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Abstract
Amortized Bayesian inference trains neural net-
works to solve stochastic inference problems us-
ing model simulations, thereby making it pos-
sible to rapidly perform Bayesian inference for
any newly observed data. However, current
simulation-based amortized inference methods
are simulation-hungry and inflexible: They re-
quire the specification of a fixed parametric prior,
simulator, and inference tasks ahead of time. Here,
we present a new amortized inference method—
the Simformer—which overcomes these limita-
tions. By training a probabilistic diffusion model
with transformer architectures, the Simformer
outperforms current state-of-the-art amortized in-
ference approaches on benchmark tasks and is
substantially more flexible: It can be applied to
models with function-valued parameters, it can
handle inference scenarios with missing or un-
structured data, and it can sample arbitrary con-
ditionals of the joint distribution of parameters
and data, including both posterior and likelihood.
We showcase the performance and flexibility of
the Simformer on simulators from ecology, epi-
demiology, and neuroscience, and demonstrate
that it opens up new possibilities and applica-
tion domains for amortized Bayesian inference
on simulation-based models.

1. Introduction
Numerical simulators play an important role across various
scientific and engineering domains, offering mechanistic
insights into empirically observed phenomena (Gonçalves
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Tübingen AI Center, Tübingen, Germany 2Department of Com-
puter Science, University of British Columbia, Vancouver, Canada
3Max Planck Institute for Intelligent Systems, Department Em-
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Figure 1. Capabilities of the Simformer: It can perform inference
for simulators with a finite number of parameters or function-
valued parameters (first column), it can exploit dependency struc-
tures of the simulator to improve accuracy (second column), it can
perform inference for unstructured or missing data, for observation
intervals (third column), and it provides an ‘all-in-one’ inference
method that can sample all conditionals of the joint distribution,
including posterior and likelihood (fourth column).

et al., 2020; Dax et al., 2021; Marlier et al., 2022). A fun-
damental challenge in these simulators is the identification
of unobservable parameters based on empirical data, a task
addressed by simulation-based inference (SBI) (Cranmer
et al., 2020), which aims to perform Bayesian inference
using samples from a (possibly blackbox) simulator, with-
out requiring access to likelihood evaluations. A common
approach in SBI is to train a neural network on pairs of
parameters and corresponding simulation outputs: After an
initial investment in simulations and network training, in-
ference for any observation can then be performed without
further simulations. These methods thereby amortize the
cost of Bayesian inference.

Many methods for amortized SBI have been developed re-
cently (Papamakarios & Murray, 2016; Lueckmann et al.,
2017; Le et al., 2017; Greenberg et al., 2019; Papamakar-
ios et al., 2019; Radev et al., 2020; Hermans et al., 2020;
Glöckler et al., 2022; Boelts et al., 2022; Deistler et al.,
2022a; Simons et al., 2023). While these methods have
different strengths and weaknesses, most of them also share
limitations. First, they often rely on structured, tabular data
(typically θ,x vectors). Yet, real-world datasets are often
more messy (Shukla & Marlin, 2021): Irregularly sampled
time series naturally arise in domains like ecology, climate
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science, and health sciences. Missing values often occur in
real-world observations and are not easily handled by exist-
ing approaches. Second, the inputs of a simulator can cor-
respond to a function of time or space, i.e.,1-dimensional
parameters (Chen et al., 2020; Ramesh et al., 2022). Exist-
ing amortized methods typically necessitate discretization,
thereby limiting their applicability to a specific, often dense
grid and precludes the evaluation of the parameter posterior
beyond this grid. Third, they require specification of a fixed
approximation task: the neural network can either target the
likelihood (neural likelihood estimation, NLE, Papamakar-
ios et al. (2019)) or the posterior (neural posterior estimation,
NPE, Papamakarios & Murray (2016)). In practice, users
might want to interactively explore both conditional distribu-
tions, investigate posteriors conditioned on subsets of data
and parameters, or even explore different prior configura-
tions. Fourth, while neural-network based SBI approaches
are more efficient than classical ABC-methods (Lueckmann
et al., 2021), they are still simulation-hungry. In part, this is
because they target blackbox simulators, i.e., they do not re-
quire any access to the model’s inner workings. However, in
practice, one has at least partial knowledge (or assumptions)
about the structure of the simulator (i.e., its conditional inde-
pendencies), but common SBI methods cannot exploit such
knowledge. These limitations have prevented the applica-
tion of SBI in interactive applications, in which properties
of the task need to be changed on the fly.

Here, we develop a new method for amortized Bayesian
inference—the Simformer—which overcomes these lim-
itations (Fig. 1), using a combination of transformers
and probabilistic diffusion models (Peebles & Xie, 2022;
Hatamizadeh et al., 2023), based on the idea of graphi-
cally structure diffusion models proposed by Weilbach et al.
(2023). Our method can deal with unstructured and missing
data and handles both parametric and nonparametric simula-
tors (i.e., with function-valued1-dimensional) parameters.
In addition, the method returns a single network that can be
queried to sample all conditionals of the joint distribution
(including the posterior, likelihood, and arbitrary param-
eter conditionals) and can also perform inference if the
observations are intervals as opposed to specific values. We
show that our method has higher accuracy than previous SBI
methods on benchmark tasks (for a given simulation budget).
Moreover, by using attention masks, one can use domain
knowledge to adapt the Simformer to the dependency struc-
ture of the simulator (Weilbach et al., 2023) to further im-
prove simulation efficiency. Thus, the Simformer provides
an ‘all-in-one‘ inference method that encapsulates posterior-
and likelihood-estimation approaches and expands the space
of data, simulators, and tasks for which users can perform
simulation-based amortized Bayesian inference.

2. Preliminaries
2.1. Problem setting and approach

We consider a simulator with parameters θ (potentially non-
parametric) which stochastically generates samples x from
its implicit likelihood p(xjθ). After having observed data
xo, we aim to infer the posterior distribution p(θjxo) of pa-
rameters given data, but also retain the flexibility to capture
any other conditional of the full joint p(θ,x). We, there-
fore, introduce the joint x̂ = (θ,x), that will serve as input
for a transformer together with a mask indicating which
values are observed. The transformer will then use atten-
tion mechanisms to compute the corresponding sequence
of output scores of equal size. The scores corresponding to
unobserved variables will then form the basis of a diffusion
model representing the distribution over these variables.We
first give background on the main ingredients (transformers
and score-based diffusion models) in this section before
giving a detailed description in Sec. 3.

2.2. Transformers and attention mechanisms

Transformers overcome limitations of feed-forward net-
works in effectively dealing with sequential inputs. They
incorporate an attention mechanism which, for a given se-
quence of inputs, replaces individual hidden states with a
weighted combination of all hidden states (Vaswani et al.,
2017). Given three learnable linear projections of each
hidden state (Q, K, V ) this is computed as

attention(Q,K, V ) = softmax(QK)T /
p
d)V.

2.3. Score-based diffusion models

Score-based diffusion models (Song et al., 2021b; Song
& Ermon, 2019) describe the evolution of data through
stochastic differential equations (SDEs). Common SDEs
for score-based diffusion models can be expressed as

dx̂t = f(x̂t, t)dt + g(t)dw,

with w being a standard Wiener process, and f and g rep-
resenting the drift and diffusion coefficients, respectively.
The solution to this SDE defines a diffusion process that
transforms an initial data distribution p0(x̂0) = p(x̂) into a
simpler noise distribution pT (x̂T ) � N (x̂T ;µT ,σT ).

Samples from the generative model are then generated by
simulating the reverse diffusion process (Anderson, 1982)

dx̂t =
�
f(x̂t, t)� g(t)2s(x̂t, t)

�
dt + g(t)d ~w,

where ~w is a backward-in-time Wiener process. This re-
lies on the knowledge of the score function s(x̂t, t) =
rx̂t

log pt(x̂t) at each step. The exact marginal score is
typically intractable but can be estimated through time-
dependent denoising score-matching (Hyvärinen & Dayan,
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2005; Song et al., 2021b). Given that the conditional score
is known,pt (x̂ t jx̂ 0) = N (x̂ t ; � t (x̂ 0); � t (x̂ 0)) , the score
models� (x̂ t ; t) is trained to minimize the loss

L (� ) = Et; x̂ 0 ;x̂ t

h
� (t) ks� (x̂ t ; t) � r x̂ t logpt (x̂ t jx̂ 0)k2

2

i
;

where� denotes a positive weighting function. This objec-
tive, hence only requires samples from the original distribu-
tion x̂ 0 � p(x̂ ).

3. Methods

The Simformer is a probabilistic diffusion model that uses
a transformer to estimate the score (Weilbach et al. (2023);
Hatamizadeh et al. (2023); Peebles & Xie (2022), Fig. 2).
Unlike most previous approaches for simulation-based in-
ference, which employ conditional density estimators to
model either the likelihood or the posterior, the Simformer
is trained on thejoint distribution of parameters and data
p(� ; x ) =: p(x̂ ). The Simformer encodes parameters and
data (Sec. 3.1) such that arbitrary conditional distributions
of the joint density (including posterior and likelihood) can
still be sampled ef�ciently. The Simformer can encode
known dependencies in the attention mask of the transformer
(Sec. 3.2) and thereby ensures ef�cient training of arbitrary
conditionals (Sec. 3.3). Finally, the Simformer uses guided
diffusion to produce samples given arbitrary constraints
(Sec. 3.4).

3.1. A Tokenizer for SBI

Transformers process sequences of uniformly sized vectors
called tokens. Designing effective tokens is challenging and
speci�c to the data at hand (Gu et al., 2022). The tokenizer
represents each variable as an identi�er that uniquely identi-
�es the variable, a representation of the value of the variable,
and a condition state (Fig. 2). The condition state is a binary
variable and signi�es whether the variable is conditioned on
or not. It is resampled for every(� ; x ) 2 Rd pair at every
iteration of training. We denote the condition state of all
variables asM C 2 f 0; 1gd. SettingM C = (0 ; : : : ; 0) cor-
responds to an unconditional diffusion model (Song et al.,
2021b), whereas adoptingM ( i )

C = 1 for data andM ( i )
C = 0

for parameters corresponds to training a conditional diffu-
sion model of the posterior distribution (Simons et al., 2023;
Geffner et al., 2023). In our experiments, we uniformly at
random sample either the masks for the joint, the posterior,
the likelihood, or two randomly sampled masks (details in
Appendix Sec. A2). To focus on speci�c conditional distri-
butions, one can simply change the distribution of condition
masks.

The Simformer uses learnable vector embeddings for iden-
ti�ers and condition states, as proposed in Weilbach et al.
(2023). In cases where parameters or data are functions

Figure 2.Simformer architecture. All variables (parameters and
data) are reduced to a token representation which includes the vari-
ables' identity, the variables' value (val) as well as the conditional
state (latent (L) or conditioned (C)). This sequence of tokens is pro-
cessed by a transformer model; the interaction of variables can be
explicitly controlled through an attention mask. The transformer
architecture returns a score that is used to generate samples from
the score-based diffusion model and can be modi�ed (e.g. to guide
the diffusion process).

of space or time, the node identi�er will comprise a shared
embedding vector and a random Fourier embedding of the el-
ements in the index set. Finally, specialized embedding net-
works, commonly used in SBI algorithms and trained end-to-
end (Lueckmann et al., 2017; Chan et al., 2018; Radev et al.,
2020), can be ef�ciently integrated here by condensing com-
plex data into a single token (e.g. we demonstrate this on a
gravitational waves example in Appendix Sec. A3.2). This
reduces computational complexity but loses direct control
over dependencies and condition states for individual data
elements.

3.2. Modelling dependency structures

For some simulators, domain scientists may have knowl-
edge of (or assumptions about) the conditional dependency
structures between parameters and data. For example, it
may be known that all parameters are independent, or each
parameter might only in�uence a single data value. The
Simformer can exploit these dependencies by representing
them in the attention maskM E of the transformer (Weil-
bach et al., 2023). These constraints can be implemented
as undirected (via a symmetric attention mask) or as di-
rected dependencies (via a non-symmetric attention mask),
that allow to enforce causal relations between parameters
and observations. The latter, however, requires updating
the mask if dependencies change i.e., due to conditioning
(Webb et al., 2018) (Fig. 2, Appendix Sec. A1.1).
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Figure 3.Examples of arbitrary conditional distributions of the
Two Moons simulator, estimated by the Simformer.

A key advantage over masking weights directly (Germain
et al., 2015) is that the attention mask can be easily dy-
namically adapted at train or inference time, allowing to
enforce dependency structures that are dependent on input
values and condition state (details in Appendix Sec. A1).
We note that the attention maskM E alone generally cannot
ensure speci�c conditional independencies and marginal-
ization properties in multi-layer transformer models. We
describe the properties that can be reliably guaranteed and
also explore howM E can be effectively employed to learn
certain desired properties in Appendix Sec. A1.

3.3. Simformer training and sampling

Having de�ned the tokenizer which processes every(� ; x )
pair and the attention mask to specify dependencies within
the simulator, the Simformer can be trained using denoising
score-matching (Hyv̈arinen & Dayan, 2005; Song et al.,
2021b): We sample the noise levelt for the diffusion model
uniformly at random and generate a (partially) noisy sample
x̂M C

t = (1 � M C ) � x̂ t + M C � x̂0 i.e. variables that we want
to condition on remain clean. The loss can then be de�ned
as

`(�; M C ; t; x̂0; x̂ t ) =

(1 � M C ) �
�

sM E
� (x̂M C

t ; t) � r x̂ t logpt (x̂ t jx̂0)
�

;

wheresM E
� denotes the score model equipped with a speci�c

attention maskM E . In expectation across noise levelst and
the data, this results in

L (� ) = EM C ;t; x̂ 0 ;x̂ t [k`(�; M C ; t; x̂0; x̂ t )k
2
2]:

We note that to simplify notation,M E remains �xed here,
but as stated in Sec. 3.2, it might depend on the condition
state or input.

After having trained the Simformer, it can straightforwardly
sample arbitrary conditionals (Fig. 3). We draw samples
from the noise distribution and run the reverse diffusion pro-
cess on all unobserved variables, while keeping observed
variables constant at their conditioning value (Weilbach
et al., 2023). Having access to all conditional distributions
also allows us to combine scores and thereby perform in-
ference for simulators with i.i.d. datapoints (Geffner et al.,

2023). Similarly, we can use other score transformations to
adapt to other prior or likelihood con�gurations post-hoc
(see Appendix Sec. A1.4).

3.4. Conditioning on intervals with diffusion guidance

Guided diffusion makes it possible to sample from the gen-
erative model with an additional contexty , and has been
used in tasks such as image inpainting, super-resolution, and
image deblurring (Song et al., 2021b; Chung et al., 2022).
It modi�es the backward diffusion process to align it with
a given contexty . Guided diffusion modi�es the estimated
score as

s(x̂ t ; t jy ) � s� (x̂ t ; t) + r x̂ t logpt (y jx̂ t ):

Various strategies for guiding the diffusion process have
been developed, mainly differing in how they estimate
r x̂ t logpt (y jx̂ t ) (Dhariwal & Nichol, 2021; Chung et al.,
2023; Jalal et al., 2021; Song et al., 2022; Chung et al., 2022;
Bansal et al., 2023; Lugmayr et al., 2022).

We here use diffusion guidance to be able to allow the Sim-
former to not only condition on �xed observations, but also
on observationintervals(or, similarly, intervals of the prior).
Bansal et al. (2023) demonstrated that diffusion models
can be guided by arbitrary functions. In that line, we use
the following general formulation to guide the diffusion
process:

s� (x̂ t ; t jc) � s� (x̂ t ; t) + r x̂ t log � (� s(t)c(x̂ t ))

Here� denotes the sigmoid function,s(t) is an appropriate
scaling function satisfyings(t) ! 1 ast ! 0, depending
on the choice of SDE, andc denotes a constraint function
c(x̂ ) � 0. For example, to enforce an interval upper bound
u, we usec(x̂ ) = x̂ � u. We detail the algorithm used for
guiding the diffusion process in Alg. 1.

4. Results

4.1. Benchmark tasks

We evaluated performance in approximating posterior dis-
tributions across four benchmark tasks (Lueckmann et al.,
2021). For each task, samples for ten ground-truth poste-
riors are available (Appendix Sec. A2.2), and we assessed
performance as classi�er two-sample test (C2ST) accuracy
to these samples. Here, a score of 0.5 signi�es perfect align-
ment with the ground truth posterior, and 1.0 indicates that
a classi�er can completely distinguish between the approxi-
mation and the ground truth. All results are obtained using
the Variance Exploding SDE (VESDE); additional results
using the Variance Preserving SDE (VPSDE) can be found
in Appendix Sec. A3. See Appendix Sec. A2 for details on
the parameterization.
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Figure 4. Simformer performance on benchmark tasks. The suf-
�ces ”undirected graph” and ”directed graph” denote Simformer
variants with structured attention based on the respective graphical
models.(a) Classi�er Two-Sample Test (C2ST) accuracy between
Simformer- and ground-truth posteriors.(b) C2ST between arbi-
trary Simformer-conditional distributions and their ground truth.

Across all four benchmark tasks, the Simformer outper-
formed neural posterior estimation (NPE), even when the
Simformer used a dense attention mask (Fig. 4a). The only
exception was the Gaussian linear task with 10k simula-
tions; we show an extended comparison with NRE and NLE
in Appendix Fig. A5, results with VPSDE in Appendix
Fig. A6). Incorporating domain knowledge into the atten-
tion mask of the transformer led to further improvements
in the accuracy of the Simformer, particularly in tasks with
sparser dependency structures, such as the Linear Gaussian
(fully factorized) and SLCP (4 i.i.d. observations). Averaged
across all benchmark tasks and observations, the Simformer
required about 10 times fewer simulations than NPE, lead-
ing to a vast reduction of computational cost for amortized
inference.

Next, we evaluated the ability of the Simformer to evaluate
arbitrary conditionals. Arbitrary parameter and data con-
ditions often vastly differ from the form of the posterior
distribution, leading to a challenging inference task (Fig. 3).
We performed inference on two of the benchmark tasks and
established two new tasks with particularly interesting de-
pendencies (Tree and HMM, details in Appendix Sec. A2.2).
For each of the tasks, we generated ground truth posterior
samples with Markov-Chain Monte-Carlo on 100 randomly
selected conditional or full joint distributions. We found
that, despite the complexity of these tasks, Simformer was
able to accurately model all conditionals across all tasks

(Fig. 4b). We note that training solely on the posterior mask
does not enhance performance relative to learning all condi-
tional distributions (Appendix Sec. A3). Further, Simformer
is well calibrated (Appendix Fig. A9, Fig. A10, Fig. A11,
Fig. A12) and, in most cases, also superior with respect to
the loglikelihood (Appendix Fig. A8).

4.2. Lotka-Volterra: Inference with unstructured
observations

Many measurements in science are made in an unstructured
way. For example, measurements of the populations of
prey and predator species in ecology might not always be
made at the same time points, and even the number of ob-
servations that were made might differ between species. To
demonstrate that Simformer can deal with such `unstruc-
tured' datasets, we applied the method to the ecological
Lotka-Volterra model (Lotka, 1925; Volterra, 1926). The
Lotka-Volterra model is a classic representation of predator-
prey dynamics and is characterized by four global param-
eters, which govern the growth, hunting, and death rates
of prey and predator. These populations evolve over time,
guided by a set of coupled ordinary differential equations
with Gaussian observation noise (details in Sec. A2.2). We

Figure 5. Inference with unstructured observations in the Lotka-
Volterra model.(a) Posterior predictive (left) and posterior dis-
tribution (right) based on four unstructured observations of the
prey population density (green crosses), using Simformer with105

simulations. True parameters in dark blue.(b) Same as (a) with
nine additional observations of the predator population density.(c)
C2ST-performance in estimating arbitrary conditionals (right) or
the posterior distribution (left) using the C2ST metric.
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note that, unlike Lueckmann et al. (2021), we perform in-
ference for thefull time-series and do not rely on summary
statistics.

We trained Simformer on105 simulations and, after training,
generated several synthetic observations. The �rst of these
observations contained four measurements of the prey pop-
ulation, placed irregularly in time (green crosses in Fig. 5a).

Using Simformer, we inferred the posterior distribution
given this data. We found that the ground truth parameter
set was indeed within regions of high posterior probability,
and the Simformer posterior closely matched the ground
truth posterior generated with MCMC (Fig. 5c, Appendix
Sec. A2.2). We then used the ability of Simformer to sam-
ple from arbitrary conditional distribution to simultaneously
generate posterior and posterior predictive samples without
additional runs of the simulator. The posterior predictives of
Simformer capture data and uncertainty in a realistic manner
(Fig. 5a).

As a second synthetic observation scenario, we used nine
additional observations of the predator population, also ir-
regularly placed in time (Fig. 5b). As expected, including
these measurements reduces the uncertainty in both the pos-
terior (Fig. 5b, right) and posterior predictive distributions
(Fig. 5b left, posterior predictive again generated by the
Simformer).

4.3. SIRD-model: Inference in in�nite dimensional
parameters

Next, we show that Simformer can perform inference on
functional data, i.e.,1 -dimensional parameter spaces, and
that it can incorporate measurements of a subset of parame-
ters into the inference process. In many simulators, parame-
ters of the system may depend on time or space, and amor-
tized inference methods should allow to perform parameter
inference atany(potentially in�nitely many) points in time
or space. We will demonstrate the ability of Simformer to
solve such inference tasks in an example from epidemiol-
ogy, the Susceptible-Infected-Recovered-Deceased (SIRD)
model (Kermack & McKendrick, 1927).

The SIRD simulator has three parameters: recovery rate,
death rate, and contact rate. To simplify the inference task,
these parameters are sometimes assumed to be constant in
time, but treating the parameters as time-dependent allows
to incorporate factors such as social distancing measures,
public health interventions, and natural changes in human
behavior (Chen et al., 2020; Schmidt et al., 2021). This is in
contrast to Lueckmann et al. (2021), which only considered
a two-parameter SIR variant on a discrete-time grid. To
demonstrate that Simformer can deal with a mixture of time-
dependent and constant-in-time parameters, we assumed
that the contact rate varied over time, whereas the recovery

Figure 6. Inference of1 -dim parameter space in the SIRD model.
(a) Inferred posterior for global parameters (upper left) and time-
dependent local parameters (upper right) based on �ve observations
(crosses) of infected (I), recovered (R), and death (D) population
densities. The black dot and dashed line indicate the true parameter,
bold lines indicate the mean, and shaded areas represent99%
quantiles.(b) Inference with parameter measurements and a single
measurement of fatalities.

and death rate where constant in time.

We generated synthetic measurements from infected, recov-
ered, and deceased individuals at irregularly spaced time
points and applied the Simformer to estimate the posterior
distribution of parameters. The Simformer estimated real-
istic death and recovery rates and successfully recovers a
time-dependent contact rate that aligns with ground truth ob-
servations (Fig. 6a). Indeed, as measurements of infections
tend towards zero (around timestamp 25, Fig. 6a, orange),
the Simformer-posterior for the contact rate increases its un-
certainty. This is expected, as we cannot obtain conclusive
insights about the contact rate in scenarios with negligible
infections. Additionally, as we already demonstrated on the
Lotka-Volterra task, the ability of the Simformer to sample
any conditional distribution allows us to generate posterior
predictive samples without running the simulator. These
samples closely match the observed data, further demon-
strating the accuracy of the Simformer.

Next, we demonstrate that the Simformer can accu-
rately sample parameter-conditioned posterior distributions
(Fig. 6b). We generated a synthetic observation consisting
of four measurements of the time-dependent contact rate
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