
Long Range Propagation on Continuous-Time Dynamic Graphs

Alessio Gravina * 1 Giulio Lovisotto * 2 Claudio Gallicchio 1 Davide Bacciu 1 Claas Grohnfeldt 2

Abstract
Learning Continuous-Time Dynamic Graphs
(C-TDGs) requires accurately modeling spatio-
temporal information on streams of irregularly
sampled events. While many methods have been
proposed recently, we find that most message
passing-, recurrent- or self-attention-based meth-
ods perform poorly on long-range tasks. These
tasks require correlating information that occurred
“far” away from the current event, either spa-
tially (higher-order node information) or along the
time dimension (events occurred in the past). To
address long-range dependencies, we introduce
continuous-time graph anti-symmetric network
(CTAN). Grounded within the ordinary differen-
tial equations framework, our method is designed
for efficient propagation of information. In this
paper, we show how CTAN’s (i) long-range mod-
eling capabilities are substantiated by theoretical
findings and how (ii) its empirical performance on
synthetic long-range benchmarks and real-world
benchmarks is superior to other methods. Our
results motivate CTAN’s ability to propagate long-
range information in C-TDGs as well as the inclu-
sion of long-range tasks as part of temporal graph
models evaluation.

1. Introduction
Graphs are a highly expressive abstraction for modelling
entities and their relations, e.g., molecular structures, rec-
ommender systems, or traffic networks (Monti et al., 2019;
Derrow-Pinion et al., 2021; Gravina et al., 2022; Errica et al.,
2023; Cini et al., 2023; Bacciu et al., 2024). Deep Graph
Networks (DGNs) (Bacciu et al., 2020; Wu et al., 2021)
have lately emerged as a family of deep learning models
that can effectively process and learn such structured in-

*Equal contribution, work done while at Huawei Technologies
1Department of Computer Science, University of Pisa, Pisa, Italy
2Huawei Technologies, Munich, Germany. Correspondence to:
Alessio Gravina <alessio.gravina@phd.unipi.it>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

formation. While most of the proposed DGNs have been
designed for static graphs, many real-world scenarios are
inherently dynamic in nature. Examples include the contin-
ual activities and interactions between members of social
as well as communication networks, recurrent purchases
by users on e-commerce platforms, or evolving interactions
of processes with files in an operating system. A number
of works investigated models that can process the tempo-
ral dimension of a dynamic graph (Kazemi et al., 2020;
Gravina & Bacciu, 2024), with recent interest in graphs
defined through irregularly sampled event streams, known
as Continuous-Time Dynamic Graphs (C-TDGs). However,
dynamic methods, which are based on static DGNs and
recurrent neural networks (RNNs) as backbone architec-
tures, often retain the limitations of their core components.
Specifically, static DGNs suffer from the over-squashing
phenomenon (Alon & Yahav, 2021), which prevents the
final network to learn and propagate long range informa-
tion (Gravina et al., 2023). Similarly, RNNs often face
similar challenges in propagating long-term dependencies,
as evidenced by Chang et al. (2019), mainly due to explod-
ing or vanishing gradients. With growing evidence from
the static and dynamic case (Dwivedi et al., 2022; Yu et al.,
2023) that long-range dependencies are necessary for ef-
fective learning, the ability to learn properties beyond the
event’s temporal and spatial locality remains an open chal-
lenge in the C-TDG domain.

In this paper, we propose the continuous-time graph anti-
symmetric network (CTAN), a framework for learning of
C-TDGs with scalable long range propagation of informa-
tion, thanks to properties inherited from stable and non-
dissipative ordinary differential equations (ODEs). We es-
tablish theoretical conditions for achieving stability and non-
dissipation in the CTAN ODE by employing anti-symmetric
weight matrices, which is the key factor for modeling long-
range spatio-temporal interactions. The CTAN layer is de-
rived from the forward Euler discretization of the designed
differential equation. The formulation of CTAN allows
scaling the radius of propagation of information depending
on the number of discretization steps, i.e., the number of
layers in the final architecture. Remarkably, even with a
limited number of layers, the non-dissipative behavior en-
ables the transmission of information for a past event as
new events occur, since node states are used to efficiently

1

Long Range Propagation on Continuous-Time Dynamic Graphs

retain and propagate historical information. This mecha-
nism permits scaling the single event propagation to cover
a larger portion of the C-TDG. The general formulation of
the node update state function allows the implementation
of the more appropriate dynamic to the problem at hand.
Specifically, it allows the inclusion of static DGN dynamics,
thus reinterpreting current state-of-the-art static DGNs as a
discretized representation of non-dissipative ODEs tailored
for C-TDGs, mirroring previous approaches in the static
case (Poli et al., 2019; Gravina et al., 2023). To the best of
our knowledge, CTAN is the first framework to effectively
address the problem of long-range propagation in C-TDGs
and the first to bridge the gap between ODEs and C-TDGs.

The key contributions of this work can be summarized as
follows: (i) We introduce the problem of long-range prop-
agation (i.e., non-dissipativeness) within C-TDGs; (ii) We
introduce CTAN, a new deep graph network for learning
C-TDGs based on ODEs, which enables stable and non-
dissipative propagation to preserve long term dependencies
in the information flow, and it does so in a theoretically
founded way; (iii) We present novel benchmark datasets
specifically designed to assess the ability of DGNs to propa-
gate information over long spatio-temporal distances within
C-TDGs; (iv) We conduct extensive experiments to demon-
strate the benefits of our method, showing that CTAN not
only outperforms state-of-the-art DGNs on synthetic long-
range tasks but also outperforms them on several real-world
benchmark datasets.

2. Preliminaries
We consider a dynamic graph as the tuple G(t) =
(V(t), E(t),X(t),E(t)), defined for any time t ≥ 0, which
models a dynamical system of interacting entities (also
known as nodes) where interactions (or edges) evolve over
time, i.e., they are dynamic in nature. Here, V(t) is the
set of nodes that are present in the graph at time t, and
E(t) ⊆ {{u, v, t−} |u, v ∈ V(t), t− < t} defines the
edges between them, with t− the time in which the edge
{u, v} was created. Matrices X(t) ∈ R|V(t)|×dn and
E(t) ∈ R|E(t)|×de contain node and edge features, respec-
tively. The u-th row of X(t) is denoted as xu and represents
the features of the single node u. Similarly, we indicate the
feature vector of the edge between nodes u and v created
at time t as euvt. Each node u is also associated to state
hu(t) ∈ H(t) ∈ R|V(t)|×d, which encodes node evolution
over time t.

In our setting, the dynamic graph is observed as a stream
of events, also known as observations, that can appear ir-
regularly over time. Therefore, the system of interacting
entities is not fully observed over time, and it is known as
C-TDG (Nguyen et al., 2018; Kazemi et al., 2020; Gravina
& Bacciu, 2024). In this scenario, the dynamic graph can

Figure 1. The evolution of a Continuous-Time Dynamic Graph
through the stream of events up to timestamp t4. At each times-
tamp, the faded portion of the graph corresponds to historical
information.

be rewritten as G = {ot | t ∈ [t0, tn]}, where each event
ot = (t, EventType, u, v, xu, xv, euvt) is a tuple con-
taining information regarding the timestamp, the event type,
the involved nodes, and their states. The event types can be
grouped into three main classes, which are node-wise events
(i.e., a node is updated or created), interaction events (i.e.,
an edge is created), and deletion events (i.e., a node/edge is
deleted). In the following, we will refer to V⊕ as the event
“node creation”, and to E⊕ as “edge addition”. We present
in Figure 1 a visual exemplification of a C-TDG.

3. Continuous-Time Graph Anti-Symmetric
Network (CTAN)

Learning the dynamics of a C-TDG can be cast as the prob-
lem of learning information propagation following newly
observed events in the system. This entails learning a diffu-
sion function that updates the state of node u as

hu(t) = F (t,xu,hu(t), {hv(t)}, {euvt−}) , (1)

where (v, t−) ∈ N t
u, and N t

u = {(v, t−) | {u, v, t−} ∈
E(t)} is the temporal neighborhood of a node u at time t,
which consists of all the historical neighbors of u prior to
current time t. In the following, we omit the time subscript
from the edge feature vector to enhance readability, since it
refers to a time in the past in which the edge appeared.

In recent literature, Eq. 1 is modeled through a dynami-
cal system described by a learnable ordinary differential
equation (ODE) (Poli et al., 2019; Chamberlain et al., 2021;
Eliasof et al., 2021; Rusch et al., 2022; Gravina et al., 2023).
Differently from discrete models, neural-ODE-based ap-
proaches learn more effective latent dynamics and have
shown the ability to learn complex temporal patterns from ir-
regularly sampled timestamps (Chen et al., 2018; Rubanova
et al., 2019; Kidger et al., 2020), making them more suitable
to address C-TDG problems.

In this paper, we leverage non-dissipative ODEs (Haber &
Ruthotto, 2017; Chang et al., 2019; Gravina et al., 2023) for
the processing of C-TDGs. Thus, we propose a framework

2

Long Range Propagation on Continuous-Time Dynamic Graphs

as a solution to a stable and non-dissipative ODE over a
streamed graph. The main goal of our work is therefore
achieving preservation of long-range information between
nodes over a stream of events. We do so by first showing
how a generic ODE can learn the hidden dynamics of a
C-TDG and then by deriving the condition under which the
ODE is constrained to the desired behavior.

Modeling C-TDGs. First, we define a Cauchy problem in
terms of the node-wise ODE defined in time t ∈ [0, T]

∂hu(t)

∂t
= fθ

(
t,xu,hu(t), {hv(t)}v∈N t

u
, {euv}v∈N t

u

)
(2)

and subject to an initial condition hu(0) ∈ Rd. The term
fθ is a function parametrized by the weights θ that describes
the dynamics of node state. We observe that this framework
can naturally deal with events that arrive at an arbitrary
time. Indeed, the original Cauchy problem in Eq. 2 can be
divided into multiple sub-problems, one per each event in
the C-TDG. The i-th sub-problem, defined in the interval
t ∈ [ts, te], is responsible for propagating only the informa-
tion encoded by the i-th event. Overall, when a new event
oi happens, the ODE in Eq. 2 computes new nodes repre-
sentations hi

u(te), starting from the initial configurations
hi
u(ts). In other words, fθ evolves the state of each node

given its initial condition. The top-right of Figure 2 visually
summarizes this concept, showing the nodes evolution given
the propagation of an incoming event. We observe that the
knowledge of past events is preserved and propagated in
the system thanks to an initial condition that includes not
only the current node input states but also the node rep-
resentations computed in the previous sub-problem, i.e.,
hi
u(ts) = ψ(hi−1

u (te),xu(i)). We notice that the terminal
time te (treated as an hyper-parameter) is responsible for
determining the extent of information propagation across
the graph, since it limits the propagation to a constrained
distance from the source. Consequently, smaller values of te
allow only for localized event propagation, whereas larger
values enable the dissemination of information to a broader
set of nodes.

While this approach is applicable to all ODE-based DGNs
for C-TDGs, we note that we are the first to introduce this
truncated history propagation method in C-TDGs.

Non-Dissipativeness in C-TDGs.We now proceed to de-
rive the condition under which the ODE is constrained to a
stable and non-dissipative behavior, allowing for the propa-
gation of long-range dependencies in the information flow.
Non-Dissipativeness1 in C-TDGs can be dissected into two
components: non-dissipativeness over space and over time.

Definition 3.1 (Non-dissipativeness over space). Let u, v ∈
V(t) be two nodes of the C-TDG at some time t, connected

1The reader is referred to (Glendinning, 1994; Ascher et al.,
1995) for an in-depth analysis of dissipative dynamical systems.

by a path of length L. If an event oi occurs at node u, then
the information of oi is propagated from u to v, ∀L ≥ 0.

We start by instantiating Eq. 2 as

∂hu(t)

∂t
= σ

(
Wthu(t) + Φ

(
{hv(t), euv, t

−
v , t}v∈N t

u

))
(3)

where σ is a monotonically non-decreasing activation func-
tion; Φ is the aggregation function that computes the rep-
resentation of the neighborhood of the node u considering
node states and edge features; t−v is the time point of the
previous event for node v; and Wt ∈ Rd×d. Here and in
the following, the bias term is omitted for simplicity. We
notice that including t−v in Φ encodes the time elapsed since
the previous event involving node v. This inclusion allows
for smooth updates of the node’s current state during the
time interval to prevent the staleness problem (Kazemi et al.,
2020).

As discussed in (Haber & Ruthotto, 2017), a non-dissipative
propagation is directly linked to the sensitivity of the solu-
tion of the ODE to its initial condition, thus to the stability of
the system. Such sensitivity is controlled by the Jacobian’s
eigenvalues of Eq. 3. Given λi(J(t)) the i-th eigenvalue
of the Jacobian, when Re(λi(J(t))) = 0 for i = 1, ..., d
the initial condition is effectively propagated into the final
node representation, making the system both stable and
non-dissipative2.

Definition 3.2 (Non-dissipativeness over time). Let u ∈
V(t) be a node in the C-TDG at time t and ot an event that
occurs at node u at time t. A DGN for C-TDGs is non-
dissipative over time if, regardless of how many more events
subsequently occur at u, the information of event ot will
persist in u’s embedding.

In essence, Definition 3.2 captures the idea that the embed-
ding computed by a DGN for a node in a C-TDG retains the
information from a specific event indefinitely, ensuring that
the historical context is preserved and not forgotten despite
the occurrence of additional events at that node.

To show the property of non-dissipativity over time, we
analyze the entire system defined in Eq. 3 from a temporal
perspective. Thus, Eq. 3 can be reformulated as:

∂hu(t)

∂t
= σ

(
Wtψ(hu(t),xu(t))

+ Φ
(
{ψ(hv(t),xv(t)), euv, t

−
v , t}v∈N t

u

))
(4)

where ψ is the function that computes the initial condition
for the propagation of each event considering the node rep-
resentations computed in the previous event propagation
hu(t) and the current node input state xu(t) (as before).

2This result holds also when the eigenvalues of the Jacobian
are still bounded in a small neighborhood around the imaginary
axis (Gravina et al., 2023).

3

Long Range Propagation on Continuous-Time Dynamic Graphs

Figure 2. A high-level overview of the proposed framework illustrated for the i-th Cauchy sub-problem. On the left, we depict the
propagation of the information of event oi through the graph. The faded portion of the graph corresponds to historical information,
while the rest is the incoming event. On the right, we illustrate the evolution of node states given the propagation of the incoming
event. Specifically, the top right shows the evolution as an ODE, fθ , that computes the node representation for a node k, hk(t). Such
computation is subject to an initial condition hk(ts) = ψ(hi−1

k (te),xk(i)) that includes the node representations computed in the
previous sub-problem hi−1

k (te) and the current node input state. In the bottom right, the discretized solution of the ODE is computed as
iterative steps of the method over a discrete set of points in the time interval [ts, te].

In this context, we can view the system as having e∆t steps,
where e denotes the number of events and ∆t represents the
propagation time of an event. Furthermore, the input state
of the node xu(t) is only present upon occurrence of a new
event, meaning that during the propagation of events, xu(t)
is set to 0. Therefore, its impact on information propagation
is confined to the event’s specific occurrence and does not
affect each step of the propagation process.

The next proposition ensures that when the eigenvalues of
the Jacobian matrix of Eq. 4 are placed only on the imagi-
nary axes, then the ODE in Eq. 4 is non-dissipative in both
space and time. Thus, we guarantee the preservation of
historical context over time and the propagation of event
information through the C-TDGs.

Proposition 3.3. Provided that the weight matrix Wt is
anti-symmetric3 and the aggregation function Φ does not
depend on hu(t), then the ODE in Eq. 4 is stable and non-
dissipative over space and time if the resulting Jacobian
matrix has purely imaginary eigenvalues, i.e.,

Re(λi(J(t))) = 0,∀i = 1, ..., d.

For the proof, we refer the reader to (Gravina et al.,
2023)(Appendix B) and substitute the Jacobian computed
w.r.t. space with a Jacobian computed w.r.t. time.

By constraining weight matrix Wt to be anti-symmetric
we obtain that the ODE in Eq. 3 is not-dissipative in both
space and time, guaranteeing the preservation of historical
node context over time while propagating event information
“spatially” through the C-TDGs. We provide a more in-depth
analysis of non-dissipativeness over time in Appendix A

3A matrix M ∈ Rd×d is anti-symmetric if M⊤ = −M.

where we show that varying the formulation of ψ can yield
to diverse behaviors.

Numerical discretization. Now that we have defined the
conditions under which the ODE in Eq. 3 is stable and non-
dissipative, i.e., it can propagate long-range dependencies
between nodes in the C-TDG, we observe that computing
the analytical solution of an ODE is usually infeasible. It
is common practice to rely on a discretization method to
compute an approximate solution by multiple applications
of the method over a discrete set of points in the time interval
[ts, te]. This process is visually summarized at the bottom
of Figure 2. We employ the forward Euler’s method to
discretize Eq. 3 for the i-th Cauchy sub-problem, yielding
the following node state update equation for the node u at
step ℓ:

hℓ
u = hℓ−1

u + ϵσ
(
(Wℓ −W⊤

ℓ − γI)hℓ−1
u

+Φ
(
{hv(t), euv, t

−
v , t}v∈N t

u

))
, (5)

with ϵ > 0 being the discretization step size. We notice that
the anti-symmetric weight matrix (Wℓ−W⊤

ℓ) is subtracted
by the term γI to preserve the stability of the forward Euler’s
method, see Appendix B for a more in-depth analysis. We
refer to I as the identity matrix and γ to a hyper-parameter
that regulates the stability of the discretized diffusion. We
note that the resulting neural architecture contains as many
layers as the discretization steps, i.e., L = te/ϵ.

Truncated non-dissipative propagation. As previously
discussed, the number of iterations in the discretization (i.e.,
the terminal time te) plays a crucial role in the propagation.
Specifically, few iterations result in a localized event propa-
gation. Consequently, the non-dissipative event propagation

4

Long Range Propagation on Continuous-Time Dynamic Graphs

does not reach each node in the graph, causing a truncated
non-dissipative propagation. This method allows scaling
the radius of propagation of information depending on the
number of discretization steps, thus allowing for a scalable
long-range propagation in C-TDGs. Crucially, we notice
that, even with few discretization steps, it is still possible
to propagate information from a node u to z (if a path of
length P connects u and z). As an example, consider the
situation depicted in the left segment of Figure 2, where
nodes u and v establish a connection at some time t, and
our objective is to transmit this information to node z. In
this scenario, we assume L = 1, thus the propagation is
truncated before z. Upon the arrival of the event at time t,
this is initially relayed (due to the constraint of L = 1) to
node k, which then captures and retains this information. If
a future event at time t+ τ involving node k occurs, its state
is propagated, ultimately reaching node z. Consequently,
the information originating from node u successfully tra-
verses the structure to reach node z. More formally, if it
exists a sequence of (at least P/L) successive events, such
that each future i-th event is propagated to an intermediate
node at distance iP/L from u, then u is able to directly
share its information with z. Therefore, even with a limited
number of discretization steps, the non-dissipative behavior
enables scaling the single event propagation to cover a larger
portion of the C-TDG. We also notice that if the number of
iterations is at least equal to the longest shortest path in the
C-TDG, then each event is always propagated throughout
the whole graph.

The CTAN framework. We name the framework de-
fined above continuous-time graph anti-symmetric network
(CTAN). Note that Φ in Eq. 3 and 5 can be any function that
aggregates nodes and edges states. Then, CTAN can lever-
age the aggregation function that is more adequate for the
specific task. As an exemplification of this, in Section 4 we
leverage the aggregation scheme based on the one proposed
by (Shi et al., 2021):

Φ
(
{hv(t), euv, t

−
v , t}v∈N t

u

)
=

=
∑

v∈N t
u∪{u}

αuv

(
Vnh

ℓ−1
v +Veêuv

)
(6)

where êuv = euv∥ (V(t− t−v)) is the new edge rep-
resentation computed as the concatenation between the
original edge attributes and a learned embedding of the
elapsed time from the previous neighbor interaction, and
αuv = softmax

(
q⊤K√

d

)
is the attention coefficient with

d the hidden size of each head, q = Vqh
ℓ−1
u , and K =

Vkh
ℓ−1
v +Veêuv .

Despite CTAN being designed from the general perspec-
tive of layer-dependent weights, it can be used with weight
sharing between layers (as in Section 4).

4. Experiments
To evaluate the performance of CTAN, we design two novel
temporal tasks which require propagation of long-range
information by design, Section 4.1.1 and Section 4.1.2.
Afterwards, we assess the performance of the proposed
CTAN approach on classical benchmarks for C-TDGs in
Section 4.2. We complement these classical benchmarks
with a larger evaluation on the TGB framework (Huang
et al., 2023) in Appendix G, showcasing the model capa-
bilities in diverse settings, covering evaluations with (i)
improved negative sampling techniques and (ii) transduc-
tive and inductive settings. In Appendix H we conduct an
investigation on the scalability property of CTAN. In Ap-
pendix D, we present comprehensive descriptions and statis-
tics of the datasets. We release the long-range benchmarks
and the code implementing our methodology and reproduc-
ing our analysis at https://github.com/gravins/
non-dissipative-propagation-CTDGs.

Shared Experimental Settings. In the following ex-
periments, we consider weight sharing of CTAN pa-
rameters across the neural layers. We compare CTAN
against four popular dynamic graph network methods (i.e.,
DyRep (Trivedi et al., 2019), JODIE (Kumar et al., 2019),
TGAT (Xu et al., 2020), and TGN (Rossi et al., 2020)) and
include recent methods GraphMixer (Cong et al., 2023) and
DyGFormer (Yu et al., 2023) for evaluation in long-range
tasks. To ensure fair comparison and efficient implementa-
tion, we implement these methods in our framework. With
the same purpose, we reuse the graph convolution operators
in the original literature, considering for all methods the
aggregation function defined in Eq. 6. We designed each
model as a combination of two components: (i) the DGN
(i.e., CTAN or a baseline) which is responsible to compute
the node representations; (ii) the readout that maps node
embeddings into the output space. The readout is a 2-layer
MLP, used in all models with the same architecture. We
perform hyper-parameter tuning via grid search, consider-
ing a fixed parameter budget based on the number of graph
convolutional layers (GCLs). Specifically, for the maximum
number of GCL in the grid, we select the embedding di-
mension so that the total number of parameters matches
the budget; such embedding dimension is used across every
other configuration. We report more detailed information
on each task in their respective subsections. Detailed infor-
mation about hyper-parameter grids and training of models
are in Appendix E. While we do not directly investigate the
optimal terminal time te within the hyper-parameter space,
we implicitly address this aspect through the choice of the
step size ϵ and the maximum number of layers L, as they
jointly determine the terminal time, i.e., te = ϵL.

5

https://github.com/gravins/non-dissipative-propagation-CTDGs
https://github.com/gravins/non-dissipative-propagation-CTDGs

Long Range Propagation on Continuous-Time Dynamic Graphs

4.1. Long Range Tasks

Here, we introduce two temporal tasks which contain long-
range interaction (LRI). The first is a Sequence Classifica-
tion task on path graphs (Bondy & Murty, 1976) and the
second an extension to the temporal domain of the classi-
fication task PascalVOC-SP introduced in the Long Range
Graph Benchmark (Dwivedi et al., 2022).

4.1.1. SEQUENCE CLASSIFICATION ON TEMPORAL
PATH GRAPH

Setup. Inspired by the tasks in (Chang et al., 2019),
we consider a sequence classification task requiring long-
range information on a temporal interpretation of a path
graph (Bondy & Murty, 1976). Here, the nodes of the path
graph appear sequentially over time from first to last, i.e.,
each event in the C-TDG connects each node to the previous
one in the path graph (see Appendix D for a reference to
our dataset). The task objective is to predict the feature
observed at the source node in the first event after having
traversed the entire temporal path graph, i.e., after reaching
the last event in the stream. After the model processes the
last event in the graph, the output prediction for the whole
graph is computed by a readout that takes as input the up-
dated embedding of the destination node of the last event in
the C-TDG. The task requires models to propagate the in-
formation seen at the first node through the entire sequence.
Models that exhibit smoothing or dissipative behavior will
fail to transmit relevant information to the destination node
for longer sequences, resulting in poor performance.

When creating the dataset, we set the feature of the first
source node to be either 1 or -1, and we use uniformly
random sampled features for intermediate nodes and edges
to ensure the only task-relevant information is on the earliest
node. We forward events one at a time to update neighboring
nodes representations (i.e., batch size is 1). We considered
graphs of different sizes, from length 3 to 20, to test how
long information is propagated, i.e., longer graphs force
models to propagate information for longer. During training,
we optimize the binary cross-entropy loss over two classes
corresponding to the two possible signals (1 or -1) placed on
the initial node. Each experimental run is repeated 10 times
for different weight initializations; the grid is computed
considering a budget of ∼20k trainable parameters. The best
performing configuration is chosen based on the validation
loss. Appendix E reports more training details and the grid
of hyper-parameters.

Results. The test accuracy on the sequence classification
task is in Table 1 (comprehensive results are reported in
Appendix F). CTAN exhibits exceptional performance in
comparison to reference state-of-the-art methods. This re-
sult highlights the capability of our method to propagate
information seen on the first node throughout long paths.

Meanwhile, several baseline models struggle in solving such
a task because the information is lost through the time-steps:
in practice, informative gradients vanish over time. Note
that, memory-less methods such as TGAT, GraphMixer and
DyGformer can not effectively propagate information past
the number of layers (i.e., hops) used in the neighbor aggre-
gation. Note that while the latter two methods are designed
for 1-hop aggregation, TGAT allows for variable number of
GCLs aggregations, which we test up to 5. We notice TGAT
can solve the task at distance 5, but fails for longer graphs.
JODIE and TGN are memory-based methods, which grants
them the ability to solve tasks for longer distances, but being
RNN-based methods inherently struggle to maintain long-
term dependencies (Bengio et al., 1994; Chang et al., 2019).
TGN fails at distance 7, while JODIE at distance 15. CTAN
on the other hand, better propagates information for longer
distances, solving the task even at length 20.

Table 1. Results of the sequence classification on path graph
long-range task, for increasing graph length n. The performance
metric is the mean test set accuracy score, averaged over
10 different random weights initializations for each model
configuration.

n=3 n=9 n=15 n=20

DyGFormer 100.0±0.0 53.02±6.06 42.80±16.25 42.79±19.62

DyRep 100.0±0.0 47.93±2.73 48.60±2.48 50.47±2.88

GraphMixer 100.0±0.0 52.80±5.56 52.49±5.36 52.04±8.20

JODIE 100.0±0.0 100.0±0.0 60.0±14.91 50.87±2.46

TGAT 100.0±0.0 47.87±2.72 50.53±2.15 49.07±1.55

TGN 100.0±0.0 48.13±1.63 48.67±2.76 50.13±2.17

Our 100.0±0.0 99.93±0.21 93.47±8.78 88.93±12.06

4.1.2. CLASSIFICATION ON TEMPORAL PASCAL-VOC

Setup. We consider edge classification on a temporal inter-
pretation of the PascalVOC-SP dataset, which has been
previously employed by (Dwivedi et al., 2022) as a bench-
mark to show the efficacy of capturing LRI in static graphs.
Here, we adapt the task to the C-TDG domain: we forward
edges one at a time and predict the class of the destination
node. We generate temporal graphs starting from the dataset
of rag-boundary graphs extracted from Pascal VOC
2011 provided in (Dwivedi et al., 2022) (more details are
provided in Appendix D). We consider two degrees of SLIC
superpixels compactness, i.e., 10 and 30. Larger compact-
ness means more patches, with less information included in
each patch and more to be propagated.

During training, we optimize for the F1-score as in (Dwivedi
et al., 2022). To benchmark the ability of models to propa-
gate information through the graph, we test model perfor-
mance for an increasing number of GCLs. Fewer GCLs
require models to store and transmit relevant information
along node embeddings rather than relying on effectively

6

Long Range Propagation on Continuous-Time Dynamic Graphs

aggregating information from increasingly larger neighbor-
hoods. Each experimental run is repeated 5 times for mul-
tiple weight initializations. The hyper-parameter grid is
computed considering a budget of trainable parameters per
model equal to ∼40k. Appendix E provides further training
and model selection details.

Results. Table 2 reports the average F1-score on the tempo-
ral PascalVOC-SP task. Note that DyRep, JODIE, Graph-
Mixer and DyGFormer, in their original definition, do not
support a variable number of GCLs, hence the results of
such models are presented in the table under “1 GCL” for
clarity. CTAN largely outperforms reference methods. We
observe that for SLIC compactness equal to 30, CTAN
achieves a 65% and 16% improvement against the second
best performing model (i.e., TGAT), for one and three GCLs,
respectively. Interestingly, TGAT almost matches the per-
formance of CTAN when considering five GCLs. This is
in line with the excellent results of computationally expen-
sive Transformers-based models in the static case (Dwivedi
et al., 2022), corroborating the advantages of self-attention
blocks in modeling long-range dependencies between far
away nodes. This result also suggests that the majority of the
relevant information necessary to solve the temporal Pascal
VOC task may lie within neighborhoods five hops away. We
note that at SLIC compactness 10, DyGFormer benefits from
the shorter long-range propagation (when sc=10 the graph
contains fewer patches, hence fewer nodes and spatially
closer relevant information compared to sc=30), and from
its deeper architecture compared to CTAN’s single-layer
design, when considering the same number of spatial hops.
In fact, in this setting DyGFormer contains two transformer
blocks, while CTAN does not. However, we observe that by
including multiple layers of CTAN (i.e., no.GCLs > 1), our
method effectively propagates information and outperforms
DyGFormer even in the sc=10 task. Nevertheless, the results
indicate how CTAN is capable of propagating relevant infor-
mation across the time-steps to achieve accurate predictions,
even when the model is only allowed to extract information
from limited, very local neighborhoods.

4.2. Future Link Prediction Task

Setup. For the C-TDG benchmarks we consider four well-
known datasets proposed by (Kumar et al., 2019), Wikipedia,
Reddit, LastFM, and MOOC, to assess the model perfor-
mance in real-world setting, with the task of future link pre-
diction (Kumar et al., 2019). We perform hyper-parameter
tuning via grid search by optimizing the area under the roc
curve (AUC). Results for the best configuration are pro-
vided as average on 5 random weight initializations. To give
models a fair setting for comparison, the grid is computed
considering a budget of ∼140k trainable parameters per
model and the neighbor sampler size is set to 5. Appendix E
provides additional experimental details.

Results. Table 3 reports the average test AUC on the C-
TDG benchmarks. CTAN shows remarkable performance,
ranking first across datasets. Our method achieves a score
that on average is 4.7% better than other baselines. This
finding shows the importance of a non-dissipative behavior
of the method even on real-world tasks, since more infor-
mation need to be retained and propagated from the past to
improve the final performance. Our results demonstrate that
CTAN is able to better capture and exploit such information.
Nevertheless, note that not all real-world datasets inherently
present long-range dependencies. To evaluate how CTAN
fares against state-of-the-art methods on several datasets,
we complement this analysis with an evaluation on the TGB
Benchmark (Huang et al., 2023), see Appendix G. In this set-
ting, CTAN characterizes by the best performing behaviour
when considering the combination of TGB datasets.

5. Related Work
Deep Graph Network for C-TDGs. Nowadays, most of
the DGNs tailored for learning C-TDGs can be general-
ized within the Temporal Graph Network (TGN) framework
(Rossi et al., 2020). This architecture comprises three main
modules: a message module, which is responsible for com-
puting a message that encodes the incoming event; a mem-
ory module, which stores the node histories; and a graph
propagation module, which aggregates information from the
local neighborhood to produce the final node representation.
Usually, the memory module is implemented as a Recurrent
Neural Network (RNN) and the graph propagation module
as a DGN for the processing of static graphs. Many state-
of-the-art architectures (Kumar et al., 2019; Trivedi et al.,
2019; Xu et al., 2020; Ma et al., 2020; Souza et al., 2022)
fit this framework, with later methods outperforming earlier
ones thanks to advances in the local message passing part
or even in the encoding of positional features. Two recent
methods (Cong et al., 2023; Yu et al., 2023) focus on mod-
eling long-range (time) dependencies by including longer
node histories in the context while not relying on memory
modules. While recent methods often provide improved
results, none of them explicitly models long-range temporal
and spatial dependencies between nodes or events in the
C-TDG. As increasingly evidenced both in sequence-model
architectures (Chang et al., 2019), and in the static graph
case (Dwivedi et al., 2022), propagating information across
various time steps is extremely beneficial for learning.

CTAN, instead, provably enables effective long-range prop-
agation by design. Note that our approach does not require
the co-existence of memory and graph propagation module,
as in the TGN framework. CTAN stores all necessary infor-
mation within the node embeddings themselves as computed
by the graph convolution, while achieving non-dissipative
propagation by design. This makes CTAN more lightweight.

7

Long Range Propagation on Continuous-Time Dynamic Graphs

Table 2. Results of the classification on the Temporal PascalVOC task, for increasing number of GCLs. The performance metric is the
mean test set F1-score, averaged over 5 different random weights initializations for each model configuration.

Temporal Pascal VOC (sc=10) Temporal Pascal VOC (sc=30)
no. GCLs 1 3 5 1 3 5

DyGFormer 8.45±0.13 − − 8.07±0.27 − −
DyRep 5.29±0.47 − − 5.23±0.11 − −
GraphMixer 6.60±0.11 − − 5.88±0.08 − −
JODIE 6.33±0.41 − − 5.76±0.35 − −
TGAT 5.39±0.19 6.53±0.58 8.23±0.73 6.04±0.26 8.79±0.29 10.38±0.7

TGN 6.04±0.27 6.55±0.46 7.51±0.80 5.59±0.24 7.26±0.82 7.90±1.31

Our 7.89±0.33 8.53±1.06 8.88±0.98 9.98±0.33 10.16±0.52 10.41±0.52

Table 3. Results of the future link prediction task. We report the
mean test set AUC and std in percent averaged over 5 random
weight initializations.

Wikipedia Reddit LastFM MOOC

DyRep 88.64±0.15 97.51±0.10 77.89±1.39 81.87±2.47

JODIE 94.68±1.05 96.34±0.83 69.76±2.74 81.90±9.03

TGAT 94.91±0.25 98.18±0.05 81.53±0.34 87.61±0.15

TGN 95.60±0.18 98.23±0.10 79.18±0.79 90.74±0.99

Our 97.55±0.09 98.61±0.04 83.81±0.92 92.47±0.78

Lastly, as TGN allows for different graph propagation mod-
ules, the general formulation of the aggregation function Φ
in Eq. 5 allows extending state-of-the-art DGNs for static
graphs to the domain of C-TDGs through the lens of non-
dissipative and stable ODEs.

Continuous Dynamic Models. Neural Differential Equa-
tions have emerged as a class of neural networks suitable
for learning continuous dynamics of systems. (Chen et al.,
2018) and (Chang et al., 2019) parameterize the continuous
dynamic of RNNs through an ordinary differential equa-
tion. Similarly, (Gallicchio, 2022) draws a connection with
Reservoir Computing. Despite the similarity with RNNs,
such architectures have shown the ability to naturally in-
corporate data that arrive at arbitrary times (Chen et al.,
2018; Rubanova et al., 2019). Inspired by the NeuralODE
approach, GDE (Poli et al., 2019) links DGNs for static
graphs with ODEs. In this scenario, the inter-layer dynamic
of DGN’s node representation is designed as a continuous
information processing system defined by an ODE, which,
starting from the input configuration of the nodes’ states,
computes the final node representations. In the static graph
domain, ODE-based architectures have been proposed with
different aims, such as reducing the computational complex-
ity of message passing (Wu et al., 2019; Wang et al., 2021),
or mitigating the over-smoothing phenomena (Eliasof et al.,
2021; Rusch et al., 2022).

Gravina et al. (2023) proposes A-DGN, an ODE-based

model achieving non-dissipative propagation through static
graphs, i.e., in the time-unaware spatial domain. We note
that time-aware nodes and edges combined with possibly
irregularly sampled repetitive edges between the same pair
of nodes natively render A-DGN (as well as other methods
designed for static graphs) inapplicable to C-TDGs. Less
trivially, non-dissipative propagation in C-TDGs cannot be
achieved through mere non-dissipative propagation through
space. On the contrary, non-dissipative propagation of infor-
mation through time is a property unique to DGNs designed
for C-TDG, necessary for their overall non-dissipativeness.

To the best of our knowledge, we are the first to propose an
ODE-based architecture suitable for C-TDGs that can effec-
tively propagate long-range information between nodes.

6. Conclusion
We presented continuous-time graph anti-symmetric
network (CTAN), a new framework based on stable and
non-dissipative ODEs for learning long-range interactions
in Continuous-Time Dynamic Graphs (C-TDGs). Differ-
ently from previous approaches, CTAN’s formulation allows
scaling the radius of effective propagation of information in
C-TDGs (i.e., allowing for a scalable long-range propaga-
tion in C-TDGs) and reimagines state-of-the-art static DGNs
as a discretization of non-dissipative ODEs for C-TDGs. To
the best of our knowledge, CTAN is the first framework
to address the long-range propagation problem in C-TDGs,
while bridging the gap between ODEs and C-TDGs.

Our experimental investigation reveals, at first, that when it
comes to capturing long-range dependencies in a task, our
framework significantly surpasses state-of-the-art DGNs for
C-TDGs. Our experiments indicate that CTAN is capable
of propagating relevant information incrementally across
time to achieve accurate predictions, even when the model
is only allowed to extract information from very local neigh-
borhoods, i.e., by using only a single or few layers. Thus,
CTAN enables scaling the extent of information propagation
in C-TDG data structures without increasing the number

8

Long Range Propagation on Continuous-Time Dynamic Graphs

of layers nor incurring in dissipative behaviors. Moreover,
our results indicate that CTAN is effective across various
graph benchmarks in both real and synthetic scenarios. In
essence, CTAN showcased its ability to explore long-range
dependencies (even with limited resources), suggesting its
potential in mitigating over-squashing in C-TDGs.

We believe that CTAN lays down the basis for further investi-
gations of the problem of over-squashing and long-range in-
teraction learning in the C-TDG domain. Looking ahead to
future developments, we plan to extend this study to explore
alternative architectures resulting from different discretiza-
tion methods, such as adaptive multi-step schemes (Ascher
& Petzold, 1998). Additionally, we aim to assess the frame-
work’s impact in the realm of efficient neural networks, such
as in Reservoir Computing (Nakajima & Fischer, 2021).

Impact Statement
This paper aims to contribute to the field of Machine Learn-
ing, specifically focusing on advancing Deep Graph Net-
works (DGNs) in the Continuous-Time Dynamic Graph
(C-TDG) setting. The research presented herein has the
potential to positively impact the ongoing exploration and
applications of DGNs designed for C-TDGs. As far as we
are aware, our work does not raise any ethical issues.

Acknowledgments
The authors would like to thank Michele Russo, Huawei
Technologies, Munich, Germany, and Jakub Reha, Uni-
versity of Amsterdam, Amsterdam, Netherlands, for the
insightful discussions throughout the development of this
work. The work has been partially supported by EU-EIC
EMERGE (Grant No. 101070918).

References
Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., and

Süsstrunk, S. SLIC superpixels compared to state-of-the-
art superpixel methods. IEEE transactions on pattern
analysis and machine intelligence, 34(11):2274–2282,
2012.

Alon, U. and Yahav, E. On the bottleneck of graph
neural networks and its practical implications. In In-
ternational Conference on Learning Representations,
2021. URL https://openreview.net/forum?
id=i80OPhOCVH2.

Ascher, U., Mattheij, R., and Russell, R. Numerical so-
lution of boundary value problems for ordinary differ-
ential equations. Classics in applied mathematics. So-
ciety for Industrial and Applied Mathematics (SIAM),

United States, unabridged, corr. republication. edition,
1995. ISBN 0-89871-354-4.

Ascher, U. M. and Petzold, L. R. Computer Methods for Or-
dinary Differential Equations and Differential-Algebraic
Equations. Society for Industrial and Applied Mathemat-
ics, USA, 1st edition, 1998. ISBN 0898714125.

Bacciu, D., Errica, F., Micheli, A., and Podda, M.
A gentle introduction to deep learning for graphs.
Neural Networks, 129:203–221, 2020. ISSN 0893-
6080. doi: https://doi.org/10.1016/j.neunet.2020.06.
006. URL https://www.sciencedirect.com/
science/article/pii/S0893608020302197.

Bacciu, D., Errica, F., Gravina, A., Madeddu, L., Podda,
M., and Stilo, G. Deep Graph Networks for Drug Repur-
posing With Multi-Protein Targets. IEEE Transactions
on Emerging Topics in Computing, 12(1):177–189, 2024.
doi: 10.1109/TETC.2023.3238963.

Bengio, Y., Simard, P., and Frasconi, P. Learning long-term
dependencies with gradient descent is difficult. IEEE
Transactions on Neural Networks, 5(2):157–166, 1994.
doi: 10.1109/72.279181.

Bondy, J. A. and Murty, U. S. R. Graph Theory with Appli-
cations. Elsevier, New York, 1976.

Chamberlain, B., Rowbottom, J., Gorinova, M. I., Bronstein,
M., Webb, S., and Rossi, E. Grand: Graph neural diffu-
sion. In International Conference on Machine Learning,
pp. 1407–1418. PMLR, 2021.

Chang, B., Chen, M., Haber, E., and Chi, E. H. Antisym-
metricRNN: A dynamical system view on recurrent neu-
ral networks. In International Conference on Learning
Representations, 2019. URL https://openreview.
net/forum?id=ryxepo0cFX.

Chen, R. T. Q., Rubanova, Y., Bettencourt, J., and Duvenaud,
D. K. Neural ordinary differential equations. In Bengio,
S., Wallach, H., Larochelle, H., Grauman, K., Cesa-
Bianchi, N., and Garnett, R. (eds.), Advances in Neural
Information Processing Systems, volume 31. Curran As-
sociates, Inc., 2018. URL https://proceedings.
neurips.cc/paper/2018/file/
69386f6bb1dfed68692a24c8686939b9-Paper.
pdf.

Cini, A., Marisca, I., Bianchi, F. M., and Alippi, C.
Scalable Spatiotemporal Graph Neural Networks. Pro-
ceedings of the AAAI Conference on Artificial Intel-
ligence, 37(6):7218–7226, Jun. 2023. doi: 10.1609/
aaai.v37i6.25880. URL https://ojs.aaai.org/
index.php/AAAI/article/view/25880.

9

https://openreview.net/forum?id=i80OPhOCVH2
https://openreview.net/forum?id=i80OPhOCVH2
https://www.sciencedirect.com/science/article/pii/S0893608020302197
https://www.sciencedirect.com/science/article/pii/S0893608020302197
https://openreview.net/forum?id=ryxepo0cFX
https://openreview.net/forum?id=ryxepo0cFX
https://proceedings.neurips.cc/paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/25880
https://ojs.aaai.org/index.php/AAAI/article/view/25880

Long Range Propagation on Continuous-Time Dynamic Graphs

Cong, W., Zhang, S., Kang, J., Yuan, B., Wu, H., Zhou, X.,
Tong, H., and Mahdavi, M. Do we really need compli-
cated model architectures for temporal networks? arXiv
preprint arXiv:2302.11636, 2023.

Derrow-Pinion, A., She, J., Wong, D., Lange, O., Hester,
T., Perez, L., Nunkesser, M., Lee, S., Guo, X., Wilt-
shire, B., Battaglia, P. W., Gupta, V., Li, A., Xu, Z.,
Sanchez-Gonzalez, A., Li, Y., and Velickovic, P. Eta
prediction with graph neural networks in google maps.
In Proceedings of the 30th ACM International Confer-
ence on Information & Knowledge Management, CIKM
’21, pp. 3767–3776, New York, NY, USA, 2021. Associa-
tion for Computing Machinery. ISBN 9781450384469.
doi: 10.1145/3459637.3481916. URL https://doi.
org/10.1145/3459637.3481916.

Dwivedi, V. P., Rampášek, L., Galkin, M., Parviz, A., Wolf,
G., Luu, A. T., and Beaini, D. Long range graph bench-
mark. Advances in Neural Information Processing Sys-
tems, 35:22326–22340, 2022.

Eliasof, M., Haber, E., and Treister, E. PDE-GCN: Novel ar-
chitectures for graph neural networks motivated by partial
differential equations. In Beygelzimer, A., Dauphin, Y.,
Liang, P., and Vaughan, J. W. (eds.), Advances in Neural
Information Processing Systems, 2021. URL https:
//openreview.net/forum?id=wWtk6GxJB2x.

Errica, F., Gravina, A., Bacciu, D., and Micheli, A. Hid-
den Markov Models for Temporal Graph Representation
Learning. In Proceedings of the 31st European Sym-
posium on Artificial Neural Networks, Computational
Intelligence and Machine Learning (ESANN), 2023.

Everingham, M., Eslami, S. A., Van Gool, L., Williams,
C. K., Winn, J., and Zisserman, A. The pascal visual
object classes challenge: A retrospective. International
journal of computer vision, 111:98–136, 2015.

Gallicchio, C. Euler state networks: Non-dissipative reser-
voir computing. arXiv preprint arXiv:2203.09382, 2022.

Glendinning, P. Stability, Instability and Chaos: An
Introduction to the Theory of Nonlinear Differential
Equations. Cambridge Texts in Applied Mathemat-
ics. Cambridge University Press, 1994. doi: 10.1017/
CBO9780511626296.

Gravina, A. and Bacciu, D. Deep Learning for Dynamic
Graphs: Models and Benchmarks. IEEE Transactions on
Neural Networks and Learning Systems, pp. 1–14, 2024.
doi: 10.1109/TNNLS.2024.3379735.

Gravina, A., Wilson, J. L., Bacciu, D., Grimes, K. J.,
and Priami, C. Controlling astrocyte-mediated synap-
tic pruning signals for schizophrenia drug repurpos-
ing with deep graph networks. PLOS Computational

Biology, 18(5):1–19, 05 2022. doi: 10.1371/journal.
pcbi.1009531. URL https://doi.org/10.1371/
journal.pcbi.1009531.

Gravina, A., Bacciu, D., and Gallicchio, C. Anti-Symmetric
DGN: a stable architecture for Deep Graph Networks.
In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.
net/forum?id=J3Y7cgZOOS.

Haber, E. and Ruthotto, L. Stable architectures for deep
neural networks. CoRR, abs/1705.03341, 2017. URL
http://arxiv.org/abs/1705.03341.

Huang, S., Poursafaei, F., Danovitch, J., Fey, M., Hu,
W., Rossi, E., Leskovec, J., Bronstein, M., Rabusseau,
G., and Rabbany, R. Temporal graph benchmark for
machine learning on temporal graphs. arXiv preprint
arXiv:2307.01026, 2023.

Kazemi, S. M., Goel, R., Jain, K., Kobyzev, I., Sethi, A.,
Forsyth, P., and Poupart, P. Representation Learning for
Dynamic Graphs: A Survey. J. Mach. Learn. Res., 21(1),
jan 2020. ISSN 1532-4435.

Kidger, P., Morrill, J., Foster, J., and Lyons, T. Neural Con-
trolled Differential Equations for Irregular Time Series.
In Proceedings of the 34th International Conference on
Neural Information Processing Systems, NIPS’20, Red
Hook, NY, USA, 2020. Curran Associates Inc. ISBN
9781713829546.

Kumar, S., Zhang, X., and Leskovec, J. Predicting Dynamic
Embedding Trajectory in Temporal Interaction Networks.
In Proceedings of the 25th ACM SIGKDD KDD. ACM,
2019.

Ma, Y., Guo, Z., Ren, Z., Tang, J., and Yin, D. Streaming
Graph Neural Networks. In Proceedings of the 43rd
International ACM SIGIR, pp. 719–728. Association for
Computing Machinery, 2020. ISBN 9781450380164. doi:
10.1145/3397271.3401092.

Monti, F., Frasca, F., Eynard, D., Mannion, D., and Bron-
stein, M. M. Fake news detection on social media using
geometric deep learning. CoRR, abs/1902.06673, 2019.
URL http://arxiv.org/abs/1902.06673.

Nakajima, K. and Fischer, I. Reservoir Computing:
Theory, Physical Implementations, and Applications.
Natural Computing Series. Springer Nature Singapore,
2021. ISBN 9789811316876. URL https://books.
google.it/books?id=AQc8EAAAQBAJ.

Nguyen, G. H., Lee, J. B., Rossi, R. A., Ahmed, N. K.,
Koh, E., and Kim, S. Continuous-Time Dynamic Net-
work Embeddings. In Companion Proceedings of the

10

https://doi.org/10.1145/3459637.3481916
https://doi.org/10.1145/3459637.3481916
https://openreview.net/forum?id=wWtk6GxJB2x
https://openreview.net/forum?id=wWtk6GxJB2x
https://doi.org/10.1371/journal.pcbi.1009531
https://doi.org/10.1371/journal.pcbi.1009531
https://openreview.net/forum?id=J3Y7cgZOOS
https://openreview.net/forum?id=J3Y7cgZOOS
http://arxiv.org/abs/1705.03341
http://arxiv.org/abs/1902.06673
https://books.google.it/books?id=AQc8EAAAQBAJ
https://books.google.it/books?id=AQc8EAAAQBAJ

Long Range Propagation on Continuous-Time Dynamic Graphs

The Web Conference 2018, WWW ’18, pp. 969–976, Re-
public and Canton of Geneva, CHE, 2018. International
World Wide Web Conferences Steering Committee. ISBN
9781450356404. doi: 10.1145/3184558.3191526.

Poli, M., Massaroli, S., Park, J., Yamashita, A., Asama, H.,
and Park, J. Graph neural ordinary differential equations.
arXiv preprint arXiv:1911.07532, 2019.

Poursafaei, F., Huang, S., Pelrine, K., , and Rabbany, R. To-
wards Better Evaluation for Dynamic Link Prediction.
In Neural Information Processing Systems (NeurIPS)
Datasets and Benchmarks, 2022.

Rossi, E., Chamberlain, B., Frasca, F., Eynard, D., Monti, F.,
and Bronstein, M. Temporal Graph Networks for Deep
Learning on Dynamic Graphs. In ICML 2020 Workshop
on Graph Representation Learning, 2020.

Rubanova, Y., Chen, R. T. Q., and Duvenaud, D. K.
Latent Ordinary Differential Equations for Irregularly-
Sampled Time Series. In Wallach, H., Larochelle,
H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., and
Garnett, R. (eds.), Advances in Neural Information
Processing Systems, volume 32. Curran Associates, Inc.,
2019. URL https://proceedings.neurips.
cc/paper_files/paper/2019/file/
42a6845a557bef704ad8ac9cb4461d43-Paper.
pdf.

Rusch, T. K., Chamberlain, B. P., Rowbottom, J., Mishra, S.,
and Bronstein, M. M. Graph-coupled oscillator networks.
arXiv preprint arXiv:2202.02296, 2022.

Shi, Y., Huang, Z., Feng, S., Zhong, H., Wang, W.,
and Sun, Y. Masked Label Prediction: Unified Mes-
sage Passing Model for Semi-Supervised Classification.
In Zhou, Z.-H. (ed.), Proceedings of the Thirtieth In-
ternational Joint Conference on Artificial Intelligence,
IJCAI-21, pp. 1548–1554. International Joint Confer-
ences on Artificial Intelligence Organization, 8 2021. doi:
10.24963/ijcai.2021/214. URL https://doi.org/
10.24963/ijcai.2021/214. Main Track.

Souza, A. H., Mesquita, D., Kaski, S., and Garg, V. K. Prov-
ably expressive temporal graph networks. In NeurIPS,
2022.

Trivedi, R., Farajtabar, M., Biswal, P., and Zha, H. DyRep:
Learning Representations over Dynamic Graphs. In ICLR,
2019.

Wang, Y., Wang, Y., Yang, J., and Lin, Z. Dissecting the
diffusion process in linear graph convolutional networks.
CoRR, abs/2102.10739, 2021. URL https://arxiv.
org/abs/2102.10739.

Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., and Wein-
berger, K. Simplifying graph convolutional networks.
In Chaudhuri, K. and Salakhutdinov, R. (eds.), Proceed-
ings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learn-
ing Research, pp. 6861–6871. PMLR, 09–15 Jun 2019.
URL https://proceedings.mlr.press/v97/
wu19e.html.

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., and Yu, P. S.
A comprehensive survey on graph neural networks. IEEE
Transactions on Neural Networks and Learning Systems,
32(1):4–24, 2021. doi: 10.1109/TNNLS.2020.2978386.

Xu, D., Ruan, C., Korpeoglu, E., Kumar, S., and Achan, K.
Inductive representation learning on temporal graphs. In
ICLR, 2020.

Yu, L. An empirical evaluation of temporal graph bench-
mark. arXiv preprint arXiv:2307.12510, 2023.

Yu, L., Sun, L., Du, B., and Lv, W. Towards better dy-
namic graph learning: New architecture and unified li-
brary. arXiv preprint arXiv:2303.13047, 2023.

11

https://proceedings.neurips.cc/paper_files/paper/2019/file/42a6845a557bef704ad8ac9cb4461d43-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/42a6845a557bef704ad8ac9cb4461d43-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/42a6845a557bef704ad8ac9cb4461d43-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/42a6845a557bef704ad8ac9cb4461d43-Paper.pdf
https://doi.org/10.24963/ijcai.2021/214
https://doi.org/10.24963/ijcai.2021/214
https://arxiv.org/abs/2102.10739
https://arxiv.org/abs/2102.10739
https://proceedings.mlr.press/v97/wu19e.html
https://proceedings.mlr.press/v97/wu19e.html

Long Range Propagation on Continuous-Time Dynamic Graphs

A. Non-dissipativeness Over Time
We note that the non-dissipative behavior of the system in Eq. 4 is contingent on the specific definition of the function ψ.
Varying the formulation of ψ can yield to diverse behaviors, significantly impacting the system’s ability to either preserve or
dissipate information over time.

Proposition A.1. Provided that the aggregation function Φ does not depend on hu(t), the Jacobian matrix resulting from
the ODE in Eq. 4 has purely imaginary eigenvalues, i.e., Re(λi(J(t))) = 0,∀i = 1, ..., d if the function ψ is implemented
as one of the following functions:

• addition, i.e., ψ = hu(t) + xu(t);

• concatenation, i.e., ψ = hu(t)∥xu(t);

• composition of tanh and concatenation, i.e., ψ = tanh(hu(t)∥xu(t)).

Proof. Let’s consider ψ = hu(t) + xu(t), i.e., addition. In this case Eq. 4 can be reformulated as

∂hu(t)

∂t
= σ

(
Wthu(t) +Wtxu(t) + Φ

(
{(hu(t) + xu(t)), euv, t

−
v , t}v∈N t

u

))
. (7)

The Jacobian matrix of Eq. 7 is defined as

J(t) = diag
[
σ′
(
Wthu(t) +Wtxu(t) + Φ

(
{(hu(t) + xu(t)), euv, t

−
v , t}v∈N t

u

))]
Wt. (8)

Thus, it is the result of a matrix multiplication between invertible diagonal matrix and a weight matrix. Imposing
A = diag

[
σ′ (Wthu(t) + Φ

(
{hv(t), euv, t

−
v , t}v∈N t

u

)
+ bt

)]
, then the Jacobian can be rewritten as J(t) = AWt.

Let us now consider an eigenpair of AWt, where the eigenvector is denoted by v and the eigenvalue by λ. Then:

AWtv = λv,

Wtv = λA−1v,

v∗Wtv = λ(v∗A−1v) (9)

where ∗ represents the conjugate transpose. On the right-hand side of Eq. 9, we can notice that the (v∗A−1v) term is a
real number. If the weight matrix Wt is anti-symmetric (i.e., skew-symmetric), then it is true that W∗

t = W⊤
t = −Wt.

Therefore, (v∗Wtv)
∗ = v∗W∗

tv = −v∗Wtv. Hence, the v∗Wtv term on the left-hand side of Eq. 9 is an imaginary
number. Thereby, λ needs to be purely imaginary, and, as a result, all eigenvalues of J(t) are purely imaginary.

Let’s now consider ψ = hu(t)∥xu(t), i.e., concatenation. In this case, the product Wt(hu(t)∥xu(t)) can be decomposed
as Kthu(t) +Vtxu(t), with Kt and Vt weight matrices. Similarly to the addition case, the Jacobian has purely imaginary
eigenvalues.

Lastly, we consider the case of ψ = tanh(hu(t)∥xu(t)), i.e., the composition of tanh and concatenation. Here, Eq. 4 is

∂hu(t)

∂t
= σ

(
Wttanh(hu(t)) +Vttanh(xu(t)) + Φ

(
{tanh(hu(t)∥xu(t)), euv, t

−
v , t}v∈N t

u

))
. (10)

The Jacobian matrix is the results of the multiplication of three matrices, i.e., J(t) = ABWt, with A =
diag [σ′ (Wttanh(hu(t)) +Vttanh(xu(t)) + Φ(...) + b)] and B = diag[1 − tanh2(hu(t))]. Thanks to the associa-
tive property of multiplication J(t) = ABWt = (AB)Wt = DWt, where D is the result of the multiplication of two
diagonal matrices, thus D is diagonal. As detailed for the addition case, we can conclude that the Jacobian matrix has purely
imaginary eigenvalues.

As a counterexample, if ψ = xu(t), Eq. 4 can result in a dissipative behavior, leading to the loss of information over
time and compromising the model’s ability to preserve historical context, since past node information is always discarded
between new events. As a result, the function ψ can function as a parameter to control the balance between the dissipative
and non-dissipative behavior of CTAN.

12

Long Range Propagation on Continuous-Time Dynamic Graphs

B. Stability of the Forward Euler’s Method
Following (Ascher & Petzold, 1998), the Euler’s forward method applied to Eq. 3 is considered stable when (1 + ϵλ(J(t)))
lies within the unit circle in the complex plane for all eigenvalues of the system. However, since the eigenvalues of the
Jacobian matrix are exclusively imaginary, it follows that |1 + ϵλ(J(t))| > 1, thus Eq. 3 is unstable when solved with
forward Euler’s method.

To enhance the stability of the numerical discretization method, we subtract a small positive constant γ > 0 from the diagonal
elements of the weight matrix W. This adjustment allows the eigenvalues of the Jacobian to possess a slightly negative
real part, which positions (1 + ϵλ(J(t))) within the unit circle and enhancing the stability of the numerical discretization
method. However, as detailed in Section 3, since Re(λi(J(t))) < 0, the ODE becomes slightly dissipative. In conclusion,
the term γ can serve as a parameter for balancing the dissipative and non-dissipative behavior.

C. Summary of CTAN’s Propagation Capacity
In this section, we gather the information regarding the theoretically infinite propagation capacity of our method CTAN.
Section 3 provides the theoretical conditions (see Proposition 3.3) under which CTAN is non-dissipative over space and
time (Definition 3.1 and 3.2), allowing for the preservation of historical node context over time while propagating event
information spatially through the C-TDG. When Proposition 3.3 is satisfied, the information propagation rate is constant
independently of time, since the magnitude of ∂h(t)/∂h(0) is constant over time. As a consequence, theoretically, there is
always information flowing within the CTDG modeled by a non-dissipative (space and time) model.

For propagation over time, Appendix A discusses which choices of ψ guarantee non-dissipativeness over time, in this case
the upper bound of the range length of propagation is theoretically infinite. See Appendix A for examples of dissipative and
non-dissipative ψ functions.

For propagation over space, Section 3 - paragraph “Truncated non-dissipative propagation” discusses how the terminal
diffusion time te influences the range length of propagation, which is lower bounded by the number of GCLs.

D. Datasets Description and Statistics
Table 4 contains the statistics of the employed datasets. In the following, we describe the datasets and their generation.

Table 4. Statistics of the datasets used in our experiments. We report the total number of nodes and edges in the dataset for the temporal
path graph (i.e., T-PathGraph) and temporal Pascal VOC (i.e., T-PascalVOC).

Nodes # Edges # Edge ft. Split Surprise Index

T-PathGraph 3,000-20,000 2,000-19,000 1 70/15/15 1.0
T-PascalVOC10 2,671,704 2,660,352 14 70/15/15 1.0
T-PascalVOC30 2,990,466 2,906,113 14 70/15/15 1.0
Wikipedia 9,227 157,474 172 70/15/15, Chronological 0.42
Reddit 11,000 672,447 172 70/15/15, Chronological 0.18
LastFM 2,000 1,293,103 2 70/15/15, Chronological 0.35
MOOC 7,144 411,749 4 70/15/15, Chronological 0.79
tgbl-wiki-v2 9,227 157,474 172 70/15/15, Chronological 0.108
tgbl-review-v2 352,637 4,873,540 - 70/15/15, Chronological 0.987
tgbl-coin-v2 638,486 22,809,486 - 70/15/15, Chronological 0.120
tgbl-comment 994,790 44,314,507 - 70/15/15, Chronological 0.823

Sequence classification on temporal path graphs. To craft a temporal long-range problem, we first introduced a sequence
classification problem on path graphs (Bondy & Murty, 1976), which is a simple linear graph consisting of a sequence
of nodes where each node is connected to the previous one. In the temporal domain, the nodes of the path graph appear
sequentially over time from first to last (e.g., bottom-to-top in Figure 3).

We define the task objective as the prediction of the feature seen in the first node (colored in orange in Figure 3) by making
the prediction leveraging only the last node representation (colored in red in Figure 3) computed at the end of the sequence,
i.e., when the last event appears. Note that this task is akin to the sequence classification task designed in (Chang et al.,

13

Long Range Propagation on Continuous-Time Dynamic Graphs

Figure 3. The illustration of the sequence classification task on a temporal path graph consisting of 5 nodes. The first node (colored
in orange) has an initial feature that can be either 1 or −1. All the other nodes and edges have a feature set to random value sampled
uniformly in [−1, 1]. At the end of the sequence, the representation computed for the last node (colored in red) is used to predict the
original value of the first node. At each timestamp, the faded portion of the graph corresponds to historical information.

Original image SP and r̀ag-boundary ̀graph Static r̀ag-boundary ̀graph Temporal r̀ag-boundary ̀graph

T
im

e

Figure 4. Construction of the Temporal PascalVOC-SP dataset. The SLIC algorithm extracts patches from an image. We create the
rag-boundary graph connecting neighboring patches based on spatial closeness. We construct a temporal graph by traversing from
the topleftmost node with BFS. The goal of the task is to predict the class of the destination node at each visited edge - in the figure, either
’potted plant’ (red) or ’background’ (blue). For clarity in this visualization, the compactness of the SLIC algorithm is low.

2019), with the addition of a graph convolution. We set the feature of the first node to be either 1 or −1, while we set every
other node and edge feature to be sampled uniformly in the range [−1, 1]. In other words, the feature xu0

of the first node
u0 contains a signal to be remembered as noise is added through the propagations steps along the graph. Formally, we create
a C-TDG: G = {ot | t ∈ [t0, tn]}, such that

ot = (t, E⊕, ut, ut+1,xut
,xut+1

, eut,ut+1
),

where xu0
∼ Bernoulli(0.5)4, and xuj

∼ U[−1,1],∀j > t0 and eut,ut+1
∼ U[−1,1],∀t.

For this task we considered 8 temporal graph path datasets with different sizes, ranging from n = 3 to n = 20, with n the
number of nodes. For every graph size we generate 1,000 different graphs, and we split the dataset into train/val/test with
the ratios 70%-15%-15%.

Temporal Pascal-VOC. We use the PascalVOC-SP (Dwivedi et al., 2022) dataset to design a new temporal long-range
task for edge classification. PascalVOC-SP is a node classification dataset composed of graphs created from the images
in the Pascal VOC 2011 dataset (Everingham et al., 2015). A graph is derived from each image by extracting superpixel
nodes using the SLIC algorithm (Achanta et al., 2012) and constructing a rag-boundary graph to interconnect these
nodes. Each node in a graph corresponds to one region of the image belonging to a particular class, see Figure 4 for an
example. PascalVOC-SP contains long-range interactions between spatially distant image patches, evidenced by its
average shortest path length of 10.74 and average diameter of 27.62 (Dwivedi et al., 2022).

To craft a temporal task, we consider that nodes in a rag-boundary graph appear from the top-left to the bottom-right of

4Note that we sample 1 or -1 rather than 0 or 1 to make the problem balanced around zero.

14

Long Range Propagation on Continuous-Time Dynamic Graphs

the image, sequentially. We do so by selecting the top-leftmost node, i.e., the one closest (by means of L1 norm) to the
origin in image coordinates. From this node, we traverse the graph with a Breadth-First-Search, visiting each node exactly
once. The order of edge traversal corresponds to the timestamp of edge appearance in the temporal task. We set the task’s
objective to be the prediction of the class of the node that is being visited by the current edge. Note that the traversal removes
a large number of edges from the initial graph, making the propagation of class information more difficult, see Figure 4.

Neighborhoods are constructed based on coordinates, connecting a node with its 8 spatially closest neighbors. Nodes have
12 features extracted by channel-wise statistics on the image (mean, std, max, min) and 2 features defining the spatial
location of the superpixel; we normalize these spatial features in the [0, 1] range. We consider two SLIC superpixels
compactness of 10 and 30 (smaller compactness means fewer patches). To allow for batching, we fix the number of nodes in
each graph, allowing batching of edges that occur at the same timestep across different graphs together. To do so, we discard
rag-boundary graphs with fewer nodes than the limit, and discard excess nodes on graphs with more nodes than the
limit, according to time (i.e., the most recent nodes are dropped). This removes a small number of nodes corresponding to
image patches on the bottom-right of the image. In practice, for the two compactness levels 10 and 30, we set the number
of minimum nodes per graph to be 434 and 474, which gives us 6,156 and 6,309 temporal graphs (out of the total 11,355
images in the dataset). The resulting temporal datasets have 2,660,352 and 2,906,113 edges respectively.

C-TDG benchmarks. For the C-TDG benchmarks on future link prediction we consider four well-known datasets proposed
by (Kumar et al., 2019):

• Wikipedia: one month of interactions (i.e., 157,474 interactions) between user and Wikipedia pages. Specifically, it
corresponds to the edits made by 8,227 users on the 1,000 most edited Wikipedia pages;

• Reddit: one month of posts (i.e., interactions) made by 10,000 most active users on 1,000 most active subreddits,
resulting in a total of 672,447 interactions;

• LastFM: one month of who-listens-to-which song information. The dataset consists of 1000 users and the 1000 most
listened songs, resulting in 1,293,103 interactions.

• MOOC: it consists of actions done by students on a MOOC online course. The dataset contains 7,047 students (i.e.,
users) and 98 items (e.g., videos and answers), resulting in 411,749 interactions.

Since the datasets do not contain negative instances, we perform negative sampling by randomly sampling non-occurring
links in the graph, as follows: (i) during training we sample negative destinations only from nodes that appear in the training
set, (ii) during validation we sample them from nodes that appear in training set or validation set and (iii) during testing we
sample them from the entire node set.

For all the datasets, we considered the same chronological split into train/val/test with the ratios 70%-15%-15% as proposed
by (Xu et al., 2020).

Transductive vs Inductive Settings. In Section 4.2 we employed transductive setting and random negative sampling as
in (Kumar et al., 2019; Xu et al., 2020; Rossi et al., 2020; Yu et al., 2023; Cong et al., 2023). We chose not to employ an
inductive setting as it is not easily applicable to C-TDGs. Specifically, there is no clear consensus in the literature regarding
the definition of inductive settings, making it difficult to identify the nodes considered for assessing this experimental setup
(e.g. (Xu et al., 2020) differs from (Rossi et al., 2020)). Some definitions of inductive settings lead to the number of sampled
inductive nodes to be not statistically relevant for evaluation. Other interpretations of inductive settings disrupt the true
dynamics of the graph, i.e., in (Rossi et al., 2020), certain nodes and their associated edges are removed from the training set
with the purpose of isolating an inductive set of nodes. Thanks to the analysis performed in (Yu et al., 2023), we can also
observe that among all the considered datasets in our paper there is mix of inductive and transductive edges, which can be
measured with the surprise index from (Yu et al., 2023), measuring the proportion of unseen edges at test time; reported in
Table 4. Hence, achieving strong performance on tasks with a high surprise index offers valuable insights into the model’s
capability to address the inductive setting. Comparing CTAN performance to the surprise index, it is clear that CTAN can
cope reasonably well even in fully inductive tasks, such as those in Section 4.1 where it generally ranks first among other
baselines.

15

Long Range Propagation on Continuous-Time Dynamic Graphs

E. Explored Hyper-Parameter Space
In Table 5 we report the grids of hyper-parameters employed in our experiments by each method. We recall that the
hyper-parameters ϵ, γ, and ψ refer only to our method. We used dropout only for GraphMixer and DyGFormer, where the
values are loosely based on best-performing values in Yu (2023).

Table 5. The grid of hyper-parameters employed during model selection for the following three tasks: Sequence classification on temporal
path graphs, Temporal Pascal-VOC, and Link Prediction – here, abbreviated as and color-coded in (Seq, orange), (Pasc, green), and (Link,
blue), respectively. For Seq and Pasc, we conducted 10 runs and 5 runs with different random seeds for different weight initializations
for each configuration, whereas for Link, we conducted 5 runs only for the configuration that resulted in the best performance in the
initial run. For the three tasks, the models were configured to have a maximum number of learnable parameters of ∼20k, ∼40k, and
∼140k, respectively. Training was conducted for 20 epochs, 200 epochs, and 1000 epochs, respectively. For Seq and Pasc, we employed a
scheduler halving the learning rate with a patience of 5 epochs, 20 epochs, respectively, whereas for Link we used early stopping with a
patience of 50 epochs. For all tasks, the neighbor sampler size was set to 5. The batch size was set to 128, 256, and 256, respectively. We
used the loss, F1-score, and AUC on the validation set to optimize for the hyper-parameters. We used dropout only for GraphMixer and
DyGFormer, where the values are loosely based on best-performing values in (Yu, 2023).

Hyper-parameter Method Values
Seq Pasc Link

optimizer Adam
learning rate 3 · 10−4 3 · 10−4 10−4, 10−5

weight decay 10−7 10−5 10−6

n. GCLs 1, 3, 5
σ tanh
ϵ 1, 0.5, 10−1, 10−2 1, 0.5, 10−1, 10−2 0.5, 10−1, 10−2, 10−3

γ 1, 0.5, 10−1, 10−2 1, 0.5, 10−1, 10−2 0.5, 10−1, 10−2, 10−3

ψ concat, ψ = tanh(hi−1(te)||x(i))
dropout 0.1, 0.2 0.1, 0.2 −
time dim 1 1 16

memory dim (= DGN dim)

DyGFormer 10, 5 14, 7 −
DyRep 53, 26 74, 37 118, 87
GraphMixer 30, 15 24, 12 −
JODIE 69, 34 97, 48 164, 122
TGAT 24, 12 24, 12 33, 23
TGN 19, 9 21, 10 33, 20
CTAN 53, 26 74, 37 128, 96

F. Complete Results
In Table 6 we report the results on the sequence classification task on temporal path graphs, and in Table 7 we show the
complete results on the link prediction task, including the performance of EdgeBank (Poursafaei et al., 2022) with different
time window sizes. EdgeBank is a memorization-based method without learning that simply stores previously observed
edges from a fixed-size time-window from the immediate past, and predicts stored edges as positive. We evaluated EdgeBank
with different time windows spanning from a size of 1% of the training set to infinite size, i.e., all observed edges are stored
in memory.

In this scenario, we observe that EdgeBank is particularly good at capturing long-range information along the time dimension
in the LastFM task, surpassing all the baselines and CTAN as the time window increases. We highlight that the experiments
in Section 4.2 are meant to outline how CTAN outperforms baselines under an even field of number of trainable parameters
(i.e., 140k) and restricted range of hyper-parameter values, e.g., sampler size equal to 5. On the other hand, EdgeBank
is a non-parametric method that at the time of inference accesses the entire temporal adjacency matrix. In LastFM, the
median node degree after training is 903 (mean 1152± 1722), which is high compared to other datasets. At validation time,
for the average node in LastFM, EdgeBank pools information from 903 node neighbors, while the setting in Section 4.2
allows baselines to pool information from 5 randomly sampled neighbors. As nodes have larger degrees, sampling larger

16

Long Range Propagation on Continuous-Time Dynamic Graphs

Table 6. Results of the sequence classification on path graph long-range task, for increasing graph length n. The performance metric is the
mean test set accuracy score, averaged over 10 different random weights initializations for each model configuration. Models have a
maximum budget of learnable parameters equal to ∼20k.

n=3 n=5 n=7 n=9 n=11 n=13 n=15 n=20

DyGFormer 100.0±0.0 42.55±16.95 52.94±7.3 53.02±6.06 51.80±9.52 51.70±8.52 42.80±16.25 42.79±19.62

DyRep 100.0±0.0 49.20±2.10 51.00±1.76 47.93±2.73 44.87±0.89 46.73±1.55 48.60±2.48 50.47±2.88

GraphMixer 100.0±0.0 42.58±21.2 55.40±6.44 52.80±5.56 44.65±19.42 43.77±16.51 52.49±5.36 52.04±8.20

JODIE 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 98.53±4.64 97.4±7.99 60.0±14.91 50.87±2.46

TGAT 100.0±0.0 100.0±0.0 50.67±4.12 47.87±2.72 42.67±2.15 43.53±0.83 50.53±2.15 49.07±1.55

TGN 100.0±0.0 100.0±0.0 60.20±13.2 48.13±1.63 45.07±1.64 44.40±0.64 48.67±2.76 50.13±2.17

Our 100.0±0.0 100.0±0.0 100.0±0.0 99.93±0.21 99.6±0.56 98.67±1.89 93.47±8.78 88.93±12.06

neighborhoods is fundamental to access and therefore retain information. To show that CTAN performance is limited by
the considered range of hyper-parameter values, we present in Table 8 the performance of CTAN by solely adjusting the
neighbor sampler size, while maintaining a budget of ∼350k learnable parameters. The evaluation involves substituting
various sampler size values into the optimal combination of hyper-parameters obtained for CTAN on the LastFM dataset (as
in Section 4.2), with the embedding dimension configured to achieve the target of ∼350k learnable parameters (i.e., 192).
The results indicate that CTAN performs better by adjusting the sampler size alone.

Table 7. Mean test set AUC and std in percent averaged over 5 random weight initializations. Each model have a maximum budget of
learnable weights equal to ∼140k. The higher, the better.

Wikipedia Reddit LastFM MOOC

EdgeBank1% tr set 71.03 71.92 77.59 61.29
EdgeBank5% tr set 81.65 85.07 86.75 63.93
EdgeBank10% tr set 85.26 89.07 89.87 65.18
EdgeBank25% tr set 88.31 92.92 92.74 67.49
EdgeBank50% tr set 90.29 94.82 94.06 69.63
EdgeBank75% tr set 91.11 95.63 94.55 70.46
EdgeBank100% tr set 91.52 96.08 94.69 70.80
EdgeBank∞ 91.82 96.42 94.72 70.85

DyRep 88.64±0.15 97.51±0.10 77.89±1.39 81.87±2.47

JODIE 94.68±1.05 96.34±0.83 69.76±2.74 81.90±9.03

TGAT 94.91±0.25 98.18±0.05 81.53±0.34 87.61±0.15

TGN 95.60±0.18 98.23±0.10 79.18±0.79 90.74±0.99

Our 97.55±0.09 98.61±0.04 83.81±0.92 92.47±0.78

Table 8. Mean test set AUC and std on LastFM (in percent) for increasing size of sampled neighbors, averaged over three different weights
initializations. The model has a budget of learnable weights equal to ∼350k. When nodes have large degrees as in LastFM, accessing
larger neighborhoods with the neighbor sampler is fundamental to access and retain important information.

Sampler size 2 8 16 32 64 128

CTAN 82.64±0.93 86.21±0.58 86.16±0.55 86.27±0.55 86.32±0.81 87.82±0.42

We report the average time per epoch (measured in seconds) for each model on the four considered link prediction datasets in
Table 9. In this evaluation, each model has the same embedding dimension and number of GCLs. Similarly, Figure 5 shows
the average time per epoch of each model on the Wikipedia dataset. Here, the time is reported with respect to a varying
embedding size and similar number of GCLs. We observe that our method has a speedup on average of 1.3× to 2.2× on the
four benchmarks when one layer of graph convolutions is considered, and 1.5× to 1.9× when five layers are used.

17

Long Range Propagation on Continuous-Time Dynamic Graphs

Table 9. Mean time (in seconds) and std averaged over 10 epochs. Each model is run with an embedding dimension equal to 100 on an
Intel(R) Xeon(R) Gold 6278C CPU @ 2.60GHz.

Wikipedia Reddit LastFM MOOC

1 layer

DyRep 27.07±0.32 161.43±0.96 216.88±2.83 53.32±0.56

JODIE 20.62±0.24 131.71±0.85 176.61±3.02 43.92±0.68

TGAT 11.56±0.14 67.83±0.64 139.79±20.78 33.92±0.50

TGN 30.92±0.25 196.87±1.35 289.22±30.38 53.46±0.62

Our 11.16±0.11 64.48±0.56 123.19±11.33 34.42±0.50

5 layer

TGAT 101.26±0.46 895.35±5.46 862.47±217.38 73.77±1.29

TGN 127.99±0.60 1099.19±3.91 1034.24±221.04 95.45±1.07

Our 60.16±0.20 532.36±9.87 495.18±111.13 56.19±0.63

10 50 100 150 200
Embedding dim.

10

20

30

40

Ti
m

e
(s

)

DyRep
JODIE
TGAT
TGN
Our

10 50 100 150 200
Embedding dim.

50

100

150

200

250

Ti
m

e
(s

)

TGAT
TGN
Our

(a) (b)

Figure 5. Average time per epoch (measured in seconds) and std with respect to the embedding size computed on the Wikipedia dataset,
averaged over 10 epochs. The experiments were carried out on an Intel(R) Xeon(R) Gold 6278C CPU @ 2.60GHz. On the left (a), each
model has 1 DGN layer (when possible), while on the right (b) the models have 5 GCLs.

G. Results on TGB Benchmarks
We evaluate CTAN on the Temporal Graph Benchmark (TGB) (Huang et al., 2023). TGB contains a set of real-world
small-to-large scale benchmark datasets with varying graph properties. While TGB contains two different graph tasks,
namely dynamic link property prediction and dynamic node property prediction, for consistency with the rest of the
presentation in this paper we focus on the former. To overcome the existing limitations on negative edge sampling, i.e.,
where only one random negative edge is sampled per each positive edge, TGB provides pre-sampled negative edge sets with
both random and historical negatives (Poursafaei et al., 2022). Here, for each positive edge, several negatives are sampled
for the evaluation (Huang et al., 2023). Please refer to (Huang et al., 2023) for more information on datasets and tasks.

Experimental Setup. We adapt and re-use the TGB training loop and evaluation loop to fit our framework, and we select
four datasets for measuring CTAN performance: tgbl-wiki-v2, tgbl-review-v2, tgbl-coin-v2, tgbl-comment. We use the
configuration of CTAN, reported in Table 10. Note that for computational efficiency, since validation passes are extremely
costly given the large number of negative edges, we only do a validation pass every three training epochs.

Results. In Table 11, we report the test Mean Reciprocal Rank (MRR) for the experiments. We note that CTAN performs
quite well in general: its average rank across the four datasets is 3.25 which is the highest, together with DyGFormer (Yu
et al., 2023). CTAN performs quite well on tgbl-review-v2, even significantly outperforming state-of-the-art methods
DyGFormer (Yu et al., 2023) and GraphMixer (Cong et al., 2023). In such dataset the surprise index (Poursafaei et al., 2022)
is 0.987, meaning that nodes do not have large histories. In this case, it seems that CTAN better propagates information from
neighbors compared to methods focusing on first-hop information passing such as (Cong et al., 2023) and (Yu et al., 2023).
On the other hand, it seems that the model in (Yu et al., 2023) is well suited in propagating long-range time information by
modeling a large number of previous node interactions within the transformer input sequence, given enough computational
budget, particularly in tgbl-wiki-v2, where nodes have long histories. Nevertheless, we notice that even with limited number
of parameters, CTAN is extremely competitive within the leaderboard.

18

Long Range Propagation on Continuous-Time Dynamic Graphs

Table 10. The grid of hyper-parameters employed during model selection for CTAN on the Dynamic Link Property Prediction task on the
three TGB benchmark datasets considered: tgbl-wiki-v2, tgbl-review-v2, tgbl-coin-v2, tgbl-comment. For tgbl-wiki-v2 we conducted five
runs with different random seeds for different weight initializations for each configuration, whereas for the other datasets we conducted
three different runs. The rest of the training configuration is taken from the TGB codebase: batch size is 200, weight decay penalty was 0,
the optimized metric is Mean Reciprocal Rank and is evaluated with the TGB evaluator.

Hyper-parameter tgbl-wiki-v2 tgbl-review-v2 tgbl-coin-v2 tgbl-comment

optimizer Adam
σ tanh
γ 0.1 0.1, 0.01 0.1, 0.01 0.1
ψ concat, ψ = tanh(hi−1(te)||x(i))
n. GCLs 1, 2, 3 1,2 1 1
ϵ 1.0 0.5, 1.0 0.5, 1.0 1.0
embedding dim 256
sampler size 32
learning rate 10−3, 10−4, 3 · 10−4, 3 · 10−5 3 · 10−6 10−4 10−4, 3 · 10−4, 10−5, 3 · 10−5

epochs 200 50 50 50
LR scheduler patience 20 3 3 3

H. Scalability of CTAN
Here we conduct an investigation on the scalability property of CTAN. Note that while in some related works the term
scalable refers to the computational complexity of methods, here we use scalable to refer to how the range of information
propagation can be controlled by increasing the number of graph convolutions in CTAN. To show this property, we show the
results of the task in Section 4.1.1 at different values of GCLs (when possible). We report the results in Figure 6, which
shows how for increasing GCLs, CTAN is capable of conveying information further away in the graph compared to other
graph convolutional based models. In addition, we observe that both DyGFormer and GraphMixer may have increased
capability to capture long-range dependencies, however, this is only applicable to time-only dependencies, and not spatial
ones. Indeed, DyGFormer and GraphMixer model long-range time dependencies on node representations by fetching
previous interactions for a node, both only relying on first-hop neighbors information and not considering spatial propagation
of higher-order node information, which is in fact mentioned as a limitation of DyGFormer. Comparably, CTAN remains a
graph convolution-based model, hence capable of propagating information in a non-dissipative way over time as well as over
the spatial dimension of the graph, scaling the range of propagation with the number of discretization steps (equivalently,
the termination time te). This property enables propagating information to neighbors beyond first-hop ones, which in turns
allows solving tasks such as those in Section 4.1.1 and 4.1.2 in the paper.

19

Long Range Propagation on Continuous-Time Dynamic Graphs

Table 11. Results of the Dynamic Link Property Prediction task on the TGB benchmark datasets (Huang et al., 2023). The table reports the
average MRR on the test split of the datasets over the considered weight initializations. For CTAN, the average is taken over a maximum
of five runs with different random seeds for different weight initializations. All baselines’ results are taken from (Yu, 2023). The number
of parameters is computed from the TGB Baselines repository (Huang et al., 2023) by loading the best performing model across the model
selection search.

N. params tgbl-wiki-v2 tgbl-review-v2 tgbl-coin-v2 tgbl-comment Avg. rank

EdgeBank∞ − 52.50 2.29 35.90 10.87 11
EdgeBanktw-ts − 63.25 2.94 57.36 12.44 8.25
EdgeBankre − 65.88 2.84 59.15 − 8.25
EdgeBankth − 52.81 1.97 43.36 − 11.33

CAWN 4M 73.04±0.60 19.30±0.10 − − 5.50
DyRep 700k 51.91±1.95 40.06±0.59 45.20±4.60 28.90±3.30 8.00
GraphMixer 600k 59.75±0.39 36.89±1.50 75.57±0.27 76.17±0.17 4.25
DyGFormer 1.1M 79.83±0.42 22.39±1.52 75.17±0.38 67.03±0.14 3.25
JODIE 200k 63.05±1.69 41.43±0.15 − − 4.50
TCL 900k 78.11±0.20 16.51±1.85 68.66±0.30 70.11±0.83 4.25
TGAT 1.1M 59.94±1.63 19.64±0.23 60.92±0.57 56.20±2.11 6.50
TGN 1M 68.93±0.53 37.48±0.23 58.60±3.70 37.90±2.00 5.25

Our 600k 66.76±0.74 40.52±0.41 74.82±0.42 67.10±6.72 3.25

Figure 6. Mean accuracy on the T-PathGraph task on the experiment of Section 4.1.1, with distinction between the performance at different
number of GCLs (whenever possible). With 3 and 5 GCLs we report in grey the results of DyGFormer, DyRep, GraphMixer, and JODIE,
which are designed for 1-hop aggregation only. The plots show that not only CTAN can better retain information at low number of GCLs,
but also that increasing the number of GCL enables solving the T-PathGraph task on longer graphs, where the task is harder because
information needs to be propagated further away. The number of GCL allows CTAN to scale up the range of information propagation.

20

