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Abstract

AI-based frameworks for protein engineering use
self-supervised learning (SSL) to obtain repre-
sentations for downstream mutation effect pre-
dictions. The most common training objective
for these methods is wildtype accuracy: given a
sequence or structure where a wildtype residue
has been masked, predict the missing amino acid.
Wildtype accuracy, however, does not align with
the primary goal of protein engineering, which is
to suggest a mutation rather than to identify what
already appears in nature. Here we present Evo-
lutionary Ranking (EvoRank), a training objec-
tive that incorporates evolutionary information de-
rived from multiple sequence alignments (MSAs)
to learn more diverse protein representations. Evo-
Rank corresponds to ranking amino-acid likeli-
hoods in the probability distribution induced by
an MSA. This objective forces models to learn
the underlying evolutionary dynamics of a pro-
tein. Across a variety of phenotypes and datasets,
we demonstrate that EvoRank leads to dramatic
improvements in zero-shot performance and can
compete with models fine-tuned on experimental
data. This is particularly important in protein en-
gineering, where it is expensive to obtain data for
fine-tuning.

1. Introduction
The success of AlphaFold (Jumper et al., 2021) has inspired
a new era of deep-learning frameworks for protein design
and engineering. Large protein language models (e.g., ESM
(Rives et al., 2019a; Meier et al., 2021a)), structure gen-
erative models (e.g., RFDiffusion (Watson et al., 2023),
NeuralPLexer (Qiao et al., 2023)) and structure-based self-
supervised models (Sumida et al., 2024; Diaz et al., 2023;
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Lu et al., 2022) can accelerate the development of biotech-
nology with applications in identifying disease-causing vari-
ants (Braunisch et al., 2021; Kouba et al., 2023; Scherer
et al., 2021) and enzyme engineering for biomanufactur-
ing. Due to the prohibitive cost of generating experimental
data, self-supervised learning (SSL) has become the pri-
mary technique used by the community to generate protein
representations (e.g., Riesselman et al., 2018a; Rives et al.,
2019a; Meier et al., 2021a; Dauparas et al., 2022; Bepler &
Berger, 2019; d’Oelsnitz et al., 2023; Notin et al., 2022; Hsu
et al., 2022). These methods rely on masking followed by
predicting the wildtype (WT) amino acids in extant proteins
as the SSL training objective. For example, given as input a
protein sequence and masked residue, models can be trained
to predict what amino acid has been masked. The loss in
WT-mask SSL is typically defined to be the cross entropy
between a model’s prediction and the one-hot encoding of
the masked wildtype amino acid(s). This wildtype accuracy
metric, also known as recovery ratio, is then reported as a
proxy for the quality of the learned representations.

For machine learning-guided protein engineering (MLPE),
practitioners desire models that suggest mutations to a pro-
tein away from wildtype, as opposed to models that merely
predict wildtype. To address this disparity, several ap-
proaches have been proposed. Structure-based methods
often adjust the temperature of the logits (Ingraham et al.,
2019; Dauparas et al., 2022; Sumida et al., 2024) to bias
away from wildtype. Sequence-based methods require large
protein databases and incorporate MSAs as additional inputs
to mitigate the existence of unique wildtype signatures (Rao
et al., 2021a; Notin et al., 2022).

A more serious and often overlooked issue, however, is that
improved wildtype accuracy may not correlate with down-
stream mutation effect performance. We sharply illustrate
this phenomenon in Table 1 where we train a structure-
based model to increasing levels of wildtype accuracy and
show that its downstream performance on thermodynamic
stability prediction begins to decrease beyond a wildtype
accuracy threshold.

Additionally, current frameworks using either sequence or
structure modalities can achieve greater than 90% wildtype
accuracy (e.g., Rives et al., 2019a; Meier et al., 2021a; Lin
et al., 2023; Diaz et al., 2023), forcing the practitioner to
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make ad-hoc decisions about the optimal choice of wild-
type accuracy for downstream applications. Developing a
self-supervised learning objective that acts as an effective
proxy for mutation effect prediction remains a critical open
problem.

Loss Metrics MutComputeXGT ProteinMPNN ESM2

WT-mask WT Acc 17% 29% 43% 68% 79% 92% 48% 94%
Pearson 0.14 0.21 0.30 0.34 0.30 0.24 0.31 0.25

EvoRank EvoRank 0.24 0.21 0.17 0.15 0.13 0.12 - -
Pearson 0.30 0.36 0.45 0.48 0.51 0.50 0.31 0.25

Table 1. Case study for the relation between WT accuracy and
correlation with experimental data. We demonstrate that further
improvements in WT accuracy do not necessarily translate to
improvements in Pearson correlation on FireProtDB (Stourac et al.,
2021). Models trained with the WT-mask loss are unable to that
achieve Pearson correlation above 0.4, with performance peaking
and then beginning to decrease after ∼ 68% WT accuracy. We
further validate this observation with Protein MPNN and ESM2.
In contrast, The EvoRank loss avoids overfitting to WT amino
acids and enables learning SSL representation more conducive for
guiding protein engineering.

Our main contribution is a new self-supervised training
objective, EvoRank, that incorporates evolutionary informa-
tion from multiple sequence alignments (MSAs) in order
to address the limitations of WT-mask SSL. To emulate
the mutation setting, EvoRank uses a ranking objective to
force a model to learn fine-grained information about the
MSA-induced distribution of amino acids at a particular
location. We show that after initializing a model’s wild-
type predictions with an approximate MSA distribution,
EvoRank results in dramatic empirical improvements for
zero-shot performance across a variety of commonly studied
benchmarks. Additionally, since MSAs are incorporated
into the loss, they are only needed during training and not
inference time, in contrast to models that require an MSA
as an additional input (Notin et al., 2022). Further, empiri-
cal improvements on the EvoRank loss are correlated with
improvements in downstream mutation effect prediction
(see Table 1), leading to a reliable benchmark for protein
representation learning.

2. Related Works
Multiple Sequence Alignments (MSAs) A multiple se-
quence alignment (MSA) is an established tool used to iden-
tify the evolutionary relationship between genes and can
be generated for DNA, RNA, and protein sequences. For
a particular protein, an MSA represents the genetic vari-
ation observed in extant homologous sequences present
in a database, such as UniProt (Consortium, 2015), and
capture evolutionary and structural constraints for a partic-
ular protein family (Thompson et al., 1994; 1997). This
makes MSAs a rich source of biological information for
computational biologist and recently for training machine

learning models. For example, Alphafold2 demonstrates
that the information within a protein’s MSA is sufficient
to predict its 3D structure with near experimental accuracy.
Additionally, AlphaFold-Multimer demonstrates that using
paired-MSA information improves protein-protein interac-
tion predictions, resulting in significant improvements for
predicting of protein complexes (Evans et al., 2021).

Sequence-based machine learning frameworks have used
MSA information to predict mutational effects and protein
fitness. Representative methods, i.e., EVmutation (Hopf
et al., 2017), DeepSequence (Riesselman et al., 2018b),
MSA Transformer (Rao et al., 2021b), use MSA informa-
tion to model the evolutionary sequence density with potts
models, variational auto-encoders, and transformer, respec-
tively. Biswas et al. (2021); Rives et al. (2021); Barrat-
Charlaix et al. (2016) consider a semi-supervised manner
which adopts a joint training on MSAs and labeled data for
the prediction of protein’s fitness.In this paper, instead of
using MSA information to construct model inputs or for
reconstruction, we incorporate MSA information into the
training loss in order to learn protein representations with
improved understanding of the mutational landscape. In
practice, we achieve this by formulating the training loss
to prioritize learning the rank order of the position specific
amino acid distribution. Additionally, this paradigm shift
on the application of MSA information has the benefit of
only requiring MSA information at train time and not at
inference time.

Protein Language and Structure Models. Protein rep-
resentation learning borrows various insights from self-
supervision research in the natural language processing
community (Liu et al., 2019; Yang et al., 2019). The main
goal of protein representation learning is to extract bio-
logical and functional knowledge of proteins from large
unlabeled data to enable zero-shot generalization and/or
rapid adaptation to various protein-related tasks. To learn
amino acid-level representations from sequence, the com-
munity has used methods such as auto-encoding (Shuai
et al., 2021), auto-regressive (Rives et al., 2019b; Meier
et al., 2021b; Elnaggar et al., 2020; Riesselman et al., 2019),
skip-gram language model (Kimothi et al., 2016), mask pre-
diction (Vig et al., 2020; Brandes et al., 2022) or amino acid
contrastive learning objectives (Lu et al., 2020), similarity
metric learning (Bepler & Berger, 2019; Alley et al., 2019),
etc. The most renown protein language models (pLMs) are
the evolutionary-scale models (ESMs) (Rives et al., 2019a;
Meier et al., 2021a) with ESM2 being the most recent and
underpins ESMFold, a sequence-based structure prediction
framework (Lin et al., 2023).

For protein structures, 3DCNNs (Townshend et al., 2020;
Shroff et al., 2020), GNNs (Townshend et al., 2020; Dau-
paras et al., 2022), and graph-transformers (Diaz et al., 2023)
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architectures have been developed to learn residue-level
representations using the local chemical environment (mi-
croenvironment) or the protein backbone as input. These
frameworks primarily use masking to obtain their represen-
tations but other pre-training task, such as structure con-
trastive learning (Moon et al., 2023), distance/angle pre-
diction (Chen et al., 2023a), and denoising (Watson et al.,
2023) have been proposed. Several structure-based frame-
works have experimentally designed proteins. The microen-
vironment framework MutCompute (Shroff et al., 2020;
d’Oelsnitz et al., 2023) has demonstrated the ability to guide
the engineering of several functionally diverse enzymes
(Lu et al., 2022; Paik et al., 2021; d’Oelsnitz et al., 2023).
Inverse Folding frameworks, such as ESM-IF (Hsu et al.,
2022) and ProteinMPNN (Dauparas et al., 2022), use the
protein backbone to conditionally design novel sequences
for de novo binder design (Watson et al., 2023) and enzyme
engineering (Sumida et al., 2024). More works (Chen et al.,
2023b; Gligorijević et al., 2021; Zheng et al., 2023; Zhang
et al., 2023) focus on the effective knowledge integration
between sequence and structure data. Due to the prohibitive
cost of training a pLM and the added complexity of decod-
ing an entire protein sequence during inverse folding, we
focus on initially validating our EvoRank loss using the
microenvironment modality.

3. Methods
This section introduces the main method. We start with
introducing the widetype (WT) based mask prediction for
self-supervised representation on proteins (Section 3.1). We
then propose our two novel techniques: 1) a MSA-based soft
label to introduce evolution information into the learning
(Section 3.2); and 2) a EvoRank loss that allows us to fit
evolution information more efficiently and robustly with a
learning-to-rank idea (Section 3.3).

3.1. Self-Supervised Learning via WT-mask prediction

We are given a protein set P = {P}, where the representa-
tion P = (A,V) of each protein consists of both its amino
acid sequence A and atoms information V . The sequence
A = (aaj , · · · , aam) contains m amino acids, where aaj
is the one-hot representation of the 20 amino acid types.
The V = {vj}nj=1 represents all the atoms contained in the
protein, where each vj contains the information of the j-th
atom, including its 3D coordinates, atom type, partial charge
and solvent accessible surface, etc.

WT-Mask Prediction In the WT-mask prediction task
(Torng & Altman, 2017), we mask an amino acid aaj , and
learn a neural network to predict aaj back based on the
microenvironment surrounding aaj . The learned network
can then provide a useful representation of the protein for

Figure 1. Generation of position specific empirical amino acid
distribution. From this, we generate the MSA-based soft and rank
labels.

downstream tasks. Specifically, denote by Cα(aaj) the α-
carbon atom of amino acid aaj , and Atom(aj) all the atoms
contained in amino acid aaj . We take the microenvironment
of aaj to be the atoms within 20Å distance within Cα(aaj),
excluding all atoms in Atom(aaj), that is,

Vmask
j = {v : v ∈ V \ Atom(aaj), Dist(Cj

α, v) ≤ 20Å},

We train a neural network y = f(x) that takes a micro-
environment x = Vmask

j as input and outputs the logits for
the 20 amino acid types. We want to train the model to make
f(Vmask

j ) ≈ aaj :

min
f

∑
P∈P

∑
j

D(aaj , Softmax(f(Vmask
j ))),

where D denotes the loss function. A typical choice is the
KL divergence, which corresponds to the cross entropy loss.

Zero-shot Mutation Effect Prediction Once f is trained,
we use its representation to conduct zero-shot mutation
effect prediction by taking the log ratio of the amino acid
likelihoods.

3.2. Evolution Information via MSA-based Soft Labels

As described in the introduction, we desire a self-supervised
learning procedure that (1) discourages low-entropy dis-
tributions skewed towards wildtype and (2) incorporates
meaningful evolutionary and biochemistry from the input
protein structure. Since Multiple sequence alignment (MSA)
provides a powerful tool for capturing evolutionary relations
between sequences, we propose to incoporate MSA informa-
tion into the self-supervised learning with an MSA soft-label
loss (equation 2), where the wildtype one-hot encoded label
is replaced with a distribution computed from a protein’s
MSA, as shown in Figure 1.

Formally, instead of training network f to predict the one-
hot vector of the wildtype amino acid, we predict the fol-
lowing soft label based on the following pdf derived from
the MSA of the protein:

pMSA
j (ℓ) ∝

∑
P ′∈MSA(P )

δ(ℓ = AA(P ′, j)), (1)
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where AA is the function that outputs the amino acid type
at position j, ℓ is one of the 20 amino acids, δ is the delta
function, MSA(P ) denotes the set of sequences that are
best aligned with P via multiple sequence alignment on
UniRef50 (Consortium, 2015). We refer to this distribution
as the empirical amino acid distribution.

We define the MSA soft-label training loss as follows:

min
f

∑
P∈P

∑
j

D(pMSA
j , Softmax(f(Vmask

j ))). (2)

Although KL divergence has been the canonical choice, it
is known to suffer from mode collapse. We experimented
with taking D(·; ·) within a richer family of α-divergences.
By applying different α values, we can adjust the sensitivity
to multimodal distributions present in MSAs and find a
better trade-off between over/under estimates of the top
ranked amino acid (which is often wildtype). When we
apply reverse KL divergence or α = 0.5 divergence (Table
2), we observe marginally improved rank order but overall
lower coefficients for the top-5 amino acids. This suggests
the need for designing better loss functions.

Divergence Label Top-5 Top-10 20
KL Div WT 0.54 0.38 0.28
KL Div MSA 0.60 0.52 0.34
Reverse KL Div MSA 0.54 0.56 0.40
Alpha Div (α = 0.5) MSA 0.57 0.53 0.40

Table 2. Spearman correlation coefficient for amino acids at
the same local chemical environment. We deploy this on the test
dataset for the mask prediction task. Here, ‘Top-5’ indicates the
amino acids with the top-5 probability score based on the empirical
amino acid distribution.

3.3. EvoRank: A New Rank-based Learning Objective

To further improve the performance of the self-supervised
model for protein engineering tasks, we reformulate the
training objective into a rank loss in order to learn repre-
sentations that better model how evolution drives protein
mutations. Rather than predicting the wildtype amino acid
type aaj or soft label pMSA

j , we modified the architecture

MicroEnv
Encoder

Transformer 
θ

Transformer
θ

Subtract MLP Rank
Score

From AA

To AA

From AA

To AA

...

Regression
Head

Masked Microenvironment

Figure 2. Overview of the MutRank architecture. In the regres-
sion head, a Siamese network is used to contextualize the “from”
and “to” amino acid embeddings with the hidden representation of
the microenvironment and produce a rank representation, which is
decoded into a rank score.

to use a mutation as an additional input. This mutation is
represented as a “from” (aa−) and “to” (aa+ ) amino acid
type embedding pair, and we predict their relative likelihood
within the empirical amino acid distribution as proxy for
evolutionary fitness. More precisely, we define the rank
label of aaj w.r.t. (aa+, aa−) as the following

ri(aa
+, aa−) =

pMSA
j (aa+)

pMSA
j (aa+) + pMSA

j (aa−)
− 1

2
, (3)

where pMSA
j (a) denotes the probability assigned on aa ac-

cording to pMSA
j , and 1

2 to ensure neutral predictions are
made when pMSA

j (aa+) = pMSA
j (aa−). The rank label,

also referred to as the EvoScore, represents the relative like-
lihood of two amino acids being evolutionarily observed in
a particular microenvironment, as demonstrated in Figure 2.
We train a model f(Vmask

j , aa+, aa−) to predict the rank
label rj(aa+, aa−) via the following loss:

min
f

∑
P∈P

∑
j

∑
aa+,aa−

D(rj(aa
+, aa−), f(Vmask

j , aa+, aa−)),

(4)
where the aa+, aa− are summed on all the amino acid types
and D(x, y) = ||x− y||. We refer to the loss in (4) as the
EvoRank loss or EvoRank training objective.

In practice, we first initialize the parameters by training
using the MSA soft-label loss (equation (2)) and then apply
the EvoRank loss to further improve performance. Similar
ideas are used in the recommendation system literature (e.g.,
Cao et al., 2007; Aggarwal et al., 2016; Liu et al., 2009),
where parameters are initially trained with a standard loss
and then further refined using a ranking loss.

Model Architecture The microenvironment-based model
used here is based on previous work by Diaz et al. (2023).
Briefly, the model uses a graph transformer backbone to pro-
cess an input microenvironment, in which Vmask

i for amino
acid ai is the input and each atom in this set is represented
by its 3D coordinates, atom type, partial charge and solvent
accessible surface area. The atomic inputs are embedded
and processed using graph transformer blocks, where the
attention bias is based on the atom-wise Euclidean distance.
We refer the readers to (Diaz et al., 2023) for more details
on the graph transformer backbone architecture.

The regression head accepts two structural amino acid em-
bedding vectors and the hidden representation of the mi-
croenvironment from the graph-transformer backbone as
input. As shown in Figure 2, we use Siamese network archi-
tecture to contextualize each amino acid type to the masked
microenvironment, and a MLP to decode a ranking predic-
tion between the two contextualized amino acid embeddings.
We refer the readers to (Diaz et al., 2023) for more details
on the regression head architecture.
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- T2837 S669 S-Sym Myolobin FireProtDB Gβ1 T2837 Reverse
# Mutations 2837 669 342 134 1764 935 2837

Metric ρ ↑ AUC ↑ ρ ↑ AUC ↑ ρ ↑ AUC ↑ ρ ↑ AUC ↑ ρ ↑ AUC ↑ ρ ↑ AUC ↑ ρ ↑ AUC ↑
RaSP∗ (Blaabjerg et al., 2023) 0.58 0.61 0.39 0.69 0.64 0.73 0.68 0.75 0.56 0.71 0.72 0.66 0.23 0.59
ThermoMPNN∗ (Dieckhaus et al., 2023) 0.55 0.78 0.39 0.68 0.66 0.82 0.58 0.77 0.57 0.75 0.65 0.78 0.43 0.71
Prostata-IFML (Diaz et al., 2023) 0.53 0.75 0.49 0.76 0.55 0.75 0.54 0.67 - - 0.66 0.82 0.52 0.75
Stability Oracle (Diaz et al., 2023) 0.59 0.81 0.52 0.74 0.72 0.87 0.68 0.81 0.61 0.79 0.71 0.82 0.59 0.81
ESM2∗ (Lin et al., 2023) 0.28 0.60 0.04 0.50 0.26 0.56 0.15 0.57 0.25 0.57 0.25 0.63 0.28 0.60
ProteinMPNN∗ (Dauparas et al., 2022) 0.36 0.70 0.25 0.59 0.32 0.64 0.35 0.66 0.31 0.70 0.35 0.67 0.36 0.70
MutComputeXGT (Diaz et al., 2023) 0.34 0.68 0.27 0.57 0.38 0.72 0.37 0.72 0.30 0.69 0.34 0.66 0.34 0.68
MutComputeXGT w/ MSA soft-label (Ours) 0.37 0.70 0.30 0.59 0.48 0.75 0.45 0.75 0.36 0.71 0.41 0.69 0.37 0.70
MutRank (Ours) 0.51 0.78 0.40 0.67 0.62 0.84 0.68 0.84 0.51 0.77 0.62 0.77 0.51 0.78
SSL Improvement ↑ 42% 11% 48% 14% 63% 17% 83% 17% 65% 10% 77% 15% 42% 11%
Supervised Fine-Tuning Gap ↓ 14% 4% 23% 9% 14% 3% 0% -4% 16% 3% 13% 3% 14% 4%

Table 3. Thermodynamic stability (∆∆G) zero-shot comparisons with self-supervised and fine-tuned frameworks. ρ equals the
Pearson correlation coefficient and AUC is the area under the receiver operating characteristic. The first block reports the performance
of frameworks fine-tuned using experimental ∆∆G datasets. The second block reports the performance of self-supervised models
common in the literature. The third block reports the performance of two models trained in this work. The first is trained only using
the MSA soft-label loss and the second is MutRank, trained with both the MSA soft-label loss and the EvoRank loss (see Section 4.2).
‘SSL Improvement’ compares MutRank with respect to the best zero-shot model in the second block. ‘Supervised Fine-Tuning Gap’
compares MutRank with respect to the best supervised ∆∆G model in the first block. T2837 Reverse flips the “From” and “To” amino
acids in T2837 to evaluate reversibility robustness. ∗ denotes that we compute the metrics using the official checkpoint.

Dataset Phenotype # Mut MutComputeXGT MutRank ESM2 Stability Oracle
Pearson Spearman AUC Pearson Spearman AUC Pearson Spearman AUC Pearson Spearman AUC

levoglucosan kinase ∆Solubility 7195 0.26 0.30 0.61 0.29 0.34 0.64 0.27 0.32 0.62 0.32 0.34 0.63
TEM1-β-Lactamase ∆Solubility 4345 0.16 0.21 0.60 0.22 0.26 0.64 0.08 0.18 0.61 0.10 0.16 0.60
AcrIIA4 Activity 1653 0.36 0.34 0.65 0.59 0.53 0.75 0.06 0.06 0.56 0.48 0.40 0.69
Amidase Activity 6227 0.38 0.39 0.66 0.64 0.64 0.83 0.56 0.56 0.78 0.48 0.46 0.75
Deaminase Activity 5689 0.26 0.26 0.63 0.41 0.42 0.73 0.38 0.39 0.70 0.24 0.24 0.63
SKEMPI-V2 Protein-Protein ∆∆Gbind 4102 0.28 0.26 0.62 0.42 0.42 0.69 0.23 0.19 0.57 0.39 0.39 0.67
S487 Protein-Protein ∆∆Gbind 487 0.24 0.25 0.58 0.38 0.38 0.67 0.01 0.01 0.48 0.38 0.38 0.70
PlatinumDB Protein-Ligand ∆∆Gbind 925 0.05 0.01 0.48 0.28 0.28 0.64 0.03 0.06 0.51 0.26 0.26 0.64
ABBind Antibody-Antigen ∆∆Gbind 309 0.36 0.42 0.73 0.41 0.46 0.74 -0.07 -0.05 0.60 0.38 0.42 0.72

Table 4. Zero-shot evaluations on solubility and binding free energy datasets. In comparison with both sequence and structure-based
models trained using wildtype accuracy, training a structure-based model with EvoRank leads to greatly improved zero-shot performance.
Stability Oracle is initialized with MutComputeXGT weights and fine-tune for ∆∆G prediction (Diaz et al., 2023)

4. Experimental Results
For our experiments, we retrained a SOTA structure model
(Diaz et al., 2023) using both the MSA soft-label loss and
the EvoRank loss as described in Section 4.2. We name the
MutComputXGT structure model trained with EvoRank loss
as MutRank. We did not retrain ProteinMPNN, another
SOTA structure model, as it is unclear how to incorporate the
loss with its encoder/decoder architecture. We lack the com-
putational resources to retrain ESM2, a billion-parameter
SOTA sequence model.

We empirically evaluate MutRank on the most commonly
studied point mutation phenotype prediction benchmarks in
protein engineering: thermodynamic stability (∆∆G) and
binding free energy. Additionally, we evaluate two solubility
and three activity DMS datasets.

For zero-shot evaluation, we directly regress the model’s
prediction for the EvoScore (equation 3) against the exper-
imental label. For classification, we predict whether the
change was positive or negative and report AUC. We used
the cDNA117K dataset (Diaz et al., 2023) to evaluate the
supervised fine-tuning of EvoRank representations. Since
EvoRank is used for self-supervised pre-training, the super-

vised fine-tuning method is identical to the one described in
(Diaz et al., 2023).

We compare the predictions of MutRank to self-supervised
models trained with different modalities, e.g., structure-
based (MutComputeXGT), sequence-based (ESM2), and
inverse folding (ProteinMPNN) models. Our results show
that EvoRank leads to large improvements across the board
for zero-shot prediction. In fact, our zero-shot predictions
are competitive even with models that have been fine-tuned
on phenotype-specific datasets. For thermodynamic stabil-
ity, supervised fine-tuning MutRank gives a more modest
improvement compared to SOTA fine-tuned models.

4.1. Datasets

For the self-supervised training, we use the same proce-
dure as MutComputeX (d’Oelsnitz et al., 2023). Briefly,
this dataset consists of a 90:10 split of 2,569,256 micro-
environments sampled from 22,759 protein sequences clus-
tered at 50% sequence similarity and having a structure
resolution of at least 3Å from the RCSB (November 2021).
Our test data for the folding free energy changes and binding
free energy changes are proposed in Diaz et al. (2023); Gong
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et al. (2023) and we refer the readers to these works for de-
tails. These datasets are curated from literature datasets and
incorporate additional policies (e.g., below 30% sequence
similarity between training and test sets) for better quality.

For mutation effect prediction tasks, we use the experimen-
tal structure files from RCSB and AlphaFold structures if
the protein lacks an experimental structure. Due to the pro-
hibitive cost of generating experimental data, no phenotype
has sufficient experimental data to properly benchmark ML
frameworks and evaluate generalization. Thus, we explore
datasets for several phenotypes. To date, the most character-
ized mutation effect phenotype is thermodynamic stability
of folding (∆∆G) with several established datasets reserved
for evaluation of computational tools: S-Sym, S669, T2837,
Gβ1, Myoglobin, and P53. Recently, a cDNA-display pro-
teolysis technique enabled the multiplex characterization of
single-domain mini-proteins to provide the first exhaustive,
systematically generated training set for machine learning
(Tsuboyama et al., 2023). However, this dataset used a prote-
olytic stability as proxy for thermodynamic stability and the
technique does not generalize to full-length functional pro-
teins. For evaluating against the binding free energy changes
of point mutations, we used SKEMPIv2 (Jankauskaitė et al.,
2019) and AB-Bind (Sirin et al., 2016) for protein-protein
interface and PlatinumDB for protein-ligand interface (Pires
et al., 2015). For the activity, we used an anti-CRISPR
protein (A0A247D711) (Stadelmann et al., 2021) and an
amidase (Wrenbeck et al., 2017). These datasets are cu-
rated from the literature, thus, different techniques–with
different biases–were used for data collection. Thus, we
filtered mutational data for the techniques known to pro-
vide higher-quality measurements: SPR, ITC, FL, IASP,
SFFL. To evaluate a non-thermodynamic phenotype, we
evaluate against the solubility change deep mutational scan-
ning (DMS) datasets of levoglucosan kinase and TEM1-β-
lactamase (Klesmith et al., 2017). To obtain these solubility
change measurements, a yeast surface display readout was
used not of their wildtype sequences but rather for chimeric
variants with a N-terminus Aga2p domain and a C-terminus
epitope tag. Thus, solubility change results should be inter-
preted with caution since the input sequence and structure
used to generate predictions are for the native proteins.

4.2. Training

Self-supervised training was done with the AdamW opti-
mizer, 512 batch size, 5× 10−5 learning rate, 10−5 weight
decay. We first train using the soft-label loss in equation (2)
for 100K iterations, and then refine with the EvoRank loss
defined in equation (4), for an additional 100K iterations.
Training the model typically requires approximately two
GPU days on one A100. We generate MSAs with JackHM-
Mer (Remmert et al., 2012) against UniRef90, using the
default configuration of AlphaFold2. For the supervised

fine-tuning, we apply the AdamW optimizer, with back-
bone learning rate 10−5 and regression head learning rate
5 × 10−5. We tune it with 500 iterations on the curated
cDNA dataset generated by Diaz et al. (2023).

Evaluation Metrics and Baselines We assess the model’s
performance using a comprehensive set of evaluation met-
rics encompassing both regression and classification aspects.
The regression metrics include the Spearman correlation
coefficient, Pearson correlation coefficient, and Root Mean
Squared Error (RMSE). For classification evaluation, we
employ AUROC (Area Under the Receiver Operating Char-
acteristic curve). This dual approach ensures a thorough
and nuanced evaluation of the model’s capabilities across
different dimensions of prediction tasks. To compare with
results in the literature, we report the Spearman correlation
on different DMS datasets. To establish baselines, we incor-
porate a range of self-supervised and supervised methods.
As a representative self-supervised method, we employ the
extensively used ESM2 models. The default baseline is set
with the 650M-parameter ESM2 model, and we provide
results for other scales of ESM2 models and alternative
protein language models. We first evaluate different model
performance first on different ∆∆G datasets, since these
datasets have high-quality labels. Then, we further compare
models on more phenotype datasets, to examine whether
our model can generalize to different settings.

4.3. Results

Zero-shot thermodynamic stability evaluations In Ta-
ble 3 and Figure 3 report the zero-shot Pearson correlation
coefficient (ρ) and area under the ROC curve (AUC) perfor-
mance of various machine learning frameworks across mul-
tiple ∆∆G datasets: T2837 (Forward and Reverse) (Diaz
et al., 2023), S-Sym (Li et al., 2020), S669 (Pancotti et al.,
2022), FireProtDB (Stourac et al., 2021), Gβ1 (Nisthal
et al., 2019), and Myoglobin (Li et al., 2020). Our results
affirm the significance of prioritizing rank order during self-

ESM2 ProteinMPNN MutComputeXGT w/ MSA MutRank

Fireprot

S669s-sym

Myolobin

T2837 proteinG

Fireprot

S669s-sym

Myolobin

T2837 proteinG

AUC Pearson Correlation

Figure 3. Comparisons between the self-supervised frame-
works on stability datasets. We refer readers to Table 3 for
exact numbers and comparisons with supervised models.
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# Proteins # Mut (K) Fine-Tune MutComputeXGT w/ WT-Mask Fine-Tuned MutComputeXGT w/ EvoRank
Pearson Spearman AUC RMSE Pearson Spearman AUC RMSE

10 11K 0.50 0.52 0.73 1.92 0.58 0.60 0.78 1.73
50 54K 0.55 0.58 0.77 1.78 0.59 0.61 0.80 1.66
116 117K 0.59 0.62 0.81 1.64 0.61 0.63 0.81 1.62

Table 5. Evaluation of supervised fine-tuning SSL representations. We fine-tune both WT-mask and EvoRank representations on
various subsets of the cDNA dataset (Diaz et al., 2023) and test on the T2837 dataset set. ’#Mut’ denotes number of mutations in the
training set. The learning rate and number of iterations are tuned for each SSL pretraining task in order to maximize performance.

supervised training for zero-shot ∆∆G predictions.

Training with the MSA-based soft labels was sufficient to
surpass literature self-supervised baselines in both Pear-
son correlation and AUC. However, by reformulating the
training objective with EvoRank, MutRank achieve a sub-
stantial improvement over the previous best literature zero-
shot model. Moreover, MutRank demonstrates robustness
to thermodynamic reversibility augmentation (T2837 Re-
verse). Direct comparison with its WT-masked predecessor,
MutComputeXGT, MutRank achieves a 66% and 16%
improvement in Pearson correlation and AUC, respectively.
Notably, compared to the well-known self-supervised meth-
ods ESM2 and ProteinMPNN, MutRank achieves an aver-
age Pearson correlation improvements of ∼288% and ∼72%
across the six ∆∆G datasets, respectively. These results
demonstrate the effectiveness of EvoRank representations
for ∆∆G mutation effect prediction.

Next, we compared against supervised fine-tuned frame-
works trained on the large scale cDNA ∆∆G dataset. While
the MSA-based soft label framework fell short in competi-
tiveness, MutRank demonstrated competitive performance.
Compared to the SOTA-supervised framework, Stability
Oracle, MutRank zero-shot Pearson correlation and AUC
are only ∼13% and ∼3% lower on average across the six
datasets. Overall, our results demonstrate how pretraining
with the EvoRank loss significantly narrows the gap between
supervised fine-tuned and self-supervised frameworks for
∆∆G mutation effect prediction.

Zero-shot evaluation on multiple phenotypes To further
characterize the generalization capability of MutRank ,
we evaluate performance on binding free energy change
datasets and four DMS datasets: two for solubility and two
for activity (Table 4). Unlike folding stability, which has
seen significant increases in available public data (Tsub-
oyama et al., 2023), binding free energy change datasets
are scarce, filled with mutation type and label biases, and
suffer from noisy labels. These challenges make developing
supervised frameworks challenging for these phenotypes
and underline the importance of improving the zero-shot
performance of self-supervised frameworks.

For the binding free energy datasets, we use the protein-
protein interface binding ∆∆G datasets SKEMPIv2

(Jankauskaitė et al., 2019), AB-Bind (Sirin et al., 2016),
S487 (Geng et al., 2019) and the protein-ligand interface
binding ∆∆G dataset PlatinumDB (Pires et al., 2015). For
the solubility and activity datasets, we used Deep Muta-
tional Scanning (DMS) datasets, which leverage a high
throughput screen or next-generation sequencing as a proxy
for function. For solubility, we use the DMS datasets for
for levoglucosan kinase (uniprot id:B3VI55) and TEM1-β-
Lactamase (uniprot id: P62593) from Klesmith et al. (2017).
For activity evaluation, we use the DMS datasets for the
aliphatic hydrolase (uniprot id: P11436), the Anti-CRISPR
protein AcrIIA4 (uniprot id: A0A247D711), and Porpho-
bilinogen deaminase (uniprot id: P08397). We compare
against two WT-mask SSL frameworks, MutComputeXGT
and ESM2, and one supervised fine-tune framework, Stabil-
ity Oracle. Comparison between just the literature methods
on the binding ∆∆G datasets demonstrate that ESM2 did
the worst and Stability Oracle did the best across all met-
rics (Pearson and Spearman correlation and AUC). These
results are expected since binding free energy (interactions
between proteins) is fundamentally related to folding free
energy (interactions within a protein). ESM2 is unable to
“see” the binding partner (protein or ligand) and must rely
purely on the single sequence representation. This most
likely explains ESM2 low performance on AcrIIA4 since it
illicits its anti-CRISPR activity through binding inhibition.

Remarkably, MutRank outperforms MutcomputeXGT
across all datasets for all metrics. This demonstrates that the
EvoRank loss improves zero-shot generalization across mul-
tiple phenotypes compared to its WT-masked predecessor.
Additionally, MutRank outperforms ESM2 on all datasets
for all metrics even though it is a much smaller model
trained on only ∼23K proteins compared to UniRef50. Sur-
prisingly, MutRank’s zero-shot performance surpasses or
ties Stability Oracle performance on nearly all metrics for
binding ∆∆G datasets (except S487 AUC). Furthermore, it
significantly outperforms Stability Oracle on the TEM1-β-
Lactamase solubility dataset and the three activity datasets.
Stability Oracle performance on the TEM1-β-Lactamase
dataset is lower than it’s pre-trained representation, Mut-
ComputeXGT. This finding highlights the superior pheno-
type generalization of EvoRank loss and demonstrates how
supervised fine-tuning can improve the performance on one
phenotype at the expense of others. Finally, we highlight
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MutRank’s substantial improvement on the protein-ligand
interface binding ∆∆G dataset, PlatinumDB: compared to
MutComputeXGT: MutRank improves the Pearson cor-
relation and AUC from 0.05 and 0.48 to 0.28 and 0.64, re-
spectively. We conclude that for the activity, solubility and
binding free energy phenotypes, MutRank representations
significantly improves the zero-shot generalization over the
WT-mask representations of MutComputeXGT. However,
more thorough evaluations of MutRank are needed to better
understand its generalization across phenotypes.

Impact on supervised fine-tuning Representation learn-
ing is essential for enabling transfer learning to domains
with limited labeled data. Therefore, to assess the effective-
ness of EvoRank representations compared to the WT-mask
representations, we conduct a comparative analysis (Table
5) of supervised fine-tuning for thermodynamic stability
using the Stability Oracle framework: train on cDNA and
evaluate on T2837. The evaluation metrics include Pear-
son correlation, Spearman correlation, AUC, and RMSE.
To achieve optimal performance, WT-mask and EvoRank
representations require 3000 (same as Stability Oracle) and
500 iterations of fine-tuning, respectively.

Our results demonstrate that both models reach approxi-
mately the same performance on T2837 from training on
the cDNA dataset, with EvoRank representation having a
marginal improvement. Interestingly, EvoRank loss impact
is most apparent when there is significantly less fine-tuning
data available. When fine-tuned with ∼9% of the proteins
(10 proteins and 11K mutations) in the cDNA dataset, Evo-
Rank representations outperforms WT-mask representations
by 16%, 15%, 7% for Pearson and Spearman correlation and
AUC, respectively, and required 6× fewer training iterations
(500 vs 3000). Furthermore, EvoRank representation’s Pear-
son and Spearman correlation and AUC metrics are only
2%, 3%, and 4% lower than Stability Oracle, respectively.
The corresponding WT-mask representation’s Pearson and
Spearman correlation and AUC metrics are 15%, 16%, and
10% lower than Stability Oracle, respectively. These gaps
are less drastic when 43% of the proteins (50 proteins and
54K mutations) are used for supervised fine-tuning. We
posit that this is because EvoRank representations have
nearly saturated the capacity of the cDNA dataset. We
conclude that the supervised fine-tuning of the EvoRank
representations can substantially enhance the model’s abil-
ity to generalize to phenotypes with limited mutational data,
while also accelerating training time.

Generalizing beyond the MSA distribution While
MutRank is trained to recapitulate MSA priors via the
EvoRank loss, the MSA itself can also directly serve as a
predictor for mutation effects. In the literature, MSAs are
often used to create a sequence profile (Lüthy et al., 1994)

Method Pearson Spearman AUROC RMSE
EvoScore 0.15 0.13 0.62 2.17
ESM2 0.37 0.37 0.65 5.48
MutComputeXGT 0.38 0.38 0.64 1.89
MutRank 0.45 0.46 0.71 1.09

Table 6. Zero-shot evaluations on the cDNA117K dataset. We
demonstrate that MutRank has superior generalization capability
over the EvoScore used for training.

or position-specific scoring matrix (PSSM) (Jones, 1999),
which can be used to predict the impact of a mutation by
assessing the deviation from the expected amino acid at a
specific position.

We evaluate if MutRank can outperform the MSA priors it
is trained to predict using the large cDNA dataset (∼ 117K
mutations from 116 single domain proteins) provided in
Diaz et al. (2023). For these 116 proteins, the average
and std of their MSA depth is 3.9K±0.6K sequences. To
calculate naive predictions from a protein’s MSA, we use
the log-odds of the empirical amino acid distribution at a
position (Figure 1): log(pto/pfrom). Furthermore, we pro-
vide MutComputeXGT and ESM2 as additional baselines
for comparison. As demonstrated in Table 6, our method
not only outperforms ESM2 but also significantly improves
upon the MSA priors it is trained to predict: for Pearson
correlation, our method achieves 0.45, surpassing MSA’s
0.15, ESM2’s 0.37, and MutComputeXGT’s 0.38. These
results demonstrate that MutRank capture residue specific
variability beyond what is encoded in MSAs.

5. Conclusion
We propose the EvoRank self-supervised training objective
to enhance protein representation learning for zero-shot mu-
tation effect prediction tasks. EvoRank reformulates the
learning task to capture how evolution drives protein muta-
tions by replacing the 20-class classification head with a re-
gression head that is trained to recapitulate the rank of amino
acids at a specific position observed in MSA. To evaluate
EvoRank, we trained a structure-based graph transformer
and observed performance improvements in all downstream
single-point mutation effect prediction tasks compared to
WT-mask pretrained predecessor, MutCopmputeXGT. Fur-
thermore, when compared to the most renowned sequence-
based (ESM2) and structure-based (ProteinMPNN) self-
supervised frameworks, EvoRank also demonstrates supe-
rior zero-shot performance across all evaluated benchmarks.
Notably, the EvoRank loss enables training the first self-
supervised framework that is competitive with ∆∆G super-
vised fine-tuned frameworks. From our results, we conclude
that the EvoRank training objective learns representations
with an enriched understanding of the complex mutational
landscape of proteins and improve generalization when fine-
tuning to downstream phenotypes with limited data.
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Impact Statement
In this paper, we present the EvoRank training loss and
demonstrate its ability to learn representations that better
model a protein’s mutational landscape. Models trained
with EvoRank are better suited for machine learning-guided
protein engineering and will drastically accelerate the de-
velopment of protein-based biotechnologies. Protein-based
biotechnologies will have a profound impact on the sustain-
able procurement of agricultural and chemical commodities,
pharmaceuticals, and food ingredients. We would like to
highlight that the mutational understanding present in the
representations learned with the EvoRank loss can help with
the identification of synthetic sequences for pathogen com-
ponents. This issue will become more prevalent with the
rise of machine learning guided de novo protein design.
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A. Additional Experiments

Loss T2837 S487
pMSA
j (a+)

pMSA
j (a+)+pMSA

j (a−)
− 0.5 0.51 0.38

CLMAP{log{pMSA
j (a+)/pMSA

j (a−)},±5} 0.52 0.38
CLMAP{[pMSA

j (a+)/pMSA
j (a−)]2,±5} 0.50 0.37

Table 7. We demonstrate the model Pearson correlation coefficient with different rank score loss. The first block shows the loss as the
default setting. The second block displays the loss with other formulations.

Dataset Phenotype EvoRank w/ Classification Head EvoRank w/ Joint Heads EvoRank w/ Regression Head
Pearson Spearman AUC RMSE Pearson Spearman AUC RMSE Pearson Spearman AUC RMSE

T2837 ∆∆G 0.47 0.49 0.76 1.78 0.51 0.53 0.77 1.76 0.51 0.53 0.78 1.70
levoglucosan kinase ∆ Solubility 0.28 0.34 0.62 1.40 0.30 0.34 0.65 1.37 0.29 0.34 0.64 1.39
S487 Protein-Protein ∆∆Gbind 0.36 0..35 0.65 1.35 0.37 0.37 0.67 1.36 0.38 0.38 0.67 1.26
platinumDB Protein-Ligand ∆∆Gbind 0.25 0.24 0.61 1.58 0.27 0.27 0.65 1.58 0.28 0.28 0.64 1.53
ABBind Antibody-Antigen∆∆Gbind 0.39 0.45 0.72 1.48 0.41 0.46 0.72 1.57 0.41 0.46 0.74 1.42

Table 8. We illustrate that MutRank without additional regression head can still generate good results on the test sets. The numbers
reported are averaged over three trials.

Head architecture ablations In our approach, to train with the EvoRank loss, we replace the classification head with a
regression head. This head contextualize the embedding vectors for the two amino acids with the hidden representation for a
particular microenvironment in order to compute a residue specific rank score. Alternatively, we can use the EvoRank loss
with the original classification head by calculating the rank score from the logits. In this ablation study, shown in Table 8,
we observe that introducing the additional regression head generally results in a modest performance improvement ranging
from 1% to 4% across 5 datasets. More importantly, these results demonstrate the superior zero-shot generalization of the
EvoRank representations over the WT-mask baseline regardless of the head architecture.

Exploring different loss formulation Training with EvoRank loss is a two-stage procedure. Initially, we train the
backbone using MSA-based soft labels with the α-divergence loss and subsequently fine-tune with the EvoRank loss. 1) We
evaluate the impact of jointly training with α-divergence loss and EvoRank (Table 8, middle column). Our results indicate
that the linear combination of the α-divergence and EvoRank losses with 0.4 and 0.6 coefficients, respectively, provides the
best performance. However, these results match our previous performance. 2) We then evaluate different ways to compute
the rank score for a residue from the MSA distribution, and benchmark on the T2837 and S487 datasets. As demonstrated
in Table 7, all rank score formulations converge to similar performance on T2837 and S487. Thus, the exact formulation
for computing the rank score has an insignificant impact on performance and further demonstrates the robustness of the
EvoRank loss.

Dataset #Mut MutRank-2M MutRank-8M MutRank-24M MutRank-48M
T2837 2837 0.48 0.51 0.51 0.51
levoglucosan kinase 9011 0.27 0.29 0.29 0.28
Gβ1 935 0.58 0.62 0.62 0.62
S487 487 0.36 0.38 0.40 0.40
PlatinumDB 925 0.25 0.28 0.28 0.26

Table 9. We demonstrate the model Pearson correlation coefficient with different model sizes. All the results are averaged over three
trials.

Model size ablations The machine learning community has empirically demonstrated the benefits of increasing model
size (Dehghani et al., 2023; Chowdhery et al., 2023). This too has been demonstrated by protein language models (Elnaggar
et al., 2021; Rives et al., 2019a; Lin et al., 2023). However, to the best of our knowledge no study has explored the impact of
model size for protein structure-based machine learning frameworks. We conducted a comprehensive analysis ranging the
parameters from ∼2M to ∼48M. The results, presented in Table 9, demonstrate marginal to no improvements from scaling
the model parameters. For example, the smallest model (∼2M) exhibit diminished performance compared to the largest
(∼48M) model but the average performance improvement across 4 datasets is only ∼6%. But the same analysis between the
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(∼8M) and (∼48M) models results in an average performance decrease of 1.25%. Further experiments, such as scaling the
dataset beyond ∼20K proteins, are required to confirm if structure-based ML frameworks trained with EvoRank loss will
benefit from model scaling. All experiments reported in this work are from the 8M parameter model.
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