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Abstract
Macro placement is a crucial step in modern chip
design, and reinforcement learning (RL) has re-
cently emerged as a promising technique for im-
proving the placement quality. However, exist-
ing RL-based techniques are hindered by their
low sample efficiency, requiring numerous on-
line rollouts or substantial offline expert data to
achieve bootstrap, which are often impractical in
industrial scenarios. To address this challenge,
we propose a novel sample-efficient framework,
namely EfficientPlace, for fast macro placement.
EfficientPlace integrates a global tree search algo-
rithm to strategically direct the optimization pro-
cess, as well as a RL agent for local policy learn-
ing to advance the tree search. Experiments on
commonly used benchmarks demonstrate that Ef-
ficientPlace achieves remarkable placement qual-
ity within a short timeframe, outperforming recent
state-of-the-art approaches.

1. Introduction
Macro placement is a crucial step in modern chip design,
as it significantly impacts the overall quality of the final
chip (MacMillen et al., 2000; Markov et al., 2012). This
task is essentially a large-scale optimization problem, which
requires determining the positions of macros (i.e., rectan-
gular circuit modules) on a chip canvas (i.e., a rectangular
container) without any overlap (Wang et al., 2009). Due
to the lengthy workflow of chip design, designers often
rely on surrogate metrics that effectively reflect the final
results to guide the optimization process in macro place-
ment. Among these metrics, a commonly adopted metric
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Figure 1. The bi-level framework in EfficientPlace. (a) High-
Level Global Search Tree. It includes a search tree to explore the
placement space. It identifies promising nodes (called frontiers),
and prunes less valuable nodes, thus pinpointing potential areas
for optimization. (b) Low-Level Local RL Rollouts. It employs
a RL agent to exploit the identified promising nodes, promoting
the evolution of solutions. (c) Synergistic Bi-Level Interaction.
The global tree search strategically guides the local policy towards
promising nodes, enhancing learning efficiency. Conversely, local
policy learning advances the tree search by effectively exploiting
these nodes, leading to the optimal placement solutions.

is the half-perimeter wirelength (HPWL), which provides
an approximation for the routing wirelength and is widely
used to measure the placement quality (Rabaey et al., 2002;
Lai et al., 2022; Shi et al., 2023). Despite the simplification
of the surrogate metrics, the macro placement task remains
challenging due to the vast design space, which can even
significantly surpass that of sophisticated strategy games
such as Go (Mirhoseini et al., 2021).

Existing macro placement methods mainly fall into two
categories: optimization-based methods and reinforce-
ment learning (RL)-based methods (Lai et al., 2023).
Optimization-based methods employ traditional optimiza-
tion algorithms, such as simulated annealing (SA) (Vashisht
et al., 2020) and evolutionary algorithms (EA) (Shi et al.,
2023) to directly address the large-scale optimization prob-
lem, exploring the design space to identify near-optimal
solutions. However, they often necessitate a post-processing
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step to accommodate the non-overlapping constraint, and
they generally lack the capacity to learn from past experi-
ences, thus remaining unsatisfactory in quality or efficiency.
In recent research, macro placement has been formulated as
a Markov Decision Process (MDP), where the macro posi-
tions are determined sequentially (Mirhoseini et al., 2021).
Reinforcement learning (RL) has emerged as a promising
technique for this task due to its ability to continuously im-
prove performance based on feedback from the environment
through trial and error (Cheng & Yan, 2021; Cheng et al.,
2022; Lai et al., 2022). However, RL methods typically
require a significant number of rollouts to achieve bootstrap,
resulting in low training efficiency (Lai et al., 2023).

This efficiency issue poses a significant hinder, especially in
industrial chip design when engineers require fast placement
strategies to streamline the workflow across multiple design
iterations. Early design stages like logical synthesis and
floorplanning rely on feedback from later stages, calling for
a placement strategy with both high quality and efficiency.
This presents challenges for RL-based methods (Shi et al.,
2023). The recent development, ChiPFormer (Lai et al.,
2023), has attempted to address the challenge of efficiency
through an offline RL strategy. However, its reliance on
a substantial amount of expert data, which is often scarce
in practical settings, limits its applications. Moreover, the
substantial variation among different chip domains necessi-
tates extensive fine-tuning steps of ChiPFormer, hindering
its practicality in industrial scenarios.

To address the aforementioned challenge in RL-based chip
placement, we propose a novel sample-efficient framework,
namely EfficientPlace, for fast macro placement. Its ef-
ficiency is derived from two aspects. Bi-level Learning-
Inside-Optimization Framework. Our basic observation
is the duality inherent in the macro placement task. On one
hand, it is an optimization problem, aimed to search for the
optimal solutions within a vast design space. On the other
hand, the vastness of the search space calls for deep rein-
forcement learning’s ability to learn and generalize through
trial and error. EfficientPlace leverages this duality with
a “learning-inside-optimization” framework. It facilitates
the accumulation of online experiences within the search
episode, creating a bi-level architecture that merges learning
with optimization. An shown in Figure 1, it encompasses
a global tree search and a local policy learning. At the
higher level, Monte Carlo Tree Search (MCTS) is used to
strategically navigate the search process. It utilizes a novel
mechanism of rolling frontiers to guide the agent to focus on
and exploit valuable states, thus enhancing the optimization
of elite solutions. The lower level leverages the RL agent’s
learning and generalization capabilities, promoting efficient
exploration across the expansive search space. This bi-level
framework generates a dynamic synergy: direct optimiza-
tion guided by MCTS and adaptive learning driven by RL.

Sample-Efficient RL Agent Design. To further improve
sample efficiency, we make two critical enhancements on
the RL agent design. First, the agent leverages wiremask
proposed by Lai et al. (2022)—a matrix that quantifies the
HPWL increment at each canvas position—to narrow down
the exploration space and guide the decision process. Sec-
ond, the RL agent incorporates a U-net architecture, which
allows for a high-resolution control, even on a canvas up to
512× 512 grid size, surpassing previous RL-based methods
in precision. This supports a fine-grained placement, further
improving the placement quality.

Extensive experiments on commonly used benchmark cir-
cuits demonstrate that EfficientPlace outperforms recent
state-of-the-art (SOTA) methods, including the offline RL-
based approach ChiPFormer (Lai et al., 2023) and the
optimization-based approach WireMask-EA (Shi et al.,
2023). Notably, EfficientPlace achieves the best Half-
Perimeter Wire Length (HPWL) within just 1, 000 steps
from scratch, costing 2.2 hours on each chip circuit on aver-
age. It outperforms ChiPFormer, even with a pre-training
and additional 2, 000 steps of fine-tuning, and WireMask-
EA, which takes 6.9 hours on average. We further conduct
extensive ablation studies to validate the significance of
each components in our method. We highlight this work’s
contributions to the research community as follows.

• The Novel Framework. We propose a new “learning-
inside-optimization” framework to leverage the duality
of macro placement. By integrating the strengths of
both paradigms, i.e., direct search and adaptive learn-
ing, our approach significantly boosts the efficiency of
macro placement.

• Superior Performance. Our proposed model, Effi-
cientPlace, sets new baselines in HPWL and training
efficiency, outperforming recent state-of-the-art meth-
ods on the widely recognized benchmarks.

• Comprehensive Analysis. We conduct extensive ex-
periments to investigate the impact of different opti-
mization and learning strategies and the components
on macro placement. This analysis provides essen-
tial insights that pave the way for future technological
advancements in this field.

2. Related Work
Optimization-based Methods Macro placement, as a
complex combinatorial optimization problem, has been tack-
led with various optimization-based methods, including an-
alytical methods, partition-based methods, and black-box-
optimization (BBO) methods. Analytical methods formu-
late the optimization objective as an analytical function of
module coordinates. Then it can be efficiently solved us-
ing techniques like quadratic programming (Kahng et al.,
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2005; Viswanathan et al., 2007a;b; Spindler et al., 2008;
Chen et al., 2008; Kim et al., 2012; Kim & Markov, 2012;
Cheng et al., 2018) and direct gradient descent (Lin et al.,
2019; 2020; Gu et al., 2020; Liao et al., 2022). Partitioning-
based methods, following a divide-and-conquer strategy,
split circuits into sub-circuits for assignment to chip sub-
regions (Roy et al., 2006; Khatkhate et al., 2004). These
methods, though efficient, often relax the non-overlap con-
straint during optimization, thus struggling to consistently
derive high-quality placements. Another perspective views
macro placement as a BBO problem. Simulated annealing
(SA) is a commonly used algorithm for such BBO prob-
lems, which creates new solutions through genotype pertur-
bation and phenotype evaluation (Kirkpatrick et al., 1983;
Sherwani, 2012; Ho et al., 2004; Shunmugathammal et al.,
2020; Vashisht et al., 2020). Solution representations like
sequence pair (Murata et al., 1996) and B∗-tree are pro-
posed to map genotypes to placement solutions (Chang
et al., 2000). Though achieving improved quality, these
methods are computationally inefficient. A recent advance-
ment is a WireMask-BBO (Shi et al., 2023), which employs
a wiremask-guided greedy strategy for post-processing, thus
enhancing the efficiency of BBO algorithms in the genotype
space. It supports different BBO algorithms and finds that
WireMask-EA, which applies evolutionary algorithms for
coordinate swapping, achieves the best overall performance
and outperforms previous RL-based methods.

Learning-based Methods As the scale of modern Very-
Large-Scale Integration (VLSI) systems expands, classical
optimization-based approaches are facing increasing chal-
lenges. Researchers have been exploring learning-based
methods, particularly RL-based methods, for better place-
ment quality. GraphPlace (Mirhoseini et al., 2021) first
models Macro Placement as a Reinforcement Learning (RL)
problem. Subsequently, DeepPR (Cheng & Yan, 2021) and
PRNet (Cheng et al., 2022) establish a streamlined pipeline
encompassing macro placement, cell placement, and rout-
ing. These methods treat density as a soft constraint, and
so they may violate non-overlap constraint during training.
MaskPlace (Lai et al., 2022) approaches placement prob-
lem at a pixel level, employing a position mask to avoid
overlap, as well as a wiremask—which represents the in-
crement of HPWL when placing next macro at each grid
of the canvas—as a visual input, and using dense reward to
boost the efficiency. ChiPFormer (Lai et al., 2023) is the
first offline RL method. It is pre-trained on various chips
via offline RL and then fine-tuned on unseen chips for better
efficiency. Despite the achievements, RL-based methods
continue to face the issue of sub-optimal sample efficiency.

Reinforcement Learning and MCTS Reinforcement
learning (RL) has been widely adopted in many decision-
making scenarios (Yang et al., 2022; Wang et al., 2022;

2023b; Zhang et al., 2023; Chen et al., 2024), especially in
the fields of combinatorial optimization (Wang et al., 2023a;
2024a; Ling et al., 2024; Li et al., 2024; Geng et al., 2024)
and chip design (Wang et al., 2024b;c). The integration
of RL and Monte Carlo Tree Search (MCTS) has led to
a series of breakthroughs (Browne et al., 2012), including
AlphaGo (Silver et al., 2016; 2017), MuZero (Schrittwieser
et al., 2020; Ye et al., 2021), AlphaTensor (Fawzi et al.,
2022), and AlphaDev (Mankowitz et al., 2023). These meth-
ods primarily employ MCTS to identify optimal decisions
and guide the RL agent for policy improvement, which ne-
cessitates numerous rollouts. We propose a new framework
that changes the role of the tree search. In our framework,
tree search serves as a global guide rather than a local pol-
icy optimizer. This approach prioritizes finding an optimal
solution over learning a comprehensive policy, offering a
specialized solution to macro placement’s demands.

3. Preliminaries
Macro Placement The ultimate goal of chip design is to
optimize the power, performance, and area (PPA) metrics of
the final chip. This design workflow is divided into several
stages, such as placement and routing, with the placement
stage subdivided into macro and cell placement. A variety of
heuristic metrics have been used to guide these stages to con-
tribute positively to the chip’s final quality, such as HPWL
and congestion. The Half Perimeter Wire Length (HPWL)
serves as an efficient estimator of wirelength, which is a
crucial metric for indicating the chip performance but can
be assessed only post-routing. Congestion indicates the
routability of placement outcomes and affects the manufac-
turing process directly. Among these metrics, HPWL stands
out as a widely accepted metric due to its computational effi-
ciency and has been extensively utilized in prior studies (Lai
et al., 2022; 2023; Shi et al., 2023) to assess placement qual-
ity. Additionally, Shi et al. (2023) has demonstrated that
optimizing HPWL could also improve other metrics, such
as congestion. Therefore, in alignment with the prior works,
we adopt HPWL as the primary optimization objective.

HPWL HPWL is defined as the sum of the half-perimeters
of the bounding boxes for all nets in the chip circuit. For-
mally, it is expressed as:

HPWL =
∑
ei∈E

(wi + hi), (1)

where E denotes the set of all nets in the chip, wi =
max
vj∈ei

xj − min
vj∈ei

xj and hi = max
vj∈ei

yj − min
vj∈ei

yj denote the

width and height of net ei, respectively, with vj representing
pins in the nets. The calculation HPWL is visually detailed
in Figure 7 in Appenix A.3.
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Figure 2. Method Overview. (1) Global Tree Search. We construct a search tree where each node represents a placement state. We
dynamically manage a set of “frontiers”, i.e., nodes that represent current states of focus. In each loop, multiple rollouts are executed with
a frontier as the initial state, serving to expand the tree and inform its evolution through backpropagation. The frontiers are updated in
each loop, and nodes not deserved revisiting are thus pruned. (2) Local Policy Learning. We employ a reinforcement learning (RL) agent
to execute the rollouts. It focuses on exploiting the frontier nodes and drive the tree’s expansion. The RL agent is trained during the search
process, enhancing its ability to conduct effective local searches within the broader tree structure.

Notations Our objective is to determine optimal positions
for a set of T macros, {M0,M1, · · · ,MT−1}, on an N×N
chip canvas. Previous works have proposed different heuris-
tics to determine the placement orders of the macros (Mirho-
seini et al., 2021; Lai et al., 2022). In this work, we simply
order the macros in descending order by their areas, as
empirically larger-area macros significantly influence the
overall layout results (Shi et al., 2023). Let A be the set
of position cells, with |A| = N2. Each macro Mi will be
assigned a position ai = (xi, yi) ∈ A, where (xi, yi) repre-
sents the xy-coordinate position of the bottom-left corner of
Mi. The position is denoted as ai because we can treat the
grid cell position as a placement action. The state of the can-
vas at any step t is uniquely defined by the macro positions
that have been determined up to the current step, denoted
as st = (a0, a1, · · · , at−1). We denote the empty canvas as
s0, and denote the valid state space at step t is denoted as
St. With the above notations, the macro placement task can
be described as:

min
s∈ST

HPWL(s). (2)

4. Our Approach
This section is organized as follows. We first elaborate the
motivation behind integrating learning within optimization
for macro placement (Section 4.1). We then present the
structure of the proposed bi-level framework, showcasing
the synergy between global tree search and local policy
learning (Section 4.2). Finally, we delve into the architecture
of our efficient RL agent (Section 4.3).

4.1. Motivation

We begin by revisiting the paradigms of optimization-based
and learning-based methods in the context of macro place-
ment. Optimization methods, such as SA that introduces
perturbations to the existing solution and WireMask-EA
that generates new solutions through macro position swaps,
primarily focus on identifying a singular, optimal solution
s∗T within the solution space ST . Their main strength lies
in their direct approach and consistent refinement of the
best solution. However, the lack of learning capability for
handling unseen states limits their sample efficiency in the
vast search spaces. In contrast, learning-based approaches
mainly aim to develop decision-making policies for posi-
tioning macros at various intermediate states. They leverage
neural networks’ generalization capabilities to achieve a
balance between exploration and exploitation. This feature
is particularly beneficial in navigating unexplored states.
However, existing RL methods start independent rollouts
from an empty canvas, which may lead to biases towards
sub-optimal states and redundant computation.

Macro placement is characterized by a dual nature. On one
hand, it involves finding the best solution for specific cir-
cuits, a task well-suited for optimization methods. On the
other hand, the vastness and complexity of the design space
call for the adaptive learning capabilities of RL. The strength
of RL in assimilating past insights, navigating through com-
plex spaces and making informed decisions in new situations
is valuable in such scenarios. This offers a motivation to
integrate the learning aspect of RL into the oriented opti-
mization process.
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Algorithm 1 EfficientPlace

Input: Circuit netlist, search tree T , RL agent πθ(at|st)
Parameters: Number of loops KTS, KRL
Output: Optimized placement solution
Initialize T .add node(s0),F ← {s0}
for i = 1 to KTS do

for j = 1 to KRL do
Select a frontier node s ∼ F
Execute a rollout from state s with πθ

Expand T with new states in the rollout
Backpropagate the rollout results
Update the RL agent πθ

end for
Update the frontiers F

end for
Return: The best placement solution s∗T in T

4.2. EfficientPlace: The Bi-Level Framework

Building on the above discussion, we introduce Efficient-
Place, a bi-level framework that merges the precision of tree
search algorithms with RL’s flexibility. The model structure
is outlined in Figure 2, with the algorithm detailed in Algo-
rithm 1. At the higher level, a global tree search is employed
for strategic guidance, focusing on identifying and lever-
aging promising states. The lower level is to harness the
learning and generalization of RL for efficient exploration.
This synergy between the two levels creates a dynamical
robust approach to macro placement, encapsulating the di-
rect search guided by MCTS and adaptive learning driven
by RL.

Global Search Tree We construct the search tree T as
follows. Each node in T corresponds to a potential state
st ∈ St. The placement process initiates from the root node
s0, representing an empty canvas. As the tree develops, each
newly encountered, unexplored state st is added as a new
node, progressively expanding T . We denote the children
of a node s as C(s), and the set of its descendant leaf nodes
as P(s). The expansion progresses towards the leaf nodes
sT ∈ ST , each signifying a specific placement outcome.

Frontiers & Node Selection We employ a beam-search
strategy for node selection, focusing on a set of nodes called
“frontiers”, denoted as F . Initially, F is set to {s0} and
is dynamically updated in a rolling forward manner. The
capacity of F is KF , ensuring that |F| ≤ KF throughout
the search. This constraint prompts us to concentrate on
the most promising states based on previous evaluations. In
each rollout, a frontier node s is randomly selected from
F , promoting diverse engagement by the RL agent and
reducing policy learning biases.

Algorithm 2 Updating Frontiers

Input: Search tree T , the current frontiers F
Parameters: Frontier set capacity KF , coefficient α
Output: Updated frontiers F
Fcand ←

⋃
s∈F C(s) \ F .

s1 ← argmins∈F Q(s), s2 ← argmaxs∈Fcand Q(s)
while S(s1) < S(s2) or |F| < KF do
s← s2.parent, Q(s)← maxs′∈C(s)\{s2} Q(s′)
S(s)← Q(s) + α · U(s)
while s ̸= root do
s← s.parent
Q(s)← maxs′∈C(s) Q(s′), S(s)← Q(s)+α·U(s)

end while
F ← F ∪ {s2} if |F| < KF else F \ {s1} ∪ {s2}
Fcand ← Fcand \ {s2}
s1 ← argmins∈F Q(s), s2 ← argmaxs∈Fcand Q(s)

end while
Return: frontiers F

Local Policy Learning & Tree Expansion Each RL roll-
out begins from a selected frontier node s, using it as the
initial state. After each individual rollout, the outcomes
are “backed up” (i.e., backpropagated) through the traversed
nodes to update their statistics. We record the visit count
N(s) and the minimum HPWL values for each visited node.
We define Q(s) as the best evaluation of a node s, i.e.,

Q(s) = max
sT∈P(s)

−HPWL(sT ). (3)

We use the proximal policy optimization (PPO) algo-
rithm (Schulman et al., 2017) to update the RL agent.

Updating Frontiers After a number of rollouts, we up-
date the frontiers before proceeding to the next loop. This
update mechanism is inspired by optimization methods that
maintain a pool of the best solutions. The goal is to keep
nodes inF that are likely to yield fruitful exploration. Given
the current F , we define the set of frontier candidates as all
children of the nodes in F , i.e.,

Fcand =
⋃
s∈F
C(s) \ F . (4)

Inspired by the UCT algorithm (Browne et al., 2012), we
define the scores of a state s as:

S(s) = Q(s) + α · U(s), (5)

where U(s) = 1√
N(s)

is the bonus to encourage maintain-

ing the current frontiers if they are under-exploited, and α
is the coefficient. Nodes with both higher Q values and
higher scores in Fcand are then selected as new frontiers.
Notice that the frontiers are not always those nodes with
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maximum depth. The specifics of this updating process are
elaborated in Algorithm 2. The following theorem shows
the improvement attribute of our tree search algorithm.

Theorem 1. Suppose we are at the kth iteration, with the
set of frontiers Fk where |Fk| = KF , the RL policy πk, and
the evaluation Qk. After conducting multiple RL rollouts,
we obtain an improved policy πk+1. We assume that every
s ∈ Fk is visited, and that vπk+1(s) ≥ vπk(s) for every s ∈
Fk, where vπ represents the value function. This iteration
results in the updated Qk+1 and Fk+1. Then we have

Es∼Fk+1
[Qk+1(s)] ≥ Es∼Fk

[Qk(s)], (6)

and

Eπk+1
[Es∼Fk+1

[Qk+1(s)]] ≥ Es∼Fk
[vπk+1(s)]. (7)

The proof can be found in Appendix A. We can conclude
from this theorem that our search algorithm consistently
enhances the quality of the solutions over iterations, and
that it outperforms the pure RL method in the sense of
expectation.

4.3. RL Agent Architecture

In alignment with the previous work MaskPlace (Lai et al.,
2022) and ChiPFormer (Lai et al., 2023), our RL agent takes
visual inputs. These inputs include an image of the current
canvas, the position mask that identifies valid action posi-
tions, and the wiremask, which indicates the HPWL increase
for placing a macro at each canvas position. The method-
ologies for computing position masks and wiremasks are
illustrated in Figure 3. We identify two critical components
that effectively boost the efficiency of macro placement,
which are different from previous works.

Wiremask for Reducing Search Space The concept of
wiremask was introduced by Lai et al. (2022) as the visual
inputs to the neural networks. Shi et al. (2023) then em-
ployed wiremask to devise a greedy policy to guide the BBO
algorithms. Similar to them, we restrict actions to the grid
areas with the minimal HPWL increment, which narrows
down the search space, thereby significantly enhancing the
training efficiency and the placement quality.

U-Net for Fine-Grained Control Precise control over the
canvas grid is essential for accurate macro placement. To
achieve a fine-grained control without sacrificing efficiency,
we utilize a U-Net architecture as the policy network. The
U-Net’s left side serves as the encoding stage, processing
visual inputs and integrating them with netlist information
and timestep embeddings. The right side, functioning as the
decoder, outputs policy probabilities. The left-side features
are fused into the right-side layers so that the shallow-layer
input information is effectively conveyed to the decoder,
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Figure 3. Illustation of the position mask and wiremask calcu-
lation. In this figure, M1 and M2 represent macros that have
already been placed, and M3 represents the next macro to place.
The position mask is a matrix to identify feasible grid positions for
placement, which are marked in in green. The red and green solid
boxes represent the bounding boxes of two nets. The wiremask
is a matrix to quantify the increment of HPWL that would result
from placing M3 in each specific grid position.

facilitating more precise control over placement decisions.
Moreover, the decoder employs bilinear upsample blocks to
allow the network to produce close values for neighboring
grid points. This design empowers the RL agent to leverage
the relative positioning of grid lattices, thus enhancing the
precision and efficiency of exploration. With the above
model structure, we achieve efficient training even on large
canvases up to 512×512, leading to improvements in HPWL
performance. The detailed network structure is in Figure 8.

5. Experiments
Benchmarks and Settings. We evaluate EfficientPlace
and compare it with several recent state-of-the-art macro
placement methods, including GraphPlace (Mirhoseini et al.,
2021), DeepPR (Cheng & Yan, 2021), MaskPlace (Lai
et al., 2022), ChiPFormer (Lai et al., 2023), SA (Cheng
et al., 2023), and WireMask-EA (Shi et al., 2023). Among
these methods, GraphPlace, DeepPR, MaskPlace and ChiP-
Former are RL-based methods, and SA and WireMask-
EA are BBO-based methods. All the experiments are
conducted on a single machine with NVidia GeForce
GTX 3090 GPUs and Intel(R) Xeon(R) E5-2667 v4 CPUs
3.20GHz. Following the previous studies (Lai et al.,
2022; 2023; Shi et al., 2023), we evaluate these meth-
ods on the commonly used ISPD2005 benchmark (Nam
et al., 2005), which comprises eight datasets: adaptec1-
4 and bigblue1-4. Further details on these circuits and
the experimental setup are available in Appendix A.3.
Our code is available at https://github.com/
MIRALab-USTC/AI4EDA-EfficientPlace.git.

Main Results. Table 1 presents results of macro place-
ments using different approaches. We evaluate each ap-
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Table 1. HPWL values (×105) obtained from seven compared methods on eight chip circuits. The results of the SA algorithms are derived
by running the code from Cheng et al. (2023). The results of other baseline methods are from Shi et al. (2023) and Lai et al. (2023).
As WireMask-EA does not provide the results on bigblue2, we run their released code with the grid size as 128. Results are from five
independent runs with different random seeds, and we report the means and standard deviations (mean±std). Numbers after method
names denote the steps required to achieve the reported results. We also report the runtime of EfficientPlace and WireMask-EA for
comparison. We mark the best results in bold and underline the second-best results.

Method adaptec1 adaptec2 adaptec3 adaptec4 bigblue1 bigblue2 bigblue3 bigblue4

GraphPlace (50k) 30.01±2.98 351.71±38.20 358.18±13.95 151.42±9.72 10.58±1.29 14.78±0.95 357.48±47.83 440.70±15.95
DeepPR (3k) 19.91±2.13 203.51±6.27 347.16±4.32 311.86±56.74 23.33±3.65 11.38±0.20 430.48±12.18 433.90±5.26

MaskPlace (3k) 7.62±0.67 75.16±4.97 100.24±13.54 87.99±3.25 3.04±0.06 5.75±0.11 90.04±4.83 103.26±2.69
ChiPFormer (2k) 6.62 ±0.05 67.10±5.46 76.70±1.15 68.80±1.59 2.95±0.04 5.44±0.10 72.92±2.56 102.84±0.15

SA (1M) 19.24±1.42 102.84± 5.83 140.34± 7.48 148.57± 23.08 5.92± 0.98 12.09± 0.42 270.46± 43.76 248.38± 12.25
(10.18h) (10.37h) (15.87h) (19.87h) (10.25h) (5.46h) (19.65h) (19.55h)

WireMask-EA (1k) 6.15±0.15 64.38±4.43 58.18±1.04 59.52±1.71 2.15±0.01 5.14±0.06 59.85±3.39 77.54±0.67
(4.78h) (4.18h) (4.60h) (7.96h) (2.30h) (0.37h) (17.48h) (13.92h)

EfficientPlace (0.5k) 6.04±0.08 47.04±1.44 57.18±1.17 59.47±0.58 2.15±0.01 4.79±0.17 62.49±2.95 78.72±1.10
(0.43h) (0.51h) (0.95h) (2.06h) (0.71h) (0.28h) (1.90h) (1.76h)

EfficientPlace (1k) 5.94±0.04 46.79±1.60 56.35±0.99 58.47±1.61 2.14±0.01 4.67±0.11 58.38±0.54 76.63±1.02
(0.84h) (0.83h) (1.87h) (3.81h) (1.40h) (0.53h) (3.71h) (3.62h)
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Figure 4. HPWL (×105) vs. run steps of EfficientPlace and WireMask-EA. The shaded region represents the standard error derived from
5 independent runs. For WireMask-EA, we run their released code to produce the results.

proach over five independent runs with different random
seeds, and report the mean and variance of HPWL achieved.
EfficientPlace consistently achieves the lowest HPWL val-
ues across all chips within 1, 000 steps, averaging 2.2
hours on per chip. This performance surpasses that of
MaskPlace trained with 3, 000 steps, and ChiPFormer with
its pre-training and additional 2, 000 steps of fine-tuning.
It also outperforms WireMask-EA, which takes 6.9 hours
per chip. Moreover, EfficientPlace achieves second-best
results within merely 500 steps on most of the chips, further
demonstrating its remarkable sample efficiency.

Runtime & Step Analysis. As WireMask-EA is the very
recent state-of-the-art approach, we further compare Effi-
cientPlace with WireMask-EA by analyzing their HPWL
progression over run steps in Figure 4. Following Shi et al.
(2023), we use the best HPWL value reached by each step
for comparison. We also present the HPWL trend over the
wall clock time in Figure 9 in Appendix B. The results
demonstrate that Efficient outperforms WireMask-EA on
both sample efficiency and time efficiency.
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Figure 5. Ablation Study on Model Components. We test Effi-
cientPlace with different configurations on the adaptec1 dataset,
and present HPWL vs. training step.

Congestion Results. We further investigate the conges-
tion results, using the RUDY algorithm (Spindler & Jo-
hannes, 2007) to assess the congestion values. The detailed
settings and results can be found in Appendix B.3. Though
the primary object of our placer is to minimize the HPWL,
these results demonstrate that such optimization not only
optimizes HPWL values but also positively affects the con-
gestion result, aligning the findings from Shi et al. (2023).

Mixed-size Placement. We then extend our analysis to
mixed-size placement (incorporating both macros and stan-
dard cells) to illustrate how improved macro placement
impacts subsequent design stages. Specifically, we use Effi-
cientPlace for macro placement and then employ DREAM-
Place (Lin et al., 2019) for cell placement. We report the full
placement HPWL results and provide the results visualiza-
tion in Appendix B.2. The detailed settings and results can
be found in Appendix B.3. These results also demonstrate
that such optimization not only improves macro placement
but also has a positive impact on subsequent cell placement.

Ablation Study on Model Components. We conduct ex-
tensive ablation studies to investigate the impact of each
component in our approach, including the global tree search
algorithm, the U-Net policy architecture, and the bilinear
upsampling technique. Results are in Figure 5. We test
the performance on the ISPD2005 adaptec1 dataset
with the following different configurations. (1) RL + U-
Net + Bilinear: Here, we maintain the RL agent identical
to that in EfficientPlace but exclude the global tree search.
Results show that the absence of tree search leads to no-
table performance oscillation, underscoring the tree search’s
significance in stabilizing training and promoting conver-
gence. (2) RL + MCTS + Bilinear: We drop the connection
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Figure 6. Comparison Study on Grid Sizes. We test Efficient-
Place with different grid resolutions on the adaptec1 dataset, and
present HPWL vs. training step.

between the U-Net’s encoder and decoder, resulting in di-
minished results, which demonstrates the importance of
U-Net structure for a more precise control. (3) RL + MCTS
+ U-Net + Deconv: Replacing bilinear upsampling with
deconvolutional layers, despite more parameters, results
in inferior performance. This is because the bilinear up-
sampling produces closer action probabilities for adjacent
grids, effectively capturing the spatial relationship between
actions, thus achieving a more efficient exploration. (4) RL
+ MCTS + U-Net + Bilinear: This combination represents
EfficientPlace’s full configuration and achieves the best per-
formance, validating the effectiveness of our approach.

Comparison Study on Grid Sizes. EfficientPlace’s de-
sign allows for precise control through finer grid resolutions.
To showcase the benefits of increased grid granularity, we
performed comparative analyses across different grid sizes
N . Figure 6 illustrates EfficientPlace’s performance on
ISPD2005 adaptec1 across varying grid sizes. The results
demonstrate that finer grids facilitate better learning curves,
boost sample efficiency, and lead to lower HPWL metrics,
showing the advantages of a more detailed grid approach.

6. Limitations, Outlook, and Conclusion
6.1. Limitation

We propose EfficientPlace for fast macro placement, while
it mainly focuses on optimizing HPWL without explicitly
considering more surrogate metrics. Future works will aim
to incorporate additional metrics like dataflow and regularity
for better alignment with the final PPA metrics.
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6.2. Outlook

Our introduction of the “learning-inside-optimization”
framework, recognizing the dual aspects of macro place-
ment, sets the stage for further exploration in related do-
mains. We expect this novel approach would inspire further
research and applications in similar challenges.

6.3. Conclusion

In this papre, we propose EfficientPlace for fast macro place-
ment. It harnesses the strengths of optimization and learn-
ing based methods to significantly boost sample efficiency.
Experiments demonstrate that EfficientPlace outperforms
recent state-of-the-art macro placement methods.
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A. Implementation Details
A.1. Model Implementation

HPWL Calculation. We present a detailed example in Figure 7 to illustrate the calculation of HPWL.

Net 1
Net 2

Figure 7. The calculation of HPWL. The blue rectangles M1, M2 and M3 represent the placed macros. Solid boxes in red and green
represent illustrate the bounding boxes for two distinct nets on the canvas. Pins connected to each net are marked as colored dots, with red
dots for pins in Net 1 and green dots for pins in Net 2. Here, HPWL is w1 + h1 + w2 + h2 = 20.

RL Agent. As introduced in Section 4.3, our RL agent employs a U-Net architecture. Below, we provide a comprehensive
visualization of our policy network’s structure in Figure 8. For a complete understanding of EfficientPlace’s configuration,
the specific hyperparameters are listed in Table 2.
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Figure 8. RL Agent Architecture. Our policy network adopts a U-Net architecture. The encoding stage, on the U-Net’s left side,
processes visual inputs, incorporating netlist information and timestep embeddings to enhance contextual awareness. Conversely, the
decoder on the right side generates policy probabilities. Features from the encoder are integrated into the decoder to ensure the full
transmission of input data, enabling precise control over placement decisions. The position mask and wiremask are then used to limit the
output actions, thus effectively reducing the vast search space.
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Table 2. Model Hyperparameters.

layer name kernel size output size

Actor

CNN 1 3×3, 8 (8,256,256)
CNN 2 3×3, 16 (16,128,128)
CNN 3 3×3, 32 (32,16,16)
CNN 4 3×3, 32 (32,4,4)

FC - (512,)

Critic

CNN 1 3×3, 8 (8,256,256)
CNN 2 3×3, 16 (16,128,128)
CNN 3 3×3, 32 (32,16,16)
CNN 4 3×3, 32 (32,4,4)
FC 1 - (512,)
FC 2 - (1,)

time embedding embedding - (32,)

A.2. Proof to Theorem 1

Theorem 1. Suppose we are at the kth iteration, with the set of frontiers Fk where |Fk| = KF , the RL policy πk, and the
evaluation Qk. After conducting multiple RL rollouts, we obtain an improved policy πk+1. We assume that every s ∈ Fk is
visited, and that vπk+1(s) ≥ vπk(s) for every s ∈ Fk, where vπ represents the value function. This iteration results in the
updated Qk+1 and Fk+1. Then we have

Es∼Fk+1
[Qk+1(s)] ≥ Es∼Fk

[Qk(s)], (1)

and
Eπk+1

[Es∼Fk+1
[Qk+1(s)]] ≥ Es∼Fk

[vπk+1(s)]. (2)

Proof. According to the updating rule in Algorithm 2, a frontier candidate s is updated as a frontier node only when it
replaces another frontier node s′ with lower Q value. That is, for s ∈ Fk+1\Fk, there exists a corresponding s′ ∈ Fk\Fk+1,
such that Qk+1(s

′) ≤ Qk+1(s). Then have

Es∼Fk+1
[Qk+1(s)] =

1

|KF |

 ∑
s∈Fk+1∩Fk

Qk+1(s) +
∑

s∈Fk+1\Fk

Qk+1(s)


≥ 1

|KF |

 ∑
s∈Fk+1∩Fk

Qk+1(s) +
∑

s′∈Fk\Fk+1

Qk+1(s
′)


=Es∼Fk

[Qk+1(s)].

(3)

By definition, we have
Qk(s) = max

sT∈Pk(s)
−HPWL(sT ), (4)

where Pk denotes the set of descendant leaf nodes of s in the kth search tree. As the tree expands, we have Pk(s) ⊂ Pk+1(s),
which derives Qk+1(s) ≥ Qk(s). Thus we have

Es∼Fk+1
[Qk+1(s)] ≥ Es∼Fk

[Qk+1(s)] ≥ Es∼Fk
[Qk(s)]. (5)

Since each node s ∈ Fk is assumed to be visited, the current Qk+1(s) is an evaluation of the current policy πk+1. Thus we
have Eπk+1

Qk+1(s) ≥ vπk+1
(s), which derives

Eπk+1
[Es∼Fk+1

[Qk+1(s)]] ≥ Es∼Fk
[Eπk+1

[Qk+1(s)]] ≥ Es∼Fk
[vπk+1(s)]. (6)
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A.3. Dataset & Experimental Details

Table 3 details the statistics for eight circuits from the ISPD2005 benchmark, used as our test datasets. The “Macros
(to place)” column specifies the quantity of macros chosen for placement in our study. For bigblue2 and bigblue4, due to
their extensive numbers of of macros, we follow Lai et al. (2023) and select 256 and 1024 macros, respectively, for a fair
comparison.

Table 3. Statistics of public benchmark circuits.

Circuit Macros Macros (to place) Hard Macros Standard Cells Nets Pins Area Util(%)

adaptec1 543 543 63 210904 221142 944063 55.62
adaptec2 566 566 159 254457 266009 1069482 74.46
adaptec3 723 723 201 450927 466758 1875039 61.51
adaptec4 1329 1329 92 494716 515951 1912420 48.62
bigbule1 560 560 32 277604 284479 1144691 31.58
bigbule2 23084 256 52 534782 577235 2122282 32.43
bigbule3 1293 1293 138 1095519 1123170 3833218 66.81
bigbule4 8170 1024 52 2169183 2229886 8900078 35.68

Experimental hyperparameters, including those for macro and subsequent standard cell placement, are outlined in Table 4.
“Num of update epochs” refers to the epochs count utilized per RL update, which is set as 10. “Update frontiers begin”
denotes the training phase warm up for frontier updates, which is set as 200. “Update frontiers freq” establishes how often
frontiers are updated, which is set as 2. “Num of episodes” indicates the episode count per PPO updating loop, which is set
as 5. We employ different grid sizes for different circuits according to their characteristics, opting for resolutions as 128 for
adaptec1,2 and bigblue2, 256 for bigblue3,4, and 512 for adaptec3,4.

Table 4. Hyper-parameters used in our experiments.

Configuration Value

num of update epochs 10
update frontiers freq 2

update frontiers begin 200
num of episodes 5

density weight in (phase 2) 0
number of iterations (phase 2) 1000

density weight in (phase 3) 8e-3
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B. Additional Results
B.1. Time Efficiency

Figure 9 presents the HPWL performance of EfficientPlace and BBO vs. wall clock time, further demonstrating the
advantage in efficiency of our approach.
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Figure 9. Results of Runtime. HPWL curve on runtime of EfficientPlace compared with BBO. EfficientPlace’s HPWL curve consistently
remains below that of BBO within the runtime range tested, while also achieving faster convergence.

B.2. Mixed-Size Placement Results

Table 5 presents the results of mixed-size placement HPWL metrics across various methods. The results illustrate
EfficientPlace’s capability to excel in mixed-size placement. The benchmark settings and results for other methodologies,
including DREAMPLACE (Liao et al., 2022), SP-SA (Murata et al., 1995), MaskPlace (Lai et al., 2022), and WireMask-
EA (Shi et al., 2023), are from Shi et al. (2023). EfficientPlace approaches the mixed-size placement challenge in two distinct
phases: (1) initial cell placement using DREAMPlace (Liao et al., 2022) based on the macro positions determined by our
method, bypassing the legalization phase; followed by (2) a comprehensive mixed placement phase utilizing DREAMPlace,
which integrates the initial placement with further legalization and detailed placement processes. Since WireMask-EA (Shi
et al., 2023) does not include bigblue2 in their experiments, we extend our evaluation to this dataset using their prescribed
settings for a thorough comparison. Furthermore, Figure 10 offers visual representations of placements achieved by
EfficientPlace for all circuits within the ISPD2005 benchmark, demonstrating our method’s effectiveness visually.

Table 5. Mixed-size Placed Results. Comparison of HPWL values (×107 ) of all methods listed on mixed-size placement task. The best
results (the lowest HPWL) are highlighted in bold. EfficientPlace can also achieve the best mixed-size placement result.

benchmark adaptec1 adaptec2 adaptec3 adaptec4 bigbule1 bigbule2 bigbule3 bigbule4

DREAMPlace 11.10 ±1.31 13.84 ± 1.74 17.03 ± 0.99 24.37 ± 1.13 10.06 ± 0.28 / 36.51 ± 0.56 175.86 ± 2.23
SP-SA+DREAMPlace 10.18 ± 0.18 14.80 ± 0.01 30.63 ± 0.82 30.63 ± 0.82 10.70 ± 0.01 / 63.60 ± 0.12 203.79 ± 0.36

MaskPlace+DREAMPlace 10.86 ± 0.01 12.98 ± 0.58 26.14 ± 0.07 26.14 ± 0.07 10.64 ± 0.01 / 54.98 ± 1.06 /
WireMask-EA+DREAMPlace 8.93 ± 0.01 9.20 ± 0.05 21.72 ± 0.01 21.72 ± 0.01 10.35 ± 0.02 14.88±0.01 42.52 ± 0.11 171.23 ± 0.48

EfficientPlace(ours) 7.20±0.12 9.20±0.61 16.49±1.07 14.70±0.25 8.67±0.10 9.98±0.02 28.48±0.96 125.02±0.02
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(a) adaptec1 (b) adaptec2 (c) adaptec3 (d) adaptec4

(e) bigblue1 (f) bigblue2 (g) bigblue3 (h) bigblue4

Figure 10. Visualization of mixed-size placement results by EfficientPlac for ISPD2005 benchmark. Macros are marked in red, while
standard cells are represented in blue.

B.3. Congestion Results

Table 6 presents a comparison of congestion and HPWL metrics between EfficientPlace and the state-of-the-art methods
MaskPlace (Lai et al., 2022) and WireMask-EA (Shi et al., 2023), utilizing RUDY for congestion calculations. In alignment
with Shi et al. (2023), we standardize our congestion values to 1 for a direct comparison. Given the impact of grid size on
RUDY’s outcomes, we ensure a consistent canvas partitioning across all methods for each evaluation. In both congestion
and HPWL assessments, EfficientPlace demonstrates superior performance.

Table 6. Congestion Results. Comparison on HPWL (×105) and Congestion (Cong., lower are better)
Benchmark adaptec1 adaptec2 adaptec3 adaptec4 bigblue1 bigblue2 bigblue3 bigblue4

Metrics HPWL Cong. HPWL Cong. HPWL Cong. HPWL Cong. HPWL Cong. HPWL Cong. HPWL Cong. HPWL Cong.

MaskPlace 7.10 1.17 85.46 2.09 84.91 1.18 75.46 1.20 2.6 4.43 / / 114.01 1.70 / /
EA 5.97 1.21 61.01 1.46 59.03 1.11 63.22 1.04 2.17 1.45 4.98 1.01 61.39 1.10 90.7 1.04

OURS 5.9 1 45.3 1 55.56 1 56.35 1 2.07 1 4.65 1 55.28 1 75.8 1
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