set to 1 throughout training (see the text box in Figure 4
for a depiction of the role of η in DRED). Yet, the gap in
performance is significant, and highlights the importance of
avoiding out-of-context levels early in training.

6. Related work
Buffer-free sampling strategies. Domain randomisation
(DR, Tobin et al., 2017; Jakobi, 1997), is one of the earliest
proposed methods for improving the generalisation ability
of RL agents by augmenting the set of available training
levels. It does so by sampling uniformly between manually
specified ranges of environment parameters. Subsequent
contributions introduce an implicit prioritisation over the
generated set by inducing a minimax return (robust adver-
sarial RL, Pinto et al., 2017) or a minimax regret game
(UED, Dennis et al., 2020) between the agent and a level
generator, which are trained concurrently. These adver-
sarial formulations prioritise levels in which the agent is
currently performing poorly to encourage robust generalisa-
tion over the sampled set, with UED achieving better Nash
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Figure 6: Top right: Solved rate achieved on 216 “Hardcore”
levels (examples plotted on the left). Bottom right: Prob-
ability of VAE-DRED achieving higher zero-shot returns
than its ablation EL-DRED, on different evaluation sets.
Coloured boxes indicate the 99% confidence interval.

equilibrium theoretical guarantees. CLUTR (Azad et al.,
2023) removes the need for domain-specific RL environ-
ments and improves sample efficiency by having the level
generator operate within a low dimensional latent space of
a generative model pre-trained on randomly sampled level
parameters. However, buffer-free methods remain vastly
outperformed by a well calibrated DR implementation and
the buffer-based sampling strategies discussed next.

Buffer-based sampling strategies. Prioritised sampling
is often applied to off-policy algorithms, where individual
interactions within the replay buffer are prioritised (Schaul
et al., 2016) or resampled with different goals in multi-goal
RL (Andrychowicz et al., 2017; Zhang et al., 2020). Priori-
tised Level Replay (PLR, Jiang et al., 2021b) instead affects
the sampling process of future experiences, and is thus appli-
cable to both on- and off-policy algorithms. PLR maintains
a buffer of training levels and empirically demonstrates that
prioritising levels using a scoring function proportional to
high value prediction loss results in higher sample efficiency
and improved ZSG performance. Robust PLR (RPLR, Jiang
et al., 2021a) extends PLR to the UED setting, using DR
as its level generation mechanism, while ACCEL (Parker-
Holder et al., 2022) gradually evolves new levels by per-
forming random edits on high scoring levels in the buffer.
SAMPLR (Jiang et al., 2022) proposes to eliminate the dis-
tributional shift induced by the prioritisation strategy by
modifying individual interactions using a second simulator
that runs in parallel. However, SAMPLR only applies to
settings with direct access to the ground truth context distri-
bution, while DRED learns to approximate this distribution.

Mutual information minimisation in RL. In prior work,
mutual information has been minimised in order to mitigate
instance-overfitting, either by learning an ensemble of poli-
cies (Bertrán et al., 2020; Ghosh et al., 2021), performing
data augmentation on observations (Raileanu et al., 2021;

Yarats et al., 2021), an auxiliary objective (Dunion et al.,
2024; Dunion & Albrecht, 2024) or introducing information
bottlenecks through selective noise injection on the agent
model (Igl et al., 2019; Cobbe et al., 2019). In contrast,
our work is the first to draw connections between mutual
information minimisation and adaptive level sampling.

7. Conclusion
In this work, we investigated the impact of the level sam-
pling process on the ZSG capabilities of RL agents. We
found adaptive sampling strategies are best understood as
data regularisation techniques minimising the mutual in-
formation between the agent’s internal representation and
the identity of training levels. In doing so, these methods
minimise an upper bound on the generalisation gap, and
our experiments show that this bound acts as an effective
proxy for reducing this gap in practice. This theoretical
framing allowed us to understand the mechanism behind the
improved generalisation achieved by value loss prioritised
level sampling, which had only been justified empirically in
prior work. We introduced DRED, a framework combining
adaptive sampling with the generation of new levels using
a learned model of the context distribution. We propose
VAE-DRED, an application of DRED using a VAE to learn
the context distribution. Our experiments show that VAE-
DRED prevents the significant distributional shift observed
in other UED methods. By jointly achieving low GenGap
and ShiftGap, VAE-DRED achieves strong generalisation
performance on in-distribution test levels, while also being
robust to in-context edge cases.

In future work, we plan to investigate how DRED methods
perform in more complex environments. Our experiments
show that unsupervised environment generation can be prob-
lematic, even in gridworlds, and these issues are bound to
worsen when the environment parameter space has higher
complexity and dimensionality. DRED possesses the abil-
ity to leverage an existing dataset to inform its generative
process, which we believe will be instrumental in scaling
environment design techniques to practical applications. We
are particularly interested in studying how DRED could
leverage real world datasets of level parameters that have
started to become available. Li et al. (2021) introduced a
dataset of indoor environments geared towards robotics and
embodied AI tasks, Wilson et al. (2021) published city maps
for autonomous driving while Ma et al. (2023); Cao et al.
(2019) published a dataset of protein docking problems.
Level parameters remain costly to collect or prescribe man-
ually, and thus these datasets remain much smaller in size
than text or image datasets. In maximising the generalisa-
tion potential of a limited number of training environments,
we hope DRED can reduce start-up costs associated with
extending RL to new practical applications.
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Impact statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

We believe parametrisable simulators are better suited to
benchmark RL algorithms than procedural environments,
as they provide a fine degree of control over the environ-
ment and are more consistent with a realistic application
setting, as argued by Kirk et al. (2023). However, repro-
ducibility can be challenging without access to the data
generated during experiments. To assist with this, we make
all of our experimental data, including model checkpoints,
level datasets, logged data and the code for reproducing the
figures in this paper openly available.

We open-source our code for specifying arbitrary CMDPs
in Minigrid and generate their associated level sets (we
describe the generation process in detail in Appendix D).
We also provide a dataset of 1.5M procedurally generated
minigrid base layouts to facilitate level set generation.
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A. Theoretical results
Lemma A.1. Given a set of training levels L and an agent model π = f ◦ b, where b(Ho

t ) = ht ∈ B is an intermediate
representation function and f : B→ ∆A maps to the agent’s action distribution, we have

I(L;π) ≤ H(i) +
∑
i∈L

∫
B
p(h, i) log p(i|h)dh, (11)

where the right-hand side is equivalent to I(L; b).

proof:

Since the information chain of our model follows Ho
t → b→ f , we have I(L; f ◦ b) ≤ I(L; b), from the data processing

inequality. I(L; b) can then be manipulated as follows

I(L; b) =
∑
i∈L

∫
B
p(h, i) log

p(h, i)

p(h)p(i)
dh (12)

= −
∑
i∈L

∫
B
p(h, i) log p(i)dh+

∑
i∈L

∫
B
p(h, i) log p(i|h)dh (13)

= H(i) +
∑
i∈L

∫
B
p(h, i) log p(i|h)dh. (14)

B. Procgen additional experimental results
B.1. Measuring the relationship between I(L; b) and the GenGap across sampling methods and procgen games

Table 1: I(L; b) measured under different adaptive sampling strategies. We report aggregated I(L; b) across 5 training runs,
each initialised with a different seed. To compute I(L; b) for each run and environment, we first fit a linear classifier pθ to
predict level identities from the agent’s penultimate layer outputs, using rollouts from levels sampled uniformly from L. We
then estimate I(L; b) using Equation (6), using a different set of rollouts also sampled uniformly from L. In the last row we
compute the mean I(L; b) across environments for each run, and we report the mean and standard deviation of that quantity
across all runs. Bolded methods are not significantly different from the method with lowest mean (p < 0.05), unless all are,
in which case none are bolded.

ENVIRONMENT S = SV PS = U S = SMI S = SV , PS′ = U S = SV , S′ = SMI

BIGFISH 1.74 ± 0.36 4.33 ± 0.48 1.45 ± 0.36 2.43 ± 0.53 1.77 ± 0.70
HEIST 4.67 ± 0.31 3.68 ± 0.36 4.08 ± 0.50 4.54 ± 0.37 4.76 ± 0.19
CLIMBER 4.03 ± 0.23 4.40 ± 0.18 2.44 ± 0.44 4.48 ± 0.15 4.09 ± 0.17
CAVEFLYER 3.01 ± 0.17 3.94 ± 0.21 1.72 ± 0.20 3.38 ± 0.14 3.00 ± 0.18
JUMPER 4.49 ± 0.13 3.87 ± 0.40 3.38 ± 0.38 4.37 ± 0.19 4.39 ± 0.07
FRUITBOT 0.15 ± 0.09 2.76 ± 0.11 0.40 ± 0.17 0.24 ± 0.09 0.09 ± 0.07
PLUNDER 1.46 ± 0.22 2.95 ± 0.74 1.09 ± 0.20 1.80 ± 0.41 1.76 ± 0.22
COINRUN 1.38 ± 0.07 2.29 ± 0.19 1.30 ± 0.14 1.59 ± 0.05 1.36 ± 0.15
NINJA 2.36 ± 0.30 2.62 ± 0.24 1.42 ± 0.44 3.00 ± 0.17 2.45 ± 0.19
LEAPER 1.72 ± 0.08 1.06 ± 0.08 0.79 ± 0.13 1.79 ± 0.22 1.65 ± 0.18
MAZE 4.76 ± 0.09 4.27 ± 0.22 4.79 ± 0.15 4.73 ± 0.09 4.72 ± 0.04
MINER 4.36 ± 0.13 4.81 ± 0.02 4.42 ± 0.27 4.53 ± 0.22 4.29 ± 0.17
DODGEBALL 3.88 ± 0.37 2.51 ± 0.32 0.89 ± 0.34 4.05 ± 0.19 3.54 ± 0.41
STARPILOT 1.10 ± 0.06 2.07 ± 0.14 1.38 ± 0.11 1.44 ± 0.13 1.20 ± 0.08
CHASER 1.37 ± 0.12 3.18 ± 0.26 1.36 ± 0.14 1.98 ± 0.34 1.43 ± 0.25
BOSSFIGHT 1.33 ± 0.12 4.19 ± 0.35 1.17 ± 0.12 1.15 ± 0.17 1.16 ± 0.33

AVERAGE MUTUAL INFORMATION 2.61 ± 0.05 3.31 ± 0.03 2.00 ± 0.07 2.84 ± 0.08 2.60 ± 0.02

To better understand the interaction between the mutual information, the value loss and the generalisation gap, we plot
our estimate for I(L; b) at the end of training against the GenGap and the ℓ1-value loss for all methods tested and across
Procgen games in Figure 7. We find a positive correlation (correlation coefficient ρ = 0.60) and rank correlation (Kendall
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Table 2: Level classifier accuracies measured under different adaptive sampling strategies. We report aggregated accuracies
across 5 training runs, each initialised with a different seed. To compute this quantity for each run and environment, we
first fit a linear classifier pθ to predict level identities from the agent’s penultimate layer outputs, using rollouts from levels
sampled uniformly from L. We then measure the classifier accuracy, using a different set of rollouts also sampled uniformly
from L. In the last row we compute the mean accuracy across environments for each run, and we report the mean and
standard deviation of that quantity across all runs. Bolded methods are not significantly different from the method with
lowest mean (p < 0.05), unless all are, in which case none are bolded.

ENVIRONMENT S = SV PS = U S = SMI S = SV , PS′ = U S = SV , S′ = SMI

BIGFISH 17.2 ± 10.1 66.5 ± 5.5 12.8 ± 4.5 24.7 ± 10.3 14.3 ± 9.9
HEIST 83.1 ± 9.5 77.8 ± 3.8 38.1 ± 20.7 77.5 ± 5.6 72.5 ± 9.1
CLIMBER 53.4 ± 15.0 82.9 ± 3.3 17.4 ± 10.5 73.2 ± 3.6 64.0 ± 5.6
CAVEFLYER 34.9 ± 5.4 62.5 ± 3.9 21.4 ± 1.5 48.5 ± 6.0 33.1 ± 11.5
JUMPER 62.0 ± 10.4 64.4 ± 6.3 28.0 ± 17.8 64.1 ± 5.6 59.4 ± 10.0
FRUITBOT 2.7 ± 4.1 18.0 ± 1.3 5.3 ± 6.9 2.6 ± 2.0 2.3 ± 2.8
PLUNDER 13.5 ± 9.8 25.3 ± 8.8 2.6 ± 3.4 16.1 ± 6.8 15.5 ± 9.9
COINRUN 14.1 ± 0.8 22.3 ± 1.9 10.5 ± 4.7 11.6 ± 4.0 13.4 ± 4.2
NINJA 22.8 ± 7.5 33.9 ± 2.4 5.6 ± 7.2 27.8 ± 2.9 18.4 ± 4.9
LEAPER 10.2 ± 5.6 11.6 ± 2.1 8.5 ± 4.0 13.0 ± 1.0 12.9 ± 3.2
MAZE 69.7 ± 2.6 65.5 ± 1.3 69.2 ± 10.2 63.9 ± 3.8 67.7 ± 7.8
MINER 85.5 ± 1.1 92.0 ± 0.7 67.7 ± 8.2 80.4 ± 4.3 78.1 ± 4.5
DODGEBALL 63.1 ± 0.8 45.4 ± 7.3 5.7 ± 5.8 68.5 ± 7.5 53.5 ± 7.4
STARPILOT 8.1 ± 3.1 14.7 ± 3.3 3.2 ± 2.4 9.0 ± 2.7 6.8 ± 1.1
CHASER 13.0 ± 3.3 40.4 ± 4.7 7.8 ± 4.0 27.7 ± 12.3 16.2 ± 6.1
BOSSFIGHT 6.9 ± 6.1 60.2 ± 14.3 3.1 ± 4.1 10.4 ± 6.2 10.5 ± 8.5

AVERAGE CLASSIFIER ACCURACY 35.0 ± 1.7 49.0 ± 0.9 19.2 ± 2.2 38.7 ± 1.3 33.7 ± 1.6

rank correlation coefficient ξ = 0.50, p < 1e− 50) between I(L; b) and the GenGap. We find similar correlation (ρ = 0.50)
and rank correlation (ξ = 0.49, p < 1e− 47) between I(L; b) and the normalised GenGap. We also observe a weaker but
statistically significant negative correlation (ρ = −0.18) and negative rank correlation (ξ = −0.11, p < 0.001) between
I(L; b) and the ℓ1-value loss.

We report the I(L; b) averaged across seeds for all games and methods tested in Table 1. In order to obtain a more intuitive
quantification of I(L; b), we also report the classification accuracy of the linear classifier pθ in Table 2, as these two quantities
are proportional to one-another. Out of 200 training levels, the classifier correctly predicts the current level 49% of the
times under uniform sampling, 35% under (S = SV ) and 19% under SMI. While adaptive sampling strategies are able
to significantly reduce I(L; b), the mean classifier accuracy is still 70 times random guessing for (S = SV ) and 38 times
random guessing for (S = SMI).

B.2. A qualitative analysis of when adaptive sampling strategies may or may not be effective in reducing the GenGap

We report in Figure 8 that, when compared to uniform sampling across procgen games, adaptive sampling strategies are
significantly more likely to reduce the GenGap. Strategies employing (S = SV ) as their primary scoring function are also
more likely to improve their test set scores. However, we measure significant variability across procgen games for I(L; b) in
Table 1 (and by extension for the GenGap) for the different strategies tested. To better understand why, we compare the
measured accuracy with a qualitative analysis of the observations and levels encountered in the “Maze” and “Bigfish” games
(see Figure 9 for renderings of different levels from each game). In Maze, the classifier accuracy remains over 60% (120×
random) for all methods tested and the reduction in GenGap is insignificant. On the other hand, in Bigfish all adaptive
sampling strategies tested lead to a significant reduction in classifier accuracy when compared to uniform sampling, dropping
from 65% to between 12% and 25% (depending on the strategy), and correspond to a significant drop in the GenGap and
improvement in test scores.

In Maze, the observation space lets the agent observe the full layout at every timestep. The maze layout is unique to each
level and should be easily identifiable by the agent’s ResNet architecture. Intuitively, we can hypothesise that adaptive
sampling strategies will not be effective if all the levels are easily identifiable by the model, which appears to be the case in
Maze. In these cases, other data regularisation techniques, such as augmenting the observations, could be more effective,
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Figure 7: Scatter plot displaying how I(L; b) compares to the GenGap (top left), to the normalised GenGap (top right), and
to the ℓ1 average value loss (bottom) across all methods and Procgen games, at the end of training. Each plotted point
represents the average of 5 seeds in a particular game.
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Figure 8: Probability of algorithm X incurring a higher normalised test score (left) and GenGap (right) than algorithm Y .
Colored boxes indicate the 95% confidence interval.

and in fact (Jiang et al., 2021b) report that Maze is one of the games where combining PLR with UCB-DrAC (Raileanu
et al., 2021), a data augmentation method, leads to a significant improvement in test scores.

On the other hand, we observe that many of the Bigfish levels yield similar observations. Indeed, both the features relevant to
the task (the fish) and irrelevant (the background) are similar in many of the training levels. Furthermore, there’s significant
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Figure 9: Agent observations sampled from 9 levels from the Maze (left) and Bigfish (right) games of the Procgen benchmark.

variation in the observations encountered during an episode, as fish constantly appear and leave the screen. Yet, some levels
(top left, middle and bottom right) are easily identifiable thanks to their background, and we can expect them to be more
prone to overfitting. By using the background to identify the current level the agent is able to infer when and where fish
will appear on screen. This is an effective strategy to solve the training level in question and to accurately predict its value
function, however applying this strategy to unseen levels at test time will fail, as the background and the fish locations
are not correlated across levels. Adaptive sampling strategies minimising I(L; b) de-prioritise problematic levels when the
agent’s representation starts overfitting, essentially performing data regularisation via a form of rejection sampling.

B.3. Procgen extended results

Table 3: Test scores of a PPO agent trained under different adaptive sampling strategies. We report aggregated scores across
5 training runs, each initialised with a different seed. For each run the test score is obtained by evaluating the final policy’s
average score on 1000 episodes, each episode sampling a different level not in the train set. Following (Raileanu et al., 2021),
normalised test scores per run are computed by dividing its test score per run for each environment by the corresponding
average test score of the uniform-sampling strategy over all runs. In the last row we compute the mean normalised score
across environments for each run, and we report the mean and standard deviation of that quantity across all runs. Bolded
methods are not significantly different from the method with highest mean (p < 0.05), unless all are, in which case none are
bolded.

ENVIRONMENT S = SV PS = U S = SMI S = SV , PS′ = U S = SV , S′ = SMI

BIGFISH 11.5 ± 2.1 4.2 ± 1.2 7.3 ± 0.6 10.2 ± 2.0 12.4 ± 3.4
HEIST 3.2 ± 0.7 2.9 ± 0.2 2.7 ± 0.5 2.9 ± 0.8 3.0 ± 0.4
CLIMBER 6.9 ± 0.3 5.8 ± 0.3 4.9 ± 0.6 7.0 ± 0.4 7.0 ± 0.2
CAVEFLYER 6.3 ± 0.1 5.7 ± 0.1 5.8 ± 0.4 6.5 ± 0.3 6.2 ± 0.2
JUMPER 6.0 ± 0.1 5.7 ± 0.2 5.8 ± 0.1 6.0 ± 0.0 5.9 ± 0.1
FRUITBOT 28.4 ± 0.4 27.7 ± 0.8 23.6 ± 1.4 28.2 ± 0.5 28.6 ± 0.8
PLUNDER 7.3 ± 1.0 5.0 ± 0.3 5.6 ± 1.5 7.7 ± 1.4 8.5 ± 0.8
COINRUN 8.9 ± 0.2 8.7 ± 0.2 9.1 ± 0.1 9.0 ± 0.1 9.1 ± 0.1
NINJA 7.1 ± 0.4 6.1 ± 0.2 5.0 ± 0.6 7.1 ± 0.2 7.2 ± 0.3
LEAPER 7.1 ± 0.4 4.5 ± 0.1 2.7 ± 0.1 6.8 ± 1.5 7.2 ± 1.8
MAZE 5.6 ± 0.4 5.3 ± 0.3 5.0 ± 0.1 5.4 ± 0.4 5.6 ± 0.5
MINER 9.6 ± 0.3 9.3 ± 0.3 8.6 ± 0.5 9.6 ± 0.3 9.7 ± 0.3
DODGEBALL 2.3 ± 0.3 1.6 ± 0.2 0.9 ± 0.1 2.1 ± 0.3 2.2 ± 0.4
STARPILOT 26.9 ± 1.3 26.5 ± 2.0 18.9 ± 0.9 25.2 ± 2.3 26.7 ± 2.4
CHASER 6.6 ± 0.9 3.9 ± 1.1 5.2 ± 0.8 6.0 ± 1.1 5.9 ± 1.5
BOSSFIGHT 9.0 ± 0.3 7.4 ± 0.3 7.8 ± 0.4 8.4 ± 0.3 8.6 ± 0.5

NORMALISED TEST SCORES (%) 130.3 ± 5.3 100.0 ± 1.4 97.0 ± 4.0 125.4 ± 5.3 131.3 ± 8.4

17



Data-Regularised Environment Design

Table 4: Train scores of a PPO agent trained under different adaptive sampling strategies. We report aggregated scores
across 5 training runs, each initialised with a different seed. For each run the train score is obtained by evaluating the final
policy’s average score on 1000 episodes, each episode sampling a different level from the train set. Following (Raileanu
et al., 2021), normalised train scores per run are computed by dividing its train score per run for each environment by the
corresponding average test score of the uniform-sampling strategy over all runs. In the last row we compute the mean
normalised score across environments for each run, and we report the mean and standard deviation of that quantity across all
runs. Bolded methods are not significantly different from the method with highest mean (p < 0.05), unless all are, in which
case none are bolded.

ENVIRONMENT S = SV PS = U S = SMI S = SV , PS′ = U S = SV , S′ = SMI

BIGFISH 13.6 ± 0.9 10.5 ± 1.8 8.2 ± 1.3 13.1 ± 1.4 14.4 ± 3.0
HEIST 8.2 ± 0.5 8.0 ± 0.6 4.7 ± 0.7 8.2 ± 0.7 7.6 ± 0.5
CLIMBER 8.8 ± 0.2 8.5 ± 0.3 6.4 ± 0.8 9.4 ± 0.3 8.9 ± 0.2
CAVEFLYER 7.3 ± 0.2 7.8 ± 0.3 6.3 ± 0.1 7.7 ± 0.2 7.3 ± 0.1
JUMPER 8.4 ± 0.2 8.5 ± 0.1 7.4 ± 0.3 8.5 ± 0.1 8.5 ± 0.2
FRUITBOT 27.9 ± 0.4 29.3 ± 0.3 23.1 ± 0.7 28.6 ± 0.3 28.1 ± 0.3
PLUNDER 8.6 ± 1.0 5.7 ± 0.4 6.1 ± 1.3 9.2 ± 1.7 10.1 ± 0.9
COINRUN 9.5 ± 0.1 9.5 ± 0.1 9.5 ± 0.1 9.6 ± 0.0 9.6 ± 0.1
NINJA 8.1 ± 0.2 7.6 ± 0.2 4.9 ± 0.3 8.2 ± 0.1 8.3 ± 0.2
LEAPER 7.2 ± 0.1 4.4 ± 0.1 2.8 ± 0.1 7.3 ± 1.6 7.7 ± 1.9
MAZE 9.4 ± 0.1 9.3 ± 0.1 7.5 ± 0.3 9.4 ± 0.1 9.3 ± 0.1
MINER 11.3 ± 0.3 12.6 ± 0.1 10.3 ± 0.4 11.6 ± 0.2 11.5 ± 0.2
DODGEBALL 5.2 ± 0.4 4.6 ± 0.6 1.0 ± 0.3 5.2 ± 0.6 5.0 ± 0.6
STARPILOT 27.6 ± 1.8 31.8 ± 1.5 19.3 ± 0.9 26.2 ± 1.8 26.7 ± 1.9
CHASER 6.8 ± 0.9 4.6 ± 1.3 6.0 ± 1.2 6.8 ± 1.0 6.3 ± 1.1
BOSSFIGHT 9.4 ± 0.2 8.0 ± 0.4 7.8 ± 0.1 8.9 ± 0.3 8.9 ± 0.3

NORMALISED TRAIN SCORES (%) 170.4 ± 2.0 153.1 ± 2.1 113.1 ± 5.0 171.4 ± 5.9 171.1 ± 9.4
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S = SV PS = U S = SMI S = SV , PS′ = U S = SV , S′ = SMI
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Figure 10: Procgen normalised scores across environments and generalisation gap over the course of training.
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Figure 11: Procgen per game test set scores over the course of training.
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Figure 12: Procgen per game train set scores over the course of training.

C. Minigrid additional experimental results
C.1. Quantifying the distributional shift in minigrid

In Figure 13, we report the GenGap and the ShiftGap in the Minigrid experiments. The GenGap is not helpful in interpreting
the poor test set performance of UED methods. In fact, we report in Figure 15 that UED methods tend to perform well
when evaluated on levels sampled from PΛ, while performing poorly on the train and test sets. This results in the GenGap
remaining close to zero throughout training.
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We would also expect the GenGap and the train and test scores to be near-zero for a random policy, that is if the agent was
not learning anything at all. However ACCEL and RPLR experience a different failure mode: the UED-trained agents
are learning, as demonstrated by their scores on their respective training distributions, but they are learning to solve a
different CMDP. In contrast, the ShiftGap is effective at distinguishing between the agent not learning at all and it learning
an out-of-context policy.

While the ShiftGap allows us to quantify how the distributional shift impacts the agent performance, we desire to quantify
the distributional shift directly, and within a feature space consistent with the CMDP semantics. We first compute the
distribution c(t, d|ix), the probability of tile type t occurring at shortest path d from the goal location, for each level ix ∈ Λ.
cp is the marginal cp = Eix∼p(ix)[c(t, d|ix)] and we measure the Jensen-Shannon Divergence JSD(cp||cq), with p = PΛ

and q = U(Xtrain).
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Figure 13: Evolution of (a) the GenGap (Equation (2)) and (b) the ShiftGap (Equation (9)) over the course of training. Fixed
set sampling strategies experience higher GenGap and low ShiftGap, while UED methods follow the opposite trend. Both
DRED methods maintain near-zero ShiftGap while achieving a significantly smaller GenGap than fixed set strategies. DR
spends the majority of training with a low GenGap and ShiftGap, but a sharp increase towards the end of training brings its
ShiftGap to similar levels as RPLR and ACCEL-D.

We report how the JSD evolves over the course of training for different methods in Figure 14a. We observe that distributional
shift occurs early on during training and remains relatively stable afterwards in all methods. Surprisingly, both DRED
methods demonstrate a smaller JSD than PLR, even though PLR only samples Xtrain levels. JSD and ShiftGap are positively
correlated for all methods except DR and PLR, which both present high JSD but low ShiftGap. VAE-DRED is the only
generative method to maintain a low JSD and ShiftGap throughout training. Interestingly, and with the exception of U ,
methods rank nearly identically to their test set performance ranking when sorted according to their JSD (lowest first). This
relationship appears to hold throughout training, as can be observed by comparing the JSD with Xtest scores in Figure 15.

In Figure 14, we report additional metrics on the levels sampled by each method. Over the course of training, only
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VAE-DRED and PLR stay relatively consistent with Xtrain across the three metrics considered.

VAE-DRED EL-DRED PLR U DR ACCEL-D ACCEL RPLR

0 27000
Agent updates

0.0

0.2

0.4

0.6

J
en

se
n

-S
h

an
n

on
D

iv
er

ge
n

ce

(a)

0 27000
Agent updates

4

8

12
S

h
or

te
st

P
at

h
L

en
gt

h

(b)

0 27000
Agent updates

0.0

0.2

0.4

0.6

L
av

a
D

en
si

ty

(c)

0 27000
Agent updates

0.00

0.08

0.16

0.24

M
os

s
D

en
si

ty

(d)

Figure 14: In sampled levels over the course of training, evolution of (a) the Jensen-Shannon divergence, (b) the shortest
path length between the start and goal location, (c) the lava tile density (over non-navigable tiles) and (d) the moss tile
density (over navigable tiles).
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Figure 15: Minigrid scores for Xtrain and Xtest over the course of training. Shaded area represents the standard error across 5
seeds.

C.2. Extended Minigrid results
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Figure 16: Aggregate final performance and mean solved rate on 216 “Hardcore” levels, with a 45x45 layout size, making
Hardcore layouts 9 times larger than Xtrain layouts. Example layouts from each evaluation set are plotted on the left. The
coloured boxes indicate a 99% confidence interval and the black horizontal bars indicate standard error across 5 training
seeds. We refer the reader to Appendix D for additional details on our evaluation sets.
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Table 5: Mean scores achieved in the Minigrid setting for each level evaluation dataset. We report the mean and standard
deviation across 5 training runs, each corresponding to a different random seed. For each run the mean score is obtained by
evaluating the final policy’s once in each level of the corresponding level dataset, and averaging. Bolded methods are not
significantly different from the method with highest mean (p < 0.05), unless all are, in which case none are bolded.

LEVEL
DATASETS VAE-DRED EL-DRED PLR U DR ACCEL-D ACCEL RPLR

Xtrain 0.92 ± 0.00 0.90 ± 0.03 0.92 ± 0.00 0.93 ± 0.01 0.37 ± 0.22 0.56 ± 0.11 0.27 ± 0.13 0.24 ± 0.07
Xtest 0.82 ± 0.02 0.77 ± 0.05 0.68 ± 0.03 0.67 ± 0.03 0.38 ± 0.22 0.49 ± 0.16 0.29 ± 0.14 0.24 ± 0.06
EDGE C 0.74 ± 0.05 0.67 ± 0.11 0.35 ± 0.11 0.32 ± 0.04 0.37 ± 0.21 0.34 ± 0.17 0.25 ± 0.14 0.17 ± 0.05
HARDCORE 0.37 ± 0.06 0.27 ± 0.07 0.08 ± 0.04 0.10 ± 0.04 0.12 ± 0.09 0.10 ± 0.11 0.04 ± 0.04 0.02 ± 0.02

Table 6: Solved rates achieved in the Minigrid setting for each level evaluation dataset. We report the mean and standard
deviation across 5 training runs, each corresponding to a different random seed. For each run the solved rate is obtained
by counting how many levels were solved (i.e. the agent reached the goal) after evaluating the final policy’s once in each
level of the corresponding level dataset. Bolded methods are not significantly different from the method with highest mean
(p < 0.05), unless all are, in which case none are bolded.

LEVEL
DATASETS VAE-DRED EL-DRED PLR U DR ACCEL-D ACCEL RPLR

Xtrain 1.00 ± 0.00 0.98 ± 0.03 1.00 ± 0.00 0.99 ± 0.00 0.48 ± 0.27 0.66 ± 0.15 0.34 ± 0.18 0.28 ± 0.09
Xtest 0.95 ± 0.01 0.89 ± 0.06 0.79 ± 0.03 0.77 ± 0.02 0.49 ± 0.26 0.57 ± 0.20 0.36 ± 0.19 0.29 ± 0.08
EDGE C 0.87 ± 0.06 0.80 ± 0.14 0.45 ± 0.12 0.40 ± 0.05 0.46 ± 0.25 0.41 ± 0.22 0.31 ± 0.19 0.19 ± 0.06
HARDCORE 0.46 ± 0.07 0.34 ± 0.10 0.10 ± 0.05 0.13 ± 0.05 0.16 ± 0.13 0.13 ± 0.14 0.06 ± 0.07 0.02 ± 0.03

Table 7: GenGap and ShiftGap at the end of training for each method tested. We report their mean and standard deviation
across 5 training runs, each corresponding to a different random seed. Bolded methods are not significantly different from
the method with lowest mean (p < 0.05), unless all are, in which case none are bolded.

METRIC VAE-DRED EL-DRED PLR U DR ACCEL-D ACCEL RPLR

GENGAP 0.09 ± 0.01 0.14 ± 0.03 0.24 ± 0.03 0.25 ± 0.02 -0.00 ± 0.01 0.08 ± 0.05 -0.02 ± 0.02 -0.01 ± 0.01
SHIFTGAP 0.00 ± 0.04 -0.08 ± 0.11 -0.07 ± 0.14 N/A (0) 0.16 ± 0.20 0.25 ± 0.16 0.66 ± 0.17 0.18 ± 0.45
JSD 0.11 ± 0.01 0.16 ± 0.02 0.29 ± 0.05 N/A (0) 0.42 ± 0.00 0.29 ± 0.03 0.38 ± 0.06 0.46 ± 0.04

D. CMDP specification and generation
In Minigrid (Chevalier-Boisvert et al., 2018), the agent receives as an observation a partial view of its surroundings (in
our experiments it is set to two tiles to each side of the agent and four tiles in front) and a one-hot vector representing the
agent’s heading. The action space consists of 7 discrete actions but, in our setting, only the actions moving the agent forward
and rotating it to the left or right have an effect. The episode starts with the agent at its start tile and facing its starting
orientiation. The episode terminates successfully when the agent reaches the goal tile. It receives a reward between 0 and 1
based on the number of timesteps it took to get there. The episode will terminate without a reward if the agent steps on a
lava tile, or when the maximum number of timesteps is reached.

Levels are parameterised as 2D grids representing the overall layout, with each tile type represented by an unique ID. Tiles
can be classified as navigable (for example, moss or empty tiles) or non-navigable (for example, walls and lava, as stepping
into lava terminates the episode). To be valid, a level must possess exactly one goal and start tile, and to be solvable there
must exist a navigable path between the start and the goal location. We provide the color palette of tiles used in Figure 20.

We provide example levels of the CMDP in Figure 17. The CMDP level space corresponds to the subset of solvable levels in
which moss and lava node placement is respectively positively and negatively correlated with their shortest path distance
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to the goal.5 Under partial observability, the optimal policy for this CMDP would leverage moss and lava locations as
contextual cues, seeking regions with high moss density and avoiding regions with high lava density.

(a) Example training levels from Xtrain (b) Held-out
levels

Figure 17: Sample levels from Xtrain and from held-out test set Xtest. Wall tiles are rendered in gray, empty tiles in black,
moss tiles in green and the goal tile in lime green. The agent is rendered as a blue or purple triangle, and is depicted at its
start location. Each row corresponds to levels generated with a specific wave function collapse base pattern. Four different
base patterns are used to generate Xtrain and Xtest layouts. As in Procgen games, we find that the PPO agent exhibits a
significant GenGap on held-out levels when being restricted to train on 200-500 levels. We therefore have Xtrain contain 512
levels and we have Xtest contain 2048 levels for more accurate agent evaluation.

D.1. Generating highly structured levels

We use the wave function collapse (WFC) procedural generation algorithm (Gumin, 2016) to obtain highly structured but still
diverse gridworld layouts. WFC gradually collapses a superposition of all possible level parameters into a layout respecting
the constraints defined by an input pattern. By doing so, it is possible to generate a vast number of tasks from a small number
of starting patterns. Given a suitable base pattern, WFC provides a high degree of structure and complexity in generated
layouts, and it guarantees that both task structure and diversity scale with the gridworld dimensions. Our implementation
supports generating layouts from 22 different base patterns, and supports the specification of custom user-defined patterns.

After generating a layout using WFC, we convert the navigable nodes of a layout into a graph, choose its largest connected
component as the layout and convert any unreachable nodes to non-navigable nodes. We place the goal location at random
and place the start at a node located at the median geodesic distance from the goal in the navigation graph. By doing so we
ensure that the complexity of generated layouts is relatively consistent given a specific grid size and base pattern. Finally,
we sample tiles according to parameterisable distributions defined over the navigable and non-navigable node sets.

In our experiments, the tile set consists of the { moss, empty, start, goal } tiles as the navigable set and the { wall, lava} tiles
as the non-navigable set. We parameterise tile distributions such that moss tiles are more likely to be sampled on navigable
nodes close to the goal, while lava tiles are more likely on non-navigable nodes far away from the goal.

5To measure the shortest path distance to goal of a non-navigable node, we first find the navigable node that is closest from it and
measure its shortest path distance to the goal. We then add to it the number of tile separating this navigable node to the non-navigable
node of interest. If there are multiple equally close navigable nodes, we select the navigable node with the smallest shortest path distance
to the goal.
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(a) Example levels from the first set of
edge cases

(b) Example levels from the second set of
edge cases

Figure 18: We generate 2 separate sets of edge cases, using 14 different base patterns not used to generate Xtrain. The
moss density of the first set (a) is 2 to 5 times as small as levels found within Xtrain, making finding the goal using CMDP
contextual cues more challenging. (b) is the same as (a) but with a lava tile density 2 to 5 times higher than Xtrain levels,
which makes avoiding lava more challenging. Both sets contain the same number of levels (224), and they are combined
when evaluating the agent on edge cases.

D.2. Controlling level complexity

We provide two options to vary the complexity of the level distribution. The first is to change the layout size. Due to partial
observability this significantly increases their complexity, and makes levels from the “Hardcore” set depicted in Figure 6
challenging to solve for Human players. The second option is to change the sampling probability of moss and lava tiles.
Reducing the fraction of moss to navigable tiles diminishes their usefulness as context cues. On the other hand, increasing
the density of lava tiles increases the risk associated with selecting the wrong action during play. In our experiments we
assess the agent’s performance on edge-cases by defining level sets with a larger layout size (Figure 6), or with different
moss and lava tile distributions (Figure 18).

E. Implementation details
E.1. Procgen

The Procgen Benchmark is a set of 16 diverse PCG environments that echoes the gameplay variety seen in the ALE
benchmark (Bellemare et al., 2015). The game levels, determined by a random seed, can differ in visual design, navigational
structure, and the starting locations of entities. All Procgen environments use a common discrete 15-dimensional action
space and generate 64× 64× 3 RGB observations. A detailed description of each of the 16 environments is provided in
Cobbe et al. (2020). RL algorithms such as PPO reveal significant differences between test and training performance in all
games, making Procgen a valuable tool for evaluating generalisation performance.

We conduct our experiment on the easy setting of Procgen, which employs 200 training levels and a budget of 25M training
steps, and evaluate the agent’s ZSG performance on the full range of levels, excluding the training levels.

We employ the same ResNet policy architecture and PPO hyperparameters (identical for all games) as (Cobbe et al., 2020),
which we reference in Table 8. To compute I(L; b) and the scoring strategy for (SMI) in our experiments, we model
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pθ(i|b(ot)) as a linear classifier predicting the level identity from the output of the last shared network layer between the
actor and critic. pθ is trained using trajectory rollouts collected by sampling uniformly from L. We ensure the training
processes of the agent and the classifier remain independent from one-another by employing a separate optimiser, and by
stopping the gradients from propagating through the agent’s network.

E.2. Minigrid RL agent

We use the recurrent PPO agent and hyperparameters employed in (Parker-Holder et al., 2022) for all our experiments. The
actor and critic share their initial layers. The first initial layer consists of a convolutional layer with 16 output channels
and kernel size 3 processes the agent’s view and a fully connected layer that processes its directional information. Their
output is concatenated and fed to an LSTM layer with hidden size 256. The actor and critic heads each consist of two fully
connected layers of size 32, the actor outputs a categorical distribution over action probabilities while the critic outputs a
scalar. Weights are optimised using Adam and we employ the same hyperparameters in all experiments, reported in Table 8.
Trajectories are collected via 36 worker threads, with each experiment conducted using a single GPU and 10 CPUs.

Following (Parker-Holder et al., 2022), DR and RPLR use domain randomisation as their standard level generation process,
in which the start and goal locations, alongside a random number between 0 and 60 moss, wall or lava tiles are randomly
placed. The level editing process of ACCEL and EL-DRED remains unchanged from (Parker-Holder et al., 2022), consisting
of five steps. The first three steps may change a randomly selected tile to any of its counterparts, whereas the last two are
reserved to replacing the start and goal locations if they had been removed in prior steps.

We train three different seeds for each baseline. We use the hyperparameters reported in (Parker-Holder et al., 2022) for
the DR, RPLR and ACCEL methods and the hyperparameters reported in (Jiang et al., 2021b) for PLR, as an extensive
hyperparameter search was conducted in a similarly sized Minigrid environment for each method. VAE-DRED employs
the same hyperparameters as PLR for its level buffer, with some additional secondary sampling strategy hyperparameters
introduced by VAE-DRED. We did not perform an hyperparameter search for VAE-DRED as we found that the initial values
worked adequately. We report all hyperparameters in Table 8.

E.3. VAE architecture and pre-training procedure

We employ the β−VAE formulation proposed in (Higgins et al., 2017), and we parametrise the encoder as a Graph
Convolutional Network (GCN), a generalisation of the Convolutional Neural Network (CNN) (Krizhevsky et al., 2012) to
non Euclidian spaces. Our choice of a GCN architecture is not motivated by a desire of maximising the VAE’s performance
(in fact we expect a CNN or MLP encoder to work just as well in Minigrid). It is instead intended as a proof of concept
for an architecture that could transfer to more complex simulators. Since the level parameter space X is simulator-specific,
employing a graph as an input modality for our encoder makes our model architecture easier to transfer to different simulators
and domains. Using a GCN, some of the inductive biases that would be internal in a traditional architecture can be defined
through an external wrapper that encodes the environment parameter x into the graph Gx.

In Minigrid, we represent the gridworld levels as a grid graphs, each cell being an individual node. This effectively makes
the GCN equivalent to a traditional CNN in this scenario. However a GCN provides ways of providing additional domain
specific biases that a CNN lacks. For example, a domain expert with the notion that goal, lava and moss tiles are somehow
correlated can add edges between these tiles in the graph.

We select the GIN architecture (Xu et al., 2019) for the GCN, which we connect to an MLP network that outputs latent
distribution parameters (µz,σz). The decoder is a fully connected network with three heads. The layout head outputs the
parameters of categorical distributions for each grid cell, predicting the tile identity between [Empty, Moss, Lava, Wall]. The
start and goal heads output the parameters of categorical distributions predicting the identity of the start and goal locations
across grid cells, ensuring a single goal or start node get sampled in any given level.

We pre-train the VAE for 200 epochs on Xtrain, using cross-validation for hyperparameter tuning, each run taking about
25 minutes on a GPU-equipped laptop. During training, we formulate the reconstruction loss as a weighted sum of the
cross-entropy loss for each head.6At deployment, we guarantee valid layouts get generated (i.e. layouts containing a unique
start and goal location, but not necessarily solvable) by generating level parameters sequentially. We first sample the layout,
then we sample the start location, masking any non-navigable tile generated in the last step. We then add the start tile to

6To compute the cross-entropy loss of the layout head, we replace the start and goal nodes in the reconstruction targets by a uniform
distribution across {moss, empty}.
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our mask before sampling the goal location. In this way, we guarantee valid start and goal locations that will not override
one-another. Note that our generative model may still generate unsolvable layouts, which do not have a passable path
between start and goal locations, and therefore it must have learnt to generate solvable layouts in order to be useful.

We do not explicitly encourage the VAE to generate solvable levels, but we find that models with high ELBO (Equation (10))
on the validation set tend to also have a high generated layout solvability rate. Layouts reconstructed from Xtrain have over
80% solvability rate, while layouts generated via latent space interpolations have over 70% solvability rate. In practice,
maximising the ELBO results in generated layouts sharing contextual semantics with Xtrain levels. This can be observed
qualitatively in the VAE-generated layouts included in Figure 19, and quantitatively in Figures 13 and 14, where we report
that contextually important semantics are transferred to the agent’s training distribution.

To tune the VAE we conduct a random sweep over architectural parameters (number of layers, layer sizes), the β coefficient,
individual decoder head reconstruction coefficients and the learning rate over a total budget of 100 runs. We select the
configuration achieving the highest ELBO on the validation set. These hyperparameters are reported in Table 9.

(a) Parent levels sam-
pled from Xtrain

(b) Levels generated by the VAE

Figure 19: Sample of levels generated by interpolating within the latent space of the VAE. On the right, each row represents
an interpolation between the latent embeddings of a pair of base levels (on the left). The layouts generated are not always
solvable, but, when they are solvable, they tend to retain semantics consistent with the CMDP.
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Table 8: Hyperparameters used for Minigrid experiments. Hyperparameters shared between methods are only reported if
they change from the method above.

Parameter Procgen MiniGrid

PPO
γ 0.999 0.995
λGAE 0.95 0.95
PPO rollout length 256 256
PPO epochs 3 5
PPO minibatches per epoch 8 1
PPO clip range 0.2 0.2
PPO number of workers 64 32
Adam learning rate 5e-6 1e-4
Adam ϵ 1e-5 1e-5
PPO max gradient norm 0.5 0.5
PPO value clipping yes yes
return normalisation yes no
value loss coefficient 0.5 0.5

PLR
Scoring function ℓ1-value loss ℓ1-value loss
Replay rate, p 1.0 1.0
Buffer size, K 200 512
Prioritisation, rank rank
Temperature, 0.1 0.1
Staleness coefficient, ρ 0.1 0.3

RPLR
Scoring function, positive value loss
Replay rate, p 0.5
Buffer size, K 4000

ACCEL
Edit rate, q 1.0
Replay rate, p 0.8
Buffer size, K 4000
Edit method, random
Levels edited, easy

VAE-DRED
Replay rate, p 1.0
Scoring function support, dataset
Staleness support, dataset
Secondary Scoring function, ℓ1-value loss
Secondary Scoring function support, buffer
Secondary Temperature, 1.0
Mixing coefficient, η linearly increased from 0 to 1
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Table 9: Hyperparameters used for pre-training the VAE.

Parameter

VAE
β 0.0448
layout head reconstruction coefficient 0.04
start and goal heads reconstruction coefficients 0.013
number of variational samples 1
Adam learning rate 4e-4
Latent space dimension 1024
number of encoder GCN layers 4
encoder GCN layer dimension 12
number of encoder MLP layers (including bottleneck layer) 2
encoder MLP layers dimension 2048
encoder bottleneck layer dimension 256
number of decoder layers 3
decoder layers dimension 256

Figure 20: Color palette used for rendering minigrid layouts in this paper and their equivalent for Protanopia (Prot.),
Deuteranopia (Deut.) and Tritanopia (Trit.) color blindness. We refer to each row in the main text as, in order: green (goal
tiles), pale green (moss tiles), blue (agent), black (empty/floor tiles), grey (wall tiles) and orange (lava tiles).
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