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Abstract

No free lunch theorems for supervised learning
state that no learner can solve all problems or that
all learners achieve exactly the same accuracy on
average over a uniform distribution on learning
problems. Accordingly, these theorems are often
referenced in support of the notion that individ-
ual problems require specially tailored inductive
biases. While virtually all uniformly sampled
datasets have high complexity, real-world prob-
lems disproportionately generate low-complexity
data, and we argue that neural network models
share this same preference, formalized using Kol-
mogorov complexity. Notably, we show that ar-
chitectures designed for a particular domain, such
as computer vision, can compress datasets on a va-
riety of seemingly unrelated domains. Our exper-
iments show that pre-trained and even randomly
initialized language models prefer to generate low-
complexity sequences. Whereas no free lunch
theorems seemingly indicate that individual prob-
lems require specialized learners, we explain how
tasks that often require human intervention such
as picking an appropriately sized model when la-
beled data is scarce or plentiful can be automated
into a single learning algorithm. These observa-
tions justify the trend in deep learning of unifying
seemingly disparate problems with an increas-
ingly small set of machine learning models.

1. Introduction
The problem of justifying inductive reasoning has chal-
lenged epistemologists since at least the 1700s (Hume,
1748). How can we justify our belief that patterns we ob-
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served previously are likely to continue into the future with-
out appealing to this same inductive reasoning in a circular
fashion? Nonetheless, we adopt inductive reasoning when-
ever we learn from past experience.

More recently, in the late 1990s, no free lunch theorems
emerged from the computer science community as rigor-
ous arguments for the impossibility of induction in con-
texts seemingly relevant to real machine learning problems
(Wolpert, 1996; Wolpert & Macready, 1997). One such no
free lunch theorem for supervised learning states that no
single learner can achieve high accuracy on every problem
(Shalev-Shwartz & Ben-David, 2014). Another states that
every learner is equally good in expectation over a uniform
distribution on learning problems (Wolpert, 1996). Such a
world would be hostile to inductive reasoning. The assump-
tion that labelings are drawn uniformly ensures that training
data is uninformative about unseen samples.

In contrast to this dismal outlook on machine learning, natu-
rally occurring data involve structure that could be shared
even across seemingly disparate problems. If we can design
learning algorithms with inductive biases that are aligned
with this structure, then we may hope to perform inference
on a wide range of problems. In this work, we explore the
alignment between structure in real-world data and machine
learning models through the lens of Kolmogorov complexity.

The Kolmogorov complexity of an output is defined as the
length of the shortest program under a fixed language that
produces it. In Section 3, we explain the connection between
Kolmogorov complexity and compressibility. Virtually all
data drawn from a uniform distribution as assumed by the
no free lunch theorem of Wolpert (1996) cannot be sig-
nificantly compressed, yet relevant real-world datasets are
highly compressible. In particular, neural networks them-
selves can be used to create compressions of data labelings,
upper bounding their Kolmogorov complexity.

We then demonstrate in Section 4 that modern neural net-
works also prefer low Kolmogorov complexity, comple-
menting the low complexity of actual data. While models
implemented on a computer cannot generate data with com-
plexity exceeding the length of their associated program, we
find they actually prefer data that is far simpler. We formu-
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late simple languages for generating numerical sequences,
under which we can directly measure the Kolmogorov com-
plexity of a sequence. We use these languages to inspect the
simplicity bias of both pre-trained and randomly initialized
language models. GPT-3 (Brown et al., 2020) reliably fa-
vors less complex sequences, and bigger and better GPT-3
variants even more so. Notably, randomly initialized GPT
models share this simplicity bias.

To further emphasize the universality of this simplicity bias,
we reshape tabular data from diverse domains, including
click prediction and airline delay prediction, into images
and feed them through convolutional computer vision ar-
chitectures, showing that these vision architectures prefer
correct labelings to random ones, even on data which do
not remotely resemble natural images and have no spatial
structure. We then compute cross-domain generalization
bounds via Kolmogorov complexity.

A common intuition associated with no free lunch theorems
dictates that since a single learner cannot solve all prob-
lems, practitioners must inspect data and manually select an
appropriate learner for the specific problem at hand. For ex-
ample, a practitioner might select a more constrained model
to avoid overfitting on small datasets, or convolutional archi-
tectures to accommodate natural image data. To the contrary,
we show in Section 5 that the meta learner which selects the
best learning algorithm from cross validation suffers little
from overfitting even when the number of models investi-
gated is large, and the cost of selection is quickly overcome
by gains in validation accuracy.

Moreover, a single learner, which supports a variety of func-
tions but prefers simple ones, can solve a wide range of
problems. We show that flexible models accompanied by a
penalty encouraging simple solutions can solve problems at
a variety of sample sizes. In fact, the historic evolution of
machine learning supports the ability of a single learner to
perform diverse tasks (see Figure 1) as highly task-specific
pre-neural algorithms, such as LDA (Blei et al., 2003) and
HOG (Dalal & Triggs, 2005), were replaced by neural ar-
chitectures such as convolutional or recurrent models, and
transformers can now handily perform all tasks listed in
Figure 1. We summarize some of our findings as follows:

• We demonstrate the direct connection between com-
pressibility and learnability that is implicit in no free
lunch theorems by deriving a new no free lunch theorem
using Kolmogorov complexity.

• We show that the low Kolmogorov complexity of real
datasets can be directly derived from the machine learn-
ing models used to fit them.

• We compute the first cross-domain PAC-Bayes general-
ization bounds which show that neural networks such as

convolutional architectures have low complexity biases
that are relevant even on diverse tabular data far from
what they were designed for.

• We demonstrate GPT-3’s preference for sequences gen-
erated by short expression trees, finding even randomly
initialized language models have a simplicity bias.

In short, while no free lunch theorems are regularly used
to justify specially tailored inductive biases (e.g., Ho &
Pepyne, 2002; Whitley & Watson, 2005; Ciuffo & Punzo,
2013; Watson et al., 1999), we show that real-world data are
not only highly structured, but share structure to a large ex-
tent. We further show how intervening to embrace a flexible
hypothesis space together with a simplicity bias can lead
to effective learners in small and large data regimes. Our
findings also explain recently observed phenomena, ranging
from the generality of transformers to the lack of overfit-
ting on test sets of popular benchmarks noted in Recht et al.
(2019). This position paper argues that low-complexity
structure shared by real-world datasets and machine
learning models enables broad generalization across do-
mains and sample sizes with a single model class. We
summarize key takeaways throughout the paper in blue .
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Figure 1: Over time, tasks that were performed by domain-
specialized ML systems are increasingly performed by unified
neural network architectures. Real-world datasets often exhibit
low Kolmogorov complexity. A model that combines a flexible
hypothesis space with a simplicity bias towards low Kolmogorov
complexity will provide good generalization on many different
problems and modalities of data.

2. Background
We provide background on the no free lunch theorems, PAC-
Bayes, and Kolmogorov complexity. We include an ex-
tended background discussion in Appendix A.

No free lunch theorems. No free lunch theorems (NFL)
state that without making strong assumptions, a single al-
gorithm cannot simultaneously solve all problems well. In
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supervised learning, the focus of this paper, Wolpert (1996)
and Schaffer (1994) famously prove that every learner—
a function that takes in labeled data and outputs a label-
ing function for the associated domain—achieves the same
average accuracy of 50% on unseen examples over all bi-
nary classification problems. Shalev-Shwartz & Ben-David
(2014) instead do not assume a particular distribution over
learning problems and prove that for every learner, there
exists a task on which the learner achieves poor accuracy
with high probability over training splits, whereas another
learner achieves perfect accuracy. Notably, the latter NFL
computes accuracy over all data, not just “off-training” sam-
ples. The practical relevance of this theorem again hinges on
the distribution over real-world learning problems and how
well it aligns with the inductive bias of a learner. In this pa-
per, we argue that the real-world learning problems we care
about share significant structure, and the inductive biases of
neural networks are well-aligned with such problems. Note
the distinction between the existence of learning problems
where a learner generalizes poorly and out-of-distribution or
adversarial test samples where a model fails to generalize.

Kolmogorov complexity and compression. Kolmogorov
complexity quantifies the structure in a bitstring, measur-
ing the extent to which it can be compressed. For a fixed
programming language L, the Kolmogorov complexity of
data x, K(x), is the length of the shortest program in that
language that outputs x (Kolmogorov, 1963). Analogous
to conditional entropy, K(y|x) is defined as the length of
the shortest program which inputs x and outputs y. Kol-
mogorov complexity provides a mathematical formalization
of simplicity and Occam’s razor, encompassing related con-
cepts like Shannon information, compression, and minimum
description length (MDL) (Li et al., 2008). While large Kol-
mogorov complexity is impossible to verify (Chaitin, 1974),
all but exponentially few sequences of a given length have
near maximal Kolmogorov complexity and are thus incom-
pressible. Taken over the uniform distribution over bitstrings
x, P (K(x) ≤ n− k) ≤ 21−k. However as we will discuss,
these high complexity objects are rare in practice.

Universal induction. Inspired by Kolmogorov complexity,
a line of work considers universal induction methods, which
prefer low complexity answers (Solomonoff, 1964; Hutter,
2000; Lattimore & Hutter, 2013; Nakkiran, 2021; Achille
et al., 2021). Notably, Solomonoff induction (Solomonoff,
1964; Rathmanner & Hutter, 2011) makes predictions by
applying Bayes rule to the universal prior which favors low
complexity, and provides guarantees. Rather than formaliz-
ing theoretical learners that rely on Kolmogorov complexity,
which is in general uncomputable, Fernández-Delgado et al.
(2014) and Gómez & Rojas (2016) test popular machine
learning algorithms on a diverse array of datasets to see if
any existing algorithms are universal. Another line of work
shows that a single transformer model can perform well on

many problems (Müller et al., 2022; Hollmann et al., 2022).

PAC-Bayes generalization theory. The PAC-Bayes frame-
work is a convenient paradigm for proving generalization
bounds on parametric models, while avoiding the pitfalls
of uniform convergence. Rather than considering all ele-
ments of the hypothesis class on equal footing, we choose
prior and posterior distributions over the parameters, and
the generalization gap for elements of the posterior depends
merely on the discrepancy between the two as measured
by the KL divergence. This framework can explain many
favorable properties of neural networks like flat minima
(Hochreiter & Schmidhuber, 1997), noise resilience (Arora
et al., 2018), and compressibility (Zhou et al., 2018). It can
also provide nonvacuous generalization bounds, with recent
bounds drawing directly from Kolmogorov complexity and
the universal prior (Lotfi et al., 2022).

On the relationship between our contributions and ex-
isting literature. (1) In contrast to previous works which
counter the no free lunch theorem by observing that a single
model can achieve better-than-average empirical accuracy
across diverse datasets (Fernández-Delgado et al., 2014;
Gómez & Rojas, 2016), we explain and formalize the struc-
tures which are universal across such data distributions using
Kolmogorov complexity. Relating this formalism to learn-
ing, we then show why low complexity is fundamental to
such successes of machine learning models by proving a
novel no free lunch theorem directly using Kolmogorov
complexity. (2) The preference we demonstrate for low
complexity emerges naturally in a variety of models, from
transformer language models to convolutional neural net-
works, and requires no special interventions as proposed in
Schmidhuber (1997) or Hinton & Van Camp (1993). (3)
Existing generalization bound literature tunes priors on spe-
cific data distributions (Dziugaite & Roy, 2017; 2018; Pérez-
Ortiz et al., 2021; Dziugaite et al., 2021) in line with the
idea, often drawn from no free lunch theorems, that each
domain requires a specially tailored model. In contrast,
we demonstrate that neural networks can compress a wide
range of datasets in domains they were not even designed
for, and that this compressibility can explain generaliza-
tion via PAC-Bayes generalization bounds. (4) Common
wisdom dictates that neural network architectures must be
carefully chosen for specific problems or sample sizes (Grin-
sztajn et al., 2022; Brigato & Iocchi, 2021; Lee et al., 2021),
but we instead show through the formalism of complexity
and experiments that specialized models can in principle be
combined into a single learner which can perform well on a
wide variety of problems and sample sizes. Moreover, we
show that the cost of model selection is minimal, explaining
recently observed phenomena such as a lack of overfitting
to the test sets of popular benchmarks (Recht et al., 2019).
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3. Unpacking the No Free Lunch Theorem
with Kolmogorov Complexity

The often cited no free lunch theorem of Wolpert (1996)
states that all learners perform the same when averaged
over a uniform distribution on all possible datasets. How-
ever, since most possible datasets are incompressible, the
assumption of uniform samples subtly selects high complex-
ity incompressible data, where learning is fundamentally
impossible. We elucidate the centrality of complexity in
NFL theorems by deriving a new NFL theorem which uses
the incompressibility of random data to show why on this
data learning is impossible. In Appendix B, we provide a
brief introduction to bounding the Kolmogorov complexity
of a dataset by compressing it and including the file sizes of
both compressed file and decompression code. Through hy-
pothesis testing, we rule out the possibility that real datasets
are as high complexity as randomly drawn ones.

3.1. NNs as Compressors of the Labeling Function

Relevant to supervised learning, we show that not only
are unlabeled datasets compressible—labeling functions
are too. Further, we can demonstrate their compressibility
concretely using trained models as compressors. Given a la-
beled dataset D = (X,Y ) = {(xi, yi)}ni=1, any likelihood
model p(y|x)—regardless of whether the top predictions
are correct—can be used to generate a lossless compres-
sion scheme to encode the dataset labels Y given the in-
puts X . Using a stream code such as arithmetic coding
(Witten et al., 1987), in combination with the probability
model p(y|x), the labels can be encoded in K(Y |X, p) ≤
−
∑n

i=1 log2 p(yi|xi) + 2 bits (see e.g. MacKay (2003)).
Models which maximize the log likelihood of the data also
implicitly minimize the length of this encoding.

As we derive in Appendix C, K(Y |X) ≤ K(Y |X, p) +
K(p)+2 log2 K(p)+c, where c is a small constant depend-
ing on the language. Writing the negative log likelihood
in terms of the empirical cross entropy, combining our two
inequalities, and dividing by the size of the dataset n yields

1
nK(Y |X) ≤ CE

ln 2
+ n−1(K(p) + 2 log2 K(p) + c), (1)

where CE is the cross entropy of the classifier p averaged
over dataset D. This inequality implies that, regardless of
how large the model is, it provides a non-trivial compression
of the dataset as the size n of the dataset grows sufficiently
large, as long as CE is better than random guess. To demon-
strate this fact, we employ the compression scheme from
Lotfi et al. (2022) in order to find a compressed representa-
tion of MLPs on several class balanced tabular classification
datasets (available at openml.org). As shown in Fig-
ure 2 (left), we are able to compress the labels on most
of the datasets by well over the naive n log2 C encoding

length where C is the number of classes. We also apply the
method with convolutional architectures to compress labels
on CIFAR-10 and CIFAR-100 in Figure 2 (middle), allow-
ing us to reject the hypothesis that the labeling functions are
drawn uniformly at random with extremely high confidence.

3.2. A Kolmogorov-Style No Free Lunch Theorem

A corollary of Equation 1 is that if the dataset is incompress-
ible, then no model can do better than random chance in
the large dataset limit, as we show in Theorem 3.1. Since
compressible datasets in uniformly sampled data are ex-
ponentially unlikely, we can prove our own version of the
no free lunch theorem. With very high probability, on any
given uniformly sampled dataset, learning is impossible.

Theorem 3.1. Let (X,Y ) be a dataset with n data points
and uniformly sampled random labels from C classes. Then,
with probability at least 1− δ, for every classifier p(y|x),

CE(p) ≥ lnC− ln 2

n
(K(p) + 2 log2 K(p) + log(1/δ) + c) ,

(2)
where CE(p) is the empirical cross entropy of the classifier
p(y|x) on the data. Thus for any model of bounded size,
if the size of the dataset is large enough, the model can-
not represent any classifier with cross entropy appreciably
smaller than that attained from random guess. Proof found
in Appendix C.

Like any of the no free lunch theorems, the necessary exis-
tence of unsolvable problems initially seems limiting. How-
ever, learning is in fact possible on compressible datasets
(ones with less than maximal complexity).

Real datasets are highly unlike the high complex-
ity samples from the uniform distribution, associ-
ated with no free lunch theorems, where learning is
impossible. The common structure shared by real
datasets nullifies the limitations imposed by no free
lunch theorems.

4. Low-Complexity Bias in Models
Previously, we saw that real-world data distributions across
domains share a low Kolmogorov complexity bias. If we
can construct models which prefer low-complexity data, we
can hope to perform inference with a single model across
many domains. While early machine learning systems incor-
porated domain-specific designs, such as handcrafted image
features (Dalal & Triggs, 2005) or graphical models for
language (Mnih & Hinton, 2007), modern neural network
architectures across domains are converging on transform-
ers (Vaswani et al., 2017; Dosovitskiy et al., 2020; Gulati
et al., 2020; Somepalli et al., 2021), some of which can
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Figure 2: (Left): Compressed sizes of tabular labels where compression is performed via a trained MLP model (as in Section 3.1) vs.
direct encoding of labels (n log2 C). (Middle): Compression of image classification datasets using CNNs. Note the breakdown of the
total compressed size of the labels into model fit (NLL Bits), compressed parameters (Model Bits), and architecture and decompressor
(Code Bits). In both cases, models can greatly compress a diverse suite of datasets, highlighting a common structure shared by models
and real-world data. (Right): Compression based generalization bounds (Lotfi et al., 2022) for CNNs on tabular data, fed in with each
pixel representing a tabular feature. The bounds are able to explain the majority of the model performance as shown by the test error,
indicating that even CNNs designed for computer vision have a generic inductive bias appropriate for a wide range of datasets containing
no spatial structure at all.

simultaneously achieve impressive performance on a variety
of data types with a single architecture (Jaegle et al., 2021).

In this section, we argue that neural networks have a generic
simplicity bias that extends beyond the datasets for which
they are designed. To this end, we: (1) feed tabular datasets
from diverse domains such as click prediction and airline de-
lay prediction into convolutional networks designed specifi-
cally for computer vision and find that they provably gen-
eralize well due to their simplicity bias, (2) formulate a
language with respect to which we can measure the Kol-
mogorov complexity of numerical sequences and observe
that GPT-3 generates low-complexity sequences with ex-
ponentially higher probability, (3) predict the next term
in a sequence with randomly initialized language models.
Whereas the no free lunch theorem of Wolpert (1996) im-
plies that such an inference procedure cannot outperform
random guess on average, we find that randomly initialized
neural networks prefer sequence completions which gen-
erate low-complexity completed sequences, demonstrating
that they can make accurate guesses as long as the true
sequence distribution also favors low complexity.

4.1. Bounding Generalization by Complexity

Generalization bounds limit how the expected risk R(h)
for a model h will differ from its train risk R̂(h). One
simple such generalization bound is the finite hypothesis
bound under a prior P (h) (Langford & Seeger, 2001): with

probability 1 − δ: R(h) ≤ R̂(h) +
√

log 1/P (h)+log 1/δ
2n .

Relating to Occam’s razor and Solomonoff induction, con-
sider the universal prior that assigns higher likelihood
to compressible hypotheses: P (h) = 2−Kp(h)/Z where
Kp(h) ≤ K(h) + 2 log2 K(h) is the prefix Kolmogorov
complexity and Z ≤ 1. Combining the two, we have with

probability 1− δ,

R(h) ≤ R̂(h) +

√
Kp(h) log 2 + log 1/δ

2n
. (3)

Despite the simplicity of the finite hypothesis bound, when
combined with the universal prior, it provides nontrivial
statements about generalization even for models which have
many more parameters than data points (Lotfi et al., 2022).
Solutions found by many machine learning models on real
datasets are highly compressible, and this reflects their bias
for low Kolmogorov complexity functions. Even under an
arbitrarily large or even infinite hypothesis space, general-
ization is possible if we assign prior mass disproportionately
to the highly structured data that typically occurs.

4.2. Neural Networks Prefer Naturally Occurring
Labelings Across Domains

The inductive biases of even specialized architectures like
convolutional networks facilitate broad learning abilities.
We now illustrate how a preference for low complexity alone
is sufficient for a high degree of generalization, provably,
since real-world data labelings tend to have low complex-
ity. To illustrate this fact, we take tabular classification
datasets and encode the tabular features as an image by
simply forming images where each pixel corresponds to a
different feature, zero padding as necessary. We train a small
convolutional network using this input data to predict the
classification labels. Learning with the convolutional net-
work requires overcoming the strong inductive bias tailored
for the local and translation symmetric structure absent in
this data. Even in spite of this extreme mismatch, the convo-
lutional networks perform well. Using the compression and
PAC-Bayes bound methodology from Lotfi et al. (2022) (see
Equation 3), we show the generalization bounds on these
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models along with test error in Figure 2 (right). The strong
generalization of convolutional networks on tabular datasets
is almost entirely explainable through simplicity bias as the
finite hypothesis bound nearly matches the test error.

Though CNNs were designed for vision, they gener-
alize on unrelated tabular domains, a phenomenon
almost entirely explained by their preference for
low-complexity solutions.

4.3. GPT-3 Assigns Exponentially Higher Probability to
Simpler Sequences

We now study the preference of GPT-3—a line of autore-
gressive LLMs—for simpler sequences. The ability of lan-
guage models to solve reasoning problems has recently been
studied by Zelikman et al. (2022), who develop a prompt-
ing framework, and d’Ascoli et al. (2022), who develop
transformers for predicting symbolic expressions directly
from the sequence. To perform our own study, we consider
binary expression trees on basic arithmetic operations on
integers, a simplified non-Turing-complete model of the
larger space of programs. These expression trees can be
executed to produce a numerical sequence. Complexity is
defined with respect to unique encodings of these trees, with
the value being the length of the shortest code for a tree
which produces a given sequence as output. While distinct,
the Kolmogorov complexity can be upper bounded by this
complexity plus an added constant to encode the language.
By using a small set of terms for the leaves and binary op-
erators for the nodes, we can enumerate over all possible
expression trees for small sizes with depth at most L = 7
and compute all sequences with 0 through L.

In our experiments, we use operations +,×, and // (integer
division). For leaves, we use 2 and i, where i is the index
within the sequence. For example, (2+i)×i could be imple-
mented with a tree of size 2 and would generate the sequence
ai = 0, 3, 8, 15, ... Using this setup, we generate sequences
of varying complexity, according to a well-defined metric,
and quantify the preference of GPT-3 models for simpler
sequences. We provide details on tokenizing sequences and
extracting their probabilities in Appendix E.

In Figure 3, we measure the average log-probability GPT-3
models assign to sequences of a given complexity, where
we fix the number of numerical tokens input into the model
to be 30, and we observe that the probabilities assigned
by these language models decrease exponentially with se-
quence complexity, not far from the Solomonoff prior dis-
cussed in Section 2. In contrast, a uniform prior would be
described by a flat line. We observe that big GPT-3 models
which excel at language modeling, e.g. Davinci contain-
ing 175 billion parameters, assign higher probability simple

sequences than much smaller GPT-3 models such as Ada.
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Figure 3: GPT-3 prefers low-complexity sequences generated
by expression trees. Left: Average log-probability of sequences
by complexity. Right: Average log-probability by sequence length,
restricted to decimal digit tokens. GPT-3 variants ordered by in-
creasing size. Observe that GPT-3 variants assign exponentially
lower probabilities to higher complexity sequences (left), as in the
Solomonoff prior, and bigger more powerful models especially ex-
hibit this behavior. Moreover, the models become more confident
as they see more tokens, and the more powerful GPT-3 variants
such as Davinci learn faster (right).

We can also examine the decay of such log-probabilities as
we feed more digits of the sequence into the model. As the
sequences get longer, we see in Figure 3 that the probabil-
ities assigned to sequences decay sub-exponentially, indi-
cating that these models, especially bigger variants, become
increasingly confident about later sequence elements.

4.4. Even Randomly Initialized Language Models Prefer
Low Complexity

The previous section examined pre-trained language models,
but these models were trained on massive corpora. Do they
prefer low complexity at initialization before they have even
seen any data at all? While the initialization of neural net-
work parameters is highly diffuse, these random parameters
can induce a highly structured distribution over functions.

Trained language models are known to repeat themselves
(Holtzman et al., 2020; Fu et al., 2021). One might think
this behavior is learned from training data which contains
repeated text, but we show randomly initialized GPT models
repeat themselves too. Interestingly, we can formalize the
preference for repetition as an example of the broader pref-
erence for low Kolmogorov complexity. To disentangle the
impact of initialization from training, we adopt an even sim-
pler setting which eschews the numerical tokens altogether.
We consider binary sequences with arbitrary pairs of tokens
constructed by simply repeating a given sequence until the
output is of length 10. Under this construction, the sequence
0, 0, 0, ... has complexity 1, and 0, 1, 0, 1, ... has complexity
2, yet randomly generated sequences are exponentially more
likely to have high complexity. We conduct our evaluations
exhaustively on all such sequences of length 10.
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We now generate sequences of length 10 with randomly
initialized GPT-2 models (Radford et al., 2019), using each
initialization to generate one sequence, and we measure
the frequency with which each sequence is generated. We
compare generation probabilities against complexity in Ap-
pendix F where we see again that low-complexity sequences
are assigned exponentially higher probabilities. Here, we
compare (1) the uniform distribution over sequences, (2)
randomly initialized GPT-2, as well as (3) pre-trained GPT-2
models. We see that randomly initialized parameters induce
a structured distribution over sequences, and pre-trained
checkpoints exhibit an even stronger preference for low
complexity as they are trained on structured text. We can
also use randomly initialized language models to perform
next element prediction by estimating the probabilities they
assign to the next element in a sequence given having cor-
rectly generated the previous terms. While Wolpert’s no
free lunch theorem (Wolpert, 1996) ensures that the average
completion accuracy over all possible length 10 bitstrings is
exactly 0.5, we verify in Appendix F that randomly initial-
ized networks can be used for sequence completion when
the sequence has low complexity.

We can further generate long length-100 sequences with
randomly initialized and pre-trained GPT-2 models and run
a simple hypothesis test, demonstrating both randomly ini-
tialized and pre-trained models generate lower Kolmogorov
complexity sequences on average than a uniform distribu-
tion. We generate 100,000 samples from each of these
three generative distributions and perform a one-tailed t-
test on the null hypothesis that µ(K(SGPT)) ≥ µ(K(SU )),
where SGPT and SU respectively denote random sequences
generated by the language model or a uniform distribu-
tion. Performing this test, we reject the null hypothesis in
both randomly initialized and pre-trained models with an ex-
tremely low p-value, indicating that language models indeed
prefer to generate simple sequences. Details are found in
Appendix F. We conclude that neural networks for language
generation, both trained and randomly initialized, express
a bias towards low Kolmogorov complexity which mirrors
that of data as demonstrated in Section 3 and previously
observed for classifiers in Valle-Perez et al. (2018). Our
findings also harmonize with Huh et al. (2022), who show
that even randomly initialized models express a preference
for low effective rank embeddings. It is our contention that
this simplicity bias leads to general-purpose learning.

Language models, both pre-trained and randomly
initialized, prefer to generate low-complexity se-
quences. As a result, we can use even such randomly
initialized models to predict the next element in a se-
quence, as long as the sequence is low-complexity.

5. Model Selection with a Simplicity Bias
In typical industrial workflows, practitioners examine their
data and select an appropriate learner. We can then consider
the human model selector and the model they select as a
single meta-learner. Whereas the no free lunch theorems
seemingly preclude automated meta-learners which select
performant models on any task, empirical works show that
model selection can in fact be automated in practice (Vilalta
& Drissi, 2002). Giraud-Carrier & Provost (2005) show
that with minimal assumptions, the defeating conclusion
of Wolpert’s no free lunch theorem is escaped as long as
datasets share structure so that the model selector gener-
alizes to new datasets. In this section, we argue why in
principle, model selection can be automated from the view
of Kolmogorov complexity.

5.1. Model Selection and Generalization Bounds

When developing a machine learning approach for an appli-
cation, it is often helpful to leverage domain knowledge in
constructing or choosing the right model for the task. One
might start by choosing from families like MLPs, CNNs,
GNNs, PointNets, or Transformers and then decide on the
appropriate way of featurizing inputs, possibly incorporat-
ing knowledge of data symmetries via hard-coded equiv-
ariances or data augmentations. Even if we are extremely
generous and suppose the practitioner is choosing from 100
million models, we can consider the impractical algorithm
of selecting one via cross validation. While one might ex-
pect that such a procedure would overfit, even finite hypoth-
esis bounds show that it does not. Using cross validation on
a validation set of size 20000 for a classification problem,
plugging in a uniform prior P (h) = 1/|H| = 10−8 to the
finite hypothesis bound in Section 4.1, we get that the gap
between validation and test error will be less than 3.4%
with probability greater than 99%. Ultimately, we avoid
overfitting because we only need a number of data points
proportional to the log of the size of the hypothesis space.
This reasoning can also be applied to theoretically resolve
the empirical observation in Recht et al. (2019) that we are
not overfitting the test sets of popular benchmarks (more
discussion in Section 6).

For a more general class of models, consider the number of
bits needed to specify model architectures like MLPs, CNNs,
or GNNs, as well as symmetries and any other required in-
formation. In each case, the architecture can be expressed in
few bits. A near state-of-the-art computer vision model can
be expressed in only 280 characters (Trockman & Kolter,
2022) in PyTorch. Similarly, important symmetries like
translations, rotations, and other matrix groups can be ex-
pressed in few lines of code (Finzi et al., 2021) and can be
used to encode equivariances or for augmentation. There-
fore, even in selecting from all possible models that can be
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expressed in that short amount of code, we can expect to
generalize with only tens of thousands of data points.

In principle, automating model selection directly via
cross validation provably generalizes well across
millions of models with only thousands of data
points.

5.2. One Model for Big and Small Training Sets

It is commonly believed that small training datasets demand
compact architectures, whereas large training sets can ac-
commodate flexible ones. Accordingly, practitioners hand
select appropriate models for their datasets. We now show
how we can intervene on the principle of combining flexi-
bility with a simplicity bias, explored throughout the paper,
to argue that a single learner can be effective for all data
sizes. Our prior should prefer simple functions we believe
are more likely yet support a wide variety of functions. We
begin with a simple illustration on polynomial regression.
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Figure 4: A single learner, which is more expressive than a ViT
but also prefers simple solutions representable by a GoogLeNet,
can simultaneously solve small and large scale problems.

Polynomial regression. Common intuition dictates that
high degree polynomials overfit small training sets. In con-
trast, low degree polynomials cannot fit complicated func-
tions so they should be avoided when training data is plenti-
ful. However, we find that a single high degree polynomial
can be effective across sample sizes as long as we encode
a preference for low-complexity solutions, which rely on
low degree coefficients. To this end, we adopt Tikhonov
regularization with Tikhonov matrix diag({αk2}dk=0); in
particular, we impose an ℓ2 penalty that increases quadrat-
ically with the degree of the corresponding monomial. In
Appendix G, we see that this model, which is flexible yet has
a strong simplicity bias, performs at least on par with a low
degree polynomial when training data is scarce, and with a
high degree polynomial when training data is abundant.

Neural networks. We illustrate a similar concept with neu-

ral networks. We consider a small network, GoogLeNet
(Szegedy et al., 2015), which performs well on small
datasets such as CIFAR-10 and CIFAR-100 (Krizhevsky,
2009), but poorly on larger datasets like ImageNet (Deng
et al., 2009). We also consider a large network, ViT-B/16
(Dosovitskiy et al., 2020), which performs significantly
worse on CIFAR variants but better on ImageNet. We can
similarly combine these two architectures, specifying a pref-
erence for GoogLeNet insofar as it fits the training data. We
train both models and then take a convex combination of
their logits, c∗logitsViT+(1−c)∗logitsG, controlled by a pa-
rameter c with ℓ2 regularization in favor of GoogLeNet (i.e.,
adding λc2 to the loss). In Figure 4, we observe that while
GoogLeNet and ViT each have strengths and weaknesses,
combining them with a preference for simplicity achieves
the best of both worlds. GoogLeNet and ViT can be com-
bined into a single learner more flexible than GoogLeNet
and with stronger simplicity bias than ViT, so that manual
selection between them is not required across data size.

In summary, flexible models with a low-complexity bias can
be a one-stop-shop for machine learning since real-world
data prefers low complexity. We do not need to compro-
mise on flexibility in order to express a preference for low
complexity solutions. Instead, follow Occam’s Razor and
choose the simplest explanation for the training set. We
provide experimental details and additional experiments
with Swin Transformer (Liu et al., 2021) in Appendix G.
Additional examination of complexity regularization across
sample sizes, including linear models and neural networks,
can be found in Barron (1992) and Nakkiran et al. (2020).

A single model can work well with both small and
large training sets, so long as we embrace flexibility
combined with a soft simplicity bias.

6. Discussion
In this section, we include a discussion of several fundamen-
tal themes that surface throughout the paper.

Are the no free lunch theorems relevant to real-world
model construction? Not directly. They should not be
used as an argument that we cannot significantly automate
machine learning or science, as they so often are. The
assumptions of these theorems — such as a uniform distri-
bution over all datasets — are completely misaligned with
the real world, where data are often highly structured (Sec-
tion 3). There is a valid discussion to be had about the role
of inductive biases in model construction, but the no free
lunch theorems should play no part. Our paper provides
evidence, with PAC-Bayes bounds (Section 4.2), and gen-
erative likelihoods (Section 4.3 and Section 4.4), that the
structure across many real-world datasets is shared to a sur-
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prising extent. These findings are aligned with the current
movement towards similar transformer-based architectures
for many tasks, spanning vision, NLP, and tabular data, and
away from more specialized models for each task (Figure 1).

How do we build models that are broadly applicable?
An emerging principle is that we should embrace a flexible
hypothesis space, while providing soft encouragement to-
wards salient structures (Wilson & Izmailov, 2020). In other
words, we should avoid restriction biases, often represented
by architectural constraints, such as parameter sharing and
translation equivariance, in favour of softer inductive biases.
We see this principle surfacing in many contexts. Trans-
formers lack hard constraints but have recently been found
to discover more equivariant solutions even than models
with hard constraints (Gruver et al., 2023). Outside deep
learning, there is also work showing how soft inductive bi-
ases can be used to automate kernel selection on a variety of
tasks which previously called for carefully hand-constructed
kernels (Benton et al., 2019; Wilson & Adams, 2013; Lloyd
et al., 2014). In this paper, we provide evidence that mod-
els can be made data efficient, while providing strong per-
formance in larger data regimes, by embracing flexibility
combined with soft inductive biases (Section 5).

Should the model (i.e. learner) we use depend on how
much training data are available? The conventional wis-
dom is yes. In principle, the answer is no. The conventional
wisdom is that a flexible model cannot be well-determined
by a small training set and will overfit. This idea partly arises
from early generalization theory, relying on Rademacher
complexity (Mohri & Rostamizadeh, 2009) or VC dimen-
sion (Vapnik, 1998), and empirical overfitting of large mod-
els to small datasets. But there are many counterexamples;
indeed, we often use flexible models with more parameters
than datapoints, without explicit regularization, and achieve
good generalization (Zhang et al., 2016). Such counterexam-
ples predate deep learning. Indeed, examples of benign over-
fitting in Zhang et al. (2016), where a CNN fits randomly
labeled images, can be reproduced by other model classes
(Smith & Le, 2018; Wilson & Izmailov, 2020). Moreover,
there are generalization theories, such as PAC-Bayes, which
do not penalize large hypothesis spaces, but instead focus
on which solutions are a priori likely (McAllester, 1998).

In principle, our beliefs about the generative process for data
would not typically depend on how many points we happen
to observe (Neal, 1996). Typically, we would believe that
there are many solutions that are a priori possible, even if
most of them are not a priori likely. We should therefore
embrace a large hypothesis space, regardless of how much
data we have access to (Wilson & Izmailov, 2020). We have
shown several examples of how we can construct models
that are competitive in both small and large data regimes,
by embracing the principle of a flexible hypothesis space

combined with soft inductive biases towards simplicity.

How crucial are the implicit biases of the optimization
procedure in finding simple generalizable solutions? The
ability for deep models to generalize is often attributed to the
implicit biases of stochastic optimizers like SGD or Adam
(Amir et al., 2021; Wu et al., 2020). However, good general-
ization can be achieved by full-batch training, even without
explicit regularization (Geiping et al., 2021; Izmailov et al.,
2021) or gradient-based optimization at all (Chiang et al.,
2023). Indeed, while stochastic optimizers can sometimes
confer a small gain in performance, it is largely the design
of the architecture that makes generalizable solutions more
easily accessible (occupy a greater volume in the loss land-
scape), rather than the optimizer selecting for particularly
generalizable low-loss solutions (Huang et al., 2020).

Are we overfitting to benchmarks by comparing many
models? Model development has been motivated by im-
proving performance on benchmarks, leading to a concern
that we may overfit to particular test sets. Recht et al. (2019)
find that the rankings of the best performing models is es-
sentially preserved on new CIFAR and ImageNet test data,
concluding that drops in performance are likely due to minor
distribution shifts rather than overfitting. While this finding
is often characterized as surprising, our calculation in Sec-
tion 5.1 using the finite hypothesis bound from Section 4.1
provides a theoretical explanation. Even comparing one
hundred million models on a test set smaller than CIFAR
or ImageNet, we would not expect a drop in test error by
more than a few percent. In short, the danger of overfitting
to standard benchmarks by checking the test accuracy of
many different models is in fact provably very small.

Are transformers universal or are they limited? Despite
the seeming convergence of neural network architectures
towards transformers across modalities, transformers are
limited. Transformers, like virtually all standard architec-
tures, are limited by their expenditure of bounded compute
per input instance. This property prevents transformers from
implementing many low-complexity algorithms that would
generalize well, and it limits the probability distributions
they can represent via autoregressive generation (Lin et al.,
2021). Zhang et al. (2024) observe that transformers fail to
solve simple problems with recursive structure. Liu et al.
(2022) show that transformers solve such problems ineffi-
ciently and thus learn shortcuts with poor generalization in
practice. Even with chain-of-thought prompting, transform-
ers are not Turing complete due to their finite context length
(Upadhyay & Ginsberg, 2023). Recent works have instead
built recurrent models that can “think” longer to solve more
complex problems (Schwarzschild et al., 2021; Bansal et al.,
2022). Future work may develop transformers similarly
with adaptive compute and also with external memory.
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Impact Statement
This paper presents work with the goal of advancing the
community’s understanding of machine learning. This un-
derstanding may change the way we think about and practice
machine learning, which may in turn have societal conse-
quences. Therefore, our work may lead to consequences
down the line, none which we feel must be specifically
highlighted here.
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Gómez, D. and Rojas, A. An empirical overview of the no
free lunch theorem and its effect on real-world machine
learning classification. Neural computation, 28(1):216–
228, 2016.

Grinsztajn, L., Oyallon, E., and Varoquaux, G. Why do tree-
based models still outperform deep learning on tabular
data? arXiv preprint arXiv:2207.08815, 2022.

Gruver, N., Finzi, M., Goldblum, M., and Wilson, A. G.
The lie derivative for measuring learned equivariance. In
International Conference on Learning Representations,
2023.

Gulati, A., Qin, J., Chiu, C.-C., Parmar, N., Zhang, Y., Yu, J.,
Han, W., Wang, S., Zhang, Z., Wu, Y., et al. Conformer:
Convolution-augmented transformer for speech recogni-
tion. Proc. Interspeech 2020, pp. 5036–5040, 2020.

Hinton, G. E. and Van Camp, D. Keeping the neural net-
works simple by minimizing the description length of the
weights. In Proceedings of the sixth annual conference
on Computational learning theory, pp. 5–13, 1993.

Ho, Y.-C. and Pepyne, D. L. Simple explanation of the
no-free-lunch theorem and its implications. Journal of op-
timization theory and applications, 115:549–570, 2002.

Hochreiter, S. and Schmidhuber, J. Flat minima. Neural
computation, 9(1):1–42, 1997.

Hollmann, N., Müller, S., Eggensperger, K., and Hut-
ter, F. Tabpfn: A transformer that solves small tabu-
lar classification problems in a second. arXiv preprint
arXiv:2207.01848, 2022.

Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y. The
curious case of neural text degeneration. In International
Conference on Learning Representations, 2020.

Huang, W. R., Emam, Z. A. S., Goldblum, M., Fowl, L. H.,
Terry, J., Huang, F., and Goldstein, T. Understanding
generalization through visualizations. In ”I Can’t Believe
It’s Not Better!”NeurIPS 2020 workshop, 2020.

Huh, M., Mobahi, H., Zhang, R., Cheung, B., Agrawal,
P., and Isola, P. The low-rank simplicity bias in deep
networks. Transactions on Machine Learning Research,
2022.

Hume, D. Philosophical Essays Concerning Human Under-
standing. A. Millar, 1748.

Hutter, M. A theory of universal artificial intelligence based
on algorithmic complexity. arXiv preprint cs/0004001,
2000.

Izmailov, P., Vikram, S., Hoffman, M. D., and Wilson, A.
G. G. What are bayesian neural network posteriors really
like? In International conference on machine learning,
pp. 4629–4640. PMLR, 2021.

Jaegle, A., Borgeaud, S., Alayrac, J.-B., Doersch, C.,
Ionescu, C., Ding, D., Koppula, S., Zoran, D., Brock,
A., Shelhamer, E., et al. Perceiver io: A general archi-
tecture for structured inputs & outputs. In International
Conference on Learning Representations, 2021.

Kolmogorov, A. N. On tables of random numbers. Sankhyā:
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Pérez-Ortiz, M., Rivasplata, O., Shawe-Taylor, J., and
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A. Extended Background
This section provides an extended version of the background presented in Section 2.

No free lunch theorems. No free lunch theorems (NFL) state that without making strong assumptions, a single algorithm
cannot simultaneously solve all problems well. No free lunch theorems for search and optimization indicate that all
optimizers and search algorithms satisfying certain conditions perform exactly the same on average over all such search
or optimization problems (Wolpert et al., 1995; Wolpert & Macready, 1997). In this work, we narrow our focus to NFL
for supervised learning. Wolpert (1996), and similarly Schaffer (1994), proves an analogous theorem for supervised
learning under which every learner—a function that takes in labeled data and outputs a labeling function for the associated
domain—achieves exactly the same accuracy of 50% on average over all binary classification problems where accuracy is
only evaluated on unseen samples.

In order to prove no free lunch theorems, one needs to place very strong assumptions on the lack of structure in the
labeling function, such as a uniform distribution, so that conditioning on the training labels does not modify the probability
over labelings on unseen points (Rao et al., 1995). To illustrate the severity of this condition, imagine being presented a
sequence of one million 1s and asked to predict whether the next element will be 1 or 0. If labelings of sequence elements
were distributed uniformly, then we should assign equal probability to both options, even though intuition and Bayesian
probabilistic models tell us overwhelmingly to favor 1.

Shalev-Shwartz & Ben-David (2014) instead do not assume a particular distribution over learning problems and prove
that for every learner, there exists a task on which the learner achieves poor accuracy with high probability over training
splits, whereas another learner achieves perfect accuracy. Notably, the latter NFL computes accuracy over all data, not just
“off-training” samples. While this statement of NFL does not explicitly require uniformly distributed data, the existence of
catastrophic failure modes for our learners would not matter if our learners never encountered them in practice. After all, we
do not care if our learners cannot solve problems we do not want to solve. Thus, the practical relevance of this theorem
again hinges on the distribution over real-world learning problems and how well it aligns with the inductive bias of a learner.
Note the distinction between the existence of learning problems where a learner generalizes poorly and out-of-distribution
or adversarial test samples where a model fails to generalize. In this paper, we argue that the real-world learning problems
we care about share significant structure, and the inductive biases of neural networks are well-aligned with such problems.

Kolmogorov complexity and compression. Kolmogorov complexity quantifies the structure in a bitstring, measuring
the extent to which it can be compressed (an algorithmic definition of information content). For a fixed programming
language L, the Kolmogorov complexity of data x, K(x), is the length of the shortest program in that language that outputs
x (Kolmogorov, 1963). Analogous to conditional entropy, K(y|x) is defined as the length of the shortest program which
inputs x and outputs y. Kolmogorov complexity provides a mathematical formalization of simplicity and Occam’s razor,
which encompasses many related concepts like Shannon information, compression, and minimum description length (MDL)
(Li et al., 2008).

While objects with large Kolmogorov complexity are impossible to verify (Chaitin, 1974), they are abundant over all possible
bitstrings. All but exponentially few sequences of a given length have near maximal Kolmogorov complexity and are thus
incompressible. Taken over the uniform distribution over bitstrings x, P (K(x) ≤ n − k) ≤ 21−k, where n denotes the
string length. However as we will discuss, these high complexity objects are extremely uncommon in practice.

Universal induction. Inspired by Kolmogorov complexity, a line of work introduces universal induction methods,
which prefer low complexity answers (Solomonoff, 1964; Hutter, 2000; Nakkiran, 2021). Notably, Solomonoff induction
(Solomonoff, 1964; Rathmanner & Hutter, 2011) makes predictions by applying Bayes rule to the universal prior which
favors low complexity, and provides learning guarantees. The existence of universal learners calls into question the broader
message of no free lunch theorems, showing that Occam’s razor or a preference for low-complexity data labelings is
sufficient for learning on low-complexity data (Lattimore & Hutter, 2013).

Rather than formalizing theoretical learners that rely on Kolmogorov complexity, which is in general uncomputable,
Fernández-Delgado et al. (2014) and Gómez & Rojas (2016) test popular machine learning algorithms on a diverse array
of datasets to see if any existing algorithms are plausibly universal. (Wolpert, 1996) may not restrict machine learning
in practice. Another line of work similarly shows that a single transformer model can perform well on a vast test bed of
problems by mimicking Bayesian inference with in-context learning, and in fact achieves state-of-the-art on small tabular
datasets (Müller et al., 2022; Hollmann et al., 2022).
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PAC-Bayes generalization theory. The PAC-Bayes framework is a convenient paradigm for proving generalization bounds
on parametric models, while avoiding the pitfalls of uniform convergence. Rather than considering all elements of the
hypothesis class on equal footing, we choose prior and posterior distributions over the parameters, and the generalization gap
for elements of the posterior depends merely on the discrepancy between the two as measured by the KL divergence. This
framework can explain many favorable properties of neural networks like flat minima (Hochreiter & Schmidhuber, 1997),
noise resilience (Arora et al., 2018), and compressibility (Zhou et al., 2018). It can also provide nonvacuous generalization
bounds, with recent bounds drawing directly from Kolmogorov complexity and the universal prior (Lotfi et al., 2022).

Existing works in the generalization bound literature show that a model generalizes with high probability on a particular
data distribution whenever it is compressible (i.e. has low complexity) with respect to the prior, but the prior is chosen
specifically for the dataset at hand (e.g. CNNs for image classification) and furthermore the prior is often tuned directly on a
fraction of the training set (Dziugaite & Roy, 2017; 2018; Pérez-Ortiz et al., 2021). In fact, there is a widely held belief in
the generalization community that problem-specific priors, notably ones which are tuned on the training set, are necessary
for strong generalization bounds (Dziugaite et al., 2021), and this belief manifests in data-dependent prior bounds across the
literature.

In this paper, we argue against the necessity of problem-specific priors. Our generalization bounds and compression
experiments show that a single low-complexity biased prior can suffice on a wide variety of problems due to the low
Kolmogorov complexity of data. Whereas previous generalization theory literature is in line with the notion supported by no
free lunch theorems that problems require specially tailored solutions, our work fights back against this widely held belief.

Complexity in deep learning. Several works have related Kolmogorov complexity to neural networks. One line of
study proves that multi-layer perceptrons with Boolean input features are biased towards low-entropy functions, namely
ones which classify disproportionately many or few points into the same class (Mingard et al., 2019) or are insensitive to
flips in Boolean input features (De Palma et al., 2019). Pearlmutter & Rosenfeld (1990) argue that random initialization
and noise in data increase the complexity of neural networks but that ensembling such models reduces complexity in
expectation. Schmidhuber (1997) explicitly searches for simple neural networks with low Kolmogorov complexity and
finds improvements in generalization on very small problems where such a search is computationally feasible. Other work
measures the information contained in neural network activations (Achille et al., 2019) or defines a complexity metric
for datasets and uses this metric to predict transferability of pre-trained neural networks (Achille et al., 2021). In another
direction complimentary to Kolmogorov complexity, Huh et al. (2022) show that neural networks have a bias towards low
effective rank Gram matrices computed from the deep features and that this simplicity bias increases with depth, explaining
why bigger models can actually generalize better.

The compressibility of neural networks has also been studied for purposes other than PAC-Bayes generalization bounds. For
instance, Blier & Ollivier (2018) explore the compressibility of datasets using neural networks, and show that variational
methods yield poor compression whereas prequential coding can be used to obtain shorter code lengths. Hinton & Van Camp
(1993) find that adding noise to neural network weights during training reduces the information contained in the weights,
getting bits back and making the parameter vector compressible. Our work shows that the compressibility of datasets using
neural networks is universal and does not require domain-specific models.

On the relationship between our contributions and existing literature. We summarize the relationship between our
contributions and existing literature as follows:

• In contrast to previous works which counter the no free lunch theorem by observing that a single model can achieve
better-than-average empirical accuracy across diverse datasets (Fernández-Delgado et al., 2014; Gómez & Rojas, 2016),
we explain and formalize the structures which are universal across such data distributions using Kolmogorov complexity.
Relating this formalism to learning, we then show why low complexity is fundamental to such successes of machine
learning models by proving a novel no free lunch theorem directly using Kolmogorov complexity.

• The preference we demonstrate for low complexity emerges naturally in a variety of models, from transformer language
models to convolutional neural networks, and requires no special interventions as proposed in Schmidhuber (1997) or
Hinton & Van Camp (1993).

• Existing generalization bound literature tunes priors on specific data distributions (Dziugaite & Roy, 2017; 2018;
Pérez-Ortiz et al., 2021; Dziugaite et al., 2021) in line with the idea, often drawn from no free lunch theorems, that each
domain requires a specially tailored model. In contrast, we demonstrate that neural networks can compress a wide range
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of datasets in domains they were not even designed for, and that this compressibility can explain generalization via
PAC-Bayes generalization bounds.

• Common wisdom dictates that neural network architectures must be carefully chosen for specific problems or sample
sizes (Grinsztajn et al., 2022; Brigato & Iocchi, 2021; Lee et al., 2021), but we instead show through the formalism of
complexity and also through empirical experiments that specialized models can in principle be combined into a single
learner which can perform well on a wide variety of problems and sample sizes. Moreover, we show that the cost of
selection is minimal, explaining recently observed phenomena such as a lack of overfitting to the test sets of popular
benchmarks (Recht et al., 2019).

B. An Exercise in Bounding Dataset Complexity
We first consider the hypothesis that unlabeled machine learning datasets are drawn uniformly at random and use a bound on
the Kolmogorov complexity as a test statistic. One can produce upper bounds on K(x) by compressing x, but then it is
necessary to include both the size of the compressed file and the size of the program required to decompress it. Alternatively,
if one can construct a short program which directly outputs x, this program also forms a compression of x. Using bzip2,
and including the size of the decompression program, we compress text dataset Amazon Review Full (McAuley & Leskovec,
2013) and audio dataset LibriSpeech (Panayotov et al., 2015) to 393.2 MB and 8.36 GB respectively, providing upper bounds
on the Kolmogorov complexity with respect to the Python programming language. Computing the number of possible text
and audio datasets of these sizes and supposing such datasets were in fact uniformly sampled at random, the probability
of observing complexities this size or smaller is less than 10−1292913987 and 10−47632711550, astronomically low p-values,
conclusively ruling out the possibility that they were sampled uniformly in this way. If we randomly shuffle the datasets, we
instead obtain bounds of only 836.7 MB and 9.69 GB, considerably larger, showing that the compressibility results not just
from an inefficient encoding, but from structure in the dataset.

Other works have also examined Kolmogorov complexity in data, for example EEG patterns (Petrosian, 1995) or animal
behavior (Zenil et al., 2015), and confirm that such data is simple. Our experiments above show that low Kolmogorov
complexity is not specific to EEG patterns or animal behavior and is in fact a generic characteristic of common datasets
we use in machine learning. In this paper, we also use compressed neural networks to bound the complexity of labeling
functions, rather than the model’s inputs.

C. A Kolmogorov No Free Lunch Theorem Proof
Theorem C.1. With probability at least 1− δ over datasets drawn from the uniform distribution, we have for every classifier
p over C classes, the cross entropy is nearly as bad as random guess:

CE(p) ≥ lnC − ln 2

n
(K(p) + 2 log2 K(p) + log2 δ + c)

.

Proof. Firstly, we relate the complexity of the classifier to the complexity of the labels Y of the dataset:

K(Y |X) ≤ K(Y, p|X) (4)
K(Y |X) ≤ K(Y |X, p) +K(p|X) + 2 log2 K(p|X) + c (5)
K(Y |X) ≤ K(Y |X, p) +K(p) + 2 log2 K(p) + c (6)

For the second inequality, see e.g. (Fortnow, 2001).

We can bound K(Y |X, p) by coding the labels using p

K(Y |X, p) ≤ −
n∑

i=1

log2 p(yi|xi) + 2 ≤ nCE(p) + 2 (7)

where CE(p) is the empirical cross entropy (see e.g. arithmetic coding in MacKay (2003)).
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Rearranging, we have

CE(p) ≥ ln 2

n
(K(Y |X)−K(p)− 2 log2 K(p)− c) .

Note that by simply counting all possible programs taking input X , there are less than 2k+1 labelings Y with K(Y |X) ≤ k.
Note that there are Cn distinct labelings, from which we are drawing uniformly. So that

P(K(Y |X) > n log2 C −m) = 1− P(K(Y |X) ≤ n log2 C −m)

≥ 1− P(K(Y |X) ≤ ⌈n log2 C⌉ −m)

≥ 1− 2⌈n log2 C⌉−m+1

Cn

≥ 1− 22−m.

Alternatively, with probability at least 1− δ,

K(Y |X) > n log2 C − log2
1

δ
− 3.

Therefore:

CE(p) ≥ lnC − ln 2

n
(K(p) + 2 log2 K(p) + log2(1/δ) + c)

D. PAC-Bayes Compression Experimental Details
For the OpenML tabular classification datasets, we preprocess them first by balancing the classes, subsampling all classes
down to the number of examples of the least likely class. This way, when compressing the datasets (specifically, the
labeling function), any result achieved is nontrivial in contrast with a very class imbalanced dataset. We heavily follow the
compression method of (Lotfi et al., 2022), including the small 9 convolutional architecture which they use to generate their
bounds. When cramming the tabular data into this convnet, we combine numerical features with one hot encoded categorical
features and then pack these into the pixels of a 1 channel image, using however large an image as necessary to fit each of
the different features inside.

With respect to the sizes of the random subspaces that we train the compressed models in, we consider 250,500,1000, and
2000. For tabular label compression, we employ a 2 hidden layer MLP with hidden dimension k = 192, and we consider
the same 250,500,1000, and 2000 values for subspace dimension. We train for 80 epochs with 20 epochs of quantization at
a batch size of 512 using Adam at lr= 3× 10−4. For image classification label compression, we use the 9-layer convnet
with subspace dimensions 2000, 3000, 5000, and we train for 80 epochs using SGD at learning rate 0.1 and quantize for the
remaining 20 epochs, at a batch size of 50. For calculating the length of the code for model architecture and decompressor,
we need only the implementation of the model, the arithmetic decoder, and the loading of the quantized values. Removing
wasted bits, we minified the python file, leading to a size of approximately 2.5KB.

E. GPT-3 Experimental Details
To feed sequences into a model, we split up sequence elements into individual byte-pair encoding tokens corresponding to
their decimal digits, and we place comma tokens between sequence elements as delimiters, also beginning every input with
an <|endoftext|> token. We choose to use the byte-pair encoding of decimal digits with a space inserted before the
digit, e.g. ‘ 0’ as this is known to enhance the ability of language models to perform arithmetic (Zelikman et al., 2022). For
example, the sequence 10, 11 will be split up into [‘<|endoftext|>’, ‘ 1’, ‘ 0’, ‘,’, ‘ 1’, ‘ 1’], and each element of the list
is tokenized individually. Then, the log-probability of a sequence is given by the sum of the log-probabilities corresponding
to the correct decimal digits in their respective slots of the model’s output. Note that various sequences will contain different
numbers of decimal digits, and the sequence’s log-probability will decrease with every token. Therefore, in order for fair
comparison, we limit all sequences to 30 decimal digit tokens and truncate there.
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F. Sequence Generation and Completion with Randomly Initialized Language Models
For these experiments, we use Huggingface1 GPT-2 architectures and pre-trained checkpoints. In order to estimate the
probabilities assigned by randomly initialized language models to each bitstring, we generate one million random sequences,
ensuring that many instances of each bitstring are generated as there are only 210 = 1024 bistrings of length 10.

We include here plots with the various sizes of GPT-2 architectures in Figure 5, Figure 6, and Figure 7.
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Figure 5: Randomly initialized GPT-2 Base prefers low-complexity sequences generated by bitstring repetition. Left: Average
log-probability of sequences by complexity. Right: Average accuracy by complexity.
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Figure 6: Randomly initialized GPT-2 Medium prefers low-complexity sequences generated by bitstring repetition. Left: Average
log-probability of sequences by complexity. Right: Average accuracy.

We additionally include the hypothesis test referenced in Section 4.4. For this experiment, we generate 100,000 length-100
sequences from randomly intialized GPT-2 variants, pre-trained GPT-2 variants, and a uniform distribution. We then perform
a one-sided t-test on the null hypothesis that µ(K(SGPT)) ≥ µ(K(SU )), for both initialized and pre-trained models. Table 1
contains the resulting sample means, t-statistics and p-values. In all cases, we reject the null hypothesis with very low
p-values, indicating that language models do prefer to generate low-complexity sequences. Notably, pre-trained language
models exhibit an increased simplicity bias, and bigger and better language models even more so.

1https://huggingface.co/
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Figure 7: Randomly initialized GPT-2 Large prefers low-complexity sequences generated by bitstring repetition. Left: Average
log-probability of sequences by complexity. Right: Average accuracy.

Table 1: Hypothesis test for language model simplicity bias. t-tests are one-sided, and p-values are rounded to 4 digits. We also report
the mean Kolomogorov complexity of sequences generated by each language model and a uniform distribution.

Model K(SGPT) t-statistic p-value

Uniform Distribution 98.36 - -
GPT-2 Base Initialized 98.00 -39.95 0.0000
GPT-2 Medium Initialized 97.99 -40.91 0.0000
GPT-2 Large Initialized 98.00 -40.11 0.0000
GPT-2 Base Trained 60.81 -255.17 0.0000
GPT-2 Medium Trained 48.41 -325.16 0.0000
GPT-2 Large Trained 46.34 -342.80 0.0000
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Figure 8: High-order polynomials with a complexity penalty can solve problems at a variety of sample sizes. Left: Cosine target
function. Middle: Degree 2 polynomial target function. Right: Degree 10 polynomial target function.

G. Big and Small Training Sets
Polynomial regression. We choose three example target functions on which to perform regression: cos( 3π2 x), x2, and
−36x+ 49x5 − 14x7 + x10. Training data is randomly drawn from a uniform distribution over the unit interval, and we
add noise to training labels from N (0, 0.1). In each case, for each dataset size, we average the mean squared error over 100
randomly sampled training sets. For Tikhonov regularized polynomial regression on the cosine and degree 2 polynomial
target functions, we use α = 0.01, and we use α = 0.001 for regression on the degree 10 polynomial target function.

Image classification with neural networks. For ImageNet trained models, we employ publicly available checkpoints from
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torchvision2. We train models on CIFAR-10 and CIFAR-100 for 200 epochs with initial learning rate 0.1 and cosine
annealing along with horizontal flip and random crop augmentations. We use SGD with momentum 0.9 and batches of size
128. All CIFAR images are rescaled to 224× 224 so that we can use an identical model for ImageNet and CIFAR data. In
order to learn the parameter c controlling the convex combination of models, we perform 10 epochs of training, where the
models’ parameters are frozen, and we apply weight decay with coefficient 10−5. We learn the parameter c using SGD with
momentum 0.9 and batch size 128, initial learning rate 0.1, and cosine annealing.

Table 2: Combinations of large and small architectures form single models that achieve high test accuracy on all dataset sizes. “GoogLeNet
+ ViT” denotes a model formed as a convex combination of the logits of the two constituent models with weight decay on the parameter c
controlling the convex combination which multiplies the logits of the larger model, ensuring that the small model is preferred as long as it
fits the data.

Model CIFAR-10 CIFAR-100 ImageNet

GoogLeNet 93.840 % 75.160 % 69.778 %
ViT-B/16 72.020 % 48.140 % 81.072 %
Swin-B 74.710 % 64.200 % 83.582 %
GoogLeNet + ViT 93.860 % 71.990 % 81.090 %
GoogLeNet + Swin 93.760 % 75.360 % 83.150 %

H. Limitations
In multiple experiments in this paper, we bound Kolmogorov complexity by compressing datasets or models. These upper
bounds on Kolmogorov complexity are likely very loose since our compressions probably are far from optimal. We expect
that high-performance models and the distribution over real-world datasets possess a much more severe simplicity bias than
we can prove. Moreover, a number of the experiments in this paper should be viewed as proof of concept. For example, the
compressibility of various datasets using neural networks provides evidence that real-world datasets are highly non-uniform
and share a generic structure in common with neural networks. However, we can’t be sure that these observations will hold
for all datasets and models as facts about the distribution of real-world datasets cannot be proven mathematically.

I. Computational Resources
In order to perform all experiments in this paper, we used a total of approximately 200 GPU hours on NVIDIA RTX A4000
and NVIDIA Titan RTX cards.

2https://pytorch.org/vision/stable/index.html
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