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Abstract
Understanding the generalization properties of
large-scale models necessitates incorporating re-
alistic data assumptions into the analysis. There-
fore, we consider Principal Component Regres-
sion (PCR)—combining principal component
analysis and linear regression—on data from a
low-dimensional manifold. We present an anal-
ysis of PCR when the data is sampled from a
spiked covariance model, obtaining fundamental
asymptotic guarantees for the generalization risk
of this model. Our analysis is based on random
matrix theory and allows us to provide guaran-
tees for high-dimensional data. We additionally
present an analysis of the distribution shift be-
tween training and test data. The results allow
us to disentangle the effects of (1) the number
of parameters, (2) the data-generating model and,
(3) model misspecification on the generalization
risk. The use of PCR effectively regularizes the
model and prevents the interpolation peak of the
double descent. Our theoretical findings are em-
pirically validated in simulation, demonstrating
their practical relevance.

1. Introduction
The study of overparameterized models with more fea-
tures than training data points offers a natural route to gain
theoretical understanding when it comes to the successes
of large-scale models with good generalization properties
(Neyshabur et al., 2015; Zhang et al., 2017). The obser-
vation that the generalization error often decreases in the
overparameterized regime and the framing as ‘double de-
scent’ (Belkin et al., 2019) boosted research in this di-
rection even if generalization of large models was already
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studied before (Bartlett & Mendelson, 2002; Dziugaite &
Roy, 2017; Belkin et al., 2018; Advani et al., 2020).

Principal Component Regression (PCR) is a widely
adopted model where the input data is projected onto the
principal components of the data and then a linear model is
fitted to the projected data (Pearson, 1901; Jolliffe, 2002).
It is a simple but effective model that is used in many
real-world applications for its interpretable regularization
effect. Examples include exploratory statistical research
(Massy, 1965), econometrics (Geweke, 1996), genetics
(Wang & Abbott, 2008), robotics (Vijayakumar & Schaal,
2000) and many more. These real-world datasets are often
high-dimensional but lie on a low-dimensional manifold
(Tenenbaum et al., 2000). In this work, we therefore con-
sider the case where PCR is applied to data that is sampled
from a spiked covariance model (Johnstone, 2001) which
is a widely adopted model for high-dimensional data (Baik
et al., 2005; Baik & Silverstein, 2006). The spiked covari-
ance model assumes that the data is sampled from a low-
dimensional subspace. Thus, the feature covariance matrix
is given by a base covariance C0 representing noise and
some spikes for the d-dimensional data subspace, yielding
C = C0 +

∑d
i=1 viλiv

⊤
i .

While the double descent is well studied for linear regres-
sion models (Bartlett et al., 2020; Hastie et al., 2022; Mei
& Montanari, 2022), the effect of the double descent for
PCR is not well understood. To visualize PCR under high-
dimensional inputs for a real-world data example, we use
the Diverse MAGIC wheat data set (Scott et al., 2021).
Here, we subsample the genotypes uniformly for a vary-
ing number of features p while keeping the number of sam-
ples n fixed. Figure 1 shows the risk of PCR and full linear
regression on this data set. While in this example there is no
reason to assume that the data is sampled from a spiked co-
variance model which is a linear data generator, we can ob-
serve that (1) linear regression has a double descent curve
and (2) PCR effectively regularizes the model and for suf-
ficiently many principal components, the risk approaches
the linear regression risk for small and large number of fea-
tures p. Therefore, even though our analysis focuses on the
linear case, it can describe the qualitative behaviour of PCR
on real-world data.
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Figure 1: Risk on real-world data. PCR and full regres-
sion on diverse MAGIC wheat genetics data set.

Our analysis is based on random matrix theory that allows
us to provide asymptotic guarantees for high-dimensional
data. Random matrix theory is a well-established tool in
the analysis of overparameterized models (Pennington &
Worah, 2017; Hastie et al., 2022). We apply its results from
the spiked covariance model to the generalization risk of
PCR. Therefore, we extend the results of unsupervised fea-
ture analysis from PCA to the supervised learning setting
of PCR.

Our main contribution is an analysis of the asymptotic gen-
eralization risk of PCR on data sampled from a spiked co-
variance model. We show the connection of the risk of PCR
to the number of parameters, data assumptions and model
misspecification. We further provide an analysis of the dis-
tribution shift between training and test data, a scenario that
is often encountered in practice. Our theoretical findings
are empirically validated through simulation.

Naturally, we expect that PCA with an appropriately cho-
sen number of principal components k regularises the
model effectively and prohibits high risk. Our analysis thus
provides insights into the precise mechanisms that control
the risk and yields fundamental guarantees to rely on for
practitioners.

2. Background and problem
Throughout the paper we use bold capital letters X to de-
note matrices, bold lower-case letters x for vectors, and
lower-case letters x for scalars. The identity matrix of size
p is denoted by Ip. Estimated values are denoted by hats,
e.g. Ĉ is the estimate of the covariance matrix C.

2.1. Data generating process.

Let the eigendecomposition of a covariance matrix be C =
V ΛV ⊤, where Λ = diag (λ1, . . . , λp) is a matrix of sorted
eigenvalues and V = [v1, . . . ,vp] is a matrix of eigenvec-
tors. The singular value decomposition (SVD) of a data

matrix X ∈ Rn×p with n samples and p features is de-
noted by X = USV ⊤, where S = diag (s1, . . . , sp) is a
matrix of sorted singular values and U = [u1, . . . ,up] and
V = [v1, . . . ,vp] are matrices of left and right singular
vectors, respectively.

Take a base covariance C0 and a low-rank perturbation
covariance Cz with d spiked eigenvalues λ1, . . . , λd and
corresponding eigenvectors v1, . . . ,vd. The spiked covari-
ance model is then defined by C = C0 + diag (Cz,0)
(Johnstone, 2001).

We assume that the base covariance is C0 = Ip and the
eigenvectors vi are the canonical basis vectors ei. Further-
more, we let the eigenvalues be λi = exp(−iα), which
describes an exponentially decaying spectrum with decay
rate α ≥ 0. Our analysis does not require this eigenvalue
decay or a specific rate α. However, we consider this spec-
trum in our experiments because fast-decaying eigenvalues
occur in many real-world examples. As the data-generating
model, we consider the latent factor model which connects
the spiked covariance model to regression outcomes.

Definition 1. The latent factor model is the linear
model xi = W rwzi + ei, and yi = θ⊤zi + εi. With
latent variables zi ∼ N (0,Cz), with diagonal covari-
ance Cz , feature noise ei ∼ N (0, Ip), outcome noise
εi ∼ N (0, σ2

ε), feature matrix W ∈ Rp×d such that
W⊤W = Id. Let r2w = p

Tr(Λz)
ρx to control the fea-

ture signal-to-noise-ratio (SNR) ρx =
E[∥W rwz∥2

2]
E[∥e∥2

2]
,

label noise εi ∼ N (0, σ2
ε) and let θ = 1d

rθ√
Tr(Λz)

to

control the outcome SNR ρy =
E[∥θ⊤z∥2

2]
E[∥ε∥2

2]
=

r2θ
σ2
ε

.

This ensures the population covariance follows the spiked
covariance as E

[
xix

⊤
i

]
= C. With this definition C =

Λ as the population eigenvectors are the canonical basis
vectors V = Ip. Thus, the feature matrix equals the first d
population eigenvectors W = Vd.

This low-rank latent factor model can equivalently be ex-
pressed as a linear model directly between features and
outcome by yi = β⊤xi + νi. With xi ∼ N (0,C),
νi ∼ N (0, σ2

ν), β = rwWCz(Id + r2wCz)
−1θ, and

σ2
ν = σ2

ε + θ⊤(Id + r2wCz)
−1Czθ. For details, see Ap-

pendix C.1. The latent factor model and equivalent direct
model are depicted in Figure 2 (left) as the data generating
models.

2.2. Random matrix theory background

Let λ̂i denote the eigenvalues of the sample covariance ma-
trix Ĉ = 1

nX
⊤X , and denote the empirical measure of

eigenvalues µ̂p = 1
p

∑p
i=1 δλ̂i

where δ is the Dirac mea-
sure. We use results from random matrix theory (Tao, 2023;
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Figure 2: Model definitions. Left: Data-generating mod-
els: Latent factor model (orange) and equivalent direct
model (green). Right: Estimation models: PCR (red) and
full regression model (blue).

Anderson et al., 2010) which allow us to state asymptotic
distributions to which the empirical measure converges.

Marčenko-Pastur. With d = 0 spikes we get the
isotropic case. The empirical measure converges to the
Marčenko-Pastur distribution (Marčenko & Pastur, 1967).
Informally, the Marčenko-Pastur distribution states that the
sample eigenvalues concentrate close to the value 1 for
small γ := p

n and spread for large γ.

Theorem 1 (Marčenko & Pastur (1967)). Let n, p →
∞, such that p

n → γ ∈ (0,∞) and sample xi ∼
N (0, Ip). Then, almost surely the empircal measure
µ̂p converges weakly to the Marčenko-Pastur distribu-
tion with density f(x)

{
fMP (x) = 1

2πγx

√
(γ+ − x)(x− γ−), γ ≤ 1

F (dx) = (1− 1/γ)δ0(dx) + fMP (x)dx, γ > 1,

with δ0 as the unit point mass at 0, upper and lower
boundaries of fMP (x) as γ± = (1±√

γ)2.

Eigenvalue shift. Let d = 1 spikes, i.e. λ1 > 1. The
distribution of the sample eigenvalue λ̂1 changes with λ1,
transitioning at the critical point 1 +

√
γ. While generally

the bulk of the distribution stays Marčenko-Pastur, there are
two cases of interest for the spike:

• λ1 ∈ [1, 1 +
√
γ]: The spike follows limiting Tracy-

Widom n2/3 λ̂1−µ(γ)
σ(γ)

D−→ TW1, with µ(γ) = (1 +
√
γ)2 and σ(γ) = (1 +

√
γ)4/3γ−1/6 (Johnstone,

2001; Baik et al., 2005; Bloemendal & Virág, 2013).

• λ1 > 1 +
√
γ: The spike follows a Normal

n1/2 λ̂1−µ(λ,γ)
σ(λ,γ)

D−→ N (0, 1), with µ(λ, γ) = γ λ
λ−1+λ

and σ2(λ, γ) = 2λ2(1− γ
(λ−1)2 ) (Baik & Silverstein,

2006; Paul, 2007; Yang & Johnstone, 2018).

This highlights an upward shift of the spike sample distri-
bution mean. Hence, the sample eigenvalue λ̂1 will sepa-
rate from the bulk of the Marčenko-Pastur distribution for
λ1 > 1 +

√
γ. See Figure 3 for an illustrative example.

This is extendable to d > 1 with a spike multiplicity of one
(Baik et al., 2005; Paul, 2007). For d > 1 spikes with mul-
tiplicity one, we assume that the sample eigenvalues will be
distributed according to the spiked covariance model distri-
bution with a bulk of Marčenko-Pastur and d normally dis-
tributed spikes. Let the fraction of population eigenvalues
above the critical point be d

p → ϕ ∈ (0, 1), then the mass
of the distribution related to the spike is given by ϕ.

Stieltjes transform. Following Anderson et al. (2010)
we define the Stieljes transform of a measure.

Definition 2 (Stieltjes (1894)). Let µ be a positive,
finite measure on R, then the Stieltjes transform of
the measure is given by φµ(z) :=

∫
R

µ(dσ)
σ−z with

z ∈ C\R+.

The utility of the Stieltjes transform is that if for a sequence
of measures {µ1, µ2, . . . } the Stieltjes transform converges
pointwise φµp

→ φµ, then µp → µ weakly, see Anderson
et al. (2010). Moreover, the Stieltjes transform of the em-
pirical measure µ̂p is

φµ̂p
(z) =

1

p
Tr[(Ĉ − zIp)

−1]. (1)

The Stieltjes transform can be used to prove different
limiting distributions for the empirical measure (Bai & Sil-
verstein, 2010) or Bach (2023) for an application-oriented
presentation of these results. Here, we provide numerical
verification for the results above of the eigenvalue shift but
with d > 1: In Figure 4 we illustrate that φµ̂p

(z) and the
Stieltjes transform of the distribution it converges to φµ(z)
are close for large values of p.

s

Fγ(s)

1 +
√
γ

λi = 1

λ1 = 3

Figure 3: Eigenvalue spectrum for spiked covariance
model. Sample distribution of d = 1 spike (blue) of popu-
lation eigenvalues (red, λ1 = 3, others λi = 1) for γ = 0.3,
n = 500. The spike has a normally distributed sample
eigenvalue with µ = 3.45.

Eigenvector shift. In the spiked covariance model, the
top-d eigenvectors can be inconsistent. Let vi ∈ Rp be unit
population eigenvectors with sample eigenvectors v̂i ∈ Rp.
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Figure 4: Stielties transform φ(z) of eigenvalue distribu-
tion. Solid lines denote numerical evaluation of the Stielt-
jes transform Definition 2; ‘◦’ markers denote the empirical
transform (1). We use d = 10 spikes here.

As p/n → γ,

(v⊤
i v̂i)

2 →
{

1−γ/(λi−1)2

1+γ/(λi+1) for λi > 1 +
√
γ

0 for λi ∈ [1, 1 +
√
γ].

(2)

This implies that the angle between population vi and sam-
ple eigenvectors v̂i grows as the spike eigenvalue λi de-
creases. Eigenvectors below the critical point resemble
isotropic, randomly placed vectors within a hypersphere
(Paul, 2007; Johnstone et al., 2009). An overview of high-
dimensional PCA is given in Johnstone & Paul (2018).

2.3. Problem formulation

As the data generator, we use the latent factor model and
as the estimation model, we use PCR, both of which are
visualized in Figure 2. As a baseline estimation model, we
choose the unregularized full regression model. We con-
sider the case where the number of spikes d is fixed but
unknown. This implies that the signal is concentrated on a
low-dimensional (linear) manifold. With fixed d, we anal-
yse the effect of the number of features by presenting re-
sults for the risk in the low-dimensional γ < 1 and high-
dimensional γ > 1 regime.

PCR model. Let Ĉ be the sample covariance matrix and
V̂ = [v̂1, . . . , v̂k] be the matrix of sample eigenvectors
truncated to the first k ≤ p principal components. The
PCR model is defined as the linear model ŷi = θ̂⊤ẑi with
θ̂ = (Ẑ⊤Ẑ)+Ẑ⊤y and Ẑ = XV̂ .

Full regression model. Let the linear model ŷi = β̂⊤xi

with β̂ = (X⊤X)+X⊤y be the unregularized least
squares estimator. We denote this as the full regression

model1 to contrast it with the PCR model. Note that the
full regression model is not low-rank. Furthermore, it is a
special case of PCR with k = p and orthogonal features.

Risk. Let θ̂ be a parameter estimator. Then, the risk
is the mean squared error of the predictions R(θ̂) =
E(x0,y0)∼D

[
(y0 − ŷ0(x0))

2
]
, with data distribution D.

3. Analysis of in-distribution risk
3.1. Risk of PCR

The PCR model jointly estimates SVD components and pa-
rameters θ. We first choose the number of principal com-
ponents k for truncation in the SVD and then estimate the
parameters θ̂. Hence, let Ŝ, Û , V̂ be the first k singular
values and left, right singular vectors, respectively, then the
least squares estimator of θ̂ on the latent space projection
Z is given by

θ̂ = V̂ ⊤β + Ŝ−1Û⊤ν. (3)

To compute the expected risk of PCR, we let Π = Ip −
V̂ V̂ ⊤ be the projection matrix onto the subspace orthogo-
nal to the principal components of Ĉ. Then, we obtain

Eν

[
R(θ̂)

]
=β⊤ΠCΠβ

+
σ2
ν

n
Tr
(
V̂ ⊤CV̂ V̂ ⊤Ĉ−1V̂

)
+ σ2

ν .

(4)

The terms can be interpreted as squared bias, variance and
irreducible error. The result highlights that the variance
term contains a projection of the covariance onto its esti-
mated k-dimensional subspace.

For asymptotic results, we generalize the eigenvector
shift in the spiked covariance model from the expression
(v⊤

i v̂i)
2 in (2) to products of eigenvectors (V ⊤V̂ )2 where

we have cross products with i ̸= j. Let V̂ = [v̂1, . . . , v̂k]
and V = [v1, . . . ,vk] be the estimated and true eigenvec-
tors truncated to the first k ≤ p principal components, re-
spectively. Define V̂d ∈ Rd×k and Vd,d ∈ Rd×d as the
matrices where the eigenvectors are truncated to the first d
eigenvector elements. Then, the eigenvector shift product
is

Pk =





diag
(
(v⊤

1 v̂1)
2, . . . , (v⊤

k v̂k)
2, 0, . . . , 0

)
, k < d,

diag
(
(v⊤

1 v̂1)
2, . . . , (v⊤

d v̂d)
2
)
, k = d,

diag
(
(v⊤

1 v̂1)
2 + c21, . . . , (v

⊤
d v̂d)

2 + c2d
)
, k > d,

(5)

with the correction factor c2i = (k−d)
1−(v⊤

i v̂i)
2

p−d for k > d.
Note that Pk is a diagonal matrix with entries depending

1We use β when modelling the interaction between x and y
directly and we use θ when modelling the interaction of a latent
variable with the outcome, e.g. z and y.
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on the choice of k. The main part in (5) is that off-diagonal
values are asymptotically equivalent to zero and simplifies
the following analysis. The proofs for (3)-(5) and all fol-
lowing theorems are in Appendix C.

Asymptotic PCR risk. With the generalized eigenvector
shift, we can find asymptotic expressions for the risk (4).
The asymptotic squared bias term is given by

Biasγ(θ̂)
2 = β̄⊤(Λd −ΛdPk − PkΛd + Pk

+ Pkr
2
wCzPk

)
β̄

(6)

with β̄ = W−1β = rwCz(Id + r2wCz)
−1θ and Λd ∈

Rd×d as truncation of the population eigenvalue matrix Λ
to the first d dimensions. The asymptotic variance term is

Varγ(θ̂) =
σ2
ν

n

(
Tr

[
(Pkr

2
wCz + Ik)

1

µ(Λ, γ)

]

+ (p− d)

∫ (1+
√
γ)2

sc

1

s
dFγ(s)

) (7)

with µ(Λ, γ) as diagonal matrix with entries µ(λi, γ)
as mean of the spike eigenvalue distribution, Fγ as the
Marčenko-Pastur distribution and sc the value in R which
satisfies max

(
k−d
p−d , 0

)
=
∫ (1+

√
γ)2

sc
dFγ(s). Combining

both terms yields the following theorem for the asymptotic
risk of PCR.

Theorem 2 (Asymptotic PCR risk). In the asymptotic
limit n, p → ∞, such that p

n → γ ∈ (0,∞), the
expected risk of PCR will converge almost surely to

Eν

[
R(θ̂)

]
→ Biasγ(θ̂)

2 +Varγ(θ̂) + σ2
ν .

The theorem implies that the squared bias is a scaled ver-
sion of the d-dimensional subspace of the eigenvalues Λ.
Moreover, in the variance, we see that for k ≤ d we have
that sc = (1+

√
γ)2 meaning that the integral term is zero.

Hence, the variance is a scaled version of the inverse mean
of the spike eigenvalue distribution µ(λi, γ). The results
hold for eigenvalues below and above the phase transition
threshold.

In linear regression, the interpolation peak at γ = 1 orig-
inates from an increasing variance value (Hastie et al.,
2022). For PCR, Theorem 2 and (7) highlight that the sec-
ond term for the variance integrates the spikes of the sam-
ple distribution, see Figure 3. This term is only included
if k > p that is governed by sc. Thus, choosing k deter-
mines which parts of the data distribution, i.e. the spik-
ing components and the Marčenko-Pastur, are considered.
Appropriately choosing k therefore helps to consider only
the spiking components and disregard components from the
Marčenko-Pasturdistribution that represent noise.

3.2. Risk of baseline methods

As a reference, we state the null predictor, i.e. θ̂ = 0.
In this case, the expected null risk becomes Eν

[
R(θ̂)

]
=

β⊤Cβ + σ2
ν , which has zero variance and contains an un-

projected squared bias term. Let us restate the full regres-
sion risk from (Hastie et al., 2022, Lemma 1), which is a
special case of (4) for k = p

Eν

[
R(β̂)

]
= β⊤ΠCΠβ +

σ2
ν

n
Tr(CĈ−1) + σ2

ν . (8)

Below we have the asymptotic result for full regression
with the spiked covariance model. Here, the bias is zero
for γ < 1 while the variance term remains unchanged from
the asymptotic PCR result. This result is a special case of
the PCR result in Theorem 2 for k = p.

Theorem 3 (Asymptotic full regression risk). In the
asymptotic limit n, p → ∞, such that p

n → γ ∈
(0,∞), the expected risk of the full regression model
will converge almost surely to

Eν

[
R(β̂)

]
→ Biasγ(β̂)

2 +Varγ(β̂) + σ2
ν

with the asymptotic squared bias term as
Biasγ(β̂)

2 = 0 for γ < 1 and Biasγ(β̂)
2 as in

Theorem 2 with k = p for γ ≥ 1; and the variance
term Varγ(β̂) equal to the definition of the variance
in Theorem 2 with k = p.

4. Analysis of covariate-shifted risk
In this section, we change the data generator from Defini-
tion 1 to one inspired by Emami et al. (2020) to include co-
variate shift. Specifically, we introduce a shift in the latent
factors between training and test time. Let us assume that
the eigenvectors V of the training (or source) covariance
CS = V ΛSV

⊤ and test covariance CT = V ΛTV
⊤ are

the same but the eigenvalues ΛS , ΛT differ. This covari-
ate shift relates to scenarios where the underlying structure
remains consistent, represented by the unchanged eigen-
vectors. The variations in eigenvalues reflect real-world
situations where the magnitude of certain factors changes
without altering their relationship.

Definition 3. Let the covariance matrices of the latent
factors be Cz,S = diag (λ1,S , . . . , λd,S) and Cz,T =
diag (λ1,T , . . . , λd,T ) for the training and test data, re-
spectively. Then, we have zS ∼ N (0,Cz,S), and
xi,S = W rwzi,S + ei,S , and yi,S = θ⊤zi,S + εi,S
for the training data and similarly for the test data.

Note that we assume the number of spikes d between train-
ing and test data distribution is equal. Furthermore, while
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it is not necessary for the theory, in the experiments in Sec-
tion 5.2 we connect training and test data by defining a cor-
relation between their eigenvectors of the covariances Cz,S

and Cz,T .

4.1. Risk of PCR

We use the parameter estimator (3) but write it as θ̂ =
V̂ ⊤β + Ŝ−1

S Û⊤ν, with ŜS as the training data singular
values to highlight the explicit dependence on the training
data. Also, we update the definition for the test risk under
covariate shift as R(θ̂) = E(x0,y0)∼DT

[
(y0 − ŷ0(x0))

2
]

with DT as the test data distribution.

We can generalize the PCR risk from (4) under covariate
shift as in Definition 3. Let Φ = V̂ V̂ ⊤ be the projection
matrix onto the subspace spanned by the first k principal
components of the training data. Then, the expected risk of
PCR under covariate shift is given by

EνT

[
R(θ̂)

]
= (βT −Φβ)⊤CT (βT −Φβ)

+
σ2
ν

n
Tr
(
V̂ ⊤CT V̂ V̂ ⊤Ĉ−1

S V̂
)
+ σ2

T ,

(9)

with βT = rwWCz,T (Id + r2wCz,T )
−1θ and σ2

T = σ2
ε +

θ⊤(Id + r2wCz,T )
−1Cz,Tθ.

This result resembles (4) but also shows that the introduc-
tion of covariate shift complicates the analysis because we
have to deal with quantities from training and test distribu-
tion. Therefore, when inspecting the asymptotic result as
stated below, we have to treat factors in the squared bias
term individually according to the contribution from train-
ing and test data.

Covariate-shifted asymptotic PCR risk. To obtain
asymptotic expressions of (9), we define the asymptotic
squared bias term as

Biasγ,T (θ̂)
2 =

[
β̄⊤
T β̄⊤]

[
Λd,T −Λd,TPk

−PkΛd,T Pk + Pkr
2
wCz,TPk

] [
β̄T

β̄

]
,

(10)

with β̄ = W−1β, β̄T = W−1βT and Λd,T ∈ Rd×d as
the truncation of ΛT to the first d dimensions. The asymp-
totic variance term is

Varγ,T (θ̂) =
σ2
ν

n

(
Tr

[
(Pkr

2
wCz,T + Ik)

1

µ(Λ, γ)

]

+ (p− d)

∫ (1+
√
γ)2

sc

1

s
dFγ(s)

)
,

(11)

with µ(Λ, γ), Fγ and sc as described in the non-covariate
shifted variance term (7). Combining both results yields
the following theorem for the asymptotic risk of PCR under
covariate shift.

Theorem 4 (Covariate-shifted asymptotic PCR risk).
In the asymptotic limit n, p → ∞, such that p

n → γ ∈
(0,∞), the expected risk of PCR under covariate shift
will converge almost surely to

EνT

[
R(θ̂)

]
→ Biasγ,T (θ̂)

2 +Varγ,T (θ̂) + σ2
T .

This theorem has the same implications as Theorem 2
where there is no covariate shift about choosing the number
of principal components k and for regularizing the interpo-
lation peak. The main difference for covariate shifts lies in
the term Cz,T for the squared bias and variance terms and
in Cz,S for the estimation of θ̂. Since their eigenvectors V
are considered to be equal, we only have to consider dif-
fering eigenvectors ΛS , ΛT which are diagonal matrices.
Thus the shift between training and test covariance deter-
mines the risk.

4.2. Risk of baseline methods

Similar to Section 3.2, the results for the full linear regres-
sion as baseline model are special cases of the main PCR
results with k = p. However, in contrast to the case without
covariate shift, here the squared bias term will not diminish
in the asymptotic case.

Let us start with the null predictor as a reference. For
θ̂ = 0 the expected null risk under covariate shift becomes
EνT

[
R(θ̂)

]
= β⊤

T CTβT +σ2
T . As a generalization of the

expected risk of full regression from (8), we obtain under
covariate shift

Eν

[
R(β̂)

]
=(βT − V̂ V̂ ⊤β)⊤CT (βT − β)

+
σ2
ν

n
Tr(CT Ĉ

−1) + σ2
T .

(12)

Finally, we can extend the asymptotic results from Theo-
rem 3 to obtain the following result under covariate shift.

Theorem 5 (Covariate-shifted asymptotic full regres-
sion risk). In the asymptotic limit n, p → ∞, such that
p
n → γ ∈ (0,∞), the expected risk of the full regres-
sion model under covariate shift will converge almost
surely to

Eν

[
R(β̂)

]
→ Biasγ,T (β̂)

2 +Varγ,T (β̂) + σ2
T

with the asymptotic squared bias term as

Biasγ,T (β̂)
2 = (β̄T − β̄)⊤Λd,T (β̄T − β̄)

for γ < 1 and as in Theorem 4 for γ ≥ 1 with k = p.
The variance term V arγ(β̂) is equal to the definition
of the variance in Theorem 4 with k = p.

6
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5. Numerical results
5.1. Simulation of in-distribution data

Setup. We focus on the practically relevant scenario of
high-dimensional regression with a fixed relation between
the number of features p and samples n controlled by γ.
When varying γ we keep the number of spike eigenval-
ues d constant to simulate regression problems of varying
size with fixed latent space dimension. While we select
one set of parameters for visualizing the results, we have
rigorously validated our results across numerous combi-
nations. For the data-generating process, we choose the
parameters α = 0.1, σε = 0.1, rθ = 1 and ρx = 1.
We choose d = 10 spikes and vary k to see the ef-
fect of model misspecification. For our simulations, we
choose n = 500 and set p accordingly to fulfill γ =
p
n . We vary γ ∈ [0.1, 30], i.e. from low-dimensional
γ < 1 to high-dimensional γ > 1. We compute the risk
Eν [R(θ)] and present median values of the simulation re-
sults from 50 realizations as well as 25%, 75% quantiles.
We provide code to reproduce the numerical simulations
https://github.com/dgedon/PCR spiked covariance.

Main result. The main result for the risk analysis is pre-
sented in Figure 5. We can observe the following points:
(1) Theory and simulation align well and therefore sup-
port our analysis. (2) For misspecified models with k <
d we remove important eigendirections in the PCA step
and therefore the risk rises heavily; misspecifications with
k ≫ d diminish the regularizing effect of PCR by includ-
ing many noise directions and therefore get close to the full
regression solution. (3) For appropriately2 chosen k PCR
does not suffer from the interpolation peak and therefore
shows a desirable regularizing effect. (4) For k ≥ d, the
PCR model matches the full regression solution in the limit
of small and large γ.

Bias-variance decomposition. We split the risk accord-
ing to Theorem 2 and 3 in bias and variance terms to anal-
yse them independently. The results are shown in Figure 6
where we can observe that the bias term is dominant for
k < d. According to Theorem 2 for k < d the least amount
of risk is subtracted because Pk contains many zeros. For
appropriately chosen k, the bias decreases with large γ.
The variance term increases with larger k as supported by
Theorem 2 because more noise directions are considered.

PCA-projection space. The linear regression within
PCR operates through the projection of PCA onto the prin-
cipal components with k ≤ p on a different space than the
full regression from all features p. In this experiment, in

2I.e. k = d+∆ with ∆ a small non-negative integer such that
a limited number of noise directions are considered.
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Figure 5: Risk on in-distribution data: Simulation vs.
analysis. The different marks denote finite sample risk;
solid lines denote analytical results. Null risk is given by
the dashed line.
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Figure 6: Bias-variance decomposition of in-distribution
risk: analysis. Squared bias (top) and variance (bottom).

contrast to varying γ with fixed k, we keep γ fixed and vary
the ratio κ = k/n. Therefore, κ represents the effective di-
mension the linear regression operates on. In Figure 7 the
result for varying κ is given. We can see that for κ → 1, the
PCR risk approaches the risk of full regression. Note that
for k > min(p, n) there are no principal components left
and the risk plateaus. This is also the reason why κ ∈ [0, 1].

7

https://github.com/dgedon/PCR_spiked_covariance


No Double Descent in Principal Component Regression

Curth et al. (2024) describes a similar setting where κ > 1
is reached by excess features that “only contribute to the
creation of a richer basis”.

0.1 1

10−1

0.2 0.3 0.5 0.8

κ = k/n

R
is

k

γ = 0.2
γ = 0.5
γ = 0.9
γ = 1.2
γ = 2
γ = 5
Full

Figure 7: Risk on PCA projected space: Simulation vs.
analysis. Varying κk/n with fixed γ.

5.2. Simulation of covariate-shifted data

Setup. We choose the same setup as for in-distribution
data with α = 1. The spike eigenvalues for training and
test data are sampled i.i.d. from a zero-mean Normal dis-

tribution with Cov(uS , uT ) = σ2
ℓ

[
1 ρ
ρ 1

]
such that λS,i =

exp(αuS,i), λT,i = exp(αuT,i). By choosing σ2
ℓ , ρ, we

can control the covariate shift between the training and test
data. Specifically, there are two scenarios without covariate
shifts. (1) with σ2

ℓ = 0, we have λi,S = λi,T = 1. (2) with
σ2
ℓ > 0 but ρ = 1, we have λi,S = λi,T ̸= 1. Finally, we

can create another scenario (3) where we introduce covari-
ate shift with σ2

ℓ > 0 and ρ ∈]0, 1[ which defines correlated
but different latent factors. Thus, σ2

ℓ and ρ control the cor-
relation between training and test data. We focus on the
covariate shift by choosing σ2

ℓ = 1 and investigate the ef-
fect of correlation between training and test data through
different choices of ρℓ.

Main result. In Figure 8 we present results for low corre-
lated covariate eigenvalues with ρℓ = 0.1 and highly corre-
lated eigenvalues with ρℓ = 0.9. We notice both scenarios
have qualitatively similar behaviour which follows the ob-
servations from the in-distribution results in Figure 5. The
main difference is that highly correlating train and test data
leads to lower risk. Since test data in this scenario is gener-
ated roughly from the same distribution as the training data,
the model is less misspecified which leads to lower risk.

6. Related work
Overparameterization. The ‘double descent’ phe-
nomenon (Belkin et al., 2019) for the generalization curve

0.1 1 10
10−2

10−1

0.5 2 5 20

γ = p/n

R
is

k

full
PCR
ρℓ = 0.1, k = 8
ρℓ = 0.1, k = 10
ρℓ = 0.9, k = 8
ρℓ = 0.9, k = 10

Figure 8: Risk on covariate-shifted data: Simulation vs.
analysis. Different marks denote finite sample risk; solid
lines denote analytical results. In green tones are results
for low-correlated features ρℓ = 0.1; and in blue tones for
high-correlated features ρℓ = 0.9.

of overparameterized models was already discovered and
analysed in early works (Krogh & Hertz, 1991; Geman
et al., 1992; Opper, 1995). While it has been observed in
deep state-of-the-art models (d’Ascoli et al., 2020; Nakki-
ran et al., 2021), most theoretical studies focus on simple
models. Examples are found for linear regression (Bartlett
et al., 2020; Muthukumar et al., 2020; Hastie et al., 2022),
ensembles (LeJeune et al., 2020; Loureiro et al., 2021),
classification (Gerace et al., 2020; Wang et al., 2021; Deng
et al., 2022), random features (Belkin et al., 2019; Mei &
Montanari, 2022) or small neural networks trained using
gradient descent (Advani et al., 2020; Frei et al., 2022;
Cao et al., 2022). Practical model regularizers such as
Ridge are analysed in Tsigler & Bartlett (2023). PCR falls
widely into the category of sparsity-inducing regularizers.
For Lasso regularization bounds for ℓ1-norm interpolators
are provided (Chatterji & Long, 2022; Wang et al., 2022)
but also arbitrary norms are studied (Koehler et al., 2021).
We extend the analysis of sparsity-inducing regularizers to
the commonly used PCR model. We further broaden our
analysis to distribution shifts, a relatively underexplored
area in the context of overparameterization (Tripuraneni
et al., 2021a;b; Emami et al., 2020).

PCR analysis. Using PCA (Pearson, 1901; Jolliffe,
2002) is common—discussions focus on the choice of
principle components (Breiman & Freedman, 1983) or
high-dimensional data (Lee et al., 2012). Since PCA acts
on the eigenvectors of the covariance matrix, it can be
viewed as a spectral regularizer. Finite sample risk bounds
were analysed for general spectral regularization including
PCR (Bauer et al., 2007; Dicker et al., 2017) and adaptive
PCR under the same latent factor model as ours but using
concentration inequalities (Bing et al., 2021). Hucker &

8
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Wahl (2023) provide high probability bounds for the PCR
risk. Furthermore, PCR is investigated in Xu & Hsu (2019)
for general but fully known covariances C in the asymp-
totic regime.Wu & Xu (2020) extend it by showing that the
misalignment of true and estimated eigenvectors affects
the risk. Huang et al. (2022) use misalignment bounds
(Loukas, 2017) to remove the known covariance assump-
tion and obtain non-asymptotic risk bounds. We extend
and complement existing analyses to the case real-world
sample covariances Ĉ to obtain asymptotic risk guarantees
for the latent factor model using random matrix theory.

Spiked covariance model. The spiked covariance model
was introduced in Johnstone (2001) for high-dimensional
covariance matrices where data is generated from a low-
dimensional subspace. It is a popular model for covariance
estimation (Donoho et al., 2018; Dobriban et al., 2020) and
has been used to analyse the performance of PCA (John-
stone & Paul, 2018; Bai & Silverstein, 2010). We com-
bine the spiked covariance model with the latent factor
model to obtain a regression model with low-dimensional
latent factors and high-dimensional covariates. Then, we
apply asymptotic results from random matrix theory for
the eigenvalue shift of the spikes (Baik et al., 2005; Baik
& Silverstein, 2006), and the eigenvector misalignment
(Paul, 2007; Johnstone et al., 2009) to obtain asymptotic
risk guarantees for PCR.

7. Conclusion
Guide to choosing k. Deriving precise guidelines from
our analysis is challenging. From Theorems 2 and 4, we
can see that choosing a larger number of principal compo-
nents k increases the variance due to noise contributions.
From Figures 5 and 8, we deduce that choosing k too small
increases the risk due to discarding signal components. In
practice, for γ = p

n small < 0.5 or large > 2, k has little
effect on the risk.

Summary. We present asymptotic results for the gener-
alization risk of PCR under the spiked covariance model
based on random matrix theory. Furthermore, we consider
the case where the training and test distribution vary. Our
analysis generalizes the asymptotic result for linear regres-
sion from Hastie et al. (2022) which is a special case of
PCR without dimensionality reduction (k = p). In the
non-asymptotic regime, Huang et al. (2022) show similar
results, thus independently supporting our findings. Select-
ing the correct number of principal components k is crucial
for the risk as Theorems 2 and 4 suggest.

While our results that PCA mitigates the interpolation peak
due to its regularizing behaviour may not be a surprise, we
provide formal guarantees for the risk of a commonly used

model on real-world data structures. Practitioners can now
rely on fundamental guarantees for model development,
but more research is needed for general data structures.

Limitations and future work. In this paper, we limit
the theoretical analysis to the supervised case where data
is sampled from the spiked covariance model with linear
regressors. However, the risk on the MAGIC wheat genet-
ics data set in Figure 1 qualitatively resemble our numeri-
cal results in Figure 5 which suggests that our results can
closely replicate results that are not linearly separable. Our
analysis is based on random matrix theory and therefore
only holds in the asymptotic regime. For finite sample risk
bounds, we refer to Bing et al. (2021).

Extending our analysis to more general covariance matri-
ces C is an important extension and the tools we devel-
oped could be exploited since the Stieltjes transformation
holds in more general settings. We believe the phenomenon
we study with decaying eigenvalues is the most relevant
for generalization analysis. This is extensively studied e.g.
in Bartlett et al. (2020). One way to include the effect of
gradient-based training could be to generalize our findings
to spectral regularization techniques such as Landweber it-
eration (Bauer et al., 2007). Another interesting avenue is
the extension into semi-supervised settings (Wasserman &
Lafferty, 2007). Scenarios, where the PCA is trained on
a large unlabeled dataset and then used for regression on
a small labeled dataset, are related to the common idea of
pre-training large models and might shed light on the gen-
eralization behaviour of such models.
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A. Experiment details: genetics example
Background. The Diverse MAGIC Wheat data set3 is based on 16 founding wheat varieties which were listed between
1935 and 2004. These varieties were interbred to obtain new wheat varieties. From the resulting wheat types, the genome
of a total of 502 kinds of wheat were sequenced. This genome sequence consists of approximately 1.1 million single
nucleotide polymorphisms. Furthermore, phenotypes of the 502 wheat types were analysed, see Scott et al. (2021).

Data processing. The genotypes consist of binary features. The binary variables represent equality or difference to a
reference genotype. The phenotypes are real-values variables. We choose the phenotype column named ’HET 2’ in this
example. Missing values for both, genotype and phenotype are replaced with the mean value of the variable. We select a
subset of genotypes as inputs randomly at uniform to obtain the necessary p features. Then, we normalize both, genotype
and phenotype by z-transformation.

0 100 200 300 400 500

10−1

100

101

Genetics data set

Figure A-1: Eigenvalue distribution of the Diverse MAGIC Wheat genetics data set.

Data analysis. In Figure A-1 we plot the eigenvalue distribution for the Diverse MAGIC Wheat data set. We observe
that the eigenvalue distribution is heavy-tailed. While it has two dominant eigenvalues, it does not depict a clear example
of a low-dimensional latent manifold. Therefore, using the PCR model will discard some useful information. We also
note, that there is no reason to assume a linear relationship between the features and the outcome which is in contrast to
our synthetically generated data.

3http://mtweb.cs.ucl.ac.uk/mus/www/MAGICdiverse/
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B. Additional numerical results
B.1. Ridge regression

We compare the PCR model with different values for Ridge regression for in-distribution data. The results are depicted
in Figure B-2. Here, we compare with the optimal k = d PCR model. Note that solid lines indicate analytical solutions
while markers indicate simulations. Analytical solutions for Ridge regression could be obtained, see Hastie et al. (2022).
We can observe that Ridge regression shows similar regularizing behaviour as regularization through PCR. However, the
exact shape of the risk curve varies and for the case we present, PCR with k = d shows the lowest risk for all γ.

0.1 1 10
10−2

10−1

0.5 2 5

γ = p/n

R
is

k
full
PCR, k = 10
Ridge, lnλ=-1
Ridge, lnλ=1
Ridge, lnλ=3
Ridge, lnλ=6

Figure B-2: Risk PCR vs. Ridge regularisation. We show median, 25%, and 75% quantiles over 50 seeds for all
simulation results.

B.2. Varying output noise σν

In Figure B-3, we compare the PCR model under varying output noise σν for in-distribution data. Results from Theorem 2
are compared with simulations. The figure shows that our analysis holds for a suitable range of noise values and that the
risk decreases with lower noise variance.

0.1 1 10

10−2

10−1

100

101

0.5 2 5

γ = p/n

R
is

k

full
PCR, k = 10
σν = 0.1
σν = 0.4
σν = 0.8
σν = 1.0

Figure B-3: Risk PCR for varying σν: Simulation vs. analysis. We show median, 25%, and 75% quantiles over 50 seeds
for all simulation results. Dashed lines are analytical solutions for the full regression; solid lines are analytical solutions
for the PCR.
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C. Proofs
In this section, we will follow the structure of the main paper to prove all results. For clarity, we will repeat the results
before providing the proof.

C.1. Data generator

In this section, we derive the linear model from the latent factor model in Definition 1. Let us first restate the definition:

Definition 1. The latent factor model is the linear model xi = W rwzi + ei, and yi = θ⊤zi + εi. With latent
variables zi ∼ N (0,Cz), with diagonal covariance Cz , feature noise ei ∼ N (0, Ip), outcome noise εi ∼ N (0, σ2

ε),
feature matrix W ∈ Rp×d such that W⊤W = Id. Let r2w = p

Tr(Λz)
ρx to control the feature signal-to-noise-

ratio (SNR) ρx =
E[∥W rwz∥2

2]
E[∥e∥2

2]
, label noise εi ∼ N (0, σ2

ε) and let θ = 1d
rθ√

Tr(Λz)
to control the outcome SNR

ρy =
E[∥θ⊤z∥2

2]
E[∥ε∥2

2]
=

r2θ
σ2
ε

.

We aim to derive the linear model yi = β⊤xi + νi, i.e. to find the expressions for

xi ∼ N (0,C), (C-1)

νi ∼ N (0, σ2
ν) with σ2

ν = σ2
ε + θ⊤(Id + r2wCz)

−1Czθ, (C-2)

β = rwWCz(Id + r2wCz)
−1θ. (C-3)

Proof. The covariance matrix of (xi, yi) under the linear model is given by
[
E
[
xix

⊤
i

]
E
[
yix

⊤
i

]

E
[
y⊤i xi

]
E
[
yiy

⊤
i

]
]
=

[
C β⊤C
Cβ β⊤Cβ + σ2

ν

]
. (C-4)

We can compare this with the covariance under the latent factor model
[
E
[
Wziz

⊤
i W⊤r2w + eie

⊤
i

]
E
[
θ⊤ziz⊤

i W⊤rw + εie
⊤
i

]

E
[
rwWziz

⊤
i θ + eiε

⊤
i

]
E
[
θ⊤ziziθ + εiε

⊤
i

]
]
=

[
WCzW

⊤r2w + Ip θ⊤CzW
⊤rw

rwWCzθ θ⊤Czθ + σ2
ε

]
. (C-5)

Comparing element (1, 1), we directly observe that C = WCzW
⊤r2w + Ip which is our spiked covariance model.

From element (2, 1), we get the following when using C as well as W ∈ Rp×d such that W⊤W = Id

Cβ = rwWCzθ (C-6)

β =

[
(Czr

2
w + Id)

−1 0
0 Ip−d

]
rwWCzθ (C-7)

= (Ip +WCzW
⊤r2w)

−1rwWCzθ. (C-8)

Using the push-through or Woodbury matrix identity, we obtain the result for β.

Finally from element (2, 2), we get the following expression

σ2
ν = θ⊤Czθ − β⊤Cβ + σ2

ε . (C-9)

Using (C-8) for β⊤ with the result for β and C, we obtain

σ2
ν = θ⊤(Cz −CzCzr

2
w(Id + r2wCz)

−1)θ + σ2
ε (C-10)

= θ⊤Cz(Id −Czr
2
w(Id + r2wCz)

−1)θ + σ2
ε (C-11)

Using the identity (I + P )−1 = I − (I + P )−1P , we obtain

σ2
ν = σ2

ε + θ⊤Cz(Id + r2wCz)
−1θ. (C-12)

Using the push-through or Woodbury identity yields the result for the variance.
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C.2. Analysis of risk

C.2.1. RISK OF PCR

PCR parameter estimator. Let us first re-state the parameter estimator for PCR:

θ̂ = V̂ ⊤β + Ŝ−1Û⊤ν. (3)

Proof. We consider the unregularized linear regression solution between the latent variables Ẑ and the outcome y:

θ̂ = (Ẑ⊤Ẑ)+Ẑ⊤y (C-13)

= (Ŝ⊤
k Û⊤Û Ŝk)

+Ŝ⊤
k Û⊤y (C-14)

with Û⊤Û = I and y = Xβ + ν

θ̂ = (Ŝ⊤
k Ŝk)

+Ŝ⊤
k Û⊤(Xβ + ν) (C-15)

= (Ŝ⊤
k Ŝk)

+Ŝ⊤
k ŜV̂ ⊤β + (Ŝ⊤

k Ŝk)
+Ŝ⊤

k Û⊤ν (C-16)

Where we used X = Û ŜV̂ ⊤. Now we combine the singular value matrices. We indicate the dimensions of combined
matrices. Note that Ŝk and Ŝ are of different sizes.

θ̂ =




1
σ̂2
1

0

. . .
0 1

σ̂2
k



k×k




σ̂2
1 0

. . . 0
0 σ̂2

k



k×p

V̂ ⊤β +

+




1
σ̂1

0
. . . 0

0 1
σ̂k




k×n

Û⊤ν

(C-17)

=
[
Ik 0

]
V̂ ⊤β +

[
Ŝ−1
kk 0

]
Û⊤ν (C-18)

Summarizing the matrices by truncating V̂ ⊤ and Û⊤ yields the following solution for the regression parameter estimation

θ̂ = V̂ ⊤
k β + Ŝ−1

kk Û
⊤
k ν. (C-19)

This concludes the proof as we defined V̂ := V̂k, Ŝ := Ŝkk and Û := Ûk.

Expected risk of PCR. Let us first re-state the expected risk result for PCR:

Eν

[
R(θ̂)

]
= β⊤ΠCΠβ +

σ2
ν

n
Tr
(
V̂ ⊤CV̂ V̂ ⊤Ĉ−1V̂

)
+ σ2

ν . (4)

Proof. We define the risk as the expectation over the mean squared error and then use y0 = β⊤x0 + ν0, as well as
ŷ(x0) = θ̂⊤ẑ and ẑ = V̂ ⊤x0 to obtain

R(θ̂) = E(x0,y0)

[
(y0 − ŷ(x0))

2
]

(C-20)

= Ex0

[
(β⊤x0 + ν0 − ŷ(x0))

2
]

(C-21)

= Ex0

[
(β⊤x0 + ν0 − θ̂⊤ẑ)2

]
(C-22)

= Ex0

[
(β⊤x0 + ν0 − θ̂⊤V̂ ⊤x0)

2
]

(C-23)

= Ex0

[(
(β − V̂ θ̂)⊤x0 + ν0

)2]
(C-24)

= (β − V̂ θ̂)⊤C(β − V̂ θ̂) + ν0ν
⊤
0 (C-25)
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Define the orthogonal projector Φ = V̂ V̂ ⊤ and define another orthogonal projector with Π = Ip −Φ. For simplicity, let
us rephrase the following

β − V̂ θ̂ = β − V̂ (V̂ ⊤β + Ŝ−1Û⊤ν) (C-26)

= β − V̂ V̂ ⊤β − V̂ Ŝ−1Û⊤ν (C-27)

= (Ip −Φ)β − V̂ Ŝ−1Û⊤ν (C-28)

= Πβ − V̂ Ŝ−1Û⊤ν (C-29)

Now let us use this expression to take the expectation of the risk w.r.t. the noise. This yields

Eν

[
R(θ̂)

]
= β⊤ΠCΠβ + Eν

[
Tr(ν⊤Û Ŝ−1V̂ ⊤CV̂ Ŝ−1Û⊤ν)

]
+ Eν

[
νν⊤

]
(C-30)

Here we made use of the Trace since the expression is scalar. Hence, we can use the cyclic property of the Trace and pull
the expectation inside

Eν

[
R(θ̂)

]
= β⊤ΠCΠβ +Tr(V̂ ⊤CV̂ Ŝ−1Û⊤Eν

[
νν⊤

]
Û Ŝ−1) + Eν

[
νν⊤

]
(C-31)

with Eν

[
νν⊤

]
= σ2

ν and Û⊤Û = I

Eν

[
R(θ̂)

]
= β⊤ΠCΠβ + σ2

ν Tr(V̂
⊤CV̂ Ŝ−2) + σ2

ν (C-32)

Using Ŝ−2 = 1
n V̂

⊤Ĉ+V̂ we obtain (4) which concludes the proof.

Eigenvector shift product. Let us first re-state the result which generalizes the eigenvector shift to matrices:

Pk =





diag
(
(v⊤

1 v̂1)
2, . . . , (v⊤

k v̂k)
2, 0, . . . , 0

)
for k < d,

diag
(
(v⊤

1 v̂1)
2, . . . , (v⊤

d v̂d)
2
)

for k = d,

diag
(
(v⊤

1 v̂1)
2 + c21, . . . , (v

⊤
d v̂d)

2 + c2d
)

for k > d,

(5)

where Vd,d ∈ Rd×d and V̂d ∈ Rd×k are the matrices where the eigenvectors are truncated to the first d elements in each

eigenvector; and with the correction factor c2i = (k − d)
1−(v⊤

i v̂i)
2

p−d for k > d.

Let us give an informal justification of (5): Define V̂d ∈ Rd×k and Vd,d ∈ Rd×d as the matrices where the eigenvectors
are truncated to the first d eigenvector elements. Then, the expression V ⊤

d,dV̂dV̂
⊤
d Vd,d ∈ Rd×d describes the matrix

equivalent of the eigenvector shift (2) which is defined only for (v⊤
i v̂j)

2 with i = j. These are the diagonal terms of
the matrix expression. For off-diagonal values with i ̸= j we have that (v⊤

i v̂j)
2 → 0 because as p → ∞ the estimates

eigenvectors v̂j are randomly placed in a p-dimensional space. Hence P
(
(v⊤

i v̂j)
2 > ϵ

)
→ 0 which means that the

expression V ⊤
d,dV̂dV̂

⊤
d Vd,d yields a diagonal matrix.

Dependent on the choice of k, there are three different results:

1. For k < d: since V̂d ∈ Rd×k, we have that V̂dV̂
⊤
d will only have non-zero values for first k diagonal entries, yielding

Pk = V ⊤
d,dV̂dV̂

⊤
d Vd,d = diag

(
(v⊤

1 v̂1)
2, . . . , (v⊤

k v̂k)
2, 0, . . . , 0

)
. (C-33)

2. For k = d: with the same reasoning as in the previous case we obtain

Pk = V ⊤
d,dV̂dV̂

⊤
d Vd,d = diag

(
(v⊤

1 v̂1)
2, . . . , (v⊤

d v̂d)
2
)
. (C-34)

3. For k > d: Let us rewrite the matrix product as

Pk = V ⊤
d,dV̂dV̂

⊤
d Vd,d = = V ⊤

d,d

[
V̂d,:d V̂d,d:

]
[
V̂ ⊤
d,:d

V̂ ⊤
d,d:

]
Vd,d (C-35)

= V ⊤
d,d

(
V̂d,:dV̂

⊤
d,:d + V̂d,d:V̂

⊤
d,d:

)
Vd,d (C-36)

= V ⊤
d,dV̂d,:dV̂

⊤
d,:dVd,d + V ⊤

d,dV̂d,d:V̂
⊤
d,d:Vd,d (C-37)
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where the first term if equal to Pk for k = d. Let us write the second term element-wise as v⊤
i v̂i,d:v̂

⊤
i,d:vi which is

equal to v̂i,d:v̂
⊤
i,d: since vij = 0 if i ̸= j. Hence, we need to know the expected value of the elements v̂ij for j > d.

To identify this, we can note that 1 = v̂⊤
i v̂i which we can expand as 1 =

∑d
j=1 v̂

⊤
ij v̂ij +

∑p
j=d+1 v̂

⊤
ij v̂ij . Again, we

can expand the first sum with v as vij = 1 only for i = j. Hence, we obtain

1 = (v⊤
i v̂i)

2 +

p∑

j=d+1

v̂⊤
ij v̂ij (C-38)

Hence, assuming that vij are uniformly distributed, we get that v̂⊤
ij v̂ij =

1−(v⊤
i v̂i)

2

p−d . Finally, we see that we have to
sum k − d of these elements in the expression which leads to the second term in (C-37) yielding

c2i = (k − d)
1− (v⊤

i v̂i)
2

p− d
. (C-39)

Finally, we obtain in the case for k > d

Pk = V ⊤
d,dV̂dV̂

⊤
d Vd,d = diag

(
(v⊤

1 v̂1)
2 + c21, . . . , (v

⊤
d v̂d)

2 + c2d
)
. (C-40)

Asymptotic PCR risk. In order to prove Theorem 2, we re-state the results for the bias-squared and the variance terms
first: The asymptotic bias-squared term is given by

Biasγ(θ̂)
2 = β̄⊤(Λd −ΛdPk − PkΛd + Pk + Pkr

2
wCzPk

)
β̄ (6)

with β̄ = W−1β = rwCz(Id + r2wCz)
−1θ, and Λd ∈ Rd×d as the truncation of the population eigenvalue matrix Λ to

the first d dimensions. The asymptotic variance term is

Varγ(θ̂) =
σ2
ν

n

(
Tr

[
(Pkr

2
wCz + Ik)

1

µ(Λ, γ)

]
+ (p− d)

∫ (1+
√
γ)2

sc

1

s
dFγ(s)

)
(7)

with µ(Λ, γ) as diagonal matrix with entries µ(λi, γ) as mean of the spike eigenvalue distribution, Fγ as the Marčenko-

Pastur distribution and sc the value in R which satisfies max
(

k−d
p−d , 0

)
=
∫ (1+

√
γ)2

sc
dFγ(s).

Theorem 2 (Asymptotic PCR risk). In the asymptotic limit n, p → ∞, such that p
n → γ ∈ (0,∞), the expected risk

of PCR will converge almost surely to

Eν

[
R(θ̂)

]
→ Biasγ(θ̂)

2 +Varγ(θ̂) + σ2
ν .

Proof. In the following, we split the proof into the bias-squared term and the variance term.

Bias-squared term. Let us start with the bias-squared term from (4) given by Bias(θ̂)2 = β⊤ΠCΠβ, and with β =
rwWCz(Id+r2wCz)

−1θ from the equivalence of the spiked covariance model to a data generator directly between features
and outcomes. Further, we have that W = Vd with the eigenvectors defined as V = Ip. Hence, since Vd ∈ Rp×d, we

know that the last p− d rows will be zeros only. Therefore, we can write W = Vd =

[
Vd,d

0

]
where Vd,d ∈ Rd×d are the

eigenvectors truncated to the first d-elements. Further, we use β̄ = W−1β to write

Bias(θ̂)2 = β̄⊤ [V ⊤
d,d 0

]
ΠCΠ

[
Vd,d

0

]
β̄ (C-41)

Using Π = (Ip − V̂ V̂ ⊤) and C = V ΛV ⊤ to expand ΠCΠ we obtain

Bias(θ̂)2 = β̄⊤ [V ⊤
d,d 0

] (
V ΛV ⊤ − V ΛV ⊤V̂ V̂ ⊤ − V̂ V̂ ⊤V ΛV ⊤ + V̂ V̂ ⊤V ΛV ⊤V̂ V̂ ⊤

)[
Vd,d

0

]
β̄ (C-42)

= β̄⊤
(
Λd −ΛdV

⊤
d,dV̂dV̂

⊤
d Vd,d − V ⊤

d,dV̂dV̂
⊤
d Vd,dΛd + V ⊤

d,dV̂dV̂
⊤V ΛV ⊤V̂ V̂ ⊤

d Vd,d

)
β̄ (C-43)
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where Λd are the first d eigenvalues and V̂d ∈ Rd×k are the first k estimated eigenvectors truncated to the first d elements
in each vector. The latter happens due to the multiplication with the

[
V ⊤
d,d 0

]
from left and its transpose from right. For

the last term, we can expand Λ = Ip + r2wWCzW
⊤. Then we obtain

V ⊤
d,dV̂dV̂

⊤V ΛV ⊤V̂ V̂ ⊤
d Vd,d = V ⊤

d,dV̂dV̂
⊤V (Ip + r2wWCzW

⊤)V ⊤V̂ V̂ ⊤
d Vd,d (C-44)

= V ⊤
d,dV̂dV̂

⊤
d Vd,d + V ⊤

d,dV̂dV̂
⊤
d Vd,d(r

2
wCz)V

⊤
d,dV̂dV̂

⊤
d Vd,d (C-45)

With this expression we observe that all terms in (C-43) contain the term V ⊤
d,dV̂dV̂

⊤
d Vd,d which is the same expression as

we have for the generalization of the eigenvector shift in (5). Hence, for p, n → ∞ such that p/n → γ, we obtain

Biasγ(θ̂)
2 → β̄⊤ (Λd −ΛdPk − PkΛd + Pk + Pkr

2
wCzPk

)
β̄ (C-46)

which is the expression for the bias-squared term.

Variance term. Let us start with the variance term from (4) given by Var(θ̂) =
σ2
ν

n Tr
(
V̂ ⊤CV̂ V̂ ⊤Ĉ−1V̂

)
. Here, we

follow a similar approach by expanding the covariance terms and exploiting the multiplication of eigenvectors. For the
trace term, we thus obtain

V̂ ⊤CV̂ V̂ ⊤Ĉ−1V̂ = V̂ ⊤V ΛV ⊤V̂ Λ̂−1 (C-47)

= V̂ ⊤V
(
W r2wCzW

⊤ + Ip
)
V ⊤V̂ Λ̂−1 (C-48)

= V̂ ⊤V

([
V
0

]
r2wCz

[
V ⊤ 0

]
+ Ip

)
V ⊤V̂ Λ̂−1 (C-49)

=
(
V̂ ⊤Vdr

2
wCzV

⊤
d V̂ + Ik

)
Λ̂−1 (C-50)

Here, we can notice that the expression V̂ ⊤Vd can give us part of the eigenvector shift equation from (5) to obtain

V̂ ⊤CV̂ V̂ ⊤Ĉ−1V̂ →
([

P
1/2
k

0

]
r2wCz

[
P

1/2
k 0

]
+ Ik

)
Λ̂−1 (C-51)

since both Cz and Pk are diagonal, we can write

V̂ ⊤CV̂ V̂ ⊤Ĉ−1V̂ →
[
Pkr

2
wCz + Id 0
0 Ik−d

]
Λ̂−1. (C-52)

Including this into the full variance term, and considering each term in the trace individually, we obtain

Varγ(θ̂) =
σ2
ν

n




min(d,k)∑

i=1

(Pkr
2
wCz + Ik)[i]

1

λ̂i

+
k∑

i=min(d,k)+1

1

λ̂i


 (C-53)

where A[i] denotes the ith diagonal element of A. Here, we notice that the first term corresponds to the spike eigenvalues
since the sum goes only over the top min(d, k) eigenvalues and the second summation goes over the remaining eigenvalues
including all noise terms. Hence, the first term can be written as

min(d,k)∑

i=1

(Pkr
2
wCz + Ik)[i]

1

λ̂i

= Tr

[
(Pkr

2
wCz + Ik)

1

µ(Λ, γ)

]
(C-54)

where µ(Λ, γ) is a diagonal matrix with entries µ(λi, γ) as mean of the spike eigenvalue distribution. For the second term,
we can write the sum over the eigenvalues λ̂ as the integral over the spectral measure FĈMP

of the covariance for the
Marčenko-Pastur distribution ĈMP .

k∑

i=min(d,k)+1

1

λ̂i

= (p− d)

∫ (1+
√
γ)2

sc

1

s
dFĈMP

(s) (C-55)
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Since this term is only over the noise terms, the integral upper bound is given by the upper bound of the Marčenko-
Pastur distribution (1 +

√
γ)2. The integral lower bound sc corresponds to the p− k largest eigenvalue. There is a scaling

factor of p − d as this is the number of eigenvalues corresponding to the part of the eigenvalue distribution. Now, we
know that in the limit p, n → ∞ such that p/n → γ the spectral measure will almost surely converge to the Marčenko-
Pastur distribution Fγ . Therefore we obtain

k∑

i=min(d,k)+1

1

λ̂i

→ (p− d)

∫ (1+
√
γ)2

sc

1

s
dFγ(s) (C-56)

There are two steps to solve this integral. First, we need to find out the lower integral bound sc and second, solve the
integral itself. For sc = −∞, one can use the closed-form solution of the Stieltjes transformation φ(z) of the Marčenko-
Pastur distribution and evaluate it at z = 0. However, there is no known closed-form solution for general sc. We therefore
solve this part numerically.

Step 1 obtain the lower bound sc: We can view the spectral measure as FĈMP
as a series of (p − d) impulses at si with

magnitude 1/p (as the sum is normalized to 1). Since we only consider the k − d largest eigenvalues (the remaining ones
are considered in the first term of the trace for the spike part of the covariance), we know that their sum is (k− d)/(p− d),
see Figure C-4a. This sum is the same as the integral from sc over the Marčenko-Pastur distribution, see Figure C-4b.
Therefore we can find the lower integral bound sc by solving the following numerically

max

(
k − d

p− d
, 0

)
=

∫ (1+
√
γ)2

sc

dFγ(s). (C-57)

Here, the max is necessary as we could have k ≤ d. Then sc will become (1 +
√
γ)2 which means that the Marčenko-

Pastur part will not contribute to the variance term.

Step 2 solve integral of interest: Given the lower bound sc, we can solve the integral numerically from sc to the upper
bound (1 +

√
γ)2. Therefore, we obtain a solution for the second term, which is not based on data but on the properties of

our data matrix, especially γ, d and k. This concludes the full proof for the asymptotics of the parameter norm.

R

FĈMP

s1

1
p

s2

1
p

. . .

1
p

sp−k
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. . .

1
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sp

1
p

sc

(a)

s

Fγ(s)

sc

max
(

k−d
p−d , 0

)

(b)

Figure C-4: (a) spectral measure impulses and lower integral bound of integral sc. (b) Illustration of spiked covariance
distribution for γ = 0.3 with specific lower integration bound.

C.2.2. RISK OF BASELINE METHODS

Let us first re-state the risk for full regression. Note that this is a known result from Hastie et al. (2022, Lemma 1). Hence,
we refer to the original reference for the proof.

Eν

[
R(β̂)

]
= β⊤ΠCΠβ +

σ2
ν

n
Tr(CĈ−1) + σ2

ν . (8)

Asymptotic full regression risk. For the asymptotic full regression risk, we have k = p. We first re-state the theo-
rem:
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Theorem 3 (Asymptotic full regression risk). In the asymptotic limit n, p → ∞, such that p
n → γ ∈ (0,∞), the

expected risk of the full regression model will converge almost surely to

Eν

[
R(β̂)

]
→ Biasγ(β̂)

2 +Varγ(β̂) + σ2
ν

with the asymptotic squared bias term as Biasγ(β̂)2 = 0 for γ < 1 and Biasγ(β̂)
2 as in Theorem 2 with k = p for

γ ≥ 1; and the variance term Varγ(β̂) equal to the definition of the variance in Theorem 2 with k = p.

Proof. For the asymptotic variance term, we cannot simplify the results from Theorem 2 except for the case that V̂ V̂ ⊤ = I
here because the eigenvectors are not truncated.

For the asymptotic bias-squared term, we know in the full regression model that Π is a projection matrix onto the null
space of X . Hence, we have equally to the asymptotic result from Hastie et al. (2022, Theorem 1) that

Biasγ(β̂)
2 →

{
0 γ < 1

β⊤ΠCΠβ γ ≥ 1
(C-58)

which concludes the proof as we cannot simplify the expression further, given the non-isotropic covariance matrix.

C.3. Analysis under covariate shift

C.3.1. RISK OF PCR

Expected covariate shifted risk of PCR. Let us first re-state the expected risk result for PCR under covariate shift:

EνT

[
R(θ̂)

]
= (βT −Φβ)⊤CT (βT −Φβ) +

σ2
ν

n
Tr
(
V̂ ⊤CT V̂ V̂ ⊤Ĉ−1

S V̂
)
+ σ2

T , (9)

with βT = rwWCz,T (Id + r2wCz,T )
−1θ and σ2

T = σ2
ε + θ⊤(Id + r2wCz,T )

−1Cz,Tθ. (9)

Proof. First, we estimate the parameters which is done using source/training data which is equal to the non-covariate
shifted case. Then, we define the risk as the expectation over the mean squared error over test data and follow a similar
derivation as for (4):

R(θ̂) = E(xT ,yT )∼DT

[
(yT − ŷT (xT ))

2
]

(C-59)

= ExT

[
(β⊤

T xT + νT − ŷT (xT ))
2
]

(C-60)

= ExT

[(
(βT − V̂ θ̂)⊤xT + νT

)2]
(C-61)

= (βT − V̂ θ̂)⊤CT (βT − V̂ θ̂) + νT ν
⊤
T (C-62)

We consider again the orthogonal projector Φ = V̂ V̂ ⊤ to rewrite the following:

βt − V̂ θ̂ = βT −Φβ − V̂ Ŝ−1Û⊤ν. (C-63)

Finally, using the previous two results following the same derivation as for the non-covariate shifted risk, we can write the
expected risk w.r.t. the noise as

EνT

[
R(θ̂)

]
= (βT −Φβ)⊤CT (βT −Φβ) +

σ2
ν

n
Tr
(
V̂ ⊤CT V̂ V̂ ⊤Ĉ−1

S V̂
)
+ σ2

T , (C-64)

which concludes the proof.

Covariate shifted asymptotic PCR risk. In order to prove Theorem 4, we re-state the results for the bias-squared and
the variance terms first: The asymptotic bias-squared term is given by

Biasγ,T (θ̂)
2 =

[
β̄⊤
T β̄

⊤]
[

Λd,T −Λd,TPk

−PkΛd,T Pk + Pkr
2
wCz,TPk

] [
β̄T

β̄

]
(10)
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with β̄ = W−1β, β̄T = W−1βT and Λd,T ∈ Rd×d as the truncation of ΛT to the first d dimensions. The asymptotic
variance term is

Varγ,T (θ̂) =
σ2
ν

n

(
Tr

[
(Pkr

2
wCz,T + Ik)

1

µ(Λ, γ)

]
+ (p− d)

∫ (1+
√
γ)2

sc

1

s
dFγ(s)

)
(11)

with µ(Λ, γ) as diagonal matrix with entries µ(λi, γ) as mean of the spike eigenvalue distribution, Fγ as the Marčenko-

Pastur distribution and sc the value in R which satisfies max
(

k−d
p−d , 0

)
=
∫ (1+

√
γ)2

sc
dFγ(s).

Theorem 4 (Covariate-shifted asymptotic PCR risk). In the asymptotic limit n, p → ∞, such that p
n → γ ∈ (0,∞),

the expected risk of PCR under covariate shift will converge almost surely to

EνT

[
R(θ̂)

]
→ Biasγ,T (θ̂)

2 +Varγ,T (θ̂) + σ2
T .

Proof. We split the proof into the bias-squared and variance term.

Bias-squared term. We start with the bias-squared term BiasT (β)
2 = (βT−Φβ)⊤CT (βT−Φβ) from (9) and multiply

out the terms while using the definition of β = Wβ̄ and similarly for the βT

BiasT (β)
2 =β̄⊤

T W
⊤CTWβ̄T

−β̄⊤
T W

⊤CT V̂ V̂ ⊤Wβ̄

−β̄⊤W⊤V̂ V̂ ⊤CTWβ̄T

+β̄⊤W⊤V̂ V̂ ⊤CT V̂ V̂ ⊤Wβ̄

(C-65)

where we can use the same results about the asymptotic eigenvector shifts Pk when expanding the covariance CT =
UΛTV

T . Then, we can summarize the terms into

Biasγ,T (β)
2 →

[
β̄⊤
T β̄⊤]

[
Λd,T −Λd,TPk

−PkΛd,T Pk + Pkr
2
wCz,TPk

] [
β̄T

β̄

]
(C-66)

Which yields the result for the bias-squared term.

Variance term. We start with the variance term VarT (β) =
σ2
ν

n Tr
(
V̂ ⊤CT V̂ V̂ ⊤Ĉ−1

S V̂
)

from (9). Let us focus on the
Trace part first

V̂ ⊤CT V̂ V̂ ⊤Ĉ−1V̂ = V̂ ⊤V ΛTV
⊤V̂ Λ̂−1 (C-67)

= V̂ ⊤V
(
W r2wCz,TW

⊤ + Ip
)
V ⊤V̂ Λ̂−1 (C-68)

=
(
V̂ ⊤Vdr

2
wCz,TV

⊤
d V̂ + Ik

)
Λ̂−1 (C-69)

Again, we utilize the results from the eigenvector shift equation from (5) to obtain

V̂ ⊤CT V̂ V̂ ⊤Ĉ−1V̂ →
([

P
1/2
k

0

]
r2wCz,T

[
P

1/2
k 0

]
+ Ik

)
Λ̂−1 (C-70)

Here, we notice that the main difference to the non-covariate shifted result lies in the first part where we use Cz,T instead
of Cz . Therefore, using the same arguments as in the proof for Theorem 2 we obtain the final result for the variance term
as

Varγ,T (β) →
σ2
ν

n

(
Tr

[
(Pkr

2
wCz,T + Ik)

1

µ(Λ, γ)

]
+ (p− d)

∫ (1+
√
γ)2

sc

1

s
dFγ(s)

)
(C-71)

which concludes the proof.
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C.3.2. RISK OF BASELINE METHODS

Theorem 5 (Covariate-shifted asymptotic full regression risk). In the asymptotic limit n, p → ∞, such that p
n → γ ∈

(0,∞), the expected risk of the full regression model under covariate shift will converge almost surely to

Eν

[
R(β̂)

]
→ Biasγ,T (β̂)

2 +Varγ,T (β̂) + σ2
T

with the asymptotic squared bias term as

Biasγ,T (β̂)
2 = (β̄T − β̄)⊤Λd,T (β̄T − β̄)

for γ < 1 and as in Theorem 4 for γ ≥ 1 with k = p. The variance term V arγ(β̂) is equal to the definition of the
variance in Theorem 4 with k = p.

Proof. The variance term and the bias-squared term for γ ≥ 1 are equal to the proof for Theorem 4. For the bias-square
term for γ < 1 we have that BiasT (β)2 = (βT − Φβ)⊤CT (βT − Φβ). Now, we can follow our derivation for the
bias-squared term of Theorem 2 with Pk = I since we do not truncate the eigenvectors V̂ in this full regression case.
Hence, we expand C = UΛV ⊤ to obtain

Biasγ,T (β̂)
2 → (β̄T − β̄)⊤Λd,T (β̄T − β̄) (C-72)

since Φ = V̂ V̂ ⊤ = I for γ < 1. This concludes the proof.
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