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Abstract

Masked face recognition is important for social
good but challenged by diverse occlusions that
cause insufficient or inaccurate representations. In
this work, we propose a unified deep network to
learn generative-to-discriminative representations
for facilitating masked face recognition. To this
end, we split the network into three modules and
learn them on synthetic masked faces in a greedy
module-wise pretraining manner. First, we lever-
age a generative encoder pretrained for face in-
painting and finetune it to represent masked faces
into category-aware descriptors. Attribute to the
generative encoder’s ability in recovering context
information, the resulting descriptors can provide
occlusion-robust representations for masked faces,
mitigating the effect of diverse masks. Then, we
incorporate a multi-layer convolutional network
as a discriminative reformer and learn it to con-
vert the category-aware descriptors into identity-
aware vectors, where the learning is effectively
supervised by distilling relation knowledge from
off-the-shelf face recognition model. In this way,
the discriminative reformer together with the gen-
erative encoder serves as the pretrained backbone,
providing general and discriminative representa-
tions towards masked faces. Finally, we cascade
one fully-connected layer following by one soft-
max layer into a feature classifier and finetune it
to identify the reformed identity-aware vectors.
Extensive experiments on synthetic and realistic
datasets demonstrate the effectiveness of our ap-
proach in recognizing masked faces.
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Figure 1. Our approach learns generative-to-discriminative repre-
sentations for masked face recognition, which combines the ad-
vantages of generative representations and discriminative represen-
tations, providing general and robust solution to recover missing
clues and capture identity-related characteristics.

1. Introduction
Deep face recognition models have delivered impressive
performance on public benchmarks (Wen et al., 2016; Cao
et al., 2018; Deng et al., 2019) and realistic scenarios (An-
war & Raychowdhury, 2020). In general, these models
are designed for recognizing unmasked faces and often
suffer from sharp accuracy drop in recognizing masked
faces (Ngan et al., 2020a;b), which hinders real-world ap-
plications (Ge et al., 2017; Poux et al., 2022; Zhang et al.,
2023; Wang et al., 2023; Al-Nabulsi et al., 2023). Unlike
normal face recognition, masked face recognition is chal-
lenged by insufficient or inaccurate representations. Masks
often occlude some important facial features, causing key
information loss. With the occluded regions growing larger,
the unmasked regions may become less sufficient for accu-
rate identity prediction. Moreover, the ill-posed mapping
between observation and possible groundtruth faces makes
representations inaccurate. Therefore, an effective solution
for masked face recognition should learn representations
that could recover missing facial clues and calibrate inaccu-
rate identity clues. Accordingly, many masked face recog-
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nition approaches have been proposed, which are based on
generative or discriminative idea (Deng et al., 2021).

“Generative” approaches aim to reconstruct the missing fa-
cial clues then perform recognition on completed faces.
Deep generative models (Zheng et al., 2023; Choi et al.,
2023) can provide general representations to noisy im-
ages (Chen et al., 2020; He et al., 2022a; Li et al., 2023).
Generative face inpainting (Pathak et al., 2016; Li et al.,
2017; Yu et al., 2018; Zhao et al., 2018; Yu et al., 2019; Wan
et al., 2021; Dey & Boddeti, 2022; Yang et al., 2023) has
successfully enabled recovery of high-quality visual con-
tents. While it is very robust to generate consistent results
to different masks, the benefit of face inpainting for masked
face recognition is limited (Mathai et al., 2019) since they
ignore the regularization on identity preservation, and the
information about intra-identity and inter-identity relation-
ships are lost during the process. Some attempts are made to
enforce identity preservation via introducing face recognizer
for regularization (Zhang et al., 2017; Ge et al., 2020), yet
the help is limited, since the recognizers in these approaches
cannot provide the upstream inpainting network with direct
feedback and enough regularization on identity awareness.

In contrast, “discriminative” approaches aim to extract ro-
bust representations by reducing the effect of masked re-
gions (Wen et al., 2016; He et al., 2022b; Song et al., 2019).
They usually adopt part detection (Ding et al., 2020), com-
positional models (Kortylewski et al., 2021), knowledge
transfer (Huber et al., 2021; Boutros et al., 2022; Zhao et al.,
2022) or complementary attention (Cho et al., 2023), to
localize or remove masked regions. However, the unmasked
regions often hardly provide enough information for accu-
rate recognition. Thus, some approaches propose to finetune
existing face recognizers (Neto et al., 2021) or design pow-
erful networks (Qiu et al., 2022; Boutros et al., 2022; Zhu
et al., 2023; Zhao et al., 2024) to extract more information.
Generally, directly finetuning general face recognizers may
increase the accuracy on masked faces, while on the sacrifice
of discriminative and generalization ability on the recogni-
tion of unmasked faces. Moreover, since the occlusions
contain diverse mask types, these approaches usually show
poor robustness on masked faces. In real-world masked face
recognition scenarios, diverse masks could cause semantic
divergences while the representations are expected to be
consistent. Therefore, a key issue that needs to be carefully
addressed in masked face recognition is the coordination be-
tween reconstructing general representations and enhancing
their identity discrimination.

To facilitate masked face recognition, we propose learn-
ing generative-to-discriminative representations which com-
bines the advantages from generative and dicriminative rep-
resentations (Fig. 1). Specially, we cascade three modules
and learn them in a greedy manner. First, generative encoder

takes the encoder of a pretrained face inpainting model, and
represents masked faces into category-aware descriptors
with rich general information of masked faces to distinguish
human faces from other objects. Then, discriminative re-
former incorporates a 22-layer convolutional network and
is learned to convert the category-aware descriptors into
identity-aware vectors for enhancing recognition. Finally,
feature classifier cascades a fully-connected layer and a
softmax layer to identify the reformed vectors. In the ap-
proach, generative encoder and discriminative reformer are
combined together, which serves as backbone for masked
facial feature extraction and is progressively pretrained in
a self-supervised manner, while feature classifier serves as
recognition head. Finally, the backbone is frozen and feature
classifier is finetuned on labeled masked faces.

Our main contributions can be summarized as: 1) we pro-
pose to learn generative-to-discriminative representations
for masked face recognition, which combines the advan-
tages of generative and discriminative representations to
extract general and discriminative features for identifying
masked faces; 2) we cascade generative encoder and dis-
criminative reformer as the backbone and present a greedy
module-wise pretraining strategy to improve representation
learning via distillation in a self-supervised manner; and
3) we conduct extensive experiments and comparisons to
demonstrate the effectiveness of our approach.

2. Approach
2.1. Problem Formulation

Our objective is learning a deep model ϕ(x,m;w) for dis-
criminative representations to identify a masked face x.
Here, the binary map m indicates whether a pixel p is oc-
cluded (m(p) = 1) or not (m(p) = 0), and w are model pa-
rameters. Let x̂ denote the groundtruth but generally unavail-
able unmasked face, having x(p) = x̂(p) when m(p) = 0.
Unlike the recognition of x̂, masked face recognition needs
to learn representations from partly occluded faces where
some informative clues are missing. Thus the key is to
address the recovery of the missing clues from x to approxi-
mate the latent representations of x̂, ideally having:

ϕ(x,m;w)
.
= Φ(x̂; ŵ), (1)

where Φ(·) is a deep face recognizer well-trained on un-
masked faces with parameters ŵ. The symbol .

= means
“equivalence” in some metric (e.g., similarity of representa-
tions or consistency of predictions). To solve Eq. (1), there
are three main challenges: 1) greater complexity due to
the consideration of the joint distribution of x and m, 2)
consistency requirement that expects to extract consistent
representations even when masked faces originated from
the same x̂ have diverse m, and 3) insufficient data due to
difficulty of collecting real-world pairs {x̂, x}. To sum up,
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Figure 2. The framework of the proposed approach. It cascades three modules into a unified network and learns generative-to-discriminative
representations on synthetic masked faces in a progressive manner. The approach first finetunes a generative encoder to represent a
masked face into category-aware descriptors by initializing with a pretrained face inpainting model and finetuning via self-supervised
pixel reconstruction. Then, it learns a CNN-based discriminative reformer to convert the category-aware descriptors into an identity-aware
vector by distilling a general pretrained face recognizer via self-supervised relation-based feature approximation. Finally, it learns a
feature classifier on identity-aware vectors by optimizing supervised classification task.

an effective solution for modeling masked faces is to learn
representations through recovery, solving information re-
construction and representation clustering regularization in
a unified and implicit way on synthetic data.

As shown in Fig. 2, we address masked face recognition by
learning generative-to-discriminative representations. The
unified network ϕ consists of generative encoder ϕe, dis-
criminative reformer ϕr and feature classifier ϕc with pa-
rameters we, wr and wc, respectively. Given synthesized
triplets {x̂i,mi, xi}ni=1 with n samples, ϕe and ϕr are first
learned by progressively reconstructing appearance and la-
tent features, which are solved by minimizing the appear-
ance reconstruction loss Lr and latent loss Ld, separately:

Lr(we,wd) =
n∑

i=1

ℓ(ψ(ϕ(xi,mi;we);wd), x̂i), (2)

Ld(wr) =

n∑
i=1

ℓ(ϕ(xi,mi; {we,wr}),Φ(x̂; ŵ)), (3)

where ψ(·) is inpainting decoder for training the encoder
parameters we only. wd are the decoder parameters. The
trained we are then fixed and used in training the reformer
parameters wr by minimizing Ld. Φ(·) is a pretrained face
recognizer used to guide the feature reconstruction of ϕr,
with ŵ as its model parameters. ℓ(·) denotes the distance
function. Finally, we and wr are frozen and all three mod-
ules are cascaded for finetuning classification loss Lc to

learn the feature classifier in a supervised way:

Lc(wc) =

n∑
i=1

ℓ(ϕ(xi,mi; {we,wr,wc}), ci), (4)

where ci denotes the groundtruth identity label for xi.

This architecture design can well address the three main
challenges mentioned above in masked face recognition.
First, the generative encoder and discriminative reformer
are cascaded for the backbone, which decouples the burden
of modeling greater complexity by jointly handling infor-
mation reconstruction and representation clustering regu-
larization in a progressive way. Second, the encoder aims
to output a consistent reconstruction for the given masked
faces originated from a same unmasked face regardless of
diverse masks, that meets the consistency requirement of
extracted representations. Third, it is easy to train the back-
bone on synthetic data in a self-supervised manner, allevi-
ating the issue of insufficient data to avoid expensive and
time-consuming annotation of training samples.

2.2. Generative Encoder

Generative encoder is responsible for extracting general
face representations under mask occlusion. It is derived
from ICT (Wan et al., 2021) pretrained on FFHQ (Karras
et al., 2019), one of the state-of-the-art Transformer-based
inpainting method. It consists of a Transformer network for
face representations and a CNN for upsampling faces. We
extract generative representations from the middle residual
block of the upsample network. Given an input image and
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a binary mask of size 256 × 256, the encoder computes a
64 × 64 × 256 generative representation. To better adapt
to the synthetic masked faces, we fix the Transformer and
finetune the generative encoder on our training data with
pixel reconstruction loss Lr as well as adversarial loss La:

Lr(we,wr) =

n∑
i=1

∥x̃i − x̂i∥2,

La = Ex̂ R[ζ(x̂i)]− Ex̂ G[ζ(x̃i)] + Ex̌(∥∇x̌ζ(x̌)∥2),
(5)

where adversarial loss is defined using modified WGAN-
GP (Gulrajani et al., 2017), R is the real face distribution,
G is the distribution implicitly defined by ψ(ϕ(∗)), x̃ =
ψ(ϕ(xi,mi;we);wd) is the inpainted face, ζ denotes the
discriminators, x̌ is sampled from the straight line between
G and R, having ∇x̌ζ(x̌) = (x̃− x̌)/∥x̃− x̌∥.

We visualize the learned generative representations to check
the consistency over diverse masks and clustering behaviors
with t-SNE (Maaten & Hinton, 2008) in Fig. 3, finding
high-overlapping among the same groundtrue faces and
scatters among different groundtrue faces. It implies that
the generative representations can eliminate mask effect and
are robust towards diverse masks, but can not well describe
inter- and intra-identity characteristics.

2.3. Discriminative Reformer

Discriminative reformer aims to turn the encoded generative
representations into discriminative representations, so that
the identity attributes can be better recovered and described.
We cascade encoder and reformer as the backbone, which
has several advantages. First, it reduces the accumulation
of deviations. The reformer can shift the mapping from
image space to latent space, avoiding the re-mapping loss
during encoding of the completed faces. Second, latent
space of higher level in neural network is proved to have
flatter landscape (Bengio et al., 2013), so the reformation in
latent manifold is more understandable for face representa-
tions. Third, it can make better use of the information that
high-level representations contains, such as long-distance
dependence. Finally, feature reformation can be seamlessly
integrated with the recognition head, allowing more efficient
end-to-end optimization. We apply a Resnet-like network
due to its effectiveness in face representation (Cao et al.,
2018; Deng et al., 2019) to construct the reformer, which
consists of a convolutional layer, 4 residual blocks follow-
ing by a pooling and a fully-connected layers, outputs 512d
vectors, as shown in Fig. 2. We have experimentally found
that shallower structures are poor in converting generative
representations into discriminative ones, while deeper or
Transformer-based networks are effective but greatly in-
crease model complexity.

Inspired by previous success in integrating external knowl-
edge to facilitate optimization of neural networks (Hinton

Figure 3. The t-SNE visualization of representations. We randomly
sample five identities, use all sample images with these identities
to synthesize masked faces with five random mask types, and ex-
tract generative and discriminative representations of masked faces.
Generative representations are robust towards diverse mask occlu-
sions but short in inter- and intra-identity discriminablility, while
discriminative representations show good identity discriminablility.
Bottom: some synthetic masked faces.

et al., 2014; Park et al., 2019; Li et al., 2020), we take a
pretrained general face recognizer as teacher to guide the
generative-to-discriminative representation reforming via
knowledge distillation, and leverage essential guidance from
unmasked faces for reforming and represent the teacher
knowledge with two and three order structural relations:

L2 =
∑

(i,j)∈S2

ℓH(
1

µt
∥ti−tj∥2,

1

µs
∥si − sj∥2), (6)

L3 =
∑

(i,j,k)∈S3

ℓH(⟨ ti − tj
∥ti − tj∥2

,
tk − tj

∥tk − tj∥2
⟩,

⟨ si − sj
∥si − sj∥2

,
sk − sj

∥sk − sj∥2
⟩),

(7)

where ℓH denotes Huber loss, ti = Φ(x̂i; ŵ) is the
representation extracted by teacher recognizer, si =
ϕ(xi,mi; {we,wr}) is the discriminative representation out-
put by the reformer. µv∈[t,s] =

1
|S2|

∑
(i,j)∈S2

∥vi − vj∥2
normalizes distances between teacher and student repre-
sentations into the same scale, which enables relational
structure transfer. S2 = [(i, j)|1 ≤ i, j ≤ n, i ̸= j] and
S3 = [(i, j, k)|1 ≤ i, j, k ≤ n, i ̸= j ̸= k] are pairwise set
and triplet set, respectively. ⟨⟩ denotes cosine angle. The
reformer training loss is re-formulated as:

Ld(wr) = L1 + αL2 + βL3, (8)

where L1 =
∑n

i=1 ||ti − ℓ0(si)|| measures one order struc-
tural relation. ℓ0(·) is a linear mapping to convert the di-
mension of reformer output by adding a 2048-way linear
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layer on its top, which can facilitate the pretraining. The two
factors α and β are used for balancing the loss terms, and
set as 0.01 and 0.02, respectively. As shown in Fig. 3, the
reformed discriminative representations are effectively clus-
tered according to identity and present clear separation be-
tween clustering of different identities, proving their identity
discriminability. Thus, both encoder together with reformer
plays an important role in representations for masked face
recognition task, where the representations keep consistent
with different masks and strengthen identity clues.

2.4. Feature Classifier

Feature classifier predicts a face identity from the reformed
discriminative representation. It presents as a simple clas-
sification head, with a fully-connected layer and a softmax
layer. The fully-connected layer uses 512-way to reduce
the feature dimension and model parameters. We cascade
feature classifier with the trained backbone and perform an
end-to-end finetuning by minimizing the classification loss
Lc, which is defined as the cross-entropy loss between classi-
fier output pi = ϕ(xi,mi; {we,wr,wc}) and the groundtrue
identity label ci on training samples:

Lc(wc) = − 1

n

n∑
i=1

ci log(pi). (9)

2.5. Discussion

Relationship with other approaches Our approach can
be seen as the fusion of generative approach with encoder-
decoder architecture (Li et al., 2017; Kodirov et al., 2017)
and discriminative approach focusing on knowledge transfer
with two-stream framework (Park et al., 2019; Zhang et al.,
2022), which transforms the representations from masked
and groundtrue faces into a discriminative feature space. It
learns general face knowledge with generative representa-
tions via inpainting like masked image modeling (He et al.,
2022a; Xie et al., 2022) but focuses on more fine-grained
inpainting where the input is masked face instead of com-
plete one. Thus, generative representations can evaluate the
relationship between masks and masked faces. Moreover, it
converts generative representations into discriminative ones
using a reformer and a pretrained face recognizer, where
pairwise and triplet knowledge like (Schroff et al., 2015;
Song et al., 2019; Li et al., 2020; Boutros et al., 2022) are
transferred to facilitate identity recovery, rather than mean
squared error in MaskInv (Huber et al., 2021) and cosine
distance in CSN (Zhao et al., 2022). Specially, our approach
is beyond learning two cascaded “vanilla” networks which
is hard to ensure their roles, and our main novelty is the
greedy module-wise pretraining that combines the advan-
tages of generative and discriminative representations by:
1) generative encoder that is finetuned via reconstruction to
ensure its role in mask-robust representations, and 2) dis-

criminative reformer that is trained via distillation to ensure
its role in identity-robust representations.

Network training Due to greater complexity of masked
face recognition and different learning objectives between
generative encoder and discriminative reformer, training all
modules altogether is hard to converge. Thus our network
training includes finetuning generative encoder, learning
discriminative reformer via distillation and finetuning fea-
ture classifier in a progressive manner. The main training
cost comes from the learning of discriminative reformer
and is similar to the training of general face recognition
models (Cao et al., 2018; Deng et al., 2019) even our entire
network is larger.

3. Experiments
To verify the effectiveness of our generative-to-
discriminative representation approach (G2D), we
conduct experiments on both synthesized and realistic
masked face datasets to provide comprehensive evaluations.

Datasets We use Celeb-A (Liu et al., 2015) for generat-
ing synthetic training data, LFW (Huang et al., 2007) for
synthetic masked face evaluation, and RMFD (Huang et al.,
2021) and MLFW (Wang et al., 2022) for real-world masked
face evaluation. Celeb-A consists of 202,599 face images
covering 10,177 celebrities. Each face image is cropped,
aligned by similarity transformation and then scaled to
256 × 256. We randomly split it into training set and val-
idation set with the ratio of 6 : 1. RMFD consists of both
synthetic and real-world masked faces with identity labels,
covering various occlusion types and unconstrained scenar-
ios. Our experiments only use the real-world masked face
verification dataset, which contains 4,015 face images cov-
ering 426 subjects. The dataset is further organized to get
6,914 masked-unmasked pairs, including 3,457 positive and
3,457 negative pairs and serving as a valuable benchmark
for cross-quality validation. MLFW is a relatively more dif-
ficult database to evaluate the performance of masked face
verification. The dataset maintains the data size and the face
verification protocol of LFW, considers that two faces with
the same identity wear different masks and two faces with
different identities wear the same mask, and emphasizes
both the large intra-class variance and the tiny inter-class
variance simultaneously.

For self-supervised backbone training, we synthesized mas-
sive masked faces via MaskTheFace (Anwar & Raychowd-
hury, 2020). For an input face, it detects the keypoints,
applies affine transformation to a randomly selected mask,
overlays the original image, and perform post-processing
to obtain natural masked face. More details are given in
Appendix A.

Baselines We consider four kinds of baselines: I) four gen-
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eral face recognizers (CenterLoss (Wen et al., 2016) (CL),
VGGFace (Parkhi et al., 2015) (VGG), VGGFace2 (Cao
et al., 2018) (VGG2) and ArcFace (Deng et al., 2019) (AF)),
II) generative approaches that equip the four general face
recognizers with four face inpainting approaches (GFC (Li
et al., 2017), DeepFill (Yu et al., 2018), IDGAN (Ge et al.,
2020) and ICT (Wan et al., 2021)) and replace masked faces
with inpainted faces as input, III) finetuning-based masked
face recognizers, and IV) models trained on masked faces
from scratch. Baselines in kind III and Kind IV are discrimi-
native approaches. Baselines in kind IV adopt DoDGAN (Li
et al., 2020) which first performs inpainting then learns a
specialized recognizer with inpainted faces as input. To
ensure fair comparisons, for each baseline, we use its pub-
lished pretrained model to obtain the results and follow the
same protocols for data preparation.

Evaluation We evaluate masked face verification under two
settings: 1) MR-MP denoting masked reference against
masked probe for evaluating over masked face pairs, and
2) UMR-MP standing for unmasked reference against
masked probe, which is closer to real-world gallery-probe
scenario. The evaluation is measured with 8 metrics, in-
cluding verification accuracy (ACC), equal error rate (EER),
Fisher discriminant ratio (FDR), false match rate (FMR),
false non-match rate (FNMR), the lowest FNMR for a FMR
≤ 1.0% (FMR100), the lowest FNMR for a FMR ≤ 0.1%
(FMR1000), and the average value calculated based on
FMR100 Th and FMR1000 Th thresholds (AVG). The last
5 metrics are also used in (Huber et al., 2021).

Implementation details The experiments are implemented
on Pytorch. To get facial masks, we perform simple segmen-
tation based on Grabcut (Rother et al., 2004) automatically
initialized the seeds with classical image features like col-
ors and shapes. For generative encoder, we finetune ICT
inpainting network with a batch size of 16 using Adam opti-
mizer, where learning rate is 10−5 and β1 = 0.5, β2 = 0.9.
For discriminative reformer, we employ pretrained VG-
GFace2 (Cao et al., 2018) as teacher since its input size is
the same to generative encoder. All models are trained with
a batch size of 64 and SGD optimizer. The initial learning
rate is 0.1 and decreases to 0.5 times every 16 epochs. The
momentum and weight decay are set as 0.9 and 5× 10−4,
respectively.

3.1. Evaluation on Synthetic Masked Faces

We report the performance on synthetic masked faces. Sim-
ilar to training data, we generate synthetic masked faces
using images from LFW for a comprehensive evaluation,
achieving 3,000 positive pairs with the same identities and
3,000 impostor pairs with different identities.

Comparison to baselines in kind I and kind II In this
experiment, all recognizers and composite models extract
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Figure 4. Evaluation on synthetic masked LFW. We report the ac-
curacy of the proposed method (G2D), and make comparisons
with combinations of general face recognizers (CenterLoss (Wen
et al., 2016) or CL, VGGFace (Parkhi et al., 2015) or VGG, Arc-
Face (Deng et al., 2019) or AF, and VGGFace2 (Cao et al., 2018) or
VGG2), and state-of-the-art generative face inpainting approaches
(GFC (Li et al., 2017), DeepFill (Yu et al., 2018), IDGAN (Ge
et al., 2020) and ICT (Wan et al., 2021)).

features and then computes the cosine similarities for all
the 6,000 face pairs. The accuracy is the percentage of cor-
rect predictions, where the threshold is decided as the one
with the highest accuracy. The results are reported in Fig. 4.
Three main conclusions can be drawn. First, diverse masks
result in evident accuracy drop, which is in accord with
previous research findings (Ngan et al., 2020a;b). Second,
generative face inpainting sometimes are not always able
to fill the gap. We notice that the combination of VGG2
and GFC achieves even lower accuracy than VGG2 alone,
suggesting that the inpainting process may play a negative
role if it cannot be regularized properly. We suspect it is due
to the interference of similar mask patterns and poor robust-
ness of inpainting model. Third, in the face inpainting plus
recognition paradigm, adoption of the inpainting method
do make a difference to the performance of the composite
model. Moreover, on synthetic masked LFW, IDGAN deliv-
ers a 96.53% accuracy under 48×48 masks (Ge et al., 2020)
when our G2D achieves 97.58% even under more complex
masks. Finally, our G2D outperforms all combinations,
proving the effectiveness of our approach.

Comparison to baselines in kind III and kind IV Then,
we employ the combinations of two inpainting approaches,
DeepFill and ICT, with the four recognizers, together
with two recently-proposed masked face recognition mod-
els, DoDGAN (Li et al., 2020) and Self-Restrained Loss
(SRT) (Boutros et al., 2022), for more quantitative compar-
isons. Here, we do not adopt IDGAN, since it shares the
same backbone with DeepFill and trained with full identity
supervision. We intend to focus more on the efficacy of
self-supervised representation learning. Tab. 1 presents the
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Table 1. Verification Performance on LFW synthetic masked faces under MR-MP and UMR-MP settings.
FMR100 Th FMR1000 Th

Setting Model ACC↑ EER↓ FDR↑ FMR100↓ FMR1000↓ FMR↓ FNMR↓ AVG↓ FMR↓ FNMR↓ AVG↓

MR-MP

MFN (Chen et al., 2018) 81.53% 18.67% 1.53 61.23% 80.07% 2.63% 49.53% 26.08% 0.60% 69.13% 34.87%
ResNet50 (He et al., 2016) 85.85% 14.73% 2.03 46.17% 64.00% 1.77% 39.73% 20.75% 0.07% 65.07% 32.57%

ResNet100 (He et al., 2016) 92.27% 8.03% 3.42 21.53% 41.70% 2.53% 15.60% 9.07% 0.80% 24.27% 12.53%
DeepFill (Yu et al., 2018)+CL (Wen et al., 2016) 87.48% 13.43% 2.61 46.43% 63.20% 0.70% 50.13% 25.42% 0.07% 70.40% 35.23%

DeepFill (Yu et al., 2018)+VGG (Parkhi et al., 2015) 89.33% 11.00% 2.37 36.57% 57.43% 1.03% 36.57% 18.80% 0.10% 58.40% 29.25%
DeepFill (Yu et al., 2018)+AF (Deng et al., 2019) 90.93% 9.27% 3.44 27.73% 54.67% 1.33% 25.13% 13.23% 0.10% 54.90% 27.50%

DeepFill (Yu et al., 2018)+VGG2 (Cao et al., 2018) 91.80% 8.37% 4.42 27.40% 52.97% 0.50% 36.87% 18.68% 0.00% 65.43% 32.72%
ICT (Wan et al., 2021)+CL (Wen et al., 2016) 91.05% 8.98% 3.91 34.50% 73.13% 0.68% 37.08% 18.88% 0.14% 57.06% 28.60%

ICT+VGG (Parkhi et al., 2015) 92.44% 7.59% 4.19 23.95% 45.86% 1.32% 21.37% 11.35% 0.17% 40.10% 20.13%
ICT+AF (Deng et al., 2019) 96.01% 3.97% 6.66 7.53% 15.03% 0.24% 12.79% 6.51% 0.00% 43.49% 21.74%

ICT+VGG2 (Cao et al., 2018) 94.15% 6.00% 5.65 20.90% 38.36% 1.32% 18.89% 10.11% 0.00% 49.39% 24.69%
MFN (SRT) (Boutros et al., 2022) 78.23% 22.30% 1.23 68.40% 85.10% 4.60% 46.07% 25.33% 1.03% 67.57% 34.30%

ResNet50 (SRT) (Boutros et al., 2022) 78.87% 21.70% 1.22 66.97% 79.17% 5.60% 44.27% 24.93% 0.90% 68.43% 34.67%
ResNet100 (SRT) (Boutros et al., 2022) 92.80% 7.63% 3.54 20.97% 35.37% 2.03% 14.77% 8.40% 0.67% 23.23% 11.95%

DoDGAN (Li et al., 2020) 95.44% 6.12% 5.60 22.45% 58.97% 34.93% 0.46% 17.70% 10.20% 3.52% 6.86%

Our G2D 97.58% 3.27% 7.01 10.74% 33.44% 20.94% 5.83% 13.39% 6.40% 3.65% 5.02%

UMR-MP

MFN (Chen et al., 2018) 90.28% 9.87% 3.17 33.40% 49.23% 0.73% 37.90% 19.32% 0.07% 62.00% 31.03%
ResNet50 (He et al., 2016) 88.83% 11.70% 2.79 27.37% 51.70% 0.40% 33.67% 17.03% 0.03% 57.90% 28.97%

DeepFill (Yu et al., 2018)+CL (Wen et al., 2016) 90.22% 7.53% 4.69 23.87% 48.23% 0.40% 31.60% 16.00% 0.10% 52.90% 26.50%
DeepFill (Yu et al., 2018)+VGG (Parkhi et al., 2015) 86.90% 6.63% 3.53 21.13% 43.30% 0.87% 22.47% 11.67% 0.13% 42.27% 21.20%

DeepFill (Yu et al., 2018)+AF (Deng et al., 2019) 93.28% 10.63% 3.05 30.67% 50.90% 0.43% 39.80% 20.12% 0.00% 73.47% 36.73%
DeepFill (Yu et al., 2018)+VGG2 (Cao et al., 2018) 92.65% 5.70% 5.96 18.67% 37.67% 0.30% 29.57% 14.93% 0.00% 62.70% 31.35%

ICT (Wan et al., 2021)+CL (Wen et al., 2016) 91.73% 8.33% 4.50 30.15% 59.50% 0.54% 34.72% 17.63% 0.13% 54.18% 27.16%
ICT+VGG (Parkhi et al., 2015) 92.81% 7.26% 4.55 22.66% 43.60% 0.40% 29.55% 14.97% 0.07% 53.75% 26.91%

ICT+AF (Deng et al., 2019) 93.28% 7.36% 4.32 17.48% 26.99% 0.03% 34.55% 17.29% 0.00% 75.09% 37.55%
ICT+VGG2 (Cao et al., 2018) 94.99% 5.21% 6.41 17.04% 48.13% 0.91% 18.25% 9.58% 0.07% 50.99% 25.53%

MFN (SRT) (Boutros et al., 2022) 87.97% 12.30% 2.65 40.53% 59.47% 0.23% 55.13% 27.68% 0.00% 82.50% 41.25%
ResNet50 (SRT) (Boutros et al., 2022) 82.90% 17.70% 1.73 48.23% 65.27% 0.00% 94.77% 47.38% 0.00% 99.97% 49.98%

DoDGAN (Li et al., 2020) 94.32% 5.02% 5.46 19.41% 73.52% 4.28% 8.92% 6.55% 0.42% 51.50% 25.96%

Our G2D 97.75% 3.05% 8.02 8.93% 22.55% 2.14% 2.67% 2.41% 0.17% 13.65% 6.96%

results under UMR-MP and MR-MP settings. For SRT, the
performance of both baselines (ResNet50 (He et al., 2016)
and MobileFaceNet (Chen et al., 2018)) and those along
with an extra module trained with SRT loss are reported.

As shown in Tab. 1, for SRT which finetunes existing deep
recognizers with an extra module on top, the original base-
lines, instead of the refined ones, show better performance.
This suggest that, although these solutions can recover some
performance on masked samples, the generalization abil-
ity of deep models can be easily suffered. Similarly, the
recent work DoDGAN (Li et al., 2020) experienced an ev-
ident drop on cross-quality evaluation. In essence, these
approaches do not appropriately handle the distribution di-
vergence between masked and non-masked samples in the
latent space. Our G2D achieves the highest accuracy on
both MR-MP and UMR-MP settings. Tab. 1 also reports the
fisher discriminant ratio (FDR), which measures the distin-
guish ability of positive and negative pairs. Our approach
shows better capacity to deal with the identity obscuring of
masked faces.

Analysis on FMR and FNMR results It is worth to note
that, the approaches based on off-the-shelf face recognizers
show lower false match rate (FMR). It suggests that they
tend to predict more positive pairs (which share the same
identity) as negative, while prediction over negative pairs
is less affected. To the contrary, our G2D shows evident
superiority in false non-match rate (FNMR). This reveals
a basic difference in our motivation. When occlusions oc-

curs, for general face recognizers, the main challenge is
the invalidation of pre-existing intra-class characteristics.
Our approach, differently, teaches the model to doubt, and
re-calibrate. It is also worth to note that, our model presents
lower average values of FMR and FNMR, especially under
UMR-MP setting. It suggests our proposed G2D achieves a
better balance between FMR and FNMR, in another word,
a better generalization over unmasked and masked faces.

AF(P+50) CF(W+50) AF(V+50) AF(M+100) CuF(M+100)
74.8 82.8 85.02 90.13 90.6

Figure 5. Verificaiton accuracy (%) on MLFW (Wang et al., 2022).
AF: ArcFace (Deng et al., 2019), CF: CosFace (Wang et al., 2018),
CuF: CurricularFace (Huang et al., 2020), SF: SFace (Zhong et al.,
2021). P: Private-Asia, W: WebFace, V: VGGFace2, M: MS1MV2.
50 means ResNet50 and 100 means ResNet100.

3.2. Evaluation on Realistic Masked Faces

We then evaluate on RMFD (Huang et al., 2021), where
realistic masked faces have various mask types and compli-
cated photographic conditions. We use 6,992 sample pairs
to examine model performance and present comparison re-
sults in. Tab. 2. We can find that general models trained on

7



Masked Face Recognition with Generative-to-Discriminative Representations

Table 2. Performance on RMFD realistic masked faces under UMR-MP setting.
FMR100 Th FMR1000 Th

Model ACC↑ EER↓ FDR↑ FMR100↓ FMR1000↓ FMR↓ FNMR↓ AVG↓ FMR↓ FNMR↓ AVG↓
MFN (Chen et al., 2018) 69.90% 30.16% 0.49 88.69% 95.70% 1.01% 88.69% 44.85% 0.09% 95.70% 47.89%

ResNet50 (He et al., 2016) 71.75% 28.44% 0.65 81.65% 94.32% 1.01% 81.65% 41.33% 0.09% 94.32% 47.20%
MFN (SRT) (Boutros et al., 2022) 69.25% 31.28% 0.45 88.83% 97.09% 0.09% 97.14% 48.62% 0.03% 99.22% 49.63%

ResNet50(SRT) (Boutros et al., 2022) 65.92% 34.76% 0.35 87.80% 96.88% 0.00% 100.00% 50.00% 0.00% 100.00% 50.00%
ArcFace (Deng et al., 2019) 72.35% 27.71% 0.68 81.59% 93.48% 0.99% 81.59% 41.29% 0.09% 93.48% 46.78%

VGGFace2 (Cao et al., 2018) 72.22% 27.91% 0.60 88.08% 98.67% 0.99% 88.08% 44.53% 0.09% 98.67% 49.38%
DoDGAN (Li et al., 2020) 72.55% 28.26% 0.54 83.12% 95.24% 1.01% 83.12% 42.07% 0.09% 95.24% 47.66%

Our G2D 79.18% 21.64% 1.31 72.18% 86.89% 0.99% 72.18% 36.58% 0.09% 86.89% 43.49%

10 1 100

FMR
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UMR-UMP AUC = 0.999625 
UMR-MP(CE) AUC = 0.914515 
UMR-MP(DIS) AUC = 0.989176 
UMR-MP(CNN) AUC = 0.993064 
UMR-MP(LR) AUC = 0.966366 

MR-MP(CNN) AUC 
MR-MP(LR) AUC =  
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MR-MP(CE) AUC = 0.961849 
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Figure 6. The achieved log-scale ROC curves by G2D models
trained with different losses. In each plot, the curves of UMR-MP
cases are marked with a dashed line. The curves of MR-MP cases
are marked with a dotted line. For each ROC curve, the area under
the curve (AUC) is listed inside the plot.

normal faces all exhibit more violent drop on accuracy. For
example, VGGFace2 achieves a 91.45% accuracy on syn-
thesized masked faces, while only gets a 72.22% accuracy
on realistic masked faces. The results prove the difficulty
of the dataset. Our G2D achieves the highest accuracy of
79.18%, which proves it capable of adapting to masked face
recognition in the wild. The models with SRT show ex-
treme imbalance between FMR and FNMR, which suggests
they get overfitting to the masked face recognition scenarios
while almost completely sacrificing the discriminant over
unmasked faces. Instead, our G2D show better capacity
to connect unmasked and masked faces, which is rather
valuable in realistic applications. The evaluation on MLFW
(Fig. 5) also shows that our G2D delivers the best accuracy.

3.3. Ablation Studies

Generative encoder To evaluate our generative encoder de-
sign, we simulate the case when available information is re-

Table 3. Ablation study of G2D variants with different encoders
and reformers under UMR-MP and MR-MP settings.

Synthetic masked LFW

Setting Model ACC↑ EER↓ FDR↑ FMR100↓ FMR1000↓

UMR-MP

G2D(CNN) 96.42% 3.60% 7.20 14.20% 46.10%
G2D(LR) 93.99% 6.54% 4.87 17.98% 38.77%
G2D[CE] 83.50% 16.60% 1.94 69.83% 90.67%
G2D[DIS] 95.25% 4.80% 6.04 18.30% 70.90%

G2D 97.75% 3.05% 8.02 8.93% 22.55%

MR-MP

G2D(CNN) 96.14% 5.77% 5.93 18.40% 55.63%
G2D(LR) 91.48% 9.96% 3.82 23.83% 39.12%
G2D[CE] 82.72% 10.40% 3.36 36.03% 69.37%
G2D[DIS] 93.53% 6.53% 5.49 24.37% 60.07%

Full 97.58% 3.27% 7.01 11.74% 38.44%

Realistic masked RMFD

Setting Model ACC↑ EER↓ FDR↑ FMR100↓ FMR1000↓

UMR-MP

G2D(CNN) 73.26% 27.77% 0.61 83.69% 93.27%
G2D(LR) 73.45% 27.02% 0.70 86.11% 95.29%
G2D[CE] 64.87% 35.37% 0.28 94.20% 99.02%
G2D[DIS] 70.80% 30.59% 0.48 87.21% 97.14%

G2D 79.18% 21.64% 1.31 72.18% 86.89%

duced so that the model training cannot use the higher-level
features, and compare with two variants: 1) G2D(CNN) that
uses a CNN-based inpainting network DeepFill as encoder
and extracts generative representations from the layer before
the decoding part of its second fine-grained network, and
2) G2D(LR) that removes convolutional layers from ICT
upsampling network and takes appearance prior output as
generative representations. From Tab. 3, it is obvious that
G2D outperforms G2D(CNN) due to better encoder, while
the reduced input information leads G2D(LR) to overfitting
and the learned representations poor generalization to dif-
ferent data domains. Fig. 6 provides their log-scale ROC
curves, which also shows the similar conclusion, implying
that Transformer-based generative encoder is more suitable
for masked face recognition. We suppose that the represen-
tation space constructed by pretrained Transformer allows it
to simulate and explore the distribution correlation among
masked face, the corresponding mask and original face.

Discriminative reformer First, we argue that discriminative
reformer is very necessary due to poor identity discriminabil-
ity of generative representations, e.g., the model achieves
only a low accuracy of 57.10% on synthetic masked LFW
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if discriminative reformer is discarded from the whole net-
work. Then, we further check the learning process of dis-
criminative reformer by comparing two models trained with
different losses: 1) G2D[CE] trained with Lc only, and 2)
G2D[DIS] trained with L1 only. The models trained with
L2 and L3 can hardly converge, therefore the results are not
presented. We report the results in Tab. 3 and Fig. 6, which
suggest that directly enforcing the model to approximate the
hard identity label is less efficient. Thus, it is necessary to
perform student learning supervised by a pretrained teacher
whose features contain rich identity relationship (Li et al.,
2020). A better teacher may lead to improved performance,
e.g., we replace VGGFace2 with ArcFace as teacher where
the inputs are resized into 112×112, achieving a higher veri-
fication accuracy of 98.02% on synthetic masked LFW than
97.58% with VGGFace2 as teacher (Tab. 1).

3.4. Further Analysis

Table 4. Test accuracy (%) on CPLFW (Zheng & Deng, 2018)
.

CL SphereFace VGG2 AF MaskInv G2D
77.48 81.40 84.00 92.08 92.86 92.23
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Figure 7. Similarity score distributions of our G2D under MR-
MP setting (left) and the ideal case under UMR-UMP setting
(right). The positive and negative pairs are marked in green and
red, respectively. Our G2D delivers small overlapping, which is
close to the ideal case. More results are shown in Appendix B.

Evaluation on normal face recognition To evaluate the ef-
fect of our G2D on normal face recognition, we conduct an
experiment on the normal face benchmark CPLFW (Zheng
& Deng, 2018) and report the results in Tab. 4. We can
find that our model achieves competitive performance, e.g.,
just lower than MaskInv (Huber et al., 2021). We suppose
the main reasons include: 1) generative encoder that pro-
vides general and robust representations towards normal and
masked faces, and 2) discriminative reformer that remains
performance on normal faces by distilling on pretrained
high-accuracy face recognizer.

Representation discriminability Fig. 3 has showed that the
reformed discriminative representations cluster the masked
faces with the same identity together and present strong
discriminability between different identities. We further
conduct evaluation by using similarity score distributions

on synthetic masked LFW and report the results in Fig. 7.
We can find that our G2D delivers a small overlapping
between positive and negative samples, which is close to
the ideal case, demonstrating strong discriminability of our
generative-to-dicriminative representations.

Inference efficiency Due to greater complexity of masked
face recognition, our model has 178.5M parameters, larger
than normal face recognition models (e.g., VGGFace2 and
Arcface) who use Resnet50 as backbone and have 25.6M
parameters. However, it is still efficient. We conduct ef-
ficiency analysis on a NVIDIA GeForce RTX 3090 GPU
by performing inference on 100 masked faces with size
of 256 × 256. The average inference time cost of a face
image is 0.0428 seconds, leading to an inference speed of
23.35 FPS, implying the deployment feasibility in practical
scenarios like urban governance.

4. Conclusion
Masked face recognition has been gathering intensive atten-
tion over the past few years due to its real-world applications
(e.g., fighting the COVID-19 pandemic). In this work, we
propose to address masked face recognition by learning
generative-to-discriminative representations. Our approach
splits a unified network into three modules and learn them in
a greedy module-wise pretraining way. Generative encoder
and discriminative reformer are cascaded as the backbone to
provide occlusion-robust and discriminative representations
towards masked faces. The experiments are conducted on
synthetic and realistic datasets to verify the effectiveness of
our approach. In the future, we will design simultaneous
training with synthetic and realistic datasets, and extend the
framework to more vision tasks like occluded person ReID.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning for Social Good, particularly address-
ing the challenge of masked face recognition. The proposed
method would contribute positively to society by identifying
masked faces and facilitating the development of Safety AI,
e.g., improving urban governance and fighting the COVID-
19 pandemic. There are many other potential societal con-
sequences of our work, none of which we feel must be
specifically highlighted here.
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Masked Face Recognition with Generative-to-Discriminative Representations

A. The Synthesis of Masked Faces
Our approach uses synthetic masked faces to train the models in a self-supervised manner. To this end, the masked faces are
generated by synthesizing from normal faces. We take 202,599 normal facial images from Celeb-A dataset and synthesize
massive masked facial images via pasting diverse mask patterns onto the images. To achieve that, we collected 45 transparent
mask images (some examples are shown in Fig. 8) online and resized them to cover an average of about 1/5 of the face. For
a normal facial image, a random mask pattern is selected and simple alignment based on the facial landmarks is conducted to
better simulate the realistic masked faces. Fig. 8 also presents some examples of the synthesized masked faces. To improve
model generalizability, we further perform data augmentation by flipping and translation.

Figure 8. Some examples of mask images (top) used for generating masked faces (bottom).

B. Representation Discriminability
We can use similarity score distributions to evaluate the representation discriminability. Fig. 9 reports the results achieved
by different models on synthetic masked LFW under MR-MP setting. The scores of the genuine pairs are in green color,
while the scores of the impostor pairs (negative pairs) are presented in red color. Smaller overlapping areas suggest a more
distinct separation between pairs with same and different identities. It illuminates that our G2D delivers smaller overlapping
region than other models and is close to the ideal case (Fig. 9 (n)), indicating that G2D can extract robust representations
and provide stronger discriminative ability for masked faces.
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(m) Our G2D
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(n) Ideal Case with UMR-UMP

Figure 9. The similarity score distributions achieved by different models under MR-MP setting. MR-MP briefs for masked/unmasked
reference and masked/unmasked probes. The similarity score of the genuine pairs are in green color, and impostor pairs in red. Smaller
overlapping suggest better discriminative ability. UMR-UMP refers to the circumstance where both probe and reference are unmasked,
indicating the normal ideal case.
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