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Abstract

This paper presents an efficient and scalable in-
complete multi-view clustering method, referred
to as Enhanced Dictionary-Induced tenSorized
incomplete multi-view clustering with Gaussian
errOr raNk minimization (EDISON). Specifically,
EDISON employs an enhanced dictionary repre-
sentation strategy as the foundation for inferring
missing data and constructing anchor graphs, en-
suring robustness to less-than-ideal data and main-
taining high computational efficiency. Addition-
ally, we introduce Gaussian error rank as a concise
approximation of the true tensor rank, facilitating
a comprehensive exploration of the diverse infor-
mation encapsulated by various singular values in
tensor data. Furthermore, we integrate a hyper-
anchor graph Laplacian manifold regularization
into the tensor representation, allowing for the
simultaneous utilization of inter-view high-order
correlations and intra-view local correlations. Ex-
tensive experiments demonstrate the superiority
of the EDISON model in both effectiveness and
efficiency compared to SOTA methods.

1. Introduction
Multi-View Clustering (MVC), focusing on effectively par-
titioning data points into distinct subclusters by leveraging
the diverse information encapsulated within multiple views,
has gained considerable acclaim and active research (Peng
et al., 2019; Zhang et al., 2020; Trosten et al., 2021; 2023;
Chen et al., 2022; Tang & Liu, 2022a;b; Xu et al., 2022b;
Liang et al., 2023b; Zeng et al., 2023; Wen et al., 2023b;
2021a; Dong et al., 2023a;b). However, most existing MVC
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methods typically operate under the assumption that each
instance universally exists in all views, contrasting with real-
world scenarios where certain instances may be absent from
specific views, significantly compromising their practical
utility. Consequently, Incomplete Multi-View Clustering
(IMVC) has emerged as a pivotal subdivision in multi-view
clustering, aiming to identify underlying data structures and
patterns while addressing missing information through ef-
fective fusion of multiple views. In general, existing IMVC
methods can be broadly classified into four categories: ma-
trix factorization-based methods (Zhao et al., 2016; Tao
et al., 2021; Hu & Chen, 2019), kernel-based methods
(Liu et al., 2019; 2021b; Liu, 2023), graph-based methods
(Wang et al., 2022; Wen et al., 2023a; Liang et al., 2023a),
and deep learning-based methods (Wang et al., 2021; Yang
et al., 2023; Jin et al., 2023). Among them, graph-based
approaches have drawn considerable interest for their ability
to uncover inherent data structures and their solid mathe-
matical underpinnings.

Graph-based incomplete multi-view clustering aims to de-
rive complete graphs from the observed incomplete multiple
features, facilitating the partitioning of all instances. For
example, Liu et al. (2021a) integrated missing data im-
putation and graph learning into a unified framework to
learn a consensus graph for clustering. Wen et al. (2023a)
proposed a confidence neighbor-driven consensus graph
learning framework that leverages similar-nearest-neighbor
hypothesis to explore the group-wise structure information
among samples. Wang et al. (2022) proposed leveraging
bipartite graphs to capture the similarity between examples
and anchors, thereby improving clustering performance and
efficiency. Furthermore, Liang et al. (2023a) incorporated
contributions from different views and accounted for the im-
pact of missing samples within a unified GIMC framework
to learn a high-quality graph for clustering. However, this
matrix-constrained approach only captures the within-view
linear relationships among data pairs, neglecting the higher-
order correlations between samples across different views,
leading to an underutilization of valuable priors in multi-
view data. Consequently, recent methods have endeavored
to integrate multiple view-specific graphs into a low-rank
3D tensor, allowing for effective exploration of higher-order
correlations among data points. For instance, Wen et al.
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(2021c) seamlessly integrated missing-view inference and
low-rank tensor learning into a unified framework, facili-
tating the simultaneous exploration of hidden information
within missing views and high-order correlations among
multiple views. Similarly, Zhao et al. (2023) introduced
tensor low-rank regularization for missing data recovery
and improved inter-graph similarity through inter-view con-
straint. Furthermore, Zhang et al. (2023) decomposed the
complete 3D tensor into low-rank and sparse structures, en-
abling the simultaneous capture of valuable information and
noise within multi-view data.

Notwithstanding the impressive clustering results of the
Tensorized Graph-based Incomplete Multi-View Clustering
(TGIMC) model, there are still four aspects that merit ad-
ditional improvement. Firstly, preceding methods relied on
the observed data itself to serve as a foundation for infer-
ring missing information and constructing similarity graphs,
necessitating observed feature vectors to contain sufficient
noise-free sampled points. Otherwise, it may lead to in-
accuracies in the recovered features and the constructed
similarity graph. Secondly, previous methods often entail
extensive computational complexities, posing significant
challenges when dealing with large-scale datasets. Thirdly,
the mainstream method adopts the Tensor Nuclear Norm
(TNN) as the convex surrogate for low-rank tensor, which
involves recovering the low-rank tensor by uniformly scal-
ing all singular values. However, large and small singular
values are respectively perceived as carrying valuable in-
formation and marginal noise. Consequently, TNN fails
to exploit the inherent variability among different singular
values. Fourthly, the traditional method prioritizes pursuing
the global low-rank structure within the 3D tensor, yet dis-
regards the local manifold information between data points
within the view, consequently leading to a suboptimal tensor
representation.

Building upon the aforementioned insights and motivations,
this paper introduces an Enhanced Dictionary-Induced
TGIMC model with GauSsian errOr raNk minimization
(EDISON), which efficiently partitions incomplete multi-
view data by exploring rich priors across dictionary, sub-
space, and tensor representations. Specifically, EDISON
incorporates an Enhanced Dictionary Representation (EDR)
strategy to recover anchor subspace representations, ad-
dressing simultaneously the challenges of incomplete data,
insufficient sampling, and high computational complexity
encountered in real-world scenarios. Furthermore, we in-
troduce Gaussian Error Rank (GER) as a concise approx-
imation of the tensor rank, providing nuanced penalties
on tensor singular values to comprehensively explore valu-
able prior information within tensor data. Finally, a Hyper-
anchor graph Laplacian Regularization (HLR) is incorpo-
rated into the anchor subspace learning, ensuring that local
geometric manifold information enriches anchor subspace

representations. In comparison to the existing TGIMC algo-
rithms, the contributions and innovations of this paper can
be summarized as follows:

• EDISON employs an Enhanced Dictionary Represen-
tation (EDR) strategy as the foundation for inferring
missing data and constructing anchor graphs, effec-
tively addressing the challenges of data incomplete-
ness, insufficient sampling, and high computational
complexity encountered in real-world scenarios.

• EDISON adopts the non-convex Gaussian Error Rank
(GER) as a concise surrogate of tensor rank, enabling
a comprehensive exploration of distinctive information
conveyed by various singular values within tensor data.

• EDISON integrates the Hyper-anchor graph Laplacian
Regularization (HLR) into the anchor graph learning,
enabling the derived tensor representations to retain a
low-rank structure while adeptly harnessing rich local
geometric manifold information.

• An optimization algorithm with theoretically guaran-
teed convergence is introduced. Extensive experiments
demonstrate the superiority of the EDISON model in
both effectiveness and efficiency compared to SOTA
methods.

2. Preliminary
Within dataset X ∈ Rd×n containing n samples and d
feature dimensions, the Low-Rank Representation (LRR)
(Liu et al., 2010; 2013) technique leverages the dataset itself
as a dictionary to reconstruct a coefficient matrix of minimal
rank as the similarity graph, which can be formulated as:

min
Z,E
‖Z‖∗ + α‖E‖2,1, s.t. X = XZ + E, (1)

where Z ∈ Rn×n and E ∈ Rd×n represent the graph repre-
sentation and the reconstruction error, respectively. ‖ · ‖∗
and ‖ · ‖2,1 denote the nuclear norm and the `2,1-norm, with
α being utilized as the balancing parameter. However, LRR
is limited by the requirement that the observed data vectors
must include sufficient noise-free sampling points. Other-
wise, the resulting subspace representation may degenerate
into the identity matrix, leading to the ineffectiveness of
LRR. To this end, Liu and Yan (2011) proposed LatLRR, a
strategy that collectively incorporates observed and hidden
data into a unified dictionary representation for subspace
recovery:

min
Z,H,E

‖Z‖∗ + α‖E‖2,1, s.t. X = [X; H]Z + E, (2)

where [; ] signifies the concatenation of two matrices along
the column direction, and H represents the hidden data.
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Figure 1. The framework of EDISON. EDISON first employs Enhanced Dictionary Representation (EDR) strategy as the foundation for
constructing anchor graphs, ensuring robustness to less-than-ideal data and maintaining high computational efficiency. Then, the 3D
tensor organized from multiple graphs undergoes Gaussian Error Rank (GER) minimization, facilitating a comprehensive exploration of
the diverse information encapsulated by various singular values. Additionally, a Hyper-anchor graph Laplacian Regularization (HLR) is
introduced, allowing for the simultaneous utilization of inter-view high-order correlations and intra-view local correlations.

The combination [X; H] forms a comprehensive dictionary,
facilitating the recovery of a robust subspace representation.
However, due to the completely unknown nature of H, it
cannot be acquired directly. Interestingly, LatLRR (Liu &
Yan, 2011) indicates that the effects of H can be formulated
as the following dual nuclear norm optimization problem:

min
Z,W,E

‖Z‖∗ + ‖W‖∗ + α‖E‖2,1,

s.t. X = XZ + WX + E,
(3)

where W ∈ Rd×d is an auxiliary variable derived from
the skinny SVD theory, introduced to capture the impact of
hidden data (Fu et al., 2021; Li et al., 2023).

For a tensor Z ∈ Rn1×n2×n3 , its tensor singular value
decomposition (t-SVD) is defined as Z = U ∗ S ∗ V ,
where U ∈ Rn1×n1×n3 and V ∈ Rn2×n2×n3 are orthog-
onal tensors, and S ∈ Rn1×n2×n3 is a f -diagonal tensor
with diagonal matrices as frontal slices. Based on t-SVD,
the definition of the Tensor Nuclear Torm (Lu et al., 2016;
Zhou et al., 2021) can be expressed as follows:

Definition 2.1. For the given tensor Z ∈ Rn1×n2×n3 , then
the Tensor Nuclear Norm (TNN) can be defined as follows:

‖Z‖TNN =
1

n3

n3∑
k=1

Zkf =
1

n3

n3∑
k=1

h∑
i=1

Skf (i, i) (4)

where h = min(n1, n2), and Zk is the k-th frontal slice of
the tensor Z , and Skf (i, i) is the i-th singular value of Zk.

3. Proposed Method
In this section, we provide a detailed exposition of the EDI-
SON model, with its framework outlined in Figure 1.

3.1. Tensorized Graph-Based Multi-View Clustering

The tensorized graph-based multi-view clustering typically
encompasses the aggregation of multiple view-specific
graphs into a 3D low-rank tensor, thereby exploring higher-
order correlations among views. Formally, considering a
multi-view dataset {Xv ∈ Rdv×n}mv=1 withm views, where
dv is the feature dimension of the v-th view, and n is the
number of instances, the self-representation-induced gener-
alized TGIMC model can be articulated as follows:

min
{Zv,Ev}

‖Z‖TNN + α‖Ev‖2,1

s.t. ∀v, Xv = XvZv+Ev,Z = ψ(Z1, ...,Zm),
(5)

where Zv ∈ Rn×n and Ev ∈ Rd×n respectively denote
view-specific graphs and reconstruction errors. ψ(·) serves
is tensorization operator, reconstructing multiple graphs into
a 3D tensor Z ∈ Rn×m×n. α is a balancing parameter.
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3.2. Enhanced Dictionary Representation

Despite effectively leveraging higher-order correlations
within multi-view data, the dependence of Model (5) on
observed data {Xv}mv=1 as dictionary for subspace recon-
struction overlooks three challenges prevalent in real-world
scenarios: 1) Incomplete observed data, 2) Insufficient
feature sampling, and 3) Excessive computational com-
plexity. Specifically, the incompleteness of observed multi-
view data results in distinct dimensions for view-specific
graph structures, impeding the effective integration of mul-
tiple features. Sufficiency of feature sampling demands a
sufficient number of noise-free sampled points in the feature
vectors; otherwise, the graph structure may manifest as an
identity matrix, leading to modeling failure in capturing the
similarity. The high computational complexity stems from
the cubic increase in computational demands during tensor
operations with a growing number of samples, presenting
challenges for large-scale datasets.

To address the challenges mentioned above in real-world
scenarios, three solutions are proposed: 1) Missing Data
Imputation, 2) Hidden Effects Consideration, and 3) Anchor
Graph Construction.

[1. Missing Data Imputation:] Assuming {Xv ∈
Rdv×n}mv=1 is a data matrix containing nvo observed and
nvu unobserved instances (i.e., n = nvo + nvu), where unob-
served samples are filled with zeros. To recover missing data
in a more informative manner rather than simple zero impu-
tation, we incorporate the imputation of missing data as a
learnable term into the graph learning process of Model (5).
This integration establishes a synergy between missing data
imputation and the overall model, leading to the inference
of meaningful missing data. Specifically, let Pv ∈ Rdv×nvu
represents nu missing instances intended for recovery and
Mv ∈ Rnvu×n serves as an indicator matrix describing the
indices of the missing instances within the v-th view. The
term {Xv + PvMv}mv=1 is then seamlessly integrated into
the learning process of Model (5), facilitating the inference
of missing information, where Mv

ij = 1 when the j-th
missing instance in Pv aligns with the i-th instance in Xv;
otherwise, it assumes a value of 0 (Wen et al., 2021c).

[2. Hidden Effects Consideration:] Model (5) employs
the observed data Xv as a dictionary for recovering a sim-
ilarity graph, requiring that the feature vectors of Xv con-
tain sufficient noise-free sampled points. Otherwise, the
learned graph fails to effectively capture similarity relation-
ships between data pairs. To this end, inspired by LatLRR
(Liu & Yan, 2011), we assume the existence of hidden data
Hv as an ideal complement to Xv, serving as the foun-
dation for graph recovery. However, deriving Hv from
Xv is not practical. Inspired by the theory of shrink SVD,
we translate the effects of Hv into a convex optimization
term. Considering the combined dictionary [Xv; Hv], we

Figure 2. Illustration of Enhanced Dictionary Representation.

obtain the dictionary representation Xv = [Xv; Hv]Zv∗+Ev ,
where Zv∗ ∈ Rn×n is the optimal solution (with respect to
Zv). Following skinny SVD theory (i.e., X=UΣV>X), we
have[Xv; Hv]Zv∗=XvZv+UvΣvVv

Y
>Vv

H(Σv)
−1

Uv>Xv .
Denote Pv = UvΣvVv

Y
>Vv

H(Σv)
−1

Uv>, the dictionary
learning, accounting for Hv, can be represented as Xv =
XvZv+WvXv + Ev. Thus, even without obtaining Hv,
the effects of Hv are recovered, leading to an enhancement
in the performance of the subspace representation Zv .

[3. Anchor Graph Construction:] To adapt Model (5) for
large-scale datasets, we construct anchor graphs to model
similarity, defined as Xv=Av(Zv)>, Av(Av)>=I, where
Av ∈ Rdv×t represents anchor points with an orthogonality
constraint for enhanced discriminability, and Zv ∈ Rn×t
represents the learned anchor graph structure, encoding the
similarity between data points and anchor points.

By incorporating the three aforementioned improved dic-
tionary strategies into Model (5), we obtain an enhanced
dictionary-induced TGIMC model:

min
{Zv,Pv,Wv,Av},E

‖Z‖TNN + α

m∑
v=1

‖Wv‖F + β‖Ev‖2,1,

s.t. ∀v, Xv+ PvMv=Av(Zv)
>
+Wv(Xv + PvMv) + Ev,

E=[E1, . . . ,Em]>,Av(Av)>=I,Z = ψ(Z1, . . . ,Zm),
(6)

where E =[E1; . . . ; Em]> is formed by horizontally con-
catenating elements. α and β are trade-off parameters.

3.3. Tensorial Gaussian Error Rank Minimization
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Figure 3. Comparing Tensor
Rank Estimation Methods.

Model (6) approximates the
tensor rank using the TNN,
which reconstructs a low-
rank tensor by uniformly
scaling all singular values.
Nevertheless, this uniform
scaling overlooks differen-
tiated information between
large and small singular val-
ues in the tensor data, result-
ing in suboptimal tensor representations. This occurs be-
cause large singular values signify valuable information,
while small singular values represent noise. Treating them
equally fails to adequately penalize noise-related features,

4



EDISON: Enhanced Dictionary-Induced Tensorized Incomplete Multi-View Clustering with Gaussian Error Rank Minimization

resulting in suboptimal tensor representations. To tackle
this issue, we propose a novel tensor rank, referred to as
the Gaussian Error Rank (GER), as a concise non-convex
approximation for the true rank function. Its definition is as
follows:

Definition 3.1. For the given tensor Z ∈ Rn1×n2×n3 , its
Gaussian Error Rank (GER) is defined as follows:

‖Z‖GER :=
1

n3

n3∑
k=1

‖Zkf‖GER

=
1

n3

n3∑
k=1

h∑
i=1

2√
π

∫ δSkf (i,i)

0

e−l
2

dl,

(7)

where δ>0, which can be used to adjust the penalty strength
for different singular values within tensor data.

3.4. Hyper-Anchor Graph Laplacian Regularization

While model (6) effectively addresses the issue of incom-
plete and under-sampled observational data in real-world
scenarios, its primary focus on uncovering the global low-
rank structure of tensor representations neglects the local
geometric information within views. This results in the
underutilization of rich priors in multi-view data. To ad-
dress this issue, we introduce Hyper-anchor graph Lapla-
cian Regularization (HLR) to explore the intrinsic geometric
structures of the data. To be specific, given a hyper-anchor
graph, where vertices serve as anchors. Here, VV denotes
the set of vertices, EV represents the set of hyperedges,
and each hyperedge is empirically set to connect to three
neighbors. PV

e is the weight function, with p(e) indicating
the importance of connections within the hypergraph. The
vertex-hyperedge relationship is captured by the incidence
matrix Ov , with dimensions |Vv| × |Ev|, where entries are
defined as:

Oij =

{
1, if vi ∈ ej

0, otherwise
(8)

Subsequently, the degrees of each vertex and hyperedge can
be separately computed as d(vi) =

∑
ej∈E p(ej)o(vi, ej)

and d(ej) =
∑

vi∈V o(vi, ej). Let Dv
h and Dv

e be diagonal
matrices representing vertex and hyperedge degrees. The
unnormalized hyper-anchor Laplacian matrix is defined as
Lvh = Dv

h − HvWv
e(Dv

e)
−1Hv (Zhou et al., 2006; Gao

et al., 2022). Furthermore, the hyper-anchor graph Lapla-
cian manifold regularization can be formulated as follows:

‖Zv‖HLR := Tr(ZvLvhZ
v), (9)

3.5. The Overall EDISON Model

Through the consolidation of Eqs. (6), (7), and (9), the
overall EDISON model can be formulated as follows:

min
{Zv,Pv,Wv,Av},E

‖Z‖GER + α

m∑
v=1

‖Wv‖F

+ β‖E‖2,1 + γ

m∑
v=1

Tr(ZvLvhZ
v)

s.t. ∀v, Xv + PvMv = Av(Zv)>

+ Wv(Xv + PvMv) + Ev,

E = [E1, . . . ,Em]>, Av(Av)> = I,

Z = ψ(Z1, . . . ,Zm),

(10)

where γ is a trade-off parameter. Finally, actively obtain
clustering labels by applying the k-means to the left singular
vector of the concatenated matrix Z̄ = 1√

m
[Z1, ...,Zm] ∈

Rn×tm, as explained in (Kang et al., 2020).

Remark 1. [Advantages of EDR ] Diverging from the
previous TGIMC method (Zhang et al., 2023), the EDI-
SON model employs an enhanced dictionary representation
(EDR) strategy for inferring missing information and recon-
structing subspace representations, ensuring both reliability
and efficiency. Specifically, Figure 2 illustrates how EDR
achieves reliability by accounting for latent effects in the dic-
tionary representation, ensuring accurate subspace recovery.
Furthermore, by selecting a highly discriminative subset of
samples from the recovered dictionary representation as an-
chor dictionaries for subspace recovery, the EDISON model
maintains relatively low computational complexity, thus
enhancing its efficiency in processing large-scale datasets.

Remark 2. [Benefits of GER] We employ the Gaussian
error function (i.e., f(x) = 2√

π

∫ δx
0
e−l

2

dl) as a non-convex
approximation for tensor rank, facilitating the exploration
of differentiated information among singular values within
tensor data. Figure 3 intuitively compares GER with repre-
sentative tensor rank approximation methods, namely, TNN
(Lu et al., 2016) and TLSpN (Guo et al., 2023). Notably,
when x = 0, f(x) = 0, aligns closely with the true tensor
rank. Additionally, as x → 0, fGER(x) � fTNN(x) and
fGER(x)� fTLSpN(x), while approaching larger values of
x, fGER(x)→ 1. This signifies that GER can robustly penal-
ize small singular values associated with noise, preserving
valuable large singular values effectively, thus leveraging
valuable priors in tensor data exploration.

Remark 3. [Merits of HLR] Hyper-anchor graph Laplacian
Regularization is introduced into the EDISON model to
leverage the local geometric information present in multi-
view data. Compared to previous Laplacian regularization
approaches (Xie et al., 2020; Ji & Feng, 2023), HLR offers
two clear advantages: 1) The use of hypergraphs captures
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not only linear relationships between anchor points but also
effectively captures high-order relationships among them;
2) The anchor-induced subspace representation maintains
compactness in scale, reducing computational complexity
and enhancing scalability for large datasets.

4. Theoretical Analysis
In this section, we propose an algorithm to optimize the
objective function of EDISON, floowed by its convergence
and complexity analysis.

4.1. Optimization

We employ the ADMM algorithm (Lin et al., 2011) to op-
timize the problem (10). This entails introducing auxiliary
variables G and {Rv}mk=1, thereby transforming the con-
strained problem Eq.(10) into an unconstrained problem.
Subsequently, it is decomposed into seven sub-problems
for further optimization (i.e., Zv,Ev,Wv,Av,Hv,Pv,G).
Due to space constraints, detailed optimization steps and
algorithm pseudocode can be found in Appendix A.

4.2. Convergence Analysis

The convergence of Algorithm 1 is guaranteed through the
validation presented in Theorem 4.1, with comprehensive
and rigorous details available in the Appendix B.

Theorem 4.1. The sequence stemming from the Appendix A
(i.e., St = {Zvt ,Ev

t ,P
v
t ,W

v
t ,A

v
t ,Y

v
1 t,Y

v
2 t,Gt}∞t=1) con-

forms to the following two essential principles:

• {St}∞t=1 remains bounded;

• Each accumulation point of the sequence {St}∞t=1

converges to a stationary Karush-Kuhn-Tucker (KKT)
point.

4.3. Complexity Analysis

The computational load of EDISON involves two
components: 1) variable optimization and 2) clus-
tering. In the initial phase, updating seven vari-
ables (Lvh,Z

v,Ev,Wv,Av,Hv,Pv,G) has specific time
complexities: O(t2m log(t), O(nt2 + ntd), O(nd),
O(nd2 + ntd), O(ntdv+t2dv), O(nt2), O(ntd+ n2mnv),
O(mnt log(mn) + nm2t). The second stage has a time
complexity of O(nt2m2), where d =

∑m
v=1 d

v. Since
t � n, the overall time complexity is O(ntd + n2mnv +
mnt log(mn)), which exhibits a quadratic relationship with
the number of samples. The space complexity, O(ntm +
ndmax), with dmax = max(dv), demonstrates linear scaling
with n.

5. Experiments
In this section, extensive experiments are conducted to verify
the effectiveness and superiority of our EDISON. Notably,
we performed clustering experiments on all datasets with
missing rates of 10%, 30%, and 50%, and recorded the
corresponding clustering results for comparison with other
methods. For the remaining experimental parts, such as
runtime comparison, model analysis, and ablation studies,
we maintained a consistent missing rate of 10%. Due to
space limitations, we present partial experimental results;
for more detailed findings, please refer to the Appendix C.

5.1. Experimental Setup

Datasets: Six multi-view datasets spanning diverse types
and scales (including NGs, BBCSport, HW, Scene15,
MSRCV1, and ALOI-100) are utilized for clustering pur-
poses. Detailed statistical information about these datasets
is documented in Table 1.

Table 1. Statistical Characteristics of Six Datasets.
Datasets Type Samples Clusters Views

NGs Text 500 5 3
BBCSport Text 544 5 2

HW Digit 2000 10 2
Scene15 Scene 4485 15 3

MSRCV1 Object 210 7 5
ALOI-100 Object 10800 100 4

Comparison Methods: We utilized eight representative
methods as baselines to highlight the effectiveness of the
EDISON model, encompassing six shallow-based methods
(BSV (Ng et al., 2001), Concat (Ng et al., 2001), DAIMC
(Hu & Chen, 2018) OPIMC (Hu & Chen, 2019), IMSR
(Liu et al., 2021a), HCLS-CGL (Wen et al., 2023a)) and
two deep-based methods (CDIMC (Wen et al., 2021b) and
DSIMVC (Xu et al., 2022a)).

Evaluation Metrics: Three metrics, including ACC, NMI,
and PUR, are employed for a comprehensive evaluation of
clustering performance, where higher metric values indicate
improved clustering quality.

Incomplete Data Construction: Under the condition that
each sample retains at least one view, we randomly re-
move p% of instances from each view (p=10%, 20%, 50%),
thereby creating incomplete multi-view datasets.

Implementation Details: Parameters for the comparison
methods undergo fine-tuning by guidelines provided in the
respective literature, with the best results documented. Re-
garding EDISON, empirical settings configure the param-
eter δ to 1 and the number of anchors to c, followed by
fine-tuning as explained in the subsection 5.3. Trade-off
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Table 2. Performance Comparison (Mean±Standard Deviation) of Multiple Algorithms Across Six Datasets.
Dataset NGs BBCSport
Metric ACC(%) NMI(%) PUR(%) ACC(%) NMI(%) PUR(%)
Method\Rate 10% 30% 50% 10% 30% 50% 10% 30% 50% 10% 30% 50% 10% 30% 50% 10% 30% 50%
BSV 37.60±0.00 36.60±0.00 20.80±0.00 19.84±0.00 16.03±0.00 1.00±0.00 39.80±0.00 39.80±0.00 21.00±0.00 58.82±0.00 36.03±0.00 35.85±0.00 43.27±0.00 0.83±0.00 0.87±0.00 68.20±0.00 36.21±0.00 36.21±0.00
Concat 69.40±0.00 21.80±0.00 24.40±0.00 58.24±0.00 2.05±0.00 3.55±0.00 69.40±0.00 22.00±0.00 25.60±0.00 36.03±0.00 46.51±0.00 34.19±0.00 1.34±0.00 28.32±0.00 11.94±0.00 36.58±0.00 49.45±0.00 43.38±0.00
DAIMC 86.20±0.00 63.80±0.00 44.40±0.00 69.83±0.00 40.21±0.00 20.58±0.00 86.20±0.00 63.80±0.00 44.80±0.00 74.45±0.00 63.60±0.00 41.73±0.00 63.06±0.00 45.54±0.00 26.12±0.00 78.86±0.00 69.12±0.00 54.04±0.00
OPIMC 30.86±0.44 45.60±6.96 44.28±0.89 12.84±1.92 25.94±4.31 20.00±0.68 31.06±0.44 51.18±5.00 44.46±0.82 47.59±1.69 52.30±3.20 42.61±3.02 26.82±1.77 30.89±1.82 8.20±1.10 51.14±1.28 55.33±2.33 43.49±2.56
CDIMC 20.00±0.00 20.00±0.00 21.20±0.00 0.00±0.00 0.00±0.00 0.90±0.00 20.00±0.00 20.00±0.00 21.20±0.00 41.00±0.00 34.90±0.40 44.60±0.60 12.40±0.00 3.30±0.60 14.70±0.50 41.50±0.00 36.50±0.30 44.60±0.60
IMSR 97.80±0.00 94.00±0.00 77.80±0.00 92.93±0.00 82.32±0.00 50.85±0.00 97.80±0.00 94.00±0.00 77.80±0.00 92.46±0.00 87.32±0.00 42.65±0.00 79.43±0.00 74.77±0.00 28.84±0.00 92.46±0.00 87.32±0.00 57.17±0.00
DSIMVC 63.00±4.80 57.00±4.10 49.70±4.30 48.10±4.60 39.60±4.90 27.60±4.50 63.70±3.90 57.90±3.80 50.70±3.70 56.60±6.00 54.80±7.30 55.50±4.20 36.40±6.40 33.80±7.90 34.30±5.50 62.70±6.10 61.80±5.70 63.40±4.40
HCLS CGL 90.87±0.23 52.90±0.14 51.70±1.27 77.85±0.52 42.14±0.76 34.08±1.63 90.87±0.23 53.70±0.14 52.40±0.85 77.21±0.00 77.94±0.00 43.57±0.00 66.08±0.00 63.83±0.00 25.58±0.00 81.07±0.00 81.62±0.00 51.47±0.00
ours 100.00±0.00 99.20±0.00 99.00±0.00 100.00±0.00 97.21±0.00 96.69±0.00 100.00±0.00 99.20±0.00 99.00±0.00 100.00±0.00 99.08±0.00 93.93±0.00 100.00±0.00 96.70±0.00 85.23±0.00 100.00±0.00 99.08±0.00 93.93±0.00
Dataset MSRCV1 HW
Metric ACC(%) NMI(%) PUR(%) ACC(%) NMI(%) PUR(%)
Method\Rate 10% 30% 50% 10% 30% 50% 10% 30% 50% 10% 30% 50% 10% 30% 50% 10% 30% 50%
BSV 58.10±0.00 42.38±0.00 36.67±0.00 46.12±0.00 28.66±0.00 26.52±0.00 58.57±0.00 42.86±0.00 39.05±0.00 67.65±0.00 60.30±0.00 45.15±0.00 63.11±0.00 50.11±0.00 36.18±0.00 71.45±0.00 60.30±0.00 45.15±0.00
Concat 80.00±0.00 67.14±0.00 42.86±0.00 69.02±0.00 57.60±0.00 31.06±0.00 80.00±0.00 69.05±0.00 45.24±0.00 56.70±0.00 62.60±0.00 37.25±0.00 64.14±0.00 58.47±0.00 33.13±0.00 64.20±0.00 62.80±0.00 38.40±0.00
DAIMC 66.19±0.00 60.48±0.00 60.48±0.00 55.41±0.00 48.59±0.00 49.60±0.00 68.57±0.00 60.48±0.00 64.29±0.00 84.65±0.00 74.65±0.00 67.40±0.00 76.70±0.00 71.49±0.00 55.17±0.00 84.65±0.00 78.25±0.00 67.75±0.00
OPIMC 48.71±0.45 24.57±0.90 20.95±0.00 37.61±1.35 9.59±1.69 4.49±0.11 48.76±0.60 24.86±1.81 21.05±0.30 62.52±0.89 27.50±1.42 15.64±0.30 62.84±1.80 21.01±3.75 2.96±0.07 62.66±0.76 28.15±1.88 16.09±0.27
CDIMC 75.40±0.80 61.80±3.30 45.00±1.40 71.20±0.40 54.10±3.20 40.40±1.30 77.40±0.80 64.60±3.20 47.00±0.90 80.40±3.50 95.50±0.10 70.10±1.90 86.10±2.20 90.50±0.20 69.90±0.70 84.70±3.30 95.50±0.10 71.30±1.50
IMSR 87.14±0.00 74.76±0.00 72.86±0.00 77.34±0.00 63.91±0.00 60.04±0.00 87.14±0.00 76.67±0.00 72.86±0.00 92.10±0.07 90.23±0.11 82.10±0.00 84.73±0.14 81.93±0.19 70.20±0.00 92.10±0.07 90.23±0.11 82.10±0.00
DSIMVC 54.40±3.40 55.10±4.80 54.00±5.50 47.90±4.20 48.20±4.60 46.30±5.10 55.60±3.30 56.40±4.60 55.80±5.30 81.90±5.30 81.80±3.00 78.60±3.20 80.00±3.40 78.90±1.40 75.30±1.80 83.00±4.10 82.50±1.80 78.90±2.70
HCLS CGL 75.24±0.00 71.43±0.00 71.19±0.34 66.22±0.00 61.92±0.00 57.29±0.30 75.24±0.00 71.43±0.00 71.19±0.34 85.10±0.00 86.75±0.00 84.30±0.00 87.57±0.00 86.21±0.00 81.21±0.00 87.35±0.00 86.80±0.00 84.35±0.00
ours 99.05±0.00 92.38±0.00 74.29±0.00 97.84±0.00 85.02±0.00 67.13±0.00 99.05±0.00 92.38±0.00 75.24±0.00 99.60±0.00 99.50±0.00 84.45±0.00 98.91±0.00 98.66±0.00 88.89±0.00 99.60±0.00 99.50±0.00 87.25±0.00
Dataset scene15 Aloi-100
Metric ACC(%) NMI(%) PUR(%) ACC(%) NMI(%) PUR(%)
Method\Rate 10% 30% 50% 10% 30% 50% 10% 30% 50% 10% 30% 50% 10% 30% 50% 10% 30% 50%
BSV 31.68±0.00 25.66±0.00 22.65±0.00 31.77±0.00 24.62±0.00 18.03±0.00 36.37±0.00 29.19±0.00 23.99±0.00 37.53±0.00 29.61±0.00 21.27±0.00 55.14±0.00 44.76±0.00 32.49±0.00 40.38±0.00 32.74±0.00 24.29±0.00
Concat 32.29±0.00 25.80±0.00 22.52±0.00 29.56±0.00 23.84±0.00 18.82±0.00 34.65±0.00 29.28±0.00 24.79±0.00 34.56±0.00 27.47±0.00 20.91±0.00 55.29±0.00 45.76±0.00 38.34±0.00 38.77±0.00 31.15±0.00 24.02±0.00
DAIMC 37.37±0.00 31.22±0.00 25.17±0.00 34.62±0.00 27.55±0.00 18.46±0.00 41.98±0.00 34.76±0.00 27.40±0.00 32.78±0.00 14.31±0.00 10.83±0.00 51.90±0.00 29.63±0.00 25.41±0.00 35.59±0.00 16.32±0.00 12.34±0.00
OPIMC 23.55±0.49 15.19±0.54 14.66±0.02 17.71±1.08 9.81±0.63 9.80±0.07 23.79±0.57 16.81±0.58 16.97±0.07 9.26±1.60 2.29±0.08 2.99±0.28 19.84±3.02 3.34±0.10 5.42±0.59 9.49±1.66 2.30±0.09 3.01±0.28
CDIMC 29.60±1.40 22.10±1.80 13.00±3.20 33.40±2.60 28.00±3.70 10.10±8.20 30.50±1.10 22.60±1.80 13.40±3.50 58.10±1.80 17.50±1.10 6.70±0.50 77.70±1.50 31.30±2.00 17.90±1.30 58.70±1.90 18.30±1.10 7.80±0.60
IMSR 37.28±0.44 28.85±0.09 25.52±0.02 33.84±0.36 25.03±0.49 22.48±0.14 40.47±0.88 31.18±0.08 28.84±0.02 48.57±0.98 37.38±0.25 27.68±0.42 65.79±0.10 57.25±0.13 50.77±0.08 50.69±1.19 39.70±0.04 29.95±0.26
DSIMVC 27.20±1.00 25.90±0.90 26.20±0.80 28.60±1.00 27.30±1.10 26.90±0.80 31.00±0.70 30.10±1.10 29.80±0.70 38.50±1.70 37.00±1.80 34.10±2.00 66.30±0.80 63.80±1.00 60.40±0.90 40.30±1.70 38.90±1.60 36.00±2.00
HCLS CGL 37.07±0.01 37.78±0.02 31.64±0.00 34.68±0.00 33.49±0.03 26.32±0.00 39.18±0.00 39.99±0.02 33.15±0.00 76.60±1.11 72.97±0.38 68.45±0.67 84.59±0.28 78.62±0.28 71.70±0.09 78.63±0.69 74.27±0.50 69.38±0.12
ours 87.78±0.00 50.50±0.00 40.02±0.00 86.57±0.00 54.94±0.00 40.18±0.00 88.43±0.00 53.56±0.00 44.46±0.00 84.95±0.00 73.65±0.00 46.75±0.00 93.18±0.00 84.04±0.00 62.60±0.00 87.38±0.00 76.63±0.00 50.14±0.00

0.1 0.5 1  1.5 2  5  
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
lu

s
te

ri
n
g
 P

e
rf

o
rm

a
n
c
e

ACC

NMI

(a) NGs
0.1 0.5 1  1.5 2  5  

0.4

0.5

0.6

0.7

0.8

0.9

1

C
lu

s
te

ri
n
g
 P

e
rf

o
rm

a
n
c
e

ACC

NMI

(b) BBCSport
0.1 0.5 1  1.5 2  5  

0.4

0.5

0.6

0.7

0.8

0.9

1

C
lu

s
te

ri
n
g
 P

e
rf

o
rm

a
n
c
e

ACC

NMI

(c) MSRCV1

Figure 4. The Performance Variation of EDISON with Different δ.

parameters α, β, and γ are fine-tuned within the range of
[1e-5, 1e+1]. Each experiment is iterated 10 times, and final
results, along with standard deviations, are recorded. MAT-
LAB 2018a is used for experiments with the shallow model
on a computer equipped with a 3.70GHz i9-10900k CPU
and 64GB RAM, while experiments with the deep model
are conducted using PyTorch 1.12 on an RTX 2080Ti GPU.

5.2. Performance and Runtime Comparison

Performance Comparison: Table 2 presents a compre-
hensive comparison between the EDISON model and eight
SOTA models across six datasets. The best and second-best
performances are highlighted in red and blue, respectively.
Three significant observations can be inferred from the anal-
ysis of Table 2: (1) In most scenarios, our EDISON model
demonstrates superior clustering performance. For exam-
ple, on the BBCSport dataset with a 30% missing rate, the
EDISON model surpasses the second-best IMSR model by
12.76%, 21.93%, and 12.76% in terms of ACC, NMI, and
PUR, respectively. Furthermore, on both NGs and BBC-
Sport datasets, it achieves a remarkable 100% clustering
performance across different metrics. This notable achieve-
ment can be attributed to the clever integration of EDR,
GER, and HLR into a unified framework within the EDI-
SON model, ensuring a thorough exploration of prior infor-
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Figure 5. EDISON Performance with Varying Anchor Numbers.

mation in dictionaries, subspaces, and tensors and resulting
in a notable enhancement in clustering performance. (2)
Compared to representative deep-based methods CDIMC
(Wen et al., 2021b) and DSIMVC (Xu et al., 2022a), our
EDISON model outperforms them across all datasets. This
indicates that by judiciously exploiting valuable priors from
multiple views, shallow models can still achieve excellent
clustering performance.

Runtime Comparison: Table 4 provides a comparison of
the runtime of our method with others on a dataset with over
2000 samples, highlighting the fastest and slowest times in
red and blue, respectively. While our model may not be
the absolute fastest, it still yields competitive results. For
instance, on the ALOI-100 dataset, the runtime of EDISON
is quicker than the SOTA HCLS-CGL 974 seconds. This
highlights our method’s effectiveness in addressing high
computational complexity by constructing anchor graphs,
enabling efficient handling of large-scale datasets.

5.3. Model Analysis

Influence of δ in GER: To examine the properties of Gaus-
sian Error Rank (GER), we investigate the impact of the
built-in parameter δ on the performance of EDISON. Specif-
ically, we vary the values of δ within the range [0.1, 0.5, 1,
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Figure 6. Parameters Sensitivity Analysis of EDISON Model.

Table 3. Runtime Comparison (in Seconds) of Multi-view Cluster-
ing Methods on Datasets with over 2,000 Samples.

Datasets BSV Concat OPIMC DAIMC DSIMVC CDIMC IMSR HCLS CGL EDISON
HW 0.21 0.11 0.46 43.87 896.24 529.41 22.01 62.42 13.53

Scene15 0.49 0.24 0.38 206.59 576.86 503.84 66.68 181.98 35.34
ALOI-100 4.25 1.95 4.84 3084.00 3526.60 3472.82 2112.20 1169.70 193.28

1.5, 2, 5] and record the clustering performance in Figure
5. Analyzing Figure 4 reveals that, globally, EDISON’s
clustering performance fluctuates to some extent with the
changing parameter values. However, within certain local
ranges, the EDISON model consistently demonstrates stable
and efficient performance. This phenomenon arises from δ
determining the penalty strength for tensor singular values,
leading to different performances in tensor representation
and clustering efficiency under varying penalty strengths.
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Figure 7. Convergence Curves of EDISON on Three Datasets.

Impact of Anchor Quantity: The efficiency of the EDI-
SON model is influenced to a certain extent by the chosen
number of anchor points. Here, we investigate the impact
of varying numbers of anchor points on the performance of
the EDISON model. Figure 5 depicts the trend in clustering
performance as the number of anchor points changes, with
the range of anchor point values spanning [c, 7c], where c
represents the true number of clusters. It can be observed
that, when the number of anchors is either c or 2c, the EDI-
SON model achieves excellent performance across different
datasets. However, as the number of anchors increases, its
performance shows a declining trend on the NGs dataset.
This suggests that our model can learn a small number of
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Figure 8. t-SNE Visualization of Graph Obtained by EDISON.

highly discriminative anchors to effectively cover all sam-
ples, ensuring computational efficiency.

Parameters Analysis: Three trade-off parameters, denoted
as α, β, and γ, control the importance of different regulariza-
tion terms in the EDISON model and need to be fine-tuned.
We fix one parameter and employ a gradient search strategy
to fine-tune the remaining two within the range [1e-5, 10],
as illustrated in Figure 6. It can be observed that, globally,
the EDISON model exhibits some fluctuation with differ-
ent parameter values. However, within considerable local
ranges, the EDISON model consistently demonstrates stable
performance. This to some extent indicates the robustness
of the EDISON model.

Convergence Behavior: Figure 7 depicts the convergence
curve of the EDISON model, with stopping criteria set
as reconstruction error (RE =

∑m
v=1 ‖Xv + PvMv −

Av(Zv)>−Wv(Xv + PvMv) − Ev‖∞) and matching
error (ME = ‖Z −J ‖∞). It can be observed that, during
the initial iterations, the stopping criteria experience a sharp
decline, approaching 0 after approximately 10 iterations
and eventually stabilizing. This emphasizes the effective
convergence achieved by the EDISON model.

Graph Visualization: To visually illustrate the graph struc-
tures learned by the EDISON model, we present the t-SNE
visualization of each view anchor graph and the consensus
anchor graph in Figure 8. The clustering structure of the
consensus graph is clearer compared to the view-specific
graphs, indicating the successful integration of rich informa-
tion from multiple views by the EDISON model.

5.4. Ablation Study

Finally, we perform ablation studies to evaluate the influ-
ence of different modules within the EDISON model on
the overall performance. We systematically set parameters
α, β, and γ to 0, effectively excluding the corresponding

8
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Table 4. Ablation Experiments for EDISON Model.
Datasets NGs BBCSport

EAD RE HLR ACC NMI PUR ACC NMI PUR
X 0.632 0.463 0.652 0.632 0.612 0.739

X 0.500 0.325 0.530 0.805 0.664 0.805
X 0.964 0.890 0.964 0.991 0.970 0.991

X X 0.978 0.935 0.978 0.619 0.601 0.735
X X 0.978 0.935 0.978 0.619 0.601 0.735
X X ‘ 0.526 0.304 0.552 0.881 0.739 0.881
X X X 1.000 1.000 1.000 1.000 1.000 1.000

modules EDR, Reconstruction Error (RE), and HLR. The
experiment results are displayed in Table 4, where ’X’ sig-
nifies the removal of the respective module, and the best
results are highlighted in red. Eliminating one or two mod-
ules from the EDISON model leads to a noticeable decline
in performance compared to the complete EDISON model.
This underscores the adept integration of multiple modules
within the EDISON model into a unified framework, effec-
tively leveraging the rich priors inherent in multi-view data
and thereby enhancing clustering performance.

6. Conclusion
This paper presents EDISON, a scalable incomplete multi-
view clustering model that unifies EDR, GER, and HLR.
This integrated framework aims to exploit valuable informa-
tion in less-than-ideal multi-view data, thereby enhancing
clustering performance while maintaining efficient compu-
tational complexity. Extensive experimental results demon-
strate the superiority of the EDISON model over SOTA
methods in terms of clustering effectiveness and efficiency.
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In this appendix, we provide supplementary explanations for the theoretical analysis and proofs presented in the main
manuscript, along with additional experimental results. The document is organized as follows: Appendix A offers detailed
derivations for model optimization; Appendix B presents the convergence proof for Algorithm 1. Lastly, Appendix C
provides a comprehensive overview of the experimental results.

A. Optimization
We employ the ADMM algorithm (Lin et al., 2011) to optimize the problem (10). This entails introducing auxiliary variables
G and Kv , thereby transforming Eq. (10) into an unconstrained optimization problem.

min
{Zv,Pv,Wv,Hv,Av},E,G

‖G‖GER +
α

2

m∑
v=1

‖Wv‖2F + β‖E‖2,1 + γ

m∑
v=1

Tr(HvLvh(Hv)>) +
ρ

2
‖Z − G +

J
ρ
‖2F

+
µ1

2

m∑
v=1

‖Yv−Av(Zv)>−WvYv −Ev +
Bv

1

µ1
‖2F +

µ2

2

m∑
v=1

‖Zv −Hv +
Bv

2

µ2
‖2F ,

(11)

where Yv = Xv + PvMv, J , Bv
1, and Bv

2 function as Lagrange multipliers, while ρ, µ1, and µ2 play roles as penalty
factors. This leads to the further reduction of the problem (11) into seven sub-problems outlined as follows:

• Solving {Zv} with fixed {Av}, {Pv}, {Wv}, {Hv}, E and G. In this setting, attaining the optimal solution for Zv

involves equating the partial derivative of Eq. (11) concerning Zv to zero, leading to the derivation of the following solution:

Zv = (ρGv −J v + µ1(Yv)>Av − µ1(Yv)>(Wv)>Av

− µ1(Ev)>Av + (Bv
1)>Av + µ2H

v −Bv
2)× [(ρ+ µ2)I + µ1(Av)>Av]−1.

(12)

• Solving {Wv} with fixed {Zv}, {Av}, {Pv}, {Hv}, E and G. In the current context, setting the first derivative of the
problem (11) concerning Wv to zero results in the following expression for the optimal solution of Wv:

Wv =(µ1Y
v − µ1A

v(Zv)> − µ1E
v + Bv

1)× (Yv)> × [αI + µ1Y
v(Yv)>]−1. (13)

• Solving E with fixed {Zv}, {Av}, {Pv}, {Wv}, {Hv} and G. In such circumstances, the optimal solution for variable
E can be derived by optimizing the following problem:

min
E

β

µ1
‖E‖2,1 +

1

2
‖E−D‖2F . (14)

where D is formed by horizontally stacking matrix Yv −Av(Zv)> −WvYv +
Bv1
µ1

along the rows. The optimal solution
can be attained through the utilization of the minimization thresholding operator as outlined below:

E∗:,i =


‖D:,i‖2− β

µ1

‖D:,i‖2 D:,i, ‖D:,i‖2 > β
µ1

0, otherwise
(15)

• Solving {Hv} with fixed {Zv}, {Av}, {Pv}, {Wv}, E and G. In this scenario, optimizing problem (11) involves taking
the partial derivative concerning Hv , setting it to zero, and obtaining the optimal Hv as follows:

Hv = (µ2Z
v −Bv

2)(2γLvh + µ2I)−1, (16)

• Solving {Pv} with fixed {Zv}, {Av}, {Wv}, {Hv}, E and G. In this scenario, optimizing problem (11) involves taking
the partial derivative concerning Qv , setting it to zero, and obtaining the optimal Qv as follows:

Pv = [(I−Wv)−1(Av(Zv)> + Ev − Bv
1

µ1
)−Xv] ∗ Pinv(Mv) (17)

• Solving {Av} with fixed {Zv}, {Pv}, {Wv}, {Hv}, E and G. Under such conditions, the optimization of variable Av

can be streamlined into the following problem:

max
Av

Tr((Av)>B), s.t. (Av)>Av = I, (18)
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where B=
∑m
v=1

µ1

2 (Yv−WvYv−Ev+
Bv1
µ1

)Zv . Given the SVD of B as B = UΣV>, the optimal A = UV>.

• Solving G with fixed {Zv}, {Av}, {Pv}, {Wv}, {Hv} and E. In this scenario, the optimal value of G is determined by
solving the following problem:

min
G
‖G‖GER +

ρ

2

∥∥∥∥Z − G +
J
ρ

∥∥∥∥2
F

(19)

The Eq. (19) can be regarded as a tensorial hyperbolic tangent rank minimization (HTRM) problem, and it can be effectively
resolved by leveraging the following theorem:

Theorem A.1. Given tensor G ∈ Rn1×n2×n3 and its t-SVD G = U ∗V ∗W>. The problem of tensorial hyperbolic tangent
rank minimization can be formulated as follows:

min
J

τ‖J ‖GER +
1

2
‖J − G‖2F , (20)

whose optimal solution is J ∗ = U ∗ ifft(Θf,τ (Vf ), [], 3) ∗W>, where ifft(Θf,τ (V(k)
f ), [], 3) is a f -diagonal tensor,

and satisfies Θf,τ (V(k)
f (ii)) = minx≥0

1
2 (x− Vkf (ii)2) + τf(x), where f(x) = 2√

π

∫ δx
0
e−l

2

dl.

Here we provide the proof of Theorem A.1. To establish the validity of Theorem A.1, we shall initially present the subsequent
lemma.

Lemma A.2. Given two matrices J, G ∈ Rm×n, and G = UVGW> represents the singular value decomposition (SVD)
of G, and τ ≥ 0, we seek an optimal solution to the following problem:

min
J
τ‖J‖TRS +

1

2
‖J−G‖2F , (21)

is J∗ = UVJW>, where PJ = diag(δ∗), δ∗ = Θf,τ (δG) and Θf,τ (δG) refers to the Moreau-Yosida operator (Lemaréchal
& Sagastizábal, 1997):

Θf,τ (δG) := min
δ≥0

τf(δ) +
1

2
‖δ − δG‖22. (22)

where f(x) = 2√
π

∫ δx
0
e−l

2

dl.

Proof. In the Fourier domain, given the linearity of the FFT and the relationship ‖X‖2F = 1
n3
‖X f‖2F , then Eq. (20) can be

rephrased as:
1

2
‖J − G‖2F + τ‖J ‖HTR,

=
1

2n3
‖J f − Gf‖2F +

τ

n3

n3∑
k=1

‖J k
f‖HTR

=
1

n3

n3∑
k=1

(1

2

∥∥∥J k
f − G

k
f

∥∥∥2
F

+ τ
∥∥∥J k

f

∥∥∥)
(23)

Consequently, the initial tensor optimization problem can be reformulated into n3 independent matrix optimization problems.

arg min
J k
f

(1

2

∥∥∥J k
f − G

k
f

∥∥∥2
F

+ τ
∥∥∥J k

f

∥∥∥) (24)

for 1 ≤ k ≤ n3.

The SVD of Gkf is Gkf = UkfV
k
f (Wk

f )H . Subsequently, leveraging Lemma 1, the optimal solution for Eq. (24) can be
derived.

J k
f

∗
= UkfΘf,τVkf (Wk

f )H . (25)
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Algorithm 1 Algorithm for solving Eq. (10)
Input: Incomplete multi-view data χ = {Xv ∈ Rdv×n}mv=1, index matrix {Mv ∈ Rnv×n}mv=1 , anchor points
matrix{Av ∈ Rdv×t}mv=1 trade-off parameters α, β, γ, δ > 0 and cluster number c .
Output: Clustering results
Initialize Zv,Wv,Pv,Hv,Ev,Bv

1,B
v
2 with zero matrix,Yv = Xv + PvMv , G = J = 0, µ1 = µ2 = ρ = 10−5,

η = 2, µmax = ρmax = 1010 , ε = 10−7

repeat
Compute hyper-Laplacian matrices {Lvh}mv=1 from {Av}mv=1

Update Zv by solving Eq. (14)
Update Wv by solving Eq. (15)
Update Ev by solving Eq. (17)
Update Hv by solving Eq. (18)
Update Pv by solving Eq. (19)
Update Yv by Yv = Xv + PvMv

Update Av by solving Eq. (20)
Update G by using Eq. (23)
Update Lagrange multiplier and corresponding penalty parameters by using Eq. (24);

until ‖Yv −Av(Zv)> −WvYv −Ev‖∞ < ε and ‖Z −G‖∞ < ε

where Θf,τ is determined through the resolution of the following problem:

arg min
δ≥0

1

2
(x− Vkf (i, i))2 + τf(x) (26)

where f(x) = 2√
π

∫ δx
0
e−l

2

dl.

To begin, it’s essential to acknowledge that both f(x) and 1
2 (x − Vkf (i, i))2 exhibit non-decreasing behavior when

δ > Vkf (i, i)). Consequently, the value Θf,τVkf (i, i) remains within the range [0, Vkf (i, i)]. Moreover, when Vkf (i, i) = 0,
it’s evident that the optimal solution Θf,τVkf (i, i) = 0.

Therefore, once we acquire the optimal solution J ∗f through rule (25), the subsequent step involves utilizing the inverse Fast
Fourier Transform (FFT) operator: ifft[J ∗f , [], 3] = U ifft(Θf,τV)W>. This process enables us to derive the value J ∗f .

Eq. (26) presents a combination of both concave and convex functions, making it amenable to the application of the
difference of convex (DC) programming (Dinh & Thi, 1997), which, in turn, enables the derivation of a closed-form solution.

φiter+1 =

(
V(k)
f (ii)− β∂f(φiter)

ρ

)
+

(27)

where φ = Θf, βρ
(V(k)

f (ii)), f(x) = 2√
π

∫ δx
0
e−l

2

dl and iter represents the number of iterations.

Finally, the Lagrange multiplier and associated penalty parameters are updated as follows:
J = J + ρ(Z − G),
Bv

1 = Bv
1+ µ1(Yv−Av(Zv)>−WvYv−Ev),

Bv
2 = Bv

2+ µ2(Zv −Hv),
µi = min(ηµi, µmax), i = 1, 2,
ρ = min(ηρ, ρmax).

(28)

At this juncture, the closed-form solution for each variable in problem (11) has been optimized, and the optimization process
is summarized in Algorithm 1.

B. Convergence Proof
Theorem B.1. The sequence stemming from the Algorithm 1 (i.e., St = {Zvt ,Ev

t ,P
v
t ,A

v
t ,J t,Y

v
1 t,Y

v
2 t,Kt}∞t=1) conforms

to the following two essential principles:
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• {St}∞t=1 remains bounded;

• Each accumulation point of the sequence {St}∞t=1 converges to a stationary Karush-Kuhn-Tucker (KKT) point.

To validate Theorem B.1, we start by introducing two crucial lemmas.

Lemma B.2. In the setting of a real Hilbert space H endowed with an inner product 〈·, ·〉 and a norm | · | with its dual
norm ‖ · ‖dual. Consider y ∈ ∂|x|, where ∂f(·) denotes the subdifferential of the function f(·). For x 6= 0, it holds that
|y|dual = 1, and for x = 0, it holds that |y|dual ≤ 1.

Lemma B.3. Let F : Rm×n → R be a function defined as F(X) = f ◦ δ(X), where X ∈ Rm×n and δ(X) =
(σ1(X), . . . , σr(X)) represents the singular value vector obtained from the SVD of X. Here, r = min(m,n), and
f(·) : Rr → R is a differentiable and symmetric function with respect to its arguments in δ(X). The subdifferential of F (X)
at X is given by:

∂F (X)

∂X
= UDiag(∂f(δ(X)))W>,

where ∂f(δ(X)) =
(
∂f(σ1(x))

∂X , . . . , ∂f(σr(x))∂X

)
.

Proof of the 1st principle: In the (t+ 1)-th iteration, the updating rule of Ev
t+1 guarantees the fulfillment of the first-order

optimal condition. Therefore, we can infer that:

0 ∈ β∂‖Ev
t+1‖2,1

+ µ1t‖Ev
t+1−(Xv

t+1−Av(Zvt+1)>−Pv
t+1X

v+
Yv

1t

µ1
)‖2F

= β∂‖Ev
t+1‖2,1 −Yv

1,t+1,

(29)

Thus, we have:
1

β
[Yv

1,t+1]:,j = ∂‖[Ev
t+1]:,j‖2, (30)

where [Yv
1,t+1]:,j and [Ev

t+1]:,j represent the j-th column of Yv
1,t+1 and Ev

t+1, respectively. Additionally, considering the
self-duality of the `2 norm and relying on B.2, we can establish that 1

β [Yv
1,t+1]:,j ≤ 1. Therefore, the sequence [Yv

1,t+1] is
bounded.

In a similar vein, in accordance with the update regulation of Qv
t+1, Y2,t+1 attains optimality, meeting the requirements of

the first-order optimality condition. Consequently,

0 ∈ γ∂Tr(Qv
t+1L

v
t+1(Qv

t+1)>) + µ2(Zvt+1 −Qv
t+1 +

Yv
2t

µ2
)

= γ∂Tr(Qv
t+1L

v
t+1(Qv

t+1)>)−Yv
2,t+1

(31)

where the equation holds true due to the assertion that Yv
2,t+1 = Yv

2,t +µ2(Zvt+1−Qv
t+1). Hence, it follows that {Yv

2,t+1}
is bounded.

Next, we confirm the boundedness of {Kt+1}. Given the update rule for J , the optimality of J t+1 ensures it meets the
first-order optimality condition. This indicates that:

∂‖J t+1‖HTR = Kt+1. (32)

Given the t-SVD of tensor J as U ∗ V ∗WT , the utilization of B.3 leads us to the following outcome:

‖∂‖J t+1‖HTR‖2F =

∥∥∥∥ 1

n
U ∗ ifft(∂f(Vf ), [], 3) ∗WT

∥∥∥∥
=

∥∥∥∥ 1

n2
(ifft(∂f(Vf ), [], 3))

∥∥∥∥2
F

=

∥∥∥∥ 1

n3
(∂f(Vf ))

∥∥∥∥2
F

≤ 1

n3

n∑
k=1

min(n,m)∑
j=1

[(∂f(Vkf (jj))]2.

(33)
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This implies that ∂‖J f,t+1‖TRS is bounded. Moreover, the boundedness of ∂‖J t+1‖HTR is also ensured. Thus, utilizing
Eq. (33) reveals the bounded nature of {J t+1}.

Throughout the iterative steps outlined in Algorithm 1, we can deduce the following:

L(Zvt+1,E
v
t+1,P

v
t+1,A

v
t+1,J t+1,Y

v
1,t,Y

v
2,t,Kt, ρt, µ1,t, µ2,t)

≤ L(Zvt ,E
v
t ,P

v
t ,A

v
t ,J t,Y

v
1,t,Y

v
2,t,Kt, ρt, µ1t, µ2,t)

= L(Zvt ,E
v
t ,P

v
t ,A

v
t ,J t,Y

v
1,t−1,Y

v
2,t−1,Kt−1, ρt−1, µ1,t−1, µ2,t−1)

+
ρt − ρt−1

2ρ2t−1
‖Kt −Kt−1‖2F +

µ1,t − µ1,t−1

2µ2
1,t−1

∥∥Yv
1,t −Yv

1,t−1
∥∥2
F

+
µ2,t − µ2,t−1

2µ2
2,t−1

∥∥Yv
2,t −Yv

2,t−1
∥∥2
F

(34)

Hence, by summing both sides of Eq. (34) over t from 1 to n, we obtain the following outcome:

L(Zvt+1,E
v
t+1,P

v
t+1,A

v
t+1,J t+1,Y

v
1,t,Y

v
2,t,Kt, ρt, µ1,t, µ2,t)

≤ L(Zv1,E
v
1,P

v
1,A

v
1,J 1,Y

v
1,0,Y

v
2,0,K0, ρ0, µ1,0, µ2,0)

+

n∑
t=1

ρt − ρt−1
2ρ2t−1

‖Kt −Kt−1‖2F

+

n∑
t=1

µ1,t − µ1,t−1

2µ2
1,t−1

∥∥Yv
1,t −Yv

1,t−1
∥∥2
F

+

n∑
t=1

µ2,t − µ2,t−1

2µ2
2,t−1

∥∥Yv
2,t −Yv

2,t−1
∥∥2
F

(35)

Since L(Zv1,E
v
1,P

v
1,A

v
1,J 1,Y

v
1,0,Y

v
2,0,K0, ρ0, µ1,0, µ2,0) is finite. Furthermore, sequences {Kt}, {Y1,t}, {Y2,t},∑n

t=1
ρt−ρt−1

2ρ2t−1
,
∑n
t=1

µ1,t−µ1,t−1

2µ2
1,t−1

and
∑n
t=1

µ2,t−µ2,t−1

2µ2
2,t−1

are bounded. Thus, we can confidently state that

L(Zvt+1,E
v
t+1,P

v
t+1,A

v
t+1,J t+1,Y

v
1,t,Y

v
2,t,Kt, ρt, µ1,t, µ2,t) remains bounded as well. Moreover, considering the

boundedness of ‖J t+1‖HTR, it is apparent that all singular values of J t+1 are also bounded. Additionally, building upon
the subsequent equation:

‖J t+1‖2F =
1

n3
‖J t+1‖2F

=
1

n3

n3∑
i=1

min(n1,n2)∑
j=1

[((V(i)
f (jj))]2,

(36)

Therefore, we can affirm that the sequence {J t+1} being bounded implies the boundedness of the sequences {Av
t+1},

{Zvt+1}, and {Pv
t+1} are also bounded.

Drawing from the preceding analysis, we can confidently conclude that the sequence St =
{Zvt ,Ev

t ,P
v
t ,A

v
t ,J t,Y

v
1 t,Y

v
2 t,Kt}∞t=1 is bounded.

Proof of the 2nd principle: By appealing to the Weierstrass-Bolzano theorem, we establish the existence of at least one
accumulation point, denoted as S∗t = {Zvt ,Ev

t ,P
v
t ,A

v
t ,Kt,Yv

1 t,Y
v
2 t,J t}∞t=1, in the sequence {St}∞t=1. As a result, we

can assert:
lim
t→∞

(Zvt ,E
v
t ,P

v
t ,A

v
t ,J t,Y

v
1 t,Y

v
2 t,Kt)

=(Zv∗,E
v
∗,P

∗
t ,A

v
∗,J ∗,Yv

1∗,Y
v
2∗,K∗).

(37)

Referring to the update procedure ofK, Y1 and Y2, we can derive the following equations:

Zt+1 −J t+1 = (Kt+1 −Kt)/ρt,
Xv
t+1−Av

t+1(Zvt+1)>−Pv
t+1X

v−Ev
t+1=(Yv

1,t+1−Yv
1,t)/µ1,t,

Zvt+1 −Qv
t+1 = (Yv

2,t+1 −Yv
2,t)/µ2,t.

(38)
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Given the boundedness of the sequences {Kt}, {Yv
1,t} and {Yv

2,t}, the the fact that limt→∞, ρt = ∞, µ1,t = ∞, and
µ2,t =∞, we can draw the following conclusion:

lim
t→∞
Zt+1 −J t+1 = lim

t→∞
(Kt+1 −Kt)/ρt = 0

lim
t→∞

Xv
t+1 −Av

t+1(Zvt+1)> −Pv
t+1X

v −Ev
t+1 = lim

t→∞
(Yv

1,t+1Y
v
1,t)/µ1,t = 0,

lim
t→∞

Zvt+1 −Qv
t+1 = lim

t→∞
(Yv

2,t+1Y
v
2,t)/µ2,t = 0.

(39)

Then, we have Z∗ −J ∗ = 0, Xv −Av
∗(Z

v
∗)
> −Pv

∗X
v −Ev

∗ = 0, Zv∗ −Qv
∗ = 0. Moreover, owing to the fulfillment of

the first-order optimality conditions for J t+1, Ev
t+1 and Qv

t+1 we can deduce:

0 ∈ ∂‖J t+1‖GER −Kt+1 ⇒ K∗ = ∂‖J ∗‖GER

0 ∈ β∂‖Ev
t+1‖2,1 −Yv

1,t+1 ⇒ Yv
1,∗ = β∂‖Ev

∗‖2,1
0 ∈ γ∂Tr(Qv

t+1L
v
t+1(Qv

t+1)>)−Yv
2,t+1

⇒ Yv
2,∗ = γ∂Tr(Qv

∗L
v
∗(Q

v
∗)
>)

(40)

Hence, the KKT conditions are satisfied by the accumulation point of the sequencethe St =
{Zvt ,Ev

t ,P
v
t ,A

v
t ,J t,Y

v
1 t,Y

v
2 t,Kt}∞t=1, obtained through solving the objective function of the EDISON model.

C. More Experimental Results
This section presents the experimental results for all six challenging datasets, encompassing the impact of parameter δ,
the influence of anchor points on clustering performance, parameter sensitivity analysis, convergence curves, and ablation
experiments.

Influence of δ in GER: Figure 9 depicts the variation in clustering performance of the EDISON model concerning the
internal parameter δ within the HTR across eight datasets. As anticipated, different values of δ exhibit an impact on
clustering performance. Optimal clustering performance is achieved with a δ value of 1 for datasets NGs, BBCSpor and
MSRCV1, while datasets HW, Scene15,and ALOI-100 demonstrate improved performance with δ values of 0.5 and 0.1,
respectively.

Impact of Anchor Quantity: Figure 10 displays the analysis regarding the number of anchor points across all six datasets.
It is apparent that greater quantity of selected anchors does not necessarily result in better performance. This indicates
that a small, discriminative set of anchor points can significantly enhance clustering performance compared to a larger
set of redundant ones. Moreover, it is evident that for all datasets, the number of anchor points is set equal to the number
of clusters (i.e., t = 2c), resulting in optimal clustering outcomes. These experimental findings highlight our method’s
efficiency in effectively covering the entire dataset by employing a minimal number of anchor points, thereby enhancing
both effectiveness and efficiency.

Parameters Analysis: The sensitivity analysis of the EDISON model concerning three trade-off parameters, α, β and γ
across eight datasets is illustrated in Figure 11. It can be observed that varying combinations of these parameters lead to
fluctuations in the clustering performance of the EDISON model. However, when these three parameters fluctuate within
a certain range, the EDISON model demonstrates relatively stable clustering performance. This indicates the model’s
adeptness in amalgamating different regularization terms within a unified framework, effectively extracting rich information
from multi-view data.

Convergence Behavior: Figure 12 presents the convergence curves for the reconstruction error (RE) and matching error
(ME) of the EDISON model across eight datasets (RE =

∑m
v=1 ‖Xv−Av(Zv)>−PvXv −Ev‖∞ and ME = ‖Z −J ‖∞

and ME = ‖Z −J ‖∞). It is evident that both RE and ME converge rapidly to 0 within 15 iterations across all datasets,
affirming the robust convergence of the EDISON model.

Ablation Study: Table 5-Table 7 report the results of ablation experiments conducted across six datasets, evaluating three
metrics. These experiments involved selectively removing the EDR, GER, and HLR modules from the EDISON model in
different combinations, indicated by checkmarks denoting their inclusion. The experimental outcomes distinctly reveal that
the clustering performance of the downgraded models—resulting from the exclusion of one or two sub-modules from the
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Figure 9. The Performance Variation of EDISON with Different δ.
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Figure 10. Parameters Sensitivity Analysis of EDISON Model.

EDISON model—significantly lags behind that of the complete EDISON model. This emphasizes the successful synergy
among EDR, GER, and HLR within the EDISON framework, enabling them to collaboratively leverage the rich information
inherent in multi-view data and achieve commendable clustering performance.
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Figure 11. Parameters Sensitivity Analysis of EDISON Model.
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Figure 12. Convergence Curves of EDISON on Three Datasets.
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Table 5. Ablation Experiments for EDISON Model.

Datasets NGs BBCSport
EAD RE HLR ACC NMI PUR ACC NMI PUR
X 0.632 0.463 0.652 0.632 0.612 0.739

X 0.500 0.325 0.530 0.805 0.664 0.805
X 0.964 0.890 0.964 0.991 0.970 0.991

X X 0.978 0.935 0.978 0.619 0.601 0.735
X X 0.978 0.935 0.978 0.619 0.601 0.735
X X 0.526 0.304 0.552 0.881 0.739 0.881
X X X 1.000 1.000 1.000 1.000 1.000 1.000

Table 6. Ablation Experiments for EDISON Model.

Datasets MSRCV1 HW
EAD RE HLR ACC NMI PUR ACC NMI PUR
X 0.290 0.224 0.305 0.669 0.683 0.670

X 0.295 0.239 0.310 0.637 0.650 0.642
X 0.610 0.575 0.624 0.997 0.991 0.997

X X 0.405 0.353 0.414 0.852 0.912 0.891
X X 0.367 0.319 0.367 0.857 0.924 0.896
X X 0.295 0.262 0.305 0.557 0.589 0.560
X X X 0.991 0.978 0.991 0.996 0.989 0.996

Table 7. Ablation Experiments for EDISON Model.

Datasets Scene15 ALOI-100
EAD RE HLR ACC NMI PUR ACC NMI PUR
X 0.157 0.065 0.165 0.064 0.144 0.067

X 0.124 0.045 0.134 0.081 0.180 0.085
X 0.790 0.821 0.839 0.670 0.834 0.720

X X 0.766 0.835 0.806 0.714 0.870 0.755
X X 0.643 0.633 0.659 0.706 0.865 0.740
X X 0.127 0.067 0.144 0.073 0.173 0.076
X X X 0.878 0.866 0.884 0.850 0.932 0.874
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