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Abstract
Deep neural networks are over-parameterized and
easily overfit to and memorize the datasets that
they train on. In the extreme case, it has been
shown that networks can memorize a randomly
labeled dataset. In this paper, we propose using
the curvature of the loss function around each
training sample, averaged over training epochs,
as a measure of memorization of a sample. We
show that this curvature metric effectively cap-
tures memorization statistics, both qualitatively
and quantitatively in popular image datasets. We
provide quantitative validation of the proposed
metric against memorization scores released by
Feldman & Zhang (2020). Further, experiments
on mislabeled data detection show that corrupted
samples are learned with high curvature and using
curvature for identifying mislabelled examples
outperforms existing approaches. Qualitatively,
we find that high curvature samples correspond to
long-tailed, mislabeled, or conflicting instances,
indicating a likelihood of memorization. Notably,
this analysis helps us find, to the best of our knowl-
edge, a novel failure mode on the CIFAR100 and
ImageNet datasets: that of duplicated images with
differing labels.

1. Introduction
Deep learning has been hugely successful in many fields.
With increasing availability of data and computing capacity,
networks are getting larger, growing to billions of parame-
ters. This overparametrization often results in the problem
of overfitting. An extreme form of overfitting was demon-
strated by Zhang et al. (2017), who showed that networks
can memorize a training set with fully randomized labels.
Further, networks make overconfident predictions, even
when the predictions are incorrect (Guo et al., 2017), mem-

1Department of Electrical and Computer Engineering, Purdue
University, West Lafayette, Indiana 47906. Correspondence to:
Isha Garg <garg.isha1991@gmail.com>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

orizing both mislabeled and long-tailed outliers alike. This
can prove to be harmful in real-world settings, such as with
data poisoning attacks (Biggio et al., 2012; Chen et al., 2017)
and privacy leakage in the form of membership inference
attacks (Shokri et al., 2017). There has been considerable
research effort towards countering overfitting, with different
forms of regularization (Krogh & Hertz, 1991), dropout (Sri-
vastava et al., 2014), early stopping (Yao et al., 2007) and
data augmentation (DeVries & Taylor, 2017; Zhang et al.,
2018). In this paper, we exploit overfitting to propose a new
metric for measuring memorization of a data point, that of
the curvature of the network loss around a data point. We
overfit intentionally and utilize this to study the samples the
network is memorizing.Recently, research has shown that
samples with low curvature of loss around them prove bene-
ficial for subsampling in coresets (Garg & Roy, 2023) and
regularizing curvature can result in adversarial robustness
(Moosavi-Dezfooli et al., 2019). Inspired by these works,
we propose a modified version of curvature calculation, and
show that it serves as a reliable metric for measuring the
memorization of a sample by a network. In particular, we
average curvature scores over the training epochs, and show
that it is crucial to getting reliable memorization scores.

In order to validate our measure of curvature quantitatively,
we show that our scores achieve a high cosine similarity
with memorization scores released by Feldman & Zhang
(2020) for CIFAR100 and ImageNet datasets, referred to
as FZ scores. Further, we show that prior curvature scoring
method from Garg & Roy (2023) fails to achieve significant
similarity to FZ scores. FZ scores serve as our baseline, but
their calculation requires training thousands of models. In
contrast, we calculate curvature while training only one net-
work, while additionally identifying failure modes that the
baseline fails to capture. As a second, independent, quan-
titative validation of our metric, we synthetically mislabel
a small proportion (1− 10%) of the dataset by introducing
uniform noise in the labels. We then overfit a network to this
noisy dataset, and use our method to calculate the AUROC
score for identifying the mislabeled examples. Our results
show that using the proposed curvature metric achieves state-
of-the-art detection performance on MNIST, highlighting
that the mislabeled samples were learned with high curva-
ture. Our method is compatible with other state-of-the-art
detection methods, such as Maini et al. (2022), and we
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Figure 1: Cherry picked examples from the 100 highest curvature training examples on popular vision datasets

show that combining the two methods outperforms prior
techniques on CIFAR10 and CIFAR100 datasets.

Qualitatively we find that samples with high curvature war-
rant further examination. These include samples that are
drawn from the tail of a long-tailed distribution (Feldman,
2020; Feldman & Zhang, 2020), have conflicting properties
to their labels or have multiple objects that are associated
with other labels. Most significantly, high curvature samples
identify three failure modes, visualized in Figure 1. The
figure shows cherry-picked examples from the 100 high-
est curvature samples from different vision datasets. The
first one is mislabeled samples, as can be seen in the identi-
fied, unambiguously mislabeled examples for MNIST and
FashionMNIST datasets. Second, they identify duplicate
images with conflicting labels. Consider the images shown
for CIFAR100, categories such as ‘girl’ and ‘baby’ and
‘folding chair’ and ‘rocking chair’ from ImageNet. The
images are the same, but have different labels, posing a
challenge for networks that are trained with one-hot ex-
clusive labels. Third, we find that datasets with a large
taxonomy are further complicated due to multi-object im-
ages. This can be noted from the first two examples for
ImageNet, with labels ‘red wine’ and ‘corkscrew’. Both the
objects are visible in the image, hence creating conflicting
but semantically correct labels. Such similar or overlap-
ping samples can be challenging to identify manually while
creating datasets. Curvature analysis can help to audit and
improve the quality of datasets. This is especially important
for unreleased datasets that have not been scrutinized by
open source research, or those that are weakly labeled or
have noisy annotations. As an illustration of the utility of
studying curvauture, we find that nearly half of the top 100
high curvature images in the training ses of CIFAR100 and
ImageNet correspond to duplicated images with different la-
bels (Figures 4 and 13). While the duplication of images in
CIFAR100 has been noted before (Recht et al., 2019; Barz
& Denzler, 2020), conflictingly labeled duplicated images
are, to the best of our knowledge, a novel observation.

2. Related Work
Deep neural networks are highly overparametrized, thus
suffer from overfitting. Overfitting leads networks to memo-
rize training data to perfect accuracy, while not improving
generalization capability. There has been work showing that
overfitting in neural networks might be benign, and might
not harm testing accuracy (Bartlett et al., 2020). However,
overfitting can create other problems such as increased sus-
ceptibility to membership inference attacks (Shokri et al.,
2017; Carlini et al., 2019b), and compromised adversarial ro-
bustness (Rice et al., 2020). The extremity of memorization
was first noted in neural networks by (Zhang et al., 2017).
Since then, there has been work in understanding memo-
rization better (Arpit et al., 2017; Feldman & Zhang, 2020;
Feldman, 2020; Jiang et al., 2021; Stephenson et al., 2021).
Feldman & Zhang (2020) suggest calculating memorization
score by removing a set of examples from the training set
and observing the change in their prediction upon training
with and without the samples. Related to memorization,
research on the easiness or hardness of examples by John-
son & Guestrin (2018) and Katharopoulos & Fleuret (2018)
utilize the gradient of the sample as the metric of its impor-
tance. AUM (Pleiss et al., 2020) considers the difference
between the target logit and the next best logit as a mea-
sure of importance, and Maini et al. (2022) captures the
sample importance in the time it takes to be forgotten when
the network is trained with the sample removed. Carlini
et al. (2019a) study the prototypicality and memorization of
samples based on 5 different correlated metrics.

Methods to counter overfitting include weight decay penalty
(Krogh & Hertz, 1991), dropout (Srivastava et al., 2014) and
augmentation (Shorten & Khoshgoftaar, 2019). However,
the success of these techniques depends on having a clean
and reliable training dataset. Confident Learning (Northcutt
et al., 2021a) uses the principles of pruning, ranking and
counting with out of prediction probabilities to find misla-
beled data. The authors extend it (Northcutt et al., 2021b)
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to show errors in many common image datasets. Recht et al.
(2019) build new test sets for CIFAR and ImageNet to check
if there has been unintentional overfitting to the released
validation sets. Barz & Denzler (2020) find many dupli-
cated samples in the CIFAR dataset and create a tool to flag
possible duplicates. We looked at the worst-case examples
from these methods and found that they did not outrightly
catch duplicated examples with different labels, whereas
our method does. The curvature of the loss function with
respect to the parameters is well studied in its connection to
the generalization capability of the solution (Keskar et al.,
2016; Dinh et al., 2017; Ghorbani et al., 2019). However,
far fewer works focus on the properties of curvature of loss
with respect to data. Prior work in this area has focused
on adversarial robustness (Moosavi-Dezfooli et al., 2019;
Fawzi et al., 2018), and on coresets (Garg & Roy, 2023).
While prior work has focused on adversarial robustness,
in this paper, we propose a new application of input loss
curvature as a metric for memorization.

3. Methodology
In this section, we outline how we measure curvature and
the computational cost involved. A similar method is often
used to calculate the curvature of loss with respect to the
network parameters to determine solution stability (Dinh
et al., 2017; Ghorbani et al., 2019; Keskar et al., 2016).
However, we use this method to calculate the curvature of
the loss with respect to the data samples. Details regarding
the hyperparameters are provided in Appendix B. However,
in general we find our method robust to hyperparameters
(see Appendix Table 3).

3.1. Measuring Curvature

Let X ∈ RD be the input to a neural network. Let
y ∈ {1, 2, .., C} be the assigned label for this point, corre-
sponding to the index of the true class among C classes.
Let ŷt = f(X,Wt) ∈ RC be the output (pre-softmax
logits) of the network with weights Wt at epoch t. Let
Lt(X) = CrossEntropy(ŷ, y) ∈ R be the loss of the net-
work on this data point. We are interested in the Hessian
of the loss with respect to X , H(X) ∈ RD×D, where each
element of the matrix is defined by

[H(X)]i,j =

[
∂2L(X)

∂xi∂xj

]
; i, j = 1, 2..., D (1)

Henceforth, we refer to H(X) as H from now, implicitly
understanding that it is calculated concerning datapoint X at
a given weight W . The local curvature is determined by the
eigenvalues of H (Dinh et al., 2017; Ghorbani et al., 2019;
Keskar et al., 2016). The sum of the eigenvalues is also the
trace of the H , and can be calculated using Hutchinson’s
trace estimator (Hutchinson, 1990).

Tr(H) = Ev

[
vTHv

]
(2)

where v ∈ RD belongs to a Rademacher distribution, i.e
vi = {+1,−1} with equal probability. However, we are
more interested in the magnitude of the curvature rather than
the definiteness, and hence we look at the trace of the square
of the hessian, which computes to the sum of the square of
the eigenvalues. Since the Hessian is symmetric, we have:

Tr(H2) = Ev

[
vTH2v

]
= Ev

[
(Hv)T (Hv)

]
= Ev∥Hv∥22

=
1

n

n∑
i=0

∥Hvi∥22 (3)

where n is the number of Rademacher vectors to average
over. Similar to Moosavi-Dezfooli et al. (2019) and Garg &
Roy (2023), we use finite step approximation to calculate
this efficiently.

Hv ≈ 1

h

[
∂L(x+ hv)

∂x
− ∂L(x)

∂x

]
(4)

Hv ∝ ∂ (L(x+ hv)− L(x))

∂x
(5)

We drop constants as we are only interested in the relative
curvatures of datapoints. For our final curvature estimate,
we average curvature over all training epochs, T, to give
reliable results. Putting this together, we have the curvature
estimator of a datapoint X at any epoch as:

Curv(X) =
1

nT

T∑
t=1

n∑
i=0

∥∥∥∥∂(Lt(x+ hv)− Lt(x))

∂x

∥∥∥∥2
2

(6)

We note here that our calculation of curvature differs from
the method used in previous work (Garg & Roy, 2023;
Moosavi-Dezfooli et al., 2019) in two keys ways. First,
we use Hutchinson’s trace estimator form, with a random
Rademacher vector for more reliable results, instead of ad-
versarial directions. Second, we average curvature scores
during training to get reliable results, to account for the
stochasticity of gradient decent, and therefore, decision
boundaries during learning. Without these changes, we can-
not reliably measure memorization, as indicated by a low
match with baseline memorization scores (see section 4.2
and Appendix Table 4).

3.2. Computational Cost

The computational complexity increases from O(T ) for
vanilla training to O(nT ) for calculating curvature scores,
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Figure 2: Low (left) and high (right) curvature samples of MNIST and FashionMNIST training data

Figure 3: Histogram of curvature scores

Dataset WD CS Top-K CS

CIFAR100
1e-04 0.82 0.90

0.0 0.73 0.82

ImageNet
1e-04 0.72 0.87

0.0 0.66 0.82

Table 1: Cosine Similarity (CS) between curvature and FZ
scores with and without weight decay (WD). Top-K CS is
the CS of the top 5,000 (and 50,000) FZ score samples of
CIFAR100 (and ImageNet).

where n is the number of Randemacher vector v to average
and T is the number of epochs. The backward passes can
be parallelized as they are performed at a static W . In case
of limited compute capacity, curvature could be estimated
every few epochs. Note that we do not explicitly compute
the Hessian or any second-order gradient despite relying on
a second-order metric.

4. Experiments and Discussion
In this section, we present qualitative and quantitative re-
sults on MNIST (Deng, 2012), FashionMNIST (Xiao et al.,
2017), CIFAR10/100 (Krizhevsky et al., 2009), and Ima-
geNet (Russakovsky et al., 2015) datasets to support our
claim that curvature can be used to measure memorization.
The histograms of curvatures are shown in Figure 3, and
we can see that they reflect the long-tailed nature of natu-
ral images. We use ResNet18 (He et al., 2016) for all our
experiments. Curvature for all datasets except ImageNet is
calculated every epoch and averaged. For ImageNet we av-
erage curvature calculated every 4 epochs for computational
ease. Details of the setup are given in Appendix C. This
section first shows qualitative results by visualizing high
curvature samples, and showing that they are long-tailed or
mislabeled images in section 4.1. We then validate our score
quantitatively in section 4.2 by comparing against a base-
line and in section 4.3 by synthetically mislabeling data and
showing that it gets learned with high curvature. Lastly, in

section 4.4, we study how our measure of curvature evolves
during training for further insight, and so that practitioners
with limited compute can better choose limited epochs for
curvature calculation. Code available at github link.

4.1. Visualizing Low and High Curvature Samples

In Figure 2, we visualize the 10 lowest and highest curva-
ture training samples for each class of MNIST and FMNIST
respectively. These are examples sorted by curvature scores
averaged over all training epochs of a modified ResNet18
architecture, trained without weight decay and allowed to
be fully memorized (100% training accuracy). We see that
low curvature samples appear to be easily recognizable as
belonging to their class. Whereas, high curvature samples,
are made of both long-tailed (harder samples or rare occur-
rences) and mislabeled samples. The mislabeled samples
in MNIST are underlined in red, and we note that the re-
maining high-curvature samples are also ambiguous. In
particular, we see a high overlap between classes ‘4’ and
‘9’, and ‘1’ and ‘7’.

The classes for FashionMNIST are 0:T-shirt/top, 1:Trouser,
2:Pullover, 3:Dress, 4:Coat, 5:Sandal, 6:Shirt, 7:Sneaker,
8:Bag, 9:Ankle boot. We see that examples seem to have sig-
nificant overlap for classes ‘T-shirt’, ‘Pullover’ and ‘Coat’,
and among ‘Ankle boots’ and ‘Sneakers’. We also see long-
tailed trends in the row of ‘handbags’, with some uncommon
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Figure 4: 50 highest curvature samples from the training set of CIFAR100 and ImageNet, index, label (and curvature rank
for ImageNet) shown above each image. We highlight duplicated samples with differing labels with a red dot. Extended and
ordered versions in Appendix, Figures 9 and 13.

handbags being represented in the high curvature case. Con-
flicting samples are apparent in the row for pants, as there
are full body pictures of models, wearing both pants and
shirts. This analysis reveals a bias in the FashionMNIST
dataset: darker clothes with lower contrast tend to show
up as high curvature samples, whereas in the real world,
this may not be the case. The corresponding pictures for
the training sets of CIFAR10, CIFAR100 and ImageNet are
shown in Appendix D. We check the validation data as well
by training and overfitting on the validation sets, and the
results are shown in Appendix E.

4.2. Comparing Against a Baseline: FZ scores

Here, we are interested in an independent measure of mem-
orization that does not utilize training dynamics. The most
suitable metric for comparison comes from Feldman &
Zhang (2020), who remove datapoints from the dataset one
at a time, train a new network on the altered dataset, and
measure the change in prediction on the datapoint as the
sample memorization score. These scores are likely to be
independent of spurious correlations to curvature that other
methods such as confidence of prediction might have, and
hence serve as a good baseline. We use scores released by
the authors for CIFAR100 and ImageNet dataset on their
project site and we refer to these as FZ scores. We cal-
culate the cosine similarity of our curvature with the FZ
scores in Table 1. We achieve a cosine similarity of 0.82
and 0.72 for CIFAR100 and ImageNet respectively when
we use weight decay, and 0.90 and 0.87 on the most
memorized samples (see Table 1 and Appendix D.5 for
additional results). These scores are a high match since
the vector is of dimension 50,000 in the case of CIFAR100,
and 1, 268, 356 for ImageNet (number of training samples

in the dataset). While the dataset level cosine similarity
suggests correlations in the aggregate, it does not provide
specific sample-based correlations. However, the significant
match between FZ and curvature scores does suggest a very
strong link. Further, we emphasize that we achieve this
match with only 1 training run, whereas FZ scores required
training thousands of models. We ran the same experiment
on CIFAR100 using the curvature measurement technique
described in Garg & Roy (2023), where the authors use a
single adversarial direction to compute the curvature score
at the end of training. This results in a significant drop
in cosine similarity. When using weight decay the cosine
similarity dropped to 0.17, and 0.1 when not using weight
decay (see Table 4 in the Appendix for more details). This
highlights the need for averaging over epochs as proposed
in this paper.

When using the proposed method we note that the cosine
similarity drops by ∼ 0.1 when not using weight decay. To
understand why, we visualize the examples with the high-
est curvature without weight decay in Figure 4 for CIFAR
100 and ImageNet. We note that 36 out of the 60 highest
curvature samples for CIFAR100, and 45 out of top 100
for ImageNet are duplicated pairs with conflicting labels.
These are marked with a red dot. In contrast, FZ scores that
have been released do fail to catch duplicate samples with
different labels. Similarly, weight-regularized, highest cur-
vature samples only catch a few of the duplicated samples,
as regularization would deter the network from memorizing
these samples. The 100 most memorized samples from FZ
scores and the highest curvature samples for training with
weight decay are shown in Appendix F. These duplicated
samples are indeed memorized during training but possibly
missed by FZ scores due to the fact that they do not train un-
til complete memorization due to the computational expense

5

https://pluskid.github.io/influence-memorization/


Memorization Through the Lens of Curvature of Loss Function Around Samples

Table 2: AUROC for identifying corrupted samples with
synthetic label noise, best results are shown in red. Inconf.
is inconfidence score, LT and SSFT are learning time and
second split forgetting time from Maini et al. (2022) and CL
refers to Confident Learning (Northcutt et al., 2021a).

Dataset Method
Corruption

1% 2% 4% 6% 8% 10%

M
N

IS
T

Inconf. 99.4% 99.0% 98.4% 97.7% 97.1% 96.1%
CL 99.7% 99.3% 99.1% 98.9% 98.9% 98.9%

SSFT 99.9% 99.9% 99.8% 99.7% 99.7% 99.5%
LT 98.7% 99.5% 98.4% 98.5% 97.7% 97.3%

Curv 100.0% 100.0% 99.9% 99.9% 99.9% 99.9%

C
IF

A
R

10

Inconf. 84.2% 82.5% 81.8% 81.6% 81.5% 81.5%
CL 92.4% 93.1% 93.4% 93.4% 91.7% 93.4%

SSFT 94.5% 94.1% 93.2% 92.5% 91.6% 90.0%
LT 87.3% 82.5% 84.0% 83.4% 82.2% 83.0%

Curv 97.4% 96.6% 95.5% 94.4% 94.1% 92.9%
CurvSSFT 97.5% 96.8% 96.2% 96.1% 95.2% 94.8%

C
IF

A
R

10
0

Inconf. 85.0% 84.0% 83.5% 83.6% 83.6% 83.4%
CL 83.1% 84.2% 85.3% 86.3% 84.3% 84.6%

SSFT 94.8% 93.7% 93.2% 91.7% 91.9% 91.0%
LT 85.2% 85.2% 81.8% 80.8% 79.8% 78.5%

Curv 90.9% 89.6% 88.3% 86.8% 85.7% 84.3%
CurvSSFT 96.0% 94.5% 94.2% 93.1% 92.9% 91.9%

of training thousands of models. Additionally, FZ scores
are calculated by removing a proportion of the dataset at
a time and training on the remaining samples. Duplicates
can compromise the reliability of these scores. We note that
there are many other duplicate samples that our method does
not identify (Barz & Denzler, 2020), since these duplicate
samples have the same label and do not pose a boundary
conflict. They are also not likely to be memorized.

To summarize, one of the reasons we do not get near perfect
match with FZ scores (and why we get a higher match
with weight decay) is because we catch a novel failure
mode that the FZ scores fail to, despite being ∼ 3 orders
of magnitude more computationally expensive. For the
sake of completeness, we recommend that practitioners try
both settings (with and without weight decay) to try and
catch the different kinds of boundary conflicts that may
be revealed via curvature analysis. Further, we find the
results and conclusions presented here are quite robust to
hyper parameters (see Appendix Table 3). We also see
similar results on different network architectures apart from
ResNets (please see Appendix D.5).

4.3. Synthetic Label Corruption

To provide further evidence of curvature as a memorization
metric, we devise an experiment to measure how well our
method captures synthetically mislabeled examples since
they are most likely to be memorized. We randomly in-
troduce noise into a proportion of the labels, uniformly
changing its class label to a different class label. The same

Corrupted

MNIST, 1% Label Corruption
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Figure 5: Histogram of MNIST trainset curvature. Curva-
ture of 60 corrupted samples marked.
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Figure 6: Loss curves and average trainset curvature esti-
mates on CIFAR100.

proportion of labels in each class are corrupted. We then
train on these samples and measure the curvature scores.
First, we randomly corrupt the label of 60 images per class
of MNIST (corrupting 1% of the dataset), and train until
full memorization, i.e. 100% training accuracy, indicating
that the mislabeled samples were memorized. We plot the
histogram of the cumulative curvature scores and mark the
scores of the corrupted ones with a black× in Figure 5. The
training dataset consists of 60,000 samples and we can see
that most of the samples have very low curvature. However,
we see that the curvature scores of the corrupted exam-
ples are among the highest, confirming the link between
curvature and memorization.

To do a more exhaustive study, we sort samples by their
curvature estimate and report the AUROC (Area under the
ROC curve) scores for separating the corrupted samples
from the clean ones in Table 2, for corruptions ranging be-
tween 1-10%. The best results are highlighted in red. As
shown later while studying curvature dynamics in section
4.4, the scores averaged over training are stable when using
weight decay, and hence we use a weight decay of 10−4

for all models for these experiments. For additional base-
lines, we also provide AUROC results using inconfidence
(Carlini et al., 2019a) and Confident Learning (Northcutt
et al., 2021a). We also show the results of Learning Time
(LT) and Second-Split Forgetting Time (SSFT) from Maini
et al. (2022). The authors of SSFT note in their text that
SSFT can be combined with other methodologies, and we
show the results of using their method combined with our
curvature score as CurvSSFT. The experiments for CL, LT
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Figure 7: Visualization of curvature of decision boundary around data points. Train and test datasets are shown on the top
left, and loss curves on the top right. The bottom figures show the logit space and the decision boundary with input points in
the input space at different epochs of training.

and SSFT were performed using the code provided by the
respective authors.

From Table 2, we conclude that our method is more in-
formative than just confidence values on all datasets and
outperforms CL and LT significantly as well on all corrup-
tions and datasets considered. We also outperform SSFT on
all corruptions considered for both MNIST and CIFAR10.
However, we note that SSFT shows better performance on
CIFAR100, but combining SSFT and Curvature outperforms
either method significantly. From Table 2 we can see that
Curvature outperforms SSFT for both MNIST and CIFAR-
10 for all percentages of mislabeling considered. However,
SSFT performs better than Curvature for CIFAR-100, but
we show that combining SSFT and Curvature results in a
combination that outperforms both SSFT and Curvature in-
dependently and significantly. We emphasize here that we
do not claim that curvature is the best way of finding mis-
labeled examples. Our primary motivation is to show that
curvature is a good measure of sample memorization, and
it can find samples with failure modes that other methods
might miss. We recommend that curvature analysis should
be used in conjunction with other checks, for a holistic view
of dataset integrity.

4.4. Curvature Dynamics During Training

We now study per-epoch curvature, to explain why we need
to average curvature scores over training epochs. Figure 6
plots the training and validation losses and the per-epoch
curvature score averaged for the training set of CIFAR100
on ResNet18. The network begins to overfit around epoch

20, and the per-epoch curvature exhibits a peculiar trend: it
increases until overfitting takes hold, then decreases. This
trend is also observed on ImageNet (Figure 8b).

To investigate this behavior, we created a 2D toy example
(training and setup details in Appendix A). Figure 7 shows
the training and test data, consisting of 2 classes (red and
blue). The test data is abundant and noise-free, representing
the true distribution. The training data consists of only 15
points for each class, with 30% corrupted by noise. The
imbalance in the design of this toy example is intentional.
Our goal was to evaluate what the decision boundary looks
like under extreme memorization. The dynamics of training
are captured in Figure 7 which shows the loss curves for
training and testing data (cross-entropy loss). Snapshots
of the output space (logits) and input space are shown at
the bottom. The output space shows the x and y axes, cor-
responding to each class. The decision boundary in the
output space is the line y = x. The input space visualizes
the probability heatmap of each point in the grid belonging
to the red class. This setup allowed us to understand how
curvature behaves with extreme memorization.

First, we note what the boundaries look like in the input
space. From snapshots at epochs 20, 30 and 50, we see
that the network tries out different hypotheses in the form
of different decision boundaries. This is even more evi-
dent if we look at the epoch-wise GIF created from these
snapshots in the supplementary material. Averaging the
scores over all epochs, allows us to not be overly reliant
on one hypothesis, and account for all decision boundary
considered during learning. Secondly, we note that the
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(a) Average trainset, testset and memorized trainset curva-
tures on CIFAR100, calculated every epoch.

(b) Average trainset, testset and memorized trainset curvatures
on ImageNet, calculated every 4 epochs.

Figure 8: Curvature dynamics for CIFAR100 and ImageNet.

loss and curvature plots show the same trend of increasing
and then decreasing in this toy example as well. This can
be explained by looking at the logit space when using the
cross-entropy loss. Early in training, the network aims to
get all data points to the correct side of the boundary. This
phase is marked by a very large sensitivity of loss to per-
turbation of the input, resulting in large values of curvature.
As learning progresses, the logits get further apart and the
softmax layer becomes more confident. Even when they are
all on the right side, cross entropy keeps maximizing the
margin, by pushing logits further apart from the boundary.
This means that small perturbations have little impact on the
softmax output and the gradients, which are used to measure
curvature. Hence, the curvature values drop.

Note this trend does not affect the results discussed in sec-
tions 4.1, 4.2, and 4.3 as they are averaged over epochs
which allows us to be impervious to these dynamics. In-
terestingly, the curvature of validation samples increases
throughout training. This is because the margin for test sam-
ples has not been maximized (since these were not trained
on). And this supports the fact that early stopping helps
lower adversarial vulnerability (Rice et al., 2020) and longer
training makes the model more susceptible to membership
inference attacks (Shokri et al., 2017).

To re-emphasize the need for averaging over epochs, we
show the cosine similarity match between per-epoch curva-
ture scores and FZ scores, along with the cosine similarity
between the cumulative curvature scores and FZ scores in
the Appendix (Section D.4 and Figures 14b, 14a and 15).
We see that before overfitting, the cosine match between
per-epoch curvature and FZ score is the same as the cosine
match between cumulative curvature and FZ score. The
match drops for per-epoch case and when not using weight
decay, as cross entropy forces logit separation and margin
maximization at the later epochs. This effect is more aggres-

sive without weight decay regularization, as can be noted
from the plots. Hence, averaging over all the epcochs gives
us stable and reliable results.

5. Conclusion
Overparametrized networks are known to overfit to the train-
ing dataset, and can achieve 100% training accuracy by
memorizing training datapoints. This raises concerns about
the networks consuming erroneous data, which can have an
adverse impact when the decisions made by neural networks.
In this paper, we propose curvature of the loss function
around the datapoint, measured as the trace of the square
of the Hessian, as a metric of memorization. We overfit to
the training set and measure the curvature of the loss around
each sample. We validate curvature as a good measure of
memorization in three ways. First, we visualize the highest
curvature samples and note that they are made of mislabeled,
long-tailed, multiple class, or conflicting samples that are
not clearly representative of their labels. Second, we also
show that curvature estimates have a high cosine similar-
ity match with FZ scores, which are calculated by training
thousands of models per dataset. Instead, our method only
requires training one network. Using our method, we catch
a failure mode on CIFAR100 and ImageNet that is to the
best of our knowledge, unobserved until now; that of du-
plicated images with different labels. Third, we show that
using curvature to identify mislabeled samples in the case of
synthetically mislabeled training sets achieves high AUROC
scores. These three experiments help us establish curvature
as a reliable and scalable method for measuring memoriza-
tion of a sample by a network. This can be utilized to check
the integrity of datasets and identify undersampled or badly
annotated parts of the dataset. Finally, we study how cur-
vature develops during training, giving us insight into the
dynamics of overfitting.
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Appendix

A. 2D Toy Example Visualization
We use a network of 7 fully connected layers of size
[2,100,100,500,200,100,1000]. Each layer is followed by a
batchnorm layer and ReLU layer. The network is trained for
150 epochs with an SGD optimizer and a learning rate of
0.1, momentum of 0.9 and a weight decay of 5e-4. There is
only one minibatch per epoch. The training dataset consists
of 15 points for each of the 2 classes, with a noise ratio
of 0.3 introduced to 30% of the data. The test dataset con-
sists of 100 points for each class with no noise. In Figure
7, at the bottom we show the input space, specifically, we
visualize the probability heatmap of each point in the grid
belonging to the red class. And we also add the visualization
of the output space. Early epochs show large changes in
the curvature around points in the input space. We can see
from the output space that the focus of early epochs is to get
all datapoints on the right side of the boundary. Once the
datapoints are on the right side, the cross entropy loss still
aims to maximize the log confidence of the correct class, by
maximally separating the correct class logit from the others.
In these epochs, while the logits get more separated, little
change is seen in the input space. This leads to decreasing
curvature after overfitting.

B. Hyperparameters
Our estimator introduces two hyperparameters, h and n.
We tune h in the range of

[
10−2, 10−4

]
by evaluating the

cosine similarity between our scores and FZ scores. We note
that input X is in the range of [0, 1] (before mean-standard
normalization) and all elements of v ∈ {+1,−1}. This
means that the L2 distance of the noise added to the input
remains in the range of ||hv||2 = h

√
D, or equivalently, we

add perturb each pixel by±h. We report the result of tuning
hyperparameters in Table 3.

C. Network Architecture and Training details
for Curvature Estimates

We use modified versions of ResNet18 for all experiments
with appropriately modified input sizes and channels. For
MNIST and FashionMNIST, we use the downscaled ResNet
1 with the average pooling layer downsized from 8 to 7 due
to the reduced input resolution of MNIST and FashionM-
NIST. For CIFAR datasets we use the full-size ResNet182.
We use PyTorch provided ResNet18 for ImageNet models.
We use no augmentation for MNIST and FashionMNIST,

1https://github.com/bearpaw/pytorch-
classification/blob/master/models/cifar/resnet.py

2https://github.com/kuangliu/pytorch-
cifar/blob/master/models/resnet.py

11

https://openreview.net/forum?id=Sy8gdB9xx
https://openreview.net/forum?id=Sy8gdB9xx
https://openreview.net/forum?id=r1Ddp1-Rb
https://openreview.net/forum?id=r1Ddp1-Rb


Memorization Through the Lens of Curvature of Loss Function Around Samples

h n Top-K CS CS
0.01 5 0.89 0.80

0.001 5 0.90 0.82
0.0001 5 0.90 0.82

0.01 10 0.89 0.80
0.001 10 0.90 0.82

0.0001 10 0.90 0.82
0.01 20 0.89 0.80

0.001 20 0.90 0.82
0.0001 20 0.90 0.82

Table 3: Cosine Similarity (CS) between curvature and FZ
scores with weight decay (WD). Top-K CS is the CS of the
top 5,000 FZ score samples of CIFAR100.

and random horizontal flips and crops for CIFAR and Ima-
geNet datasets. We train for 300 epochs on CIFAR datasets,
with a learning rate of 0.1, scaled by 0.1 on the 150th and
250th epoch. For MNIST and FashionMNIST, we train for
200 epochs, with a learning rate of 0.1 scaled by 0.1 on
the 80th and 160th epoch. For ImageNet we train for 200
epochs with a learning rate of 0.1, scaled by 0.1 on the 120th

and 160th epoch. Where weight decay is used, its value is
set to 10−4.

D. Training Samples with Low and High
Curvature

D.1. CIFAR10

The low curvature samples are shown on the left, with the
high curvature samples on the right of Figure 10. The classes
in order are: [airplanes, cars, birds, cats, deer, dogs, frogs,
horses, ships, and trucks].

D.2. CIFAR100

The low curvature samples are shown on the left, with the
high curvature samples on the right. In Figure 11 we show
samples only from the first 10 classes, with the following
labels: [apple, aquarium fish, baby, bear, beaver, bed, bee,
beetle, bicycle, bottle].

Figure 9: 60 highest curvature samples from the training
set of CIFAR100, identified by training on ResNet18. The
index and label of the training sample are mentioned above
the picture. We highlight samples that are duplicated with
differing labels with a red dot.

D.3. ImageNet

For ImageNet Figure 12 shows samples only from the first
10 classes, with the following labels: [tench, goldfish, great
white shark, tiger shark, hammerhead, electric ray, stingray,
cock, hen, ostrich]. Note that low curvature samples on
‘tench’ on ImageNet reveal a spurious correlation learnt by
the network between tench and people holding the ‘tench’
fish. Further, we also show top curvature samples from
the training set of ImageNet along with duplicates with
corresponding curvature ranks in Figure 13. We highlight
duplicated samples with differing labels with a red dot.

D.4. Epoch-wise Cosine Similarity

We plot the epoch-wise and cumulative cosine similarity
between the FZ score and curvature scores for CIFAR100
(Figure 14b) and ImageNet (Figure 14a). Further, we also
plot the epoch-wise and cumulative cosine similarity be-
tween top 50K FZ sample memorization scores and the
corresponding curvature scores for ImageNet (Figure 15).
We get very high similarity ∼ 0.9

Here we summarize the results of calculating curvature
using the methodology from Garg & Roy (2023) with the
main differences listed below

• Garg & Roy (2023) used adversarial direction to esti-
mate curvature. We removed the adversarial direction
assumption and returned to traditional Hutchinson’s
trace estimator form, and used a random Rademacher
vector instead for more reliable results.

• Garg & Roy (2023) calculated curvature at the end
of training gives unreliable scores. For instance, the
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Figure 10: Low and High curvature samples from CIFAR10. Classes from top to bottom: [airplanes, cars, birds, cats, deer,
dogs, frogs, horses, ships, and trucks]

Figure 11: Low and High curvature samples from CIFAR100. Classes from top to bottom: [apple, aquarium fish, baby, bear,
beaver, bed, bee, beetle, bicycle, bottle].

match with FZ scores for curvature calculated at the
end of training is shown in Table 4, which is very
low. We average curvature during training to get reli-
able results, which allows the use of different decision
boundaries that are learned at different epochs of train-
ing.

D.5. Results for Different architectures

The cosine similarity metric for various architectures are
presented in Table 5. Table 6 presents the results across
architectures.

E. Validation Samples with High Curvature
In this section, we train the same network as described in
section 4 on the validation sets of all 4 datasets and show the
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(a) Low curvature samples from ImageNet (b) High curvature samples from ImageNet

Figure 12: Low and High curvature samples from ImageNet. Classes from top to bottom: [tench, goldfish, great white shark,
tiger shark, hammerhead, electric ray, stingray, cock, hen, ostrich]. Higher quality version available in our git repo.

Method
Top 5K FZ score cosine similarity Cosine similarity with FZ score for all data
wd0 wd1 wd0 wd1

Garg & Roy (2023) 0.07 0.24 0.10 0.17
Ours n = 10 @ End of Training 0.06 0.28 0.12 0.18

Ours 0.82 0.90 0.73 0.82

Table 4: Comparing Garg & Roy (2023) and our method for capturing memorization scores on CIFAR100 dataset, with
(wd1) and without weight (wd0) decay.

Architecture Test Set Acc Train Acc Top-K CS CS
ResNet18 75.09% 99.99% 0.90 0.82

DenseNet121 76.09% 99.98% 0.83 0.74
VGG13 BN 69.81% 99.98% 0.87 0.75

Mobilenet V2 66.21% 99.97% 0.90 0.77

Table 5: Cosine similarity between FZ scores and curvature scores on all (CS) and Top 5000 FZ score samples (Top-K CS)
on CIFAR100 dataset.

ResNet18 VGG13 BN DenseNet121 Mobilenet V2
ResNet18 1.00 0.89 0.88 0.92

VGG13 BN 0.89 1.00 0.83 0.88
DenseNet121 0.88 0.83 1.00 0.85
Mobilenet V2 0.92 0.88 0.85 1.00

Table 6: Cosine similarity between curvature scores of various architectures for top 5000 FZ score samples (Top-K CS) on
CIFAR100 dataset.
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Figure 13: Top curvature samples from the training set of ImageNet along with duplicates with corresponding curvature
ranks. Scores identified by training on ResNet18. We highlight samples that are duplicated with differing labels with a red
dot.

(a) Cumulative and epoch-wise curvature of the training set of
ImageNet with and without weight decay.

(b) Cumulative and epoch-wise curvature of the training set of
CIFAR100, with and without weight decay

Figure 14: Cosine similarity between curvature and FZ Memorization score for ResNet18 on ImageNet (left) and CIFAR100
(right). ImageNet results are plotted every 4 epochs for efficiency.
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Figure 15: Cumulative and epoch-wise curvature of the top 50K FZ samples of ImageNet with and without weight decay.

ResNet18 VGG13 BN DenseNet121 Mobilenet V2
ResNet18 1.00 0.83 0.83 0.87

VGG13 BN 0.83 1.00 0.76 0.83
DenseNet121 0.83 0.76 1.00 0.78
Mobilenet V2 0.87 0.83 0.78 1.00

Table 7: Cosine similarity between curvature scores of various architectures for all samples (CS) on CIFAR100 dataset.

highest curvature samples for these. Results are of curvature
averaged over all training epochs, and the network is trained
without weight decay.

F. CIFAR100 most memorized samples
Here we show the hundred most memorized examples as
identified by FZ scores, and with curvature when training
with weight decay = 1e − 4. Despite FZ score being 3
orders of magnitude more computationally expensive than
our method, they do not find the failure case of duplicated
samples with differing labels that we found with our analysis.
This is significant since the duplicate samples are most likely
memorized by a model if the model gets 100% accuracy
since they have differing labels.

G. MNIST label corruption
We present the histogram results of MNIST label corruption
in Figure 19a. Figure 16a shows high curvature MNIST
images from the validation set.

H. Early Stopping
We present the results of using curvature for early stopping
in Table 8. We also show results on calibration curves when

using the the three approaches in Table 8 in our git repo.

I. Pseudo Code for Curvature Calculation
Below we present the pseudo code for the proposed curva-
ture calculation. We also provide the code for our imple-
mentation in our git repo.

Input: x (image data), y (ground truth label), f(x) (neu-
ral network output of x at current epoch), l(x) (loss of
x), niter (hyperparam: number of random directions), h
(hyperparam: distance for curv calculation)
Output: curv estimate (curvature estimate of x at cur-
rent epoch)
curv ← 0
for i← 1 to niter do

v ← Rademacher
x pert← x+ h× v
outputs pert← f(x pert)
outputs orig ← f(x)
loss pert← l(outputs pert, y)
loss orig ← l(outputs orig, y)
loss delta← (loss pert− loss orig)
Hv ← gradient of loss delta with respect to x
curv ← curv + ∥Hv∥

end for
curv estimate← curv/niter
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Epoch Test Acc Comment MIA AUROC MIA LiRA Bal Acc
17 58.2% Lowest Val Loss 54.52% 53.42%
19 59.3% Highest Curvature 56.57% 54.81%
200 67.0% End of Training 82.55% 73.93%

Table 8: MIA results when using LiRA (Carlini et al., 2022) on early stopping models (loss, curvature) vs baseline.

Training Model, Dataset GPU Memory Time / Batch (BS = 128)
With Curvature n = 10 ResNet18, CIFAR100 ≈ 1.27GB ≈ 1.0s on 1080Ti

Vanilla ResNet18, CIFAR100 ≈ 0.37GB ≈ 0.1s on 1080Ti

Table 9: Memory and Run-Time when using GTX 1080Ti GPU with 11GB of VRAM and Intel Xeon with 187GB of system
memory

(a) MNIST (b) FashionMNIST

Figure 16: High curvature samples from validation sets
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Memorization Through the Lens of Curvature of Loss Function Around Samples

Top K Method (Y) Duplicates identified in Top K

100

Ours 80
Learning Time (Jiang et al., 2021) 0

SSFT (Maini et al., 2022) 0
Adversarial Distance (Stock & Cisse, 2018; Carlini et al., 2019a) 73

200

Ours 121
Learning Time (Jiang et al., 2021) 0

SSFT (Maini et al., 2022) 0
Adversarial Distance (Stock & Cisse, 2018; Carlini et al., 2019a) 76

500

Ours 139
Learning Time (Jiang et al., 2021) 1

SSFT (Maini et al., 2022) 1
Adversarial Distance (Stock & Cisse, 2018; Carlini et al., 2019a) 83

Table 10: 250 Duplicates were synthetically created in CIFAR100. Different memorization proxies were used to test the
ability to capture the duplicates. The metrics were sorted and the top K values captured Y number of duplicates (see
visualizations in out git repo).

Method CS with FZ (with weight decay)
Ours 0.82

Learning Time (Jiang et al., 2021) 0.61
SSFT (Maini et al., 2022) 0.51

Adversarial Distance (Stock & Cisse, 2018; Carlini et al., 2019a) 0.57

Table 11: Cosine similarity (CS) between various memorization proxies with FZ scores on CIFAR100 dataset.

(a) CIFAR10 (b) CIFAR100

Figure 17: High curvature samples from validation sets

18

https://github.com/purdue-nrl/Memorization-Curvature/tree/master/images


Memorization Through the Lens of Curvature of Loss Function Around Samples

(a) Most Memorized according to FZ scores (b) Highest Curvature with Weight Decay on

Figure 18: High curvature samples from training sets of CIFAR100

(a) 2% Label corruption, curvature density plot. Curvature ob-
tained on modified ResNet18.

(b) High curvature samples from training set according to Slo-
curves (Garg & Roy, 2023). Obtained of ResNet18 trained without
weight decay on CIFAR100

Figure 19: Visualizing MNIST label corruption histogram results using the proposed curvature averaging (left). High
curvature samples according to Slo-curves (Garg & Roy, 2023) (Right)
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