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Abstract
Model-Free Reinforcement Learning (MFRL),
leveraging the policy gradient theorem, has
demonstrated considerable success in continuous
control tasks. However, these approaches are
plagued by high gradient variance due to zeroth-
order gradient estimation, resulting in suboptimal
policies. Conversely, First-Order Model-Based
Reinforcement Learning (FO-MBRL) methods
employing differentiable simulation provide gra-
dients with reduced variance but are susceptible to
sampling error in scenarios involving stiff dynam-
ics, such as physical contact. This paper investi-
gates the source of this error and introduces Adap-
tive Horizon Actor-Critic (AHAC), an FO-MBRL
algorithm that reduces gradient error by adapting
the model-based horizon to avoid stiff dynam-
ics. Empirical findings reveal that AHAC out-
performs MFRL baselines, attaining 40% more
reward across a set of locomotion tasks and ef-
ficiently scaling to high-dimensional control en-
vironments with improved wall-clock-time effi-
ciency. adaptive-horizon-actor-critic.github.io

1. Introduction
The Policy Gradients Theorem (Sutton et al., 1999) has en-
abled the development of Model-Free Reinforcement Learn-
ing (MFRL) approaches for solving continuous motor con-
trol tasks. Although these methods have achieved impres-
sive results (Hwangbo et al., 2017; Akkaya et al., 2019;
Hwangbo et al., 2019), they are hampered by high gradi-
ent variance leading to unstable learning and suboptimal
policies (Mohamed et al., 2020), as well as subpar sample ef-
ficiency (Amos et al., 2021). The latter can be circumvented
via the use of efficient vectorized physics simulators. These
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Figure 1. Overview. We find that First Order Model-Based RL
(FO-MBRL) methods suffer from erroneous gradients arising from
stiff dynamics (∥∇f(s, a)∥ ≫ 0). Our proposed method, AHAC,
truncates model-based trajectories at the point of contact, avoiding
both the gradient sample error and learning instability exhibited
by previous methods using differentiable simulation.

simulators, when integrated with efficient MFRL methods,
facilitate rapid training such as learning quadruped walking
in minutes (Rudin et al., 2022). However, the effectiveness
of MFRL in addressing motor control challenges, even with
extensive data, remains questionable.

An alternative, Model-Based Reinforcement Learning
(MBRL), focuses on learning environmental dynamics to
enhance sample efficiency and facilitate novel methods of
policy optimization. Recent MBRL research has introduced
innovative dynamics models and policy learning techniques,
but often without extensive independent evaluation of each
component (Hafner et al., 2019b; 2023; Hansen et al., 2023).

When a dynamics model is available, one could employ
first-order methods for policy learning, deemed theoreti-
cally more efficient (Mohamed et al., 2020; Berahas et al.,
2022). This approach has been investigated in model-based
control, where dynamics models guide trajectory planning
(Kabzan et al., 2019; Kaufmann et al., 2020). However,
using first-order methods to learn feedback policies within
typical MBRL frameworks is less explored. This paper aims
to evaluate First-Order MBRL (FO-MBRL), concentrating
on policy learning and utilizing differentiable simulation for
dynamics modeling.

Where model-based control literature often designs bespoke
models for each problem, differentiable simulation aims
to create a physics engine that is fully differentiable (Hu
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et al., 2019a; Freeman et al., 2021; Heiden et al., 2021; Xu
et al., 2021). Thus, applying it to a different problem is
similar to using a different definition of the environment
in the simulation setup (e.g., joints and links) and leaving
the physics to be calculated by the engine. Short Horizon
Actor-Critic (SHAC) (Xu et al., 2022) is an FO-MBRL ap-
proach leveraging differentiable simulation and the popular
actor-critic paradigm (Konda & Tsitsiklis, 1999). The actor
is trained in a first-order fashion, while the critic is trained
model-free. This allows SHAC to learn through the highly
non-convex landscape by using the critic as a smooth surro-
gate of the cumulative reward. While SHAC demonstrates
impressive sample efficiency, it also faces challenges such
as brittleness, learning instability, and dependency on exten-
sive hyper-parameter tuning.

This study addresses these issues, shifting the focus from
sample efficiency to the asymptotic performance of FO-
MBRL methods in massively parallel differentiable simu-
lation. Our analysis indicates that first-order methods suf-
fer from significant sampling error in gradient estimation,
primarily due to high dynamical gradients from stiff con-
tact approximation (∥∇f(s,a)∥ ≫ 0) (Suh et al., 2022;
Lee et al., 2023), leading to inefficiency and suboptimal
policies. To address this, we propose Adaptive Horizon
Actor-Critic (AHAC), a FO-MBRL algorithm that adjusts
its trajectory rollout horizon to circumvent stiff dynamics
(Figure 1). Experimentally, our method shows superior
asymptotic performance over MFRL baselines in complex
locomotion tasks, achieving up to 64% higher reward even
when baselines are given 106 times more training data. Fur-
ther, AHAC’s efficient use of first-order gradients enables
scaling to high-dimensional motor control tasks with 152
action dimensions.

2. Preliminaries
This study focuses on discrete-time and finite-horizon rein-
forcement learning scenarios characterized by system states
s ∈ Rn, actions a ∈ Rm, and deterministic dynamics de-
scribed by the function f : Rn×Rm → Rn. Actions at each
timestep t are sampled from a tanh-transformed stochastic
policy at ∼ πθ(·|st), parameterized by θ ∈ Rd, and yield
rewards from r : Rn × Rm → R. The H-step return is
defined as:

RH(s1,θ) =

H∑
h=1

r(sh,ah)

s.t. sh+1 = f(sh,ah) ah ∼ πθ(·|sh)

The policy’s objective is to maximize the cumulative reward:

max
θ

J(θ) := max
θ

E s1∼ρ
ah∼π(·|sh)

[RH(s1)] (1)

where ρ is the initial state distribution. Without loss of
generality, we simplify our derivations:

Assumption 2.1. ρ is a dirac-delta distribution.

Similar to prior work Duchi et al. (2012); Berahas et al.
(2022); Suh et al. (2022), we are trying to exploit the smooth-
ing properties of stochastic optimization on the landscape
of our optimization objective. Following recent success-
ful deep-learning approaches to MFRL (Schulman et al.,
2017; Haarnoja et al., 2018), we assume that our policy is
stochastic, parameterized by θ and expressed as πθ(·|s).

To address the main optimization problem in Equation 1, we
consider stochastic gradient estimates of J(θ) using zero-
order and first-order methods. To guarantee the existence of
∇J(θ), we need to make certain assumptions:
Definition 2.2. A function g : Rd → Rd has polynomial
growth if there exists constants a, b such that ∀z ∈ Rd,
||g(z)|| ≤ a(1 + ||z||b).
Assumption 2.3. To ensure gradients are well defined, we
assume that the policy πθ(·|s) is continuously differentiable
∀s ∈ Rn,∀θ ∈ Rd. Furthermore, the system dynamics f
and reward r have polynomial growth.

2.1. Zeroth-Order Batch Gradient (ZOBG) estimates

These weak assumptions are sufficient to make J(θ) differ-
entiable in expectation by taking samples of the function
value in a zeroth-order fashion (Williams, 1992). This gives
estimates of ∇J(θ) via the stochasticity introduced by π,
as first shown in (Williams, 1992), and commonly referred
to as as the Policy Gradient Theorem (Sutton et al., 1999).
Definition 2.4. Given a sample of the H-step return
RH(s1) =

∑H
h=1 r(sh,ah) following the policy π, we can

estimate zero-order policy gradients via:

∇[0]
θ J(θ) := Eah∼πθ(·|sh)

[
RH(s1)

H∑
h=1

∇θ log πθ(ah|sh)

]
(2)

Lemma 2.5. Under Assumptions 2.1 and 2.3, the ZOBG
is an unbiased estimator of the stochastic objective
E
[
∇̄[0]J(θ)

]
= ∇J(θ) where ∇̄[0]J(θ) is the sample

mean of N Monte Carlo estimates of Eq. 2.

These zero-order policy gradients are known to have high
variance (Mohamed et al., 2020), and one way to reduce
their variance is by subtracting a baseline from the func-
tion estimates. Similar to (Suh et al., 2022), we subtract
the return given by the noise-free policy rollout where(
RH(s1)−R∗

H(s1)
)

is used instead of RH(s1) in Eq. 2.

2.2. First-Order Batch Gradient (FOBG) estimates

Given access to a differentiable simulator, first-order gradi-
ents induced by the policy π can be computed via:

∇[1]
θ J(θ) := Eah∼πθ(·|sh)[∇θRH(s1)] (3)
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Figure 2. The left figure shows the Soft Heaviside of Eq 4. The
right figure shows the gradient sample error. We observe that
FOBG estimates with finite N exhibit a higher sample error.

However, for these gradients to be well-defined, we need to
make further assumptions:

Assumption 2.6. The dynamics f(s,a) and the reward
r(s,a) are continuously differentiable ∀s ∈ Rn,∀a ∈ Rm.

Although these assumptions are necessary for the analysis
of the next section, we relax them in our experiments section
and consider contemporary benchmarks.

3. Policy learning through contact
Prior research has established that first-order gradients are
statistically unbiased (Schulman et al., 2015). However,
the sample error under finite N is heavily dependent on
the function they are trying to approximate, referred to as
”empirical bias” (Suh et al., 2022; Lee et al., 2023). This
paper explores this sampling error using the soft Heaviside
function, an approximation of the Coulomb friction model,
which is pivotal in discontinuous function analysis within
physics simulations:

H̄(x) =


1 x > ν/2

2x/ν |x| ≤ ν/2

−1 x < −ν/2
(4)

where a ∼ πθ(·) = θ + w and w ∼ N (0, σ2). As shown
in Appendix A, Eπ

[
H̄(a)

]
is a sum of error functions

whose derivative ∇θ Eπ
[
H̄(a)

]
̸= 0 at θ = 0. However,

using FOBG, we obtain ∇θH̄(a) = 0 in samples where
|a| > ν/2, which occurs with probability at least ν/σ

√
2π.

Since in practice we are limited in sample size, this
translates to sampling error that is inversely proportional
to sample size, as shown in Figure 2. Notably, when
ν → 0, we achieve a more accurate approximation of the
underlying discontinuous function, but we also increase the
likelihood of obtaining erroneous FOBG, thus amplifying
error in stochastic scenarios. We use this particular example
as the differentiable simulator used in our experiments is
based on the Coulomb friction model.
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Figure 3. Toy example where a ball is shot against a wall try-
ing to reach the target position in blue. The bottom two figures
show gradient sample error and Expected SNR estimation with
N = 1024 samples. Darker shades designate point of contact,
which negatively impact FOBG error. Higher ESNR leads to more
informative gradients.

Definition 3.1. FOBGs exhibit sampling error relative to
ZOBGs under finite samples, denoted as B:

B =
∥∥∥∇̄[1]

θ J(θ)− ∇̄[0]
θ J(θ)

∥∥∥
We analyze B from the perspective of bias and variance to
derive a practical upper bound:
Lemma 3.2. For an H-step stochastic optimization prob-
lem under Assumptions 2.6, which also has Lipshitz-smooth
policies ∥∇πθ(a|s)∥ ≤ Bπ, Lipshitz-smooth reward func-
tion in both arguments ∥∇r(s,a)∥ ≤ Br and Lipshitz-
smooth dynamics in both arguments ∥∇f(s,a)∥ ≤ Bf
∀s ∈ Rn;a ∈ Rm;θ ∈ Rd, then ZOBGs remain consis-
tently unbiased. However, FOBGs exhibit sample error
bounded by:

B ≤ HBrBπ
(1
2
+BH−1

f

)
(5)

The proof can be found in Appendix B

As r(s, a) and π are often design decisions in problems, we
can create them to satisfy the assumptions laid out above.
However, bounding the dynamics ||∇f(st,at)|| is impossi-
ble due to the natural discontinuities of physics (Lee et al.,
2023) leading to Bf ≫ Br and Bf ≫ Bπ . This combined
with the H terms lead the two conclusions from Lemma 3.2:
(1) long-horizon rollout lead to increased FOBG sample
error and (2) prolonged stiff contact has compound effects
on FOBG sample error.
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s1 s2 s3

a1 a2 a3

r1 r2 r3

Figure 4. Example H = 3 step trajectory where s3 is in con-
tact at which point the trajectory is truncated. When optimizing
this trajectory, we completely omit the stiff dynamics gradient
∇f(s2,a2) leading to stabler and less erroneous FOBGs.

Empirical evaluation of Lemma 3.2. We designed a simple
experimental setup involving a ball rebounding off a wall
to reach a target, as illustrated in Figure 3. The initial
position s1 = [x1, y1] and velocity of the ball are fixed.
The objective is for the policy to learn the optimal initial
orientation θ in order to reach a target position sT at the end,
defined as RH(s1) = ∥sH − sT ∥−1

2 . We use the additive
Gaussian policy a = θ + w, where w ∼ N (0, σ2). With
this, zero-order gradients from Eq. 2 can be expressed as:

∇[0]
θ J(θ) ≈ 1

Nσ2

N∑
i=1

(
R

(i)
H (s1)−R

∗(i)
H (s1)

)
w(i)

We collect N = 1024 samples of each gradient type for
each timestep with H = 40. Figure 3 shows that the sample
error remains low until the ball encounters contact, after
which it starts growing, validating our proposed lemma.
Additionally, the error also affects the gradient variance,
where ZOBG follow Var

[
∇[0]J(θ)

]
≤ σ−2HB2

rB
2
π (Suh

et al., 2022). However, FOBG variance behaves similarly to
Lemma 3.2, growing exponentially after contact. In Figure
3, instead of variance, we show Expected SNR (Eq. 6) as
proposed by (Parmas et al., 2023), with higher values trans-
lating to more informative gradients. These results suggest
that FOBGs exhibit sample error under contact dynamics,
which is further worsened with long trajectories (Lee et al.,
2023; Zhong et al., 2023).

ESNR(∇J(θ)) = E

[ ∑
E[∇J(θ)]2∑
Var[∇J(θ)]

]
(6)

4. Adaptive Horizon Actor-Critic (AHAC)
4.1. Learning through contact in a single environment

With a clearer understanding of the influence of stiff con-
tact, we aim to develop a First-Order MBRL approach for
contact-rich continuous control tasks. Unlike the toy exam-
ple of the previous section, standard RL multi-step decision
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Figure 5. Comparison between SHAC and AHAC-1 on the Hop-
per task with only a single environment. The figure shows re-
wards and horizons achieved over 5 different random seeds, with
the 50% IQM plotted. Note that both algorithms have some hori-
zon oscillation due to the early termination mechanism of the
simulator, as noted in Appendix F.

processes allow for the avoidance of stiff dynamics gradi-
ents using contact truncation. Consider the example shown
in Figure 4. Truncating the trajectory at the point of con-
tact yields reward gradients without the gradient of stiff
dynamics (striked out in red):

∇θr(s3,a3) =∇a3r(s3,a3)∇θπθ(a3|s3)
+∇s3r(s3,a3)∇θf(s2,a2)

We introduce an FO-MBRL algorithm with an actor-critic
architecture, akin to SHAC (Xu et al., 2022). The critic,
denoted as Vψ(s), is model-free and trained using TD(λ)
(Sutton & Barto, 2018) over an H-step horizon:

Rh(st) :=

t+h−1∑
n=t

γn−tr(sn,an) + γt+hVψ(st+h)

V̂ (st) := (1− λ)

[H−t−1∑
h=1

λh−1Rh(st)

]
+ λH−t−1RH(st)

The critic loss becomes LV (ψ), while the actor is trained
using FOBG as in Equation 3, with the addition of the critic
value estimate:

LV (ψ) :=
t+H∑
h=t

∥∥∥Vψ(sh)− V̂ (sh)
∥∥∥2
2

(7)

J(θ) :=

t+H−1∑
h=t

γh−tr(sh,ah) + γHVψ(st+T ) (8)

Unlike fixed-horizon model-based rollouts in (Xu et al.,
2022), our policy is rolled out until stiff contact is detected
in simulation, leading to a dynamic horizon adjustment
to prevent gradient explosion. However, not all contact
results in high error; therefore, we truncate only on stiff

4
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Figure 6. An ablation of short horizons H for the SHAC algo-
rithm applied to Ant. Each run is trained until convergence for 5
seeds. The reward peaked and exhibited the least variance when
the horizon length approximated the optimal gait period H ≈ 28.

contact ∥∇f(st,at)∥ > C, where C is the contact stiffness
threshold. We refer to this algorithm as Adaptive Horizon
Actor-Critic 1 (AHAC-1) (see Appendix D).

AHAC-1’s performance was tested in a toy locomotion
environment. We re-implement the popular Hopper task,
where a single-legged agent hops in one axis and is re-
warded for high forward velocity (Figure 1). Compared to
SHAC, which employs a fixed horizon of H = 32, AHAC-1
adjusts its horizon based on a contact stiffness threshold
of C = 500. Results in Figure 5 indicate that AHAC-1
achieves a higher reward than SHAC. We believe that the
more erroneous SHAC gradients steer it towards local min-
ima, while our proposed approach manages to circumvent
them and achieve a higher asymptotic reward. However,
AHAC-1 is not applicable to parallel vectorized environ-
ments due to the challenge of asynchronous trajectory trun-
cation, which leads to infinitely long compute graphs.

4.2. Scaling learning with synchronous parallelization

To address the issue of asynchronous truncation, we ex-
plored the short-horizon methodology of SHAC, incorporat-
ing graph truncation at stiff contacts. However, this method
did not improve performance, likely due to gradient vari-
ances across differing trajectory lengths. Consequently, our
research pivoted to examine the effect of horizon length H
on policy optimality, especially in contact-based tasks like
locomotion that demand specific gait patterns.

We conducted empirical tests using the SHAC algorithm on
the Ant locomotion task, where the goal for a quadruped
robot is to maximize forward velocity. By altering the hori-
zon length H in SHAC, our findings in Figure 6 reveal a
correlation between gait period and horizon length, with
optimal performance at H = 28.

Two key insights emerged from this study: (1) each task
possesses an inherent optimal model-based horizon length
H , closely linked to the gait period; (2) the optimal hori-

Algorithm 1 Adaptive Horizon Actor-Critic

1: Given: αθ, αϕ, αψ: learning rates
2: Given: C: contact threshold
3: Initialize learnable parameters θ,ψ, H,ϕ = 0
4: t← 0
5: while episode not done do
6: Initialize rollout buffer D
7: for h = 0, 1, ..,H do ▷ rollout policy
8: at+h ∼ πθ(·|st+h)
9: rt+h = r(st+h,at+h)

10: st+h+1 = f(st+h,at+h)
11: D ← D ∪ {(st+h,at+h, rt+h, Vψ(st+h+1))}
12: end for
13: θ ← θ + αθ∇θLπ(θ,ϕ) ▷ train actor (Eq. 10)
14: ϕ← ϕ− αϕ∇ϕLπ(θ,ϕ)
15: H ← H + αϕ

∑H
h=0 ϕh

16: while not converged do ▷ train critic (Eq. 7)
17: sample (s, V̂ (s)) ∼ D
18: ψ ← ψ − αψ∇ψLV (ψ)
19: end while
20: t← t+H
21: end while

zon correlates with the highest reward and lowest variance,
aligning with the findings of Lemma 3.2. These insights in-
formed the development of a generalized, GPU-parallelized
version of AHAC-1, termed AHAC. While retaining the
same critic training methodology as outlined in Equation
7, AHAC introduces a novel constrained objective for the
actor.

J(θ) :=

t+H−1∑
h=t

γh−tr(sh,ah) + γHVψ(st+H)

s.t. ∥∇f(st,at)∥ ≤ C ∀t ∈ {0, ..,H}

(9)

The objective seeks to maximize the reward while ensuring
that all contact stiffness remains below the C threshold. Us-
ing the Lagrangian formulation, we derive the dual problem:

Lπ(θ,ϕ) =
t+H−1∑
h=t

γh−tr(sh,ah) + γHVψ(st+H)

+ ϕT

C −

 ∥∇f(st,at)∥
...

∥∇f(st+H ,at+H)∥


 (10)

By definition, ϕi = 0 if the constraint is met and ϕi > 0
otherwise. Thus, ϕ is used to adapt the horizon, resulting
in the full AHAC shown in Algorithm 1. Additionally, we
introduce a double critic that is trained until convergence,
defined as a small change in the last 5 critic training iter-
ations,

∑n
i=n−5 L(ψ) < 0.2, where we take mini-batch

samples from the rollout buffer (s, V̂ (s)) ∼ D.
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Figure 7. Experimental Environments. Locomotion tasks in increasing order of action space (m) dimensions (left to right): Hopper
(m = 3), Ant (m = 8), Anymal (m = 12), Humanoid (m = 21) and SNU Humanoid (m = 152).

In practice, truncating based solely on the gradient of dy-
namics∇f(st,at) proved restrictive due to the variability
of contact forces across different tasks and their evolution
during the learning process. To address this, we introduced
a normalization method for contact forces, utilizing modi-
fied acceleration per state dimension q̂t = max(qt, 1) ap-
plied element-wise, resulting in normalized contact forces
∇̂f(st,at) = diag(q̂t)∇f(st,at). Notably, this allows
using a uniform contact threshold C across different tasks.

Furthermore, considering that contact approximation forces
are calculated separately in differentiable simulators, there
is no need to use the full dynamics Jacobian. Instead, we
employ the Jacobian, derived solely from contact forces.
The differences between the SHAC and AHAC algorithms
are comprehensively delineated in Appendix C.

5. Experiments
The objectives of this section are to (1) assess AHAC’s abil-
ity to obtain higher asymptotic reward than MFRL baselines;
(2) its efficiency in terms of wall-clock time and scalability
to high-dimensional environments, and (3) identify the key
contributing components of AHAC.

Setup. We evaluate the proposed approach, AHAC, across
a set of 5 contemporary locomotion tasks, ranging from
the simpler Hopper with n = 11 and m = 3, to the more
complex SNU Humanoid, which features a muscle-actuated
humanoid lower body with m = 152 (Figure 7). All tasks
aim to maximize forward velocity, chosen for its benchmark
relevance (Tassa et al., 2018) and complex optimization
landscape as alluded to by previous results (Haarnoja et al.,
2018; Hafner et al., 2019a). Experiments are based on
dflex, a differentiable rigid-body simulator with soft contact
approximation, introduced by (Xu et al., 2022), illustrated in
Figure 7 and described in more detail in Appendix E. As is
customary in prior work in empirical Deep RL (Tassa et al.,
2018), we provide experimental results in an infinite-horizon
setting and relax Assumption 2.1.

Metrics. We adopt statistical measures for a robust evalua-
tion across 10 random seeds, utilizing the 50% Interquartile
Mean (IQM) and 95% Confidence Interval (CI) as recom-
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Figure 8. Episodic rewards of the Ant task against both simu-
lation steps and wall clock time. The episodic reward is normal-
ized by the highest mean reward achieved by PPO (i.e., PPO-
normalized). The dashed lines represent the reward achieved by
each respective algorithm at the end of their training runs.

mended for mitigating statistical uncertainties as suggested
by (Agarwal et al., 2021). We also report absolute as well
as normalized asymptotic rewards in Appendix H.

Baselines. This study compares first-order methods against
zeroth-order methods. As such, we compare with state-of-
the-art model-free methods, PPO (on-policy) (Schulman
et al., 2017), and SAC (off-policy) (Haarnoja et al., 2018).
For a comprehensive study, we also compare to SVG, a FO-
MBRL method that does not utilize a differentiable simula-
tor but instead learns the dynamics model(Amos et al., 2021).
Additionally, we also compare our results to SHAC (Xu
et al., 2022), one of the best-performing methods based on
differentiable simulation. We refer the reader to SHAC (Xu
et al., 2022) for additional comparisons with other model-
based methods, which SHAC already outperforms. We have
tuned all baselines individually to perform well per task
and trained them until convergence. Due to long training
times, we could not tune SVG since it was not vectorized
and instead utilized the hyper-parameters from (Amos et al.,
2021). All hyper-parameters are included in Appendix G.
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Figure 9. Aggregate asymptotic statistics across all tasks. The left figure shows 50% IQM with 95% CI of asymptotic episode rewards
across 10 runs. We observe that AHAC is able to achieve 40% higher reward than our best MFRL baseline, PPO. The right figure shows
score distributions as suggested by (Agarwal et al., 2021), which lets us understand the performance variability of each approach. Our
proposed approach, AHAC, outperforms baselines even at the worst case, underlining the benefits of first-order methods.
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Figure 10. Episodic rewards of the SNU Humanoid task, a
muscle-actuated humanoid lower body with m = 152. Results
are smoothed using EWMA with α = 0.9. We observe that both
SHAC and AHAC scale better to high-dimensional tasks, with the
latter achieving 61% more reward than PPO.

For comprehension, all rewards presented in this section are
normalized by the maximum reward achieved by PPO per
task. We include the raw numerical results in Appendix H
along with further experiment details.

Results. First, we investigate the asymptotic performance of
our method on the Ant task, a quadruped with symmetrical
legs, n = 37 and m = 8. The results in Figure 8 show that
AHAC achieves a 41% higher reward than the best model-
free baseline, PPO, and also outperforms SHAC due to its
gradient error avoidance technique. We acknowledge that
MFRL methods are computationally simpler and thus also
provide results against wall-clock time. Remarkably, PPO
and SAC obtain worse episodic rewards over time compared
to AHAC, even when they are trained for 3B timesteps, with
100× more samples and 10× more training time. These
results suggest that even given practically infinite training
data, MFRL methods cannot find truly optimal solutions
due to the high variance of zeroth-order gradients.

This trend persists across all evaluated tasks, with AHAC
consistently outperforming MFRL baselines. The aggre-
gated statistics in Figure 9 suggest that AHAC obtains a
40% higher reward than our main baseline, PPO. No-

1.0 1.2 1.4
Episode reward

AHAC
5. Double Critic
4. Iterative Critic
3. Adapt. Horizon
2. Adapt. Obj.
1. SHAC H=29
SHAC H=32

C
ritic

A
ctor

Figure 11. Ablations of AHAC on the Ant task. Ablating all
additional introduced components reveals that the adaptive horizon
objective contributes the most to improving episodic reward, while
the double critic helps reduce run-to-run variance.

tably, in high-dimensional tasks such as the SNU Humanoid,
AHAC’s advantage becomes even more pronounced. Re-
sults from Figure 10 suggest that FO-MBRL methods signifi-
cantly outperform MFRL baselines, with SHAC and AHAC
obtaining 44% and 64% more reward than PPO, respec-
tively. However, the larger confidence intervals for SHAC
and AHAC hint at ongoing challenges with gradient vari-
ance associated with long rollouts. The score distributions
in Figure 9 indicate that even with the higher variability,
AHAC still outperforms MFRL baselines and exhibits better
worst-case performance than SHAC. Additional results and
raw metrics are provided in Appendix H.

Ablation study. To elucidate the performance improve-
ments attributed to AHAC, we dissect its pivotal modifica-
tions, outlined in Appendix C. Beginning with the SHAC
baseline set at H = 32, each ablation incrementally intro-
duces a single modification:

1. SHAC H=29: using the H converged by AHAC.
2. Adapt. Obj.: SHAC with Eq. 10 and fixed H = 32.
3. Adapt. Horizon: SHAC with Eq. 10 and adapting H .
4. Iterative critic: SHAC with iterative critic training.
5. Double critic: SHAC with a double critic.
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Algorithm Policy Learning Value Learning Dynamics Model

PPO (Schulman et al., 2017) ZOBG Model-Free -
SAC (Haarnoja et al., 2018) 0-step FOBG Model-Free -
MVE (Feinberg et al., 2018) 0-step FOBG Model-Based Deterministic NN
MBPO (Janner et al., 2019) 0-step FOBG Model-Free Ensemble NN
PIPPS (Parmas et al., 2018) ZOBG & FOBG - Probabilistic NN
Dreamer (Hafner et al., 2019a) FOBG Model-Based Probabilistic NN
IVG (Byravan et al., 2020) FOBG Model-Free Deterministic NN
SVG (Amos et al., 2021) FOBG Model-Free Deterministic NN
SHAC (Xu et al., 2022) FOBG Model-Free Differentiable sim.
AHAC (ours) FOBG Model-Free Differentiable sim.

Table 1. Comparison between RL algorithms for continuous control. We classify methods by the policy(actor) learning approach.
ZOBG stands for methods using Zeroth-Order Batch Gradients following Eq. 2, while FOBG stands for First-Order Batch Gradient
methods that differentiate through trajectories following Eq. 3. Model-Based Value Learning refers to methods leveraging Model-Based
Value Expansion (MVE) (Feinberg et al., 2018), whereas Model-Free critic learning refers to methods using variants of TD(λ) (Sutton &
Barto, 2018).

All experiments used the SHAC hyper-parameters, with the
exception of the horizon learning rate αϕ, specifically ad-
justed for AHAC. Notably, SHAC with an adaptive horizon
(3) is equivalent to AHAC without iterative critic training
and single critic implementation. Results, depicted in Fig-
ure 11, reveal that incorporating an adaptive horizon signifi-
cantly enhances the asymptotic reward. Intriguingly, adjust-
ing to H = 29 improves rewards over the baseline, yet does
not reach the efficacy of the full adaptive horizon approach.
This suggests that a static optimal horizon, even if advan-
tageous at policy convergence, may not be optimal during
training, leading to local minima. Moreover, the double
critic model notably reduces run-to-run variance, surpass-
ing the performance stability of SHAC’s single target-critic
approach. Additional insights and detailed ablation results
are available in Appendix I.

6. Related work
This section reviews recent advancements in continuous
control RL, adhering to the actor-critic framework (Konda
& Tsitsiklis, 1999), where the critic appraises state-action
pairs and the actor identifies optimal actions. We categorize
the methods based on their policy training, value estimation,
and use of a dynamics model.

In the absence of a known dynamics model, Model-Free
Reinforcement Learning (MFRL) methods prevail, which
enable learning of action distributions based on state infor-
mation. Proximal Policy Optimization (PPO) (Schulman
et al., 2017) is an on-policy method that utilizes ZOBGs (Eq.
2) and performs gradient updates using recent on-policy
samples. Soft Actor-Critic (SAC) (Haarnoja et al., 2018)
exemplifies off-policy methods which use a replay buffer
to learn from any data and update the actor using 0-step
FOBGs defined as∇θJ(θ) := Eah∼πθ(·|sh)[∇θQ(s,a)]

Alternatively, Model-Based Reinforcement Learning
(MBRL) methods incorporate a dynamics model to in-
form learning, either derived from data or assumed a priori.
This model can be used to aid the critic’s return estimates,
which can still be trained model-free (Janner et al., 2019)
or through back-propagatable simulated returns via Model-
Based Value Expansion (MVE) (Feinberg et al., 2018). Ac-
tor training varies; it can be done using 0-step FOBGs aug-
mented by model-generated data (Janner et al., 2019; Fein-
berg et al., 2018). Alternatively, other work back-propagates
through the dynamics model (Hafner et al., 2019a; Byravan
et al., 2020) using FOBGs (Eq. 3). (Parmas et al., 2018)
also combine ZOBGs and FOBGs, attempting to harness
the best of both. Key recent work is summarized in Table 1.

With the emergence of differentiable simulation, many stud-
ies (Hu et al., 2019b; Liang et al., 2019; Huang et al., 2021;
Du et al., 2021) have explored FOBG optimization by back-
propagating through a dynamics model which we refer to as
Back-Propagation-Through-Time (BPTT). However, BPTT
faces challenges in long episodic RL tasks due to unstable
gradients. (Xu et al., 2022) introduces Short Horizon Actor-
Critic (SHAC), improving stability through a model-free
critic and short rollouts, achieving performance comparable
to MFRL with enhanced sample efficiency.

7. Conclusion
Model-free RL (MFRL) approaches are valued for their
simplicity, minimal assumptions, and impressive perfor-
mance. Yet, our study reveals their limitations in complex
continuous control tasks, where they achieve good but sub-
optimal solutions due to high gradient variance. Conversely,
First-Order Model-Based RL (FO-MBRL) methods, which
leverage efficient gradient propagation through dynamics,
have historically lagged behind MFRL in performance.
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In this work, we analyze this issue in differentiable simu-
lation through the scope of bias and variance. We derive
Lemma 3.2 bounding the observed sample error of first-
order gradients relative to zeroth-order gradients, coming
to the conclusion that the source of the issue is stiff con-
tact and long horizon rollouts. Based on these insights, we
propose the Adaptive Horizon Actor-Critic (AHAC), a new
FO-MBRL approach that adapts its rollout horizon during
training. Our experiments show that AHAC outperforms
MFRL baselines by 40% in complex locomotion tasks, even
when the latter are provided with 106 times more data. Fur-
thermore, out method maintains competitive time efficiency
and shows better scalability to higher-dimensional tasks.

While AHAC outperforms MFRL methods and makes the
case for first-order policy learning, it also necessitates the
development of differentiable simulators. As such, we ad-
mire the simple yet capable MFRL approaches. Our work
suggests that future research should not only focus on re-
fining algorithmic approaches for policy learning but also
on enhancing simulator technologies to more effectively
manage gradient error. Moreover, the practical application
of policies trained in differentiable simulators to real-world
robotics remains a challenge.
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Figure 12. Gradient sample error study for the Soft Heaviside function shown in Eq. 4. Both ZOBG and FOBG exhibit sample errors at
low sample sizes; however, FOBGs are especially susceptible to the ”empirical bias” phenomena.

A. Heaviside example
This appendix provides additional details on the Heaviside example used to obtain intuition regarding FOBG sample error in
Section 3.

H̄(x) =


1 x > ν/2

2x/ν |x| ≤ ν/2

−1 x < −ν/2

Under stochastic input x ∼ πθ(·) = θ + w where w ∼ N (0, σ), we can obtain the expected value:

Ew
[
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]
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∫ ∞

−∞
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From the expectation, we can obtain the gradient w.r.t. the parameter of interest:

∇θ Ew
[
H̄(x)

]
=

1√
2πσ

exp
(−(ν + 2θ)2

8σ2

)
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1√
2πσ
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As seen from the equation above, the true gradient ∇θ Ew
[
H̄(x)

]
̸= 0 at θ = 0. However, using FOBG, we obtain

∇θH̄(a) = 0 in samples where |a| > ν/2, which occurs with probability at least ν/σ
√
2π. Even though both ZOBG and

FOBG are theoretically unbiased as N →∞, both exhibit ”empirical bias”, as shown in Figure 12.
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B. Proof of Lemma 3.2
First we reiterate the assumptions to make this section self-sufficient and easier to read.

Assumption B.1. Policy π(·|s) : Rn×Rd → [0, 1]m is continuously differentiable and Lipshitz smooth ∥∇θπ(a|s)∥ ≤ Bπ .

Assumption B.2. Dynamics function f(s, a) : Rn × Rd → Rn is continuously differentiable and Lipshitz smooth in both
arguments ∥∇sf(s, a) ≤ Bf and ∥∇af(s, a)∥ ≤ Bf .

Assumption B.3. Reward function r(, a) : Rn × Rd → R is continuously differentiable and Lipshitz smooth ∥∇sr(s, a) ≤
Br.

Assumption B.4. ZOBG use baseline b subtraction which does not introduce gradient sample error ∇̂[
θ0](θ) =∑H

h=1

(
r(sh, ah)− b

)
∇θ log πθ(ah|sh)

Proof. First, we expand our definition of sample error and define a random variable of a single Monte-Carlo sample

B =
∥∥∥E[∇̄[1]

θ J(θ)
]
− E

[
∇̄[0]
θ J(θ)

]∥∥∥ =

∥∥∥∥∥ 1

N

N∑
i=1

∇̂[1]
θ Ji(θ)−

1

N

N∑
i=1

∇̂[0]
θ Ji(θ)

∥∥∥∥∥
=

1

N

∥∥∥∥∥
N∑
i=1

(∇̂[1]
θ Ji(θ)− ∇̂[0]

θ Ji(θ))

∥∥∥∥∥
≤ ∥∇̂[1]

θ J(θ)− ∇̂[0]
θ J(θ)∥ (11)

We drop the sample subscript i for simplicity and assume that a ∼ πθ(·| sg(s)) where sg(·) is the stop-gradient operator
makes the expansion of ∇̂[1]J(θ) easier (Deng et al., 2024).

∇̂[1]
θ J(θ)− ∇̂[0]

θ J(θ)

= ∇θ
H∑
h=1

r(sh,ah)−
H∑
h=1

(
r(sh,ah)− b

)
∇θ log πθ(ah|sh)

=

H∑
h=1

∇ah
r(sh,ah)∇θπ(ah|sh) +

( h−1∑
h′=1

( h−1∏
t=h′+1

∇stf(st,at)
)
∇ah′ f(sh′ ,ah′)T∇θπθ(ah′ |sh′)

)T
∇shr(sh,ah)

−
H∑
h=1

(
r(sh,ah)− b

)
∇θ log πθ(ah|sh)

=

H∑
h=1

∇θπθ(ah|sh)T
(
∇ah

r(sh,ah)−
(
r(sh,ah)− b

)
πθ(ah|sh)◦−1

)
+

( h−1∑
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( h−1∏
t=h′+1

∇stf(st,at)
)
∇ah′ f(sh′ ,ah′)∇θπ(ah′ |sh′)

)T
∇shr(sh,ah) (12)

where x◦−1 is the Hadamard inverse. Setting b = r(sh, 0), we can exploit the Lipshitz smoothness of r. In general, for any
function f(x):

f(y) ≤ f(x) +∇f(x)T (y − x) + L

2
∥y − x∥2

f(0) ≤ f(x)−∇f(x)Tx+
L

2
∥x∥2

f(x)− f(0) ≥ ∇f(x)Tx− L

2
∥x∥2

f(x)− f(0) ≥ (∇f(x)T − L

2
xT )x (13)
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Applying b = r(sh, 0) to Eq. 12 yields
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h′=1

( h−1∏
t=h′+1

∇stf(st,at)
)
∇ah′ f(sh′ ,ah′)∇θπ(ah′ |sh′)

)T
∇shr(sh,ah)

=
Br
2

H∑
h=1

∇θπθ(ah|sh)Tπθ(ah|sh) +
( h−1∑
h′=1

( h−1∏
t=h′+1

∇stf(st,at)
)
∇ah′ f(sh′ ,ah′)∇θπ(ah′ |sh′)

)T
∇shr(sh,ah)

(14)

Plug Eq. 14 into Eq. 11:

B ≤
∥∥∥∇̂[1]

θ J(θ)− ∇̂[0]
θ J(θ)

∥∥∥
=

∥∥∥∥∥Br2
H∑
h=1

∇θπθ(ah|sh)Tπθ(ah|sh) +
( h−1∑
h′=1

h−1∏
t=h′+1

∇stf(st,at)∇ah′ f(sh′ ,ah′)∇θπ(ah′ |sh′)

)T
∇shr(sh,ah)

∥∥∥∥∥
Apply Eq. 13

≤

∥∥∥∥∥Br2
H∑
h=1

∇θπθ(ah|sh)Tπθ(ah|sh)

∥∥∥∥∥
+

∥∥∥∥∥
( h−1∑
h′=1

( h−1∏
t=h′+1

∇stf(st,at)
)
∇ah′ f(sh′ ,ah′)∇θπ(ah′ |sh′)

)T
∇shr(sh,ah)

∥∥∥∥∥
since ∥∇θπθ(ah|sh)∥ ≤ Bπ and ∥πθ(ah|sh)∥ ≤ 1

≤ 1

2
HBrBπ +

∥∥∥∥∥
( h−1∑
h′=1

( h−1∏
t=h′+1

∇stf(st,at)
)
∇ah′ f(sh′ ,ah′)∇θπ(ah′ |sh′)

)T
∇shr(sh,ah)

∥∥∥∥∥
≤ 1

2
HBrBπ + (H − 1)BrBπB

H−1
f

≤ 1

2
HBrBπ +HBrBπB

H−1
f

= HBrBπ(
1

2
+BH−1

f )
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C. Summary of modifications
To develop the Adaptive Horizon Actor-Critic (AHAC) algorithm, we used the Short Horizon Actor-Critic (SHAC) algorithm
(Xu et al., 2022) as a starting point. This section details all modifications applied to the SHAC in order to derive AHAC and
achieve the reported results in this paper. We also note that some of these are not exclusive to either approach approach.

1. Adaptive horizon objective - instead of optimizing the short horizon rollout return, we introduce the new constrained
objective shown in Equation 9. To optimise that and adapt the horizon H , we introduced the dual problem in Equation
10 and optimised it directly for policy parameters θ and the Lagrangian coefficients ϕ.

J(θ) :=

t+T−1∑
h=t

γh−tr(sh,ah) + γtVψ(st+T )︸ ︷︷ ︸
SHAC objective

s.t. ∥∇f(st,at)∥ ≤ C ∀t ∈ {0, .., T}

︸ ︷︷ ︸
AHAC objective

2. Double critic - the original implementation of SHAC struggled with more complex tasks such as Humanoid due to
its highly non-convex value landscape. The authors of (Xu et al., 2022) solved that by introducing a delayed target
critic similar to prior work in deep RL (Lillicrap et al., 2015). We found that approach brittle and required more
hyper-parameter tuning. Instead, we replaced it with a double critic similar to SAC (Haarnoja et al., 2018). For our
work, we found that it reduced the variance of asymptotic rewards achieved by AHAC while removing a hyperparameter.
While this technique is usually applied to off-policy algorithms, we find it helpful in highly parallelized simulations
due to the high data throughput.

3. Critic training until convergence - empirically we found that different problems present different value landscapes.
The more complex the landscape, the more training the critic required and the critic often failed to fit the data with the
limited number of critic iterations done in SHAC (16). Instead of training the critic for a fixed number of iterations, we
trained the (dual) critic of AHAC until convergence defined by

∑n
i=n−5 Li(ψ)− Li−1(ψ) < 0.5 where Li(ψ) is the

critic loss for mini-batch iteration i. We allowed the critic to be trained for a maximum of 64 iterations. We found that
this resulted in asymptotic performance improvements on more complex tasks such as Humanoid and SNU Humanoid,
while removing yet another hyper-parameter.

D. AHAC-1 algorithm
Algorithm 2 shows the single-environment version of AHAC that was described in Section 4.1. While this algorithm applies
the contact truncation technique perfectly and avoids all stiff contact, it is also not vectorizable. When attempting to vectorize
AHAC-1, it necessitates cutting off compute graphs per-environment based on the individual environment dynamics. This is
impossible to accomplish with typical deep learning frameworks such as PyTorch. Another alternative would be to execute
different environments in different threads, but unfortunately, that does not benefit from GPU acceleration.

E. Differentiable Simulation Setup: dflex
The experimental simulator, dflex (Xu et al., 2022), employed in Section 5, is a GPU-based differentiable simulator utilizing
the Featherstone formulation for forward dynamics and a spring-damper contact model with Coulomb friction.

The dynamics function f is modeled by solving the forward dynamics equations:

Mq̈ = JTF(q, q̇) + c(q, q̇) + τ(q, q̇, a)

where, q, q̇, q̈ are joint coordinates, velocities, and accelerations, respectively. F represents external forces, c includes
Coriolis forces, and τ denotes joint-space actuation. Mass matrix M and Jacobian J are computed concurrently using one
thread per-environment. The composite rigid body algorithm (CRBA) is employed for articulation dynamics, enabling
caching of the matrix factorization for reuse in the backward pass through parallel Cholesky decomposition.

After determining joint accelerations q̈, a semi-implicit Euler integration step updates the system state s = (q, q̇). Torque-
based control is employed for simple environments, where the policy outputs τ at each timestep. For further details, see (Xu
et al., 2022). It is noted that dflex is no longer actively developed and has been succeeded by warp (Macklin, 2022).
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Algorithm 2 Adaptive Horizon Actor-Critic 1 (Single environment)

1: Given: γ: discount rate
2: Given: αθ, αψ: learning rates
3: Given: H: maximum trajectory length
4: Given: C: contact threshold
5: Initialize learnable parameters θ,ψ
6: t← 0

7: while episode not done do
8: ▷ Rollout policy
9: Initialize rollout buffer D

10: while ∥∇f∥ ≤ C and h ≤ H do
11: at ∼ πθ(·|st)
12: rt = r(st,at)
13: st+1 = f(st,at)
14: D ← D ∪ {(st+h,at+h, rt+h, Vψ(st+h+1))}
15: t← t+ 1
16: end while

17: ▷ Train actor using Eq. 8
18: θ ← θ − αθ∇θJ(θ)

19: ▷Train critic using Eq. 7
20: while not converged do
21: sample (s, V̂ (s)) ∼ D
22: ψ ← ψ + αψ∇ψL(ψ)
23: end while
24: end while

Figure 13. Locomotion environments (left to right): Hopper, Ant, Anymal, Humanoid and SNU Humanoid.

F. Environment details
In this paper, we explore 5 locomotion tasks with increasing complexity. They are described below and shown in Figure 13.

1. Hopper, a single-legged robot jumping only in one axis with n = 11 and m = 3.

2. Ant, a four-legged robot with n = 37 and m = 8.

3. Anymal, a more sophisticated quadruped with n = 49 and m = 12 modeled after (Hutter et al., 2016).

4. Humanoid, a classic contact-rich environment with n = 76 and m = 21, which requires extensive exploration to find
a good policy.

5. SNU Humanoid, a version of Humanoid lower body where instead of joint torque control, the robot is controlled via
m = 152 muscles intended to challenge the scaling capabilities of algorithms.

All tasks share the same common main objective - maximize forward velocity vx:
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Environment Reward

Hopper vx +Rheight +Rangle − 0.1∥a∥22
Ant vx +Rheight + 0.1Rangle +Rheading − 0.01∥a∥22
Anymal vx +Rheight + 0.1Rangle +Rheading − 0.01∥a∥22
Humanoid vx +Rheight + 0.1Rangle +Rheading − 0.002∥a∥22
Humanoid STU vx +Rheight + 0.1Rangle +Rheading − 0.002∥a∥22

Table 2. Rewards used for each task benchmarked in Section 5

We additionally use auxiliary rewards Rheight to incentivize the agent to, Rangle to keep the agent’s normal vector point up,
Rheading to keep the agent’s heading pointing towards the direction of running and a norm over the actions to incentivize
energy-efficient policies. For most algorithms, none of these rewards, apart from the last one, are crucial to succeeding in
the task. However, all of them aid learning policies faster.

Rheight =

{
h− hterm ifh ≥ hterm

−200(h− hterm)2 ifh < hterm

Rangle = 1−
(

θ

θterm

)2

Rangle = ∥qforward − qagent∥22 is the difference between the heading of the agent qagent and the forward vector qagent. h
is the height of the CoM of the agent and θ is the angle of its normal vector. hterm and θterm are parameters that we set for
each environment depending on the robot morphology. Similar to other high-performance RL applications in simulation, we
find it crucial to terminate episode early if the agent exceeds these termination parameters. However, it is worth noting that
AHAC is still capable of solving all tasks described in the paper without these termination conditions, albeit slower.

G. Hyper-parameters
This section details all hyper-parameters used in the main experiments in Section 5. PPO and SAC, as our MFRL baselines,
have been tuned to perform well across all tasks, including task-specific hyper-parameters. SVG has not been specifically
tuned for all benchmarks due to time limitations but instead uses the hyper-parameters presented in (Amos et al., 2021).1

SHAC is tuned to perform well across all tasks using a fixed H = 32 as in the original work (Xu et al., 2022). AHAC
shares all of its common hyper-parameters with SHAC and only has its horizon learning rate αϕ tuned per-task. The contact
threshold C and iterative critic training criteria did not benefit from tuning. Note that the double critic employed by AHAC
uses the same hyper-parameters used by the SHAC critic. Therefore, we have left AHAC under-tuned in comparison to
SHAC in order to highlight the benefits of the adaptive horizon mechanism presented in this work.

Table 3 shows common hyper-parameters shared between all tasks. While table 4 shows hyper-parameters specific to each
problem,. Where possible, we attempted to use the hyper-parameters suggested by the original works; however, we also
attempted to share hyper-parameters between algorithms to ease comparison. If a specific hyperparameter is not mentioned,
then it is the one used in the original work behind the specific algorithm.

1Tuning SVG proved difficult as we were unable to vectorize the algorithm, resulting in up to 2-week training times. This made it
difficult to tune for our benchmarks
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AHAC SHAC PPO SAC SVG

Mini-epochs 16 5 4
Batch size 8 8 8 32 1024
λ 0.95 0.95 0.95
γ 0.99 0.99 0.99 0.99 0.99
H - horizon 32 32 3
C - contact thresh. 500
Grad norm 1.0 1.0 1.0
ϵ 0.2
Actor log(σ) bounds (-5,2) (-5,2)
α - temperature 0.2 0.1
λα 10−4 10−4

|D| - buffer size 106 106

Seed steps 0 0 0 104 104

Table 3. Table of hyper-parameters for all algorithms benchmarked in Section 5. These are shared across all tasks.

Hopper Ant Anymal Humanoid SNU Humanoid

Actor layers (128, 64, 32) (128, 64, 32) (256, 128) (256, 128) (512, 256)
Actor αθ 2× 10−3 2× 10−3 2× 10−3 2× 10−3 2× 10−3

Horizon αϕ 2× 10−4 1× 10−5 1× 10−5 1× 10−5 1× 10−5

Critic layers (64, 64) (64, 64) (256, 128) (256, 128) (256, 256)
Critic αψ 4× 10−3 2× 10−3 2× 10−3 5× 10e−4 5× 10−4

Critic τ 0.2 0.2 0.2 0.995 0.995

Table 4. Task-specific hyper-parameters. All benchmarked algorithms share the same actor and critic network hyper-parameters with ELU
activation functions. AHAC and PPO do not have target critic networks and, as such, do not have τ as a hyper-parameter.

H. Experimental results
In addition to the experimental results in Section 5, here we provide the same results in more detail. Figure 14 depicts
step-wise and time-wise reward curves for all experiments. Tables 5 and 6 provide asymptotic (converged) results for all
tasks with PPO-normalized and raw rewards, respectively.

Hopper Ant Anymal Humanoid SNU Humanoid

PPO 1.00± 0.11 1.00± 0.12 1.00± 0.03 1.00± 0.05 1.00± 0.09
SAC 0.87± 0.16 0.95± 0.08 0.98± 0.06 1.04± 0.04 0.88± 0.11

SVG 0.84± 0.08 0.83± 0.13 0.84± 0.19 1.06± 0.16 0.75± 0.23

SHAC 1.02± 0.03 1.16± 0.13 1.26± 0.04 1.15± 0.04 1.44± 0.08
AHAC 1.10± 0.00 1.41± 0.08 1.46± 0.06 1.35± 0.07 1.64± 0.07

Table 5. Tabular results of the asymptotic rewards achieved by each algorithm across all tasks. The results presented are PPO-normalized
50 % IQM and standard deviation across 10 random seeds. All algorithms have been trained until convergence.
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Hopper Ant Anymal Humanoid SNU Humanoid

PPO 4742± 521 6605± 793 12029± 360 7293± 365 4114± 370
SAC 4126± 759 6275± 528 11788± 722 7285± 292 3620± 453

SVG 3983± 379 5482± 859 10104± 2286 7731± 1167 3086± 946

SHAC 4837± 142 7662± 859 15157± 481 8387± 292 5924± 329
AHAC 5216± 21 9313± 528 17562± 722 9846± 511 6746± 288

Table 6. Tabular results of the asymptotic (end of training) rewards achieved by each algorithm across all tasks. The results presented are
50 % IQM and standard deviation across 10 random seeds. All algorithms have been trained until convergence.
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Figure 14. Reward curves for all tasks against both simulation steps and training time. We plot 50 % IQM and 95 % CI.

I. Ablation study details
In Section 5, we provided an ablation study of the individual contributions of our proposed approach, AHAC, as summarized
in Appendix C. In this section, we provide further details on the conducted experiments. The aim of the study is to
understand what changes contribute to the asymptotic performance of AHAC. To best achieve that, we started with SHAC
as the baseline, using the tuned version detailed in Appendix G above. Afterwards, we add the individual components that
contribute to AHAC using the hyper-parameter from the section above. Note that only hyper-parameters particular to AHAC
have been tuned to achieve the results presented in this paper; all other hyper-parameters are the ones tuned to our baseline
SHAC with H = 32. In particular, we have only tuned the adaptive horizon learning rate αψ and contact threshold C. Table
7 shows the detailed differences between the ablations presented in Section 5. The ablations include:

1. SHAC H=32 - our baseline with most hyper-parameters tuned to it.
2. SHAC H=29 - SHAC using the horizon H which AHAC converges to asymptotically.
3. Adaptive Objective - SHAC using the adaptive horizon objective introduced in Eq. 10 but without using it to adapt to

the horizon.
4. Adaptive Horizon - SHAC using the objective in Eq 10 and adapting the horizon. This is equivalent to AHAC without

the double critic and with iterative training.
5. Iterative critic - SHAC with a single target critic, utilizing iterative critic training until convergence.
6. Double critic - SHAC with a double critic and no target.

Previously in Section 5, we only provided end of training results for the Ant task. In Table 8 we provide the same results in
tabular form. We also provide the learning curves for the same experiments in Figure 15.
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Ablation H Actor objective Critic
Iterative
critic training

SHAC H=32 32 Eq. 8 Single w/ target

SHAC H=29 29 Eq. 8 Single w/ target
Adapt. Objective 32 Eq. 10 Single w/ target
Adapt. Horizon adaptive Eq. 10 Single w/ target

Iterative critic 32 Eq. 8 Single w/ target ✓
Double critic 32 Eq. 8 Dual

AHAC adaptive Eq. 10 Dual ✓

Actor
ablations

Critic
ablations

Table 7. Differences between ablations studied, split into actor and critic ablations. All ablations only introduce one component to the
baseline, SHAC.
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Figure 15. Standalone ablation results for the Ant task. These results are the same as in Figure 11 but presented in a different format for
improved legibility.

Ablation Asymptotic reward

SHAC H=32 1.16 ± 0.14
1. SHAC H=29 1.23 ± 0.17
2. Adaptive Objective 1.18 ± 0.18
3. Adaptive Horizon 1.35 ± 0.12
4. Iterative Critic 1.17 ± 0.13
5. Double Critic 1.20 ± 0.07
AHAC 1.41 ± 0.08

Table 8. Results of asymptotic performance of our ablation study showing 50% IQM and standard deviation.

20


