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Abstract
Collaboration between different data centers is
often challenged by heterogeneity across sites.
To account for the heterogeneity, the state-of-the-
art method is to re-weight the covariate distribu-
tions in each site to match the distribution of the
target population. Nevertheless, this method still
relies on the concept of traditional meta-analysis
after adjusting for the distribution shift. This
work proposes a collaborative inverse propensity
score weighting estimator for causal inference
with heterogeneous data. Instead of adjusting
the distribution shift separately, we use weighted
propensity score models to collaboratively adjust
for the distribution shift. Our method shows sig-
nificant improvements over the methods based
on meta-analysis when heterogeneity increases.
By incorporating outcome regression models, we
prove the asymptotic normality when the covari-
ates have dimension d < 8. Our methods pre-
serve privacy at individual sites by implementing
federated learning protocols.

1. Introduction
The booming of Federated Learning (FL) has drawn atten-
tion in medical and social sciences, where sharing datasets
between data centers is often limited. However, their re-
search focuses more on Causal Inference, in which pre-
diction gets less attention, whereas valid inference is the
main focus. For example, Meta-analysis takes the weighted
mean of published estimators of the average treatment ef-
fect (ATE) and mainly focuses on choosing optimal weights
and making inferences.

Given homogeneous data, how could Federated Learning
help Causal Inference? The estimation of ATE commonly
incorporates nuisance prediction models, e.g., the propen-
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sity score model. Thanks to the homogeneity, we can use
FL methods to train a shared propensity score model, then
each site gets its own ATE estimator, and finally, the central
server uses Meta-analysis to take the weighted mean.

Nevertheless, given heterogeneous data, Federated Learn-
ing seems to play a negligible role. Since propensity score
models differ between sites, training a shared model is
meaningless. As a result, all methods fall within the scope
of Meta-analysis. For example, to estimate the ATE for a
target site, Han et al. (2022) and Han et al. (2023b) con-
sider using density ratio to re-weight source sites and sum-
marizing estimates from source sites with Meta-analysis.

We propose a novel method tailored for collaboration with
heterogeneous data. Suppose we have K sites, denote the
ATE as τ , the nuisance propensity model as e, the site-wise
weight as ηk. Instead of taking the weighted mean after-
ward, we directly take the weighted mean of nuisance mod-
els and get τ̂k(

∑K
r=1 ηr êr) in each site k, which is incon-

sistent. Then, we could recover a consistent estimator τ̂CLB

by taking the average across all sites. Equations (1) and (2)
summarize the previous and our estimators.

τ̂homo =

K∑
k=1

ηk τ̂k(êFL) τ̂heter =

K∑
k=1

ηk τ̂k(êk), (1)

we propose: τ̂CLB =

K∑
k=1

τ̂k(
∑K

r=1 ηr êr). (2)

Our method outperforms previous ones in several ways:
first, it is the first method that allows collaboration across
disjoint domains without additional assumptions; second,
it achieves better accuracy than Meta-analysis; third, it re-
mains stable even as the heterogeneity between sites in-
creases, which encourages collaboration from a broader
range. We provide theory and experiment to demonstrate
these claims.

2. Problem Setup
We use S = [K] to denote the set of sites, with D(k) being
the dataset of site k. LetZ be the binary treatment,X ∈ Rd

be the covariates with dimension d, Y be the outcome. Let
Y (z) be the potential outcome under treatment z ∈ {1, 0}.
Classical causal inference only copes with the biased sam-
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pling of Z. However, we need to cope with multiple sites.
We first present a motivating example from Meta-analysis
to model the actual data-generating procedure.

Example 1 (Collaboration of Clinical Trails). Koesters
et al. (2013) reviews clinical trials of Agomelatine, an
antidepressant drug approved by the European Medicines
Agency in 2009. The 13 included trials have different data
sizes and demographic distributions. One study was car-
ried out on individuals aged 60 or above, and the remain-
ing is for all ages. Each study reports the mean difference
in Hamilton Rating Scale for Depression (HRSD) scores
between treatment and control groups.

The target group in Example 1 is the patients with depres-
sion. However, each clinical trial is a biased sample from
the target population. Abstracting from this example, we
propose a sampling-selecting framework for collaborative
causal inference:

1. Sampling: Sample an individual i from the target dis-
tribution, let Si ∈ {(k, Z) | k ∈ S, Z ∈ {0, 1}} ∪ ∅
be the selection indicator. If S = (k, 1), individual
i gets selected to site k and gets treated. If S = ∅,
the individual is eliminated from the dataset. Sample
(Xi, Yi(1), Yi(0), Si) i.i.d. from the target distribution
according to Equation (3) and get the pooled dataset
(4).

P(S = ∅ | X) = e∅(X),

P(S = (k, z) | X) = e(k,z)(X)

with e∅(X) +

K∑
k=1

∑
z∈{0,1}

e(k,z)(X) = 1. (3)

DMeta = {(Xi, Yi(1), Yi(0), Si) | i ∈ [N ]}. (4)

2. Selecting: We use Z(Si) to denote the treatment in-
dicator corresponding to Si. We follow the potential
outcome framework and invoke the Stable Unit Treat-
ment Value Assumption (SUTVA). Therefore, Yi =
Z(Si)Yi(1) + {1− Z(Si)}Yi(0). Split DMeta to each
site and treatment/control groups according to S and
get

D(k) = {(Xi, Yi, Zi) ∈ DMeta | Si = (k, Zi)}. (5)

Furthermore, census data commonly reflects the target dis-
tribution of covariates. Therefore, we assume there’s a pub-
lic dataset D(t) that contains covariates information.

D(t) = {(Xi) | Xi drawn i.i.d. from target distribution}.
(6)

Figure 1 visualizes the data-generating process. Sites se-
lect from the target distribution heterogeneously. Xiong

(a) Sampling-Selecting Framework.

Selection to sites

Discard

S = (k,1)

S = (k,0)

S = (ℓ,1)

S = ∅
⋮

Target Population

⋮
Census Data

D(t)

Figure 1: Visualization of the data-generating process.
Each site selects from the target distribution in different
way. The selection indicator S = (k, z) describes the sam-
pling mechanism of the Z = z group in site k. Specifically,
S = (k, 1) represents the left skewed distribution; (k, 0)
represents the right skewed distribution; (ℓ, 1) represents
the undercoverage bias; ∅ represents the discarded data.

et al. (2022) assumes that P(S = ∅) = 0 and con-
sider the pooled dataset, which might violate with the
real world. For example, if all sites include fewer men
in the dataset, we would have that P(S ̸= ∅ | men) <
P(S ̸= ∅ | other genders). In contrast, we allow S = ∅ to
reflect the biased sampling of the pooled dataset ∪K

k=1D(k)

from the target population.

One may question that there’s no real sampling-selecting
process since each site collects data independently. A pos-
sible answer is to recall the well-accepted quasi-experiment
framework (Cook et al., 2002). For example, to un-
derstand the effect of gender on an outcome. The
quasi-experiment framework imagines that individual Xi

firstly gets i.i.d. sampled, then gets “treated” by gender
Gi, although there’s no actual “gender” assignment pro-
cess. The sampling-selecting framework extends the quasi-
experiment to multiple-site settings.

The objective is to estimate the average causal effect on the
target distribution τ = E[Y (1)− Y (0)]. A foundation for
identifying τ is Assumption 1.

Assumption 1 (Homogeneity and unconfoundedness). We
have that

(Y (1), Y (0)) ⊥⊥ S | X (7)

More than unconfounded treatment assignment, Assump-
tion 1 also implies that the individual treatment effects are
the same across sites. In Example 1, when fixing X for an
individual i, if the effect of Agomelatine still varies across
sites, collaboration is meaningless due to unmeasured con-
founders. Violation of Assumption 1 is sometimes termed
as anti-causal learning (Farahani et al., 2020).
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Another foundation for identifying the causal effect is the
overlap assumption. There are two kinds of overlap as-
sumptions. Given an individual, Assumption 2 requires
each site to select them with non-zero probability, whereas
Assumption 3 only requires the overall selection probabil-
ity to be non-zero.

Assumption 2 (Individual-Overlap). We have that

min
x,k

{P(Z = 1, S = 1 | x, A = k)} > c > 0.

Assumption 3 (Overall-Overlap). We have that

min
x

{P(Z = 1, S = 1 | x)} > c > 0.

Revisiting Example 1, Assumption 1 is guaranteed by the
experimental design and by the similar effect of drugs given
sufficient demographic information. Assumption 2 fails
since one site only includes senior patients. While Assump-
tion 3 holds since other sites collect data from all ages.

We provide a counter-example showing that Assumptions
1 and 3 might not hold.

Example 2 (Collaboration of Observational Studies with
Unmeasured Confounder). Betthäuser et al. (2023) re-
view observational studies regarding the learning deficits
of school-aged children during COVID-19. Among 42 in-
cluded observational studies, four are from middle-income
countries, and the remaining are from high-income coun-
tries. Over half of the studies do not collect covariates,
using the difference in means of grades before and after the
pandemic.

Since over half of the studies do not collect covariates,
there are unmeasured confounders. Therefore, Assumption
1 is unlikely to hold. Moreover, if the target distribution
is school-aged children from the entire world, both 2 and
3 fail since low-income countries are missing in the study.
We suggest avoiding collaboration in this case.

We have some additional notations: Denote E[Y1] as µ1 and
E[Y0] as µ0. DefineNS =

∑K
k=1N

(k) withN (k) = |D(k)|
being the sample size of dataset k. Note thatNS < N since
we drop the individuals with S = ∅.

2.1. Related Work

There are extensive attempts in Meta-analysis literature to
cope with heterogeneity (Borenstein et al., 2007; 2010;
Higgins et al., 2009). For example, by assuming that
the average treatment effect follows the normal distribu-
tion across sites, many propose using random effects mod-
els (Hedges & Vevea, 1998; Riley et al., 2011) instead of
fixed effects models (Tufanaru et al., 2015). There are
other ways, such as using site-specific information and
conduct Meta-regression (van Houwelingen et al., 2002;

Glynn & Quinn, 2010), using quasi-likelihood (Tufanaru
et al., 2015). More recently, Cheng & Cai (2021) propose
a penalized method for integrating heterogeneous causal
effects. However, all methods need strong parametric as-
sumptions on the heterogeneity. It’s still necessary to rely
on qualitative understandings of heterogeneity based on
summary statistics (Stroup, 2000).

Causal Inference literature also has a growing interest in
collaboration with concerns in external validity (Concato
et al., 2000; Rothwell, 2005; Colnet et al., 2023). Yang
& Ding (2020) propose a Rao-Blackwellization method
for incorporating RCT and observational studies with un-
measured confounders to improve the estimation efficiency.
Recently, more works try to incorporate federated learn-
ing in causal inference (Xiong et al., 2022; Han et al.,
2023a; Guo et al., 2023; Vo et al., 2023). Vo et al. (2022)
propose adaptive kernel methods under the causal graph
model. Several focus on inference. For example, Xiong
et al. (2022) and Hu et al. (2022) assume homogeneous
models and propose a collaboration framework that avoids
direct data merging. Han et al. (2022; 2023b) considers
heterogeneous sample selection under parametric distribu-
tion shift assumptions. Nevertheless, most new methods
still fall under the framework of Meta-analysis.

As a broader interest, our work also uses double ma-
chine learning(Chernozhukov et al., 2018; Athey & Im-
bens, 2019). It extends the doubly robust estimator (Bang
& Robins, 2005; Glynn & Quinn, 2010; Funk et al., 2011)
to non-parametric and machine learning methods (Huang
et al., 2006; Sugiyama et al., 2007b;a; Wager & Athey,
2017; Tibshirani, 1996). We adopt it in particular to mit-
igate the hardness of estimating density ratio (Farahani
et al., 2020; Härdle et al., 2004).

3. Collaborative Inverse Propensity Score
Weighting

The inverse propensity score weighting (IPW) estima-
tor plays a central role in causal inference. We gen-
eralize it to collaborative setting, thinking e(k,z)(X) =
P(S = (k, z) | X) as a generalized version of propensity
score. We begin with using the oracle propensity score
models and then discuss how to estimate the models.

3.1. The CLB-IPW estimator

As a benchmark, consider the method where each site cal-
culates its own IPW estimator for ATE and takes weighted
sum, which is the standard method in Meta-analysis. Since
we assume propensity score models are correct, it’s not
necessary to use L1 penalty as in Han et al. (2022). De-
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fine

τ̂Meta =

K∑
k=1

η(k)(µ̂
(k)
Meta,1 − µ̂

(k)
Meta,0), with

µ̂
(k)
Meta,1 =

1

N̂
(k)
Meta,1

∑
i∈D(k)

ZiYi
e(k,1)(Xi)

, (8)

µ̂
(k)
Meta,0 =

1

N̂
(k)
Meta,0

∑
i∈D(k)

(1− Zi)Yi
e(k,0)(Xi)

, (9)

N̂
(k)
Meta,1 =

∑
i∈D(k)

Zi

e(k,1)(Xi)
, and (10)

N̂
(k)
Meta,0 =

∑
i∈D(k)

1− Zi

e(k,0)(Xi)
. (11)

Equations (8), (9), (10), and (11) take the Hájek form (Lit-
tle & Rubin, 2019), in which we use a consistent estimator
N̂ for the sample size. It always achieves better numerical
stability and smaller variance than directly using sample
size. More importantly, as we will show later, we could
only identify e(k,z)(X) up to a constant factor, Hájek form
releases us from the identifiability issue.

The best choice of η(k) is the inverse variance. In specific,

denoting Var(τ̂
(k)
Meta) = (σ

(k)
Meta)

2
, the optimal weights are

η(k) ∝ (σ
(k)
Meta)

−2
. See Cheng & Cai (2021) for more dis-

cussions.

Meta-IPW is designed for review studies (Borenstein et al.,
2007) rather than collaboration. Each site must be able to
obtain a valid estimator. But, a single site would commonly
suffer from under-coverage of the entire population. Revis-
iting Example 1, one site only takes experiments for older
people. Due to their under-coverage, they can never get the
valid ATE estimator for the entire population, so it’s impos-
sible to incorporate them into the Meta-IPW estimator.

Alternatively, we introduce the CLB-IPW estimator. CLB-
IPW directly takes the weighted mean of heterogeneous
propensity score functions. In specific, to estimate µ1, we
use

µ̂
(k)
CLB,1 =

1

N̂
(k)
CLB,1

∑
i∈D(k)

η(k)ZiYi∑K
r=1 η

(r)e(r,1)(Xi)
, (12)

with N̂ (k)
CLB,1 =

∑
i∈D(k)

η(k)Zi∑K
r=1 η

(r)e(r,1)(Xi)

We have that

E[µ̂(k)
CLB,1] = E

[ η(k)e(k,1)(X)Y1∑K
r=1 η

(r)e(r,1)(X)

]
,

which means that it’s not consistent for µ1. However, when

we take summation of µ̂(k)
CLB,1 across k, we get that

E[µ̂CLB,1] = E
[∑K

k=1 η
(k)e(k,1)(X)Y1∑K

r=1 η
(r)e(r,1)(X)

]
= µ1.

It allows collaboration between disjoint domains. In Ex-
ample 1, the site that only includes elders could com-
pute µ̂(k)

CLB,1 without worrying about their under-coverage.
Given a young patient X from other sites. We have that
e(k,1)(X) = 0 but e(r,1)(X) > 0 for r ̸= k, which ensures
a non-zero denominator. The estimators for µ0 follow the
same manner, which we relegate to the appendix. We could
compute τ̂CLB in a fully federated way, as presented in Al-
gorithm 1.

Algorithm 1 CLB-IPW Algorithm

Require: K datasets with D(k) as shown in Equation
(5). Each site publishes their propensity score models
e(k,1)(X) and e(k,0)(X).

1: for k = 1 to K do
2: At site k, calculate µ̂

(k)
CLB,1 , µ̂(k)

CLB,0, N̂ (k)
CLB,1, and

N̂
(k)
CLB,1 according to Equation (12). Send them to

the central server.
3: end for
4: Central server computes

τ̂CLB = µ̂CLB,1 − µ̂CLB,0, (13)

where µ̂CLB,1 is the average of µ̂(k)
CLB,1 weighted by

N̂
(k)
CLB,1, with µ̂CLB,0 following the same manner.

The best choice of η(k) is data-dependent and thus could
not be obtained from one round of communication. There-
fore, we suggest taking vanilla weights η(k) = 1 for all k.
Notice that

K∑
k=1

e(k,1)(X) = P(Z(S) = 1 | X), (14)

which means that the vanilla weights match the propensity
score for Z in the pooled dataset. More importantly, we
find that the vanilla weights would already make the CLB-
IPW estimator uniformly better than Meta-IPW estimator.

Proposition 1 (Meta-IPW Estimator). Given Assumptions
1 and 2, using inverse variance weighting, as N → ∞, we
have that

√
N(τ̂Meta − τ)

d→ N(0, v2Meta),

where

v2Meta =
{ K∑

k=1

E
[ (Y1 − µ1)

2

e(k,1)(X)
+

(Y0 − µ0)
2

e(k,0)(X)

]}−1

.
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Theorem 2 (CLB-IPW Estimator). Given Assumptions 1
and 3, using vanilla weights for CLB-IPW, as N → ∞, we
have that √

N(τ̂CLB − τ)
d→ N(0, v2CLB), (15)

where

v2CLB = E
[ (Y1 − µ1)

2∑K
k=1 e

(k)(X)
+

(Y0 − µ0)
2∑K

r=1 e
(r,0)(X)

]
Moreover, we have that

v2CLB ≤ v2Meta.

There are two ways to understand why τ̂CLB is bet-
ter: First, Meta-IPW takes the weighted mean site-wise,
whereas CLB-IPW takes the weighted mean individual-
wise. Given each individual Xi, CLB-IPW adaptively puts
more weights on sites with larger e(k)(Xi). Whereas Meta-
IPW uses the same weights for any Xi. Second, CLB-
IPW utilizes coarser balancing scores (Imbens & Rubin,
2015). Balancing score is a generalization of the propen-
sity score. Any function of covariates is sufficient for
adjusting the confoundingness between Z and Y . The
Meta-IPW uses P(S | X) as its inverse weights, and CLB-
IPW uses P(Z(S) | X). Theorem 3 shows that they are
both balancing scores.

Theorem 3. We have that

(Y (1), Y (0)) ⊥⊥ Z(S) | P(S | X), and
(Y (1), Y (0)) ⊥⊥ Z(S) | P(Z(S) | X).

Notice that P(S | X) has an auxiliary variable k(X) com-
paring to P(Z(S) | X). But k(X) is superfluous since it
doesn’t affect (Y1, Y0). As a result, CLB-IPW gets bet-
ter efficiency by maintaining a smaller model. A simpler
model benefits us by maintaining fewer variables to adjust
for, thus attaining better efficiency. Similar ideas occur ex-
tensively in model selection literature (Raschka, 2020).

3.2. Estimation of propensity score models

We start from the identification of e(k,z)(X). Since we
have no information on the dropped set D∅ = {i | Si = ∅},
it’s impossible to identify all parameters. For instance,
multiplying N by a factor 2 and dividing e(k,z)(X) by 2
would lead to the same observed distribution. However,
identifiability is guaranteed up to a constant factor. And
thanks to the Hájek forms of our IPW estimators, identifi-
cation up to a constant is enough.

Proposition 4. We have that

e(k,z)(X) = r(k,z)(X)P(S = (k, z) | S ̸= ∅)P(S = ∅).

where r(k)(X) = p(X | S = (k, z))/p(X) is the den-
sity ratio function, which is identifiable. Meanwhile,

P(S = (k, z) | S ̸= ∅) is identifiable by taking N (k)/NS .
Only P(S = ∅) is not identifiable.

We focus on estimating density ratio r(k,z)(X). We sug-
gest two methods from the large literature on density ra-
tio estimation. Han et al. (2022) applies a parametric ex-
ponential tilting model. They assumes that r(k,z)(X) =

exp (ψ(X)
⊤
γ(k,z)) for a given representation function ψ

(such as ψ(x) = x) and unknown parameter γ(k,z). We
could estimate γ through the method of moments, i.e., find-
ing γ̂(k,z) that solves∑

i∈D(k)

Ziψ(Xi) exp (ψ(X)
⊤
γ(k,z))

=
∑
i∈Dt

ψ(Xi) exp (ψ(X)
⊤
γ(k,z)),

which is equivalent to entropy balancing (Zhao & Percival,
2017). Recently, motivated by Matching (Abadie & Im-
bens, 2016) and K-Nearest Neighbour (Zhang et al., 2018),
Lin et al. (2021) propose a minimax nonparametric way to
estimate the density ratio. Using their method, we have that

r̂(k,z)(x) =
N (t)∑

i∈D(k) Zi

M

W (x;Dt,D(k,z))
, (16)

where W (x;Dt,D(k,z)) means the total number of units in
Dt that x is close to Xi than its M -nearest neighbour in
D(k,z). See Lin et al. (2021) for more detail. We have the
following convergence rates for them
Proposition 5 (Point-wise error of density estimation).
Given x ∈ Rd, if the exponential tilting model is correctly
specified, we have that

E
[
| exp (ψ(x)⊤γ̂(k,z))− r(k,z)(x)|

]
= O(N−1/2). (17)

For the nonparametric method, we have that

E
[
|r̂(k,z)(x)− r(k,z)(x)|

]
= O(N−1/(2+d)). (18)

4. Incorporating Outcome Models
Density ratio estimation is challenging and can easily fail
under mis-specification or due to the curse of dimensional-
ity. Therefore, it is essential to incorporate outcome models
to mitigate the errors caused by density ratio estimation. To
maintain consistent structure with Section 3, we first dis-
cuss how to incorporate outcome models in the estimator
and then discuss how to learn the outcome models.

4.1. Decoupled AIPW estimator

The augmented inverse propensity score weighted (AIPW)
estimator (Bang & Robins, 2005) employs Neyman or-
thogonality to construct an asymptotically normal estima-
tor even if nuisance models converge at slower rates. We
introduce their idea to the collaboration setting.
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How to use outcome models? Due to the biased selection
of S, directly taking the mean across all source data ren-
ders the estimator inconsistent. A natural idea is to use the
inverse propensity score to adjust the distribution and get
that

τ̂adjust =
1

N

∑
Si ̸=∅

[ m̂1(Xi)

ê(k,1)(Xi)
− m̂0(Xi)

ê(k,0)(Xi)

]
.

This is the choice of Han et al. (2022). However, the con-
sistency of τ̂adjust substantially depends on the density ratio
function, making the regression model useless. Alterna-
tively, we make use of the public census dataset D(t). As
discussed in Section 2, D(t) provides public information
for X in the target distribution. Utilizing it, we propose a
decoupled AIPW estimator.

τ̂AIPW =
1

N (t)

N(t)∑
i=1

[
m̂1(X

(t)
i )− m̂0(X

(t)
i )

]
+

K∑
k=1

δ̂
(k)
AIPW,

(19)
with δ̂(k)AIPW having two versions:

δ̂
(k)
Meta−AIPW =

K∑
k=1

η(k)
[
δ̂
(k)
Meta−AIPW,1 − δ̂

(k)
Meta−AIPW,0

]
,

δ
(k)
CLB−AIPW =

K∑
k=1

ŵ
(k)
CLB,1δ̂

(k)
CLB−AIPW,1 −

K∑
k=1

ŵ
(k)
CLB,0δ̂

(k)
CLB−AIPW,0,

with ŵ(k)
CLB,1 ∝ N̂

(k)
CLB,1, ŵ

(k)
CLB,0 ∝ N̂

(k)
CLB,0.

Here δ̂(k)Meta−AIPW and δ̂(k)CLB−AIPW are residual versions of the
corresponding IPW estimators, changing all Y to Y −m(X)

in the formula. We only present the formula for the δ̂1’s and
relegate δ̂0’s to the appendix.

δ̂
(k)
Meta−AIPW,1 =

1

N̂
(k)
Meta,1

∑
i∈D(k)

Zi[Yi −m1(Xi)]

e(k,1)(Xi)
,

δ̂
(k)
CLB−AIPW,1 =

1

N̂
(k)
CLB,1

∑
i∈D(k)

Zi[Yi −m1(Xi)]∑K
r=1 e

(r,1)(Xi)
.

The proposed estimator computes the difference in mean of
outcome models only in D(t) and the correction terms only
in D(k)’s. Though being decoupled, it preserves the robust-
ness of the AIPW estimator. We summarize its properties in
Theorem 6.

Theorem 6. Suppose that

1. The estimated models m̂1, m̂0 and ê are independent1

with D(t) and D(k)’s.
1We could achieve independence by using sampling splitting,

see Chernozhukov et al. (2018) for more detailed discussion.

2. They have convergence rates

E[∥m̂1 −m1∥2],E[∥m̂0 −m1∥2] = O(1/N−ξm),
(20)

and E[∥ê− e∥2] = O(1/N−ξe), (21)

with ξmξe > 1/2.

3. The models ê, m̂, e, and m are bounded.

Further supposing that N (t)/NS → λ, we have that
√
N(τ̂CLB−AIPW − τ)

d→ N(0, v2CLB−AIPW), (22)

with

v2CLB−AIPW = λ−1E
[
[m1(X)−m0(X)]

2
]
− λ−1τ2

+ E
[ (Y1 −m1(X))

2

P(Z(S) = 1 | X)
+

(Y0 −m0(X))
2

P(Z(S) = 0 | X)

]
.

The assumptions in Theorem 6 are standard in the literature
(Chernozhukov et al., 2018; Athey & Wager, 2020). If we
use the K-NN density ratio estimation (Lin et al., 2021),
we get that ξe = 2/(2+ d). Therefore, taking any outcome
model with ξm ≥ 1/2 − 2/(2 + d) would guarantee the
asymptotic normality of τ̂CLB−AIPW.

4.2. Estimation of outcome models

It’s worth noting the convergence rates in Equation (20)
are taking average over the target population. To achieve
low excess risk in the target population, we adopt the do-
main adaptation part from orthogonal statistical learning
(Foster & Syrgkanis, 2020). Consider the loss function re-
weighted through inverse propensity scores:

L(m1; {D(k)}k∈S) =

K∑
k=1

L(k)(m1;D(k))

with L(k) =
∑

i∈D(k)

Ziℓ(Yi,m1(Xi))∑K
r=1 ê

(r,1)(Xi)
. (23)

We want to compare it with training directly on the target
distribution, i.e., using loss function L̃

L̃(m1;D) =

N∑
i=1

ℓ(Yi(1),m1(Xi)). (24)

Theorem 7. Suppose that

1. The estimated propensity score model ê(X) satisfies
Equation (21).

2. Using loss function (24), m̂1 satisfies Equation (21).

Then, using loss function (23), we have that

E[∥m̂1(X)−m1(X)∥2] ≤ O(1/N−ξm) +O(1/N−4ξe).
(25)
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4.3. Federated Learning Algorithm

The estimation of the outcome model requires federated
learning. We could optimize the loss function by using Fe-
dAvg (Li et al., 2020) or SCAFFOLD (Karimireddy et al.,
2020). We present the process, including computing τ̂AIPW

in Algorithm 2.

Algorithm 2 CLB-AIPW Algorithm

Require: K datasets {D(k)}k∈S and D(t).
1: (Locally) estimate ê(k,z)(X).
2: while not converged do
3: Train model m1 and m0 using the FedAvg Algo-

rithm with Loss function in (23).
4: end while
5: (Locally) update Yi’s by Yi → Yi −mZi

(Xi).
6: Use Algorithm 1 to get

∑K
k=1 δ

(k)
CLB−AIPW.

7: Construct the CLB-AIPW estimator using Equation
(19).

As a result, using Algorithm 2, if we combine Theorems
6 and 7, we could get that τ̂CLB−AIPW is asymptotic normal
given that ξmξe < 1/2 and ξ5e < 1/2. Using Proposi-
tion 5, it suffices to utilize the K-NN density ratio estima-
tion method with d ≤ 8 and find an outcome model with
ξm ≥ 1/2 − 2/(2 + d). This avoids the problem of the
misspecification of the exponential tilting model.

It is worth noting that our discussion of AIPW is is from the
point of view of learning theory. If we adopt the classical
double robustness framework, when the outcome model is
correctly specified, there’s no need to adjust the distribu-
tion of the covariates. The AIPW estimator is asymptoti-
cally normal even when the propensity score model com-
pletely fails. We would demonstrate its robustness in the
simulation.

5. Experiments
5.1. Synthetic Dataset

We conduct the experiment using synthetic dataset. Using
fix sample sizes, we generate the data seperately for dif-
ferent sites. Consider three source datasets, with N (k) =
1000, 2000, 3000. The target dataset contains N (t) =
10000 data points. In specific, we generate the target dis-
tribution through X ∼ N(µ(t), σ2I3) with µ(t) = −0.1 and
σ = 2.

In the source dataset, we fix the treatment assignment
mechanism and take the true propensity score as

P(Z(k) = 1 | X(k)) = 1/[1 + exp ([1.2; 0.3;−1.2]⊤X(k))].
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Figure 2: KL-MSE curve of different estimators. The het-
erogeneity is measured through the mean KL-divergence
between source and target datasets. The Meta-IPW estima-
tor outperforms estimators from single site, but its error in-
creases with the heterogeneity. In contrast, CLB-IPW and
DML estimators remain stable as heterogeneity increases.

Take the true potential outcomes as

Y (1) = [1.2; 1.8; 1.4]⊤X(k)

and Y (0) = [0.6; 0.7; 0.6]⊤X(k).

We also choose normal distribution for source datasets.
Suppose that X(k) ∼ N(µ(k), σ2), with σ = 2. We use the
mean KL−divergence between source datasets to the tar-
get dataset as a measure for the heterogeneity across sites,
which is given by

dKL(D(t), {D(k)}k∈[3]) =

3∑
k=1

1

2σ2
(µ(k) − µ)

2
.

We increase dKL from 0 to 4. Fixing each dKL, we choose
µ(k) uniformly and randomly assign negative sign to one of
them. In the estimation process, we use the exponential tilt-
ing model for density ratio estimation and the linear model
for outcome regression. We calculate the mean squared er-
ror (MSE) of Meta-IPW, CLB-IPW, and Meta-AIPW, and
CLB-AIPW through 2000 Monte Carlo Simulations, with
four replications of different {µ(k)}’s. Figure 2 shows the
dKL−MSE curve. We mark the IPW estimators in each sin-
gle site with dotted line. Although outperforming each in-
dividual sites, the Meta-IPW estimator still suffers from the
increasing of heterogeneity. In contrast, both CLB-IPW and
AIPW remain stable when heterogeneity increases.

We further demonstrate the robustness of the AIPW esti-
mator with four combinations of specifications of propen-
sity score and outcome models. We relegate the details of
the mis-specified model to the appendix. Figure 3 shows
the 95% C.I. of the Meta-IPW, CLB-IPW, Meta-AIPW, and
CLB-AIPW estimators. We choose the case with the mean
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Figure 3: The 95% confidence intervals for synthetic
dataset. The CLB-IPW shows smaller variance than Meta-
IPW under all scenarios. The AIPW estimators remain con-
sistent when either of the PS or OM model is correctly
specified.

KL-distance being 3. In all cases, CLB-IPW estimator has
tighter confidence intervals. When propensity score model
is misspecified, both Meta-IPW and CLB-IPW fail due to
incorrect weighting. In contrast, AIPW estimators remain
consistent as long as outcome model is correct. When both
models are misspecified, there is no hope to obtain consi-
tent result.

5.2. Real world application

We present a real-world application of our method. Our
data comes from two studies about preventing sharing fake
news during COVID-19. Roozenbeek et al. (2021) repli-
cates the experiment of Pennycook et al. (2020) to study
the effect of a nudge intervention on preventing the shar-
ing of fake news. Both of the two studies sample partic-
ipants according to U.S. census through online platforms.
The outcome is measured by the difference of sharing in-
tentions between true and false headlines about COVID-19
(truth discernment score). They find that a simple accu-
racy reminder could increase the truth discernment score
(τ̂ = 0.034, p < 0.001). Using the same design and
analysis procedures, Roozenbeek et al. (2021) replicates
their findings, though with a less significant effect size
(τ̂ = 0.015, p ≈ 0.017).

Although two studies both try to sample from the target dis-
tribution and their heterogeneity is well-controlled, as sug-
gested by Jin et al. (2023), we still use exponential tilting
method to adjust the covariates shift. We adjust the distri-
bution for the mean and variance of the Cognitive Reflec-
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Figure 4: The 95% confidence intervals for the real dataset.
The red dots mark the true effect size. In Figure 4, τ1 de-
notes the estimated causal effect in Pennycook et al. (2020),
and τ2 denotes Roozenbeek et al. (2021). We find that
Meta-IPW, CLB-IPW, Meta-AIPW, and CLB-AIPW estima-
tors have similar performance, with Meta-IPW and Meta-
AIPW showing slightly larger effect sizes.

tion Test (CRT) score, the scientific knowledge quiz score,
the Medical Maximizer-Minimizer Scale (MMS), distribu-
tion of self-reported political leanings, gender, and age.
Figure 4 presents the 95% C.I.s for the two datasets and
three estimators. Due to that the two datasets are close, we
find close results. But CLB-IPW and AIPW show slightly
larger effect size, matching the conclusion of the original
study.

6. Conclusion
In this work, we propose a collaborative inverse propen-
sity score estimator that is suitable for heterogeneous data.
Along the way, we utilize the sampling-selecting frame-
work to describe the heterogeneity across sites. We show
that the CLB-IPW estimator outperforms Meta-analysis-
based estimator both in theory and in simulation. To ac-
count for the difficulty of density estimation, we borrow
ideas from AIPW and orthogonal statistical learning litera-
ture, and provide the necessary convergence rates for nui-
sance models. As a future direction, it is worth while to
explore the communication-efficient method for the opti-
mal weighting of propensity score models.

Impact Statement
Getting an unbiased sample from the target distribution is
crucial to developing a machine learning model or mak-
ing inferences. However, nearly all datasets suffer from
underrepresentation or bias in sampling the target popula-
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tion. Collaboration between heterogeneous data sites is a
big challenge in methodology and privacy concerns. Our
work shows the possibility of collaboration, which does not
suffer from heterogeneity and protects privacy. We believe
it could serve as a starting point for encouraging collabora-
tion across extremely diverse sources. The whole commu-
nity could benefit from broader data sources while having
private information well-preserved.
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A. Proofs
A.1. Preliminaries

Definition A.1. Given i.i.d. weights wi and outcomes Yi, take their weighted sum Ĝ =
∑n

i=1 wiYi. We call an estimator
is “Hájek" type if it uses (

∑n
i=1 wi)

−1 to normalize, and “Horvitz-Thompson" (HT) type if it uses (nE[w])−1, i.e.,

µ̂Hájek =
1∑n

i=1 wi
Ĝ µHT =

1

nE[w]
Ĝ.

We begin with relating the asymptotic behaviour of Hájek-type IPW estimator with the HT-type. In specific, we have that
Lemma A.2. The “Hajek"-type weighted mean estimator is asymptotically equivalent to the centralized “Horvitz-
Thompson"-type weighted mean estimator

µ̂HT = µ+
1

nE[w]

n∑
i=1

wi(Yi − µ), (26)

i.e., we have that √
n(µ̂Hájek − µ̂HT) = oP (1).

Proof. We subtract µ from µ̂Hájek and get that

√
n(µ̂Hájek − µ) =

√
n∑n

i=1 wi

n∑
i=1

wi(Yi − µ)

=
1∑n

i=1 wi/n

1√
n

n∑
i=1

wi(Yi − µ)

=
1

E[w]
1√
n

n∑
i=1

wi(Yi − µ) + oP (1)

=
√
n(µ̂HT − µ) + oP (1).

The second to the third line is by combining the fact that
∑n

i=1 wi/n = E[w]+oP (1) and
∑n

i=1 wi(Yi − µ)/
√
n = OP (1),

through law of large numbers and CLT.

A.2. Proof of Proposition 1

We first define several useful intermediate values. We use Ĝ to denote un-normalized IPW summations and N̂ to denote
the estimated data sizes.

Ĝ
(k)
Meta =

∑
i∈D(k)

ZiYi
e(k,1)(X)

− (1− Zi)Yi
e(k,0)(X)

, Ĝ
(k)
Meta,1 =

∑
i∈D(k)

ZiYi
e(k,1)(X)

, and Ĝ
(k)
Meta,0 =

∑
i∈D(k)

(1− Zi)Yi
e(k,0)(X)

.

In the main paper, we use that

µ̂
(k)
Meta,1 =

1

N̂
(k)
CLB,1

Ĝ
(k)
Meta,1 µ̂

(k)
Meta,0 =

1

N̂
(k)
CLB,0

Ĝ
(k)
Meta,0.

Proof. We first re-write Ĝ(k)
Meta as

Ĝ
(k)
Meta =

N∑
i=1

1 {Si = (k, 1)}Yi
e(k,1)(X)

− 1 {S = (k, 0)}Yi
e(k,0)(X)

.

Use Lemma A.2, we only need to consider

τ̂
(k)
Meta−HT =

1

N

{1 {Si = (k, 1)} (Yi − µ1)

e(k,1)(X)
− 1 {S = (k, 0)} (Yi − µ0)

e(k,0)(X)

}
+ τ

12
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Note that

E
{1 {S = (k, 1)} (Y − µ1)

e(k,1)(X)
− 1 {S = (k, 0)} (Y − µ0)

e(k,0)(X)

}
= E

[
E
[P{S = (k, 1) | X}(Y1 − µ1)

e(k,1)(X)
− P{S = (k, 0) | X}(Y0 − µ0)

e(k,0)(X)
| X

]]
= E[Y1 − µ1 − (Y0 − µ0)] = 0.

We also have that

Var
{1 {S = (k, 1)} (Y − µ1)

e(k,1)(X)
− 1 {S = (k, 0)} (Y − µ0)

e(k,0)(X)

}
= E

[[1 {S = (k, 1)} (Y1 − µ1)

e(k,1)(X)
− 1 {S = (k, 0)} (Y0 − µ0)

e(k,0)(X)

]2]
= E

[1 {S = (k, 1)} (Y1 − µ1)
2

e(k,1)(X)
2 +

1 {S = (k, 0)} (Y0 − µ0)
2

e(k,0)(X)
2

]
= E

[1 {S = (k, 1)} (Y1 − µ1)
2

e(k,1)(X)
2 +

1 {S = (k, 0)} (Y0 − µ0)
2

e(k,0)(X)
2

]
= E

[ (Y1 − µ1)
2

e(k,1)(X)
+

(Y0 − µ0)
2

e(k,0)(X)

]
.

Therefore, using CLT, we get that √
N(τ̂ (k) − τ)

d→ N(0, (v
(k)
Meta)

2
), (27)

with

(v
(k)
Meta)

2
=

1

N
E
[ (Y1 − µ1)

2

e(k,1)(X)
+

(Y0 − µ0)
2

e(k,0)(X)

]
. (28)

Therefore, we have that

√
N(τ̂Meta − τ) =

K∑
k=1

[
η(k)

√
N(τ̂

(k)
Meta − τ)

]
d→ N

(
0,

K∑
k=1

(η(k))
2

N
E
[ (Y1 − µ1)

2

e(k,1)(X)
+

(Y0 − µ0)
2

e(k,0)(X)

])
,

with

v2Meta =

K∑
k=1

(η(k))
2
(v

(k)
Meta)

2

N

≥ 1

N
∑K

k=1 E
[
(Y1−µ1)

2

e(k,1)(X)
+ (Y0−µ0)

2

e(k,0)(X)

]−1 ,

where the equality holds if and only if η(k) ∝ (v
(k)
Meta)

−1
.

A.3. Proof of Theorem 2

We first provide the entire formula for CLB-IPW estimator. We define

Ĝ
(k)
CLB,1 =

∑
i∈D(k)

ZiYi∑K
r=1 e

(r,1)(Xi)
Ĝ

(k)
CLB,0 =

∑
i∈D(k)

(1− Zi)Yi∑K
r=1 e

(r,0)(Xi)

N̂
(k)
CLB,1 =

∑
i∈D(k)

ZiYi∑K
r=1 e

(r,1)(Xi)
N̂

(k)
CLB,1 =

∑
i∈D(k)

ZiYi∑K
r=1 e

(r,1)(Xi)
.

13
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Then, we have that

τ̂CLB =

∑K
k=1 Ĝ

(k)
CLB,1∑K

k=1 N̂
(k)
CLB,1

−
∑K

k=1 Ĝ
(k)
CLB,0∑K

k=1 N̂
(k)
CLB,0

,

where in the main paper, we use that

µ̂CLB,1 =
1

N̂
(k)
CLB,1

Ĝ
(k)
CLB,1, and µ̂CLB,0 =

1

N̂
(k)
CLB,0

Ĝ
(k)
CLB,0.

Proof. We rewrite the formula as

Ĝ
(k)
CLB,1 =

N∑
i=1

1 {Si = (k, 1)}Yi∑K
r=1 e

(r,1)(Xi)
, and Ĝ(k)

CLB,0 =

N∑
i=1

1 {Si = (k, 0)}Yi∑K
r=1 e

(r,0)(Xi)
. (29)

As a result, we have that

K∑
k=1

ĜCLB,1 =

N∑
i=1

K∑
k=1

1 {Si = (k, 1)}Yi∑K
r=1 e

(r,1)(Xi)
=

N∑
i=1

1 {Z(Si) = 1}Yi
P(Z(Si) = 1 | Xi)

,

K∑
k=1

ĜCLB,0 =

N∑
i=1

K∑
k=1

1 {Si = (k, 0)}Yi∑K
r=1 e

(r,1)(Xi)
=

N∑
i=1

1 {Z(Si) = 0}Yi
P(Z(S) = 0 | Xi)

.

Similarly, we get

N̂CLB,1 =

N∑
i=1

K∑
k=1

1 {Si = (k, 1)}∑K
r=1 e

(r,1)(Xi)
=

N∑
i=1

1 {Z(Si) = 1}
P(Z(Si) = 1 | Xi)

N̂CLB,0 =

N∑
i=1

K∑
k=1

1 {Si = (k, 0)}∑K
r=1 e

(r,0)(Xi)
=

N∑
i=1

1 {Z(Si) = 0}
P(Z(Si) = 0 | Xi)

.

As a result, N̂−1
CLB,1ĜCLB,1 − N̂−1

CLB,0ĜCLB,0 takes the form of Hájek type IPW estimator. Therefore, we could use Lemma
A.2 and get the corresponding HT-type estimator. Since we have that

E
[ 1 {Z(S) = 1}
P(Z(S) = 1 | X)

]
= E

[ P[Z(S) = 1 | X]

P(Z(S) = 1 | X)

]
= 1.

Same result holds for the control group. The HT estimators are

(µ̂CLB,1,HT − τ) =
1

N

N∑
i=1

[1 {Z(Si) = 1} (Yi − µ1)

P(Z(Si) = 1 | Xi)
− 1 {Z(Si) = 0} (Yi − µ0)

P(Z(Si) = 0 | Xi)

]

Using central limit theorem, since we have that

E
[1 {Z(S) = 1} (Y − µ1)

P(Z(S) = 1 | X)
− 1 {Z(S) = 0} (Y − µ0)

P(Z(S) = 0 | X)

]
= E

[P(Z(S) = 1 | X)E[Y1 − µ1 | X]

P(Z(S) = 1 | X)
− P(Z(S) = 0 | X)E[Y0 − µ0 | X]

P(Z(S) = 0 | X)

]
= E

[
E[Y1 − µ1 − Y0 + µ0 | X]

]
= 0.
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and

Var
[1 {Z(S) = 1} (Y − µ1)

P(Z(S) = 1 | X)
− 1 {Z(S) = 0} (Y − µ0)

P(Z(S) = 0 | X)

]
= E

([1 {Z(S) = 1} (Y − µ1)

P(Z(S) = 1 | X)
− 1 {Z(S) = 0} (Y − µ0)

P(Z(S) = 0 | X)

]2)
= E

(P(Z(S) = 1 | X)E[(Y1 − µ1)
2 | X]

P(Z(S) = 1 | X)
2 +

P(Z(S) = 0 | X)E[(Y0 − µ0)
2 | X]

P(Z(S) = 0 | X)
2

)
= E

( (Y1 − µ1)
2

P(Z(S) = 1 | X)
+

(Y0 − µ0)
2

P(Z(S) = 0 | X)

)
.

Use that NS/N → P(S ̸= ∅). We get that

√
NS

(
τ̂CLB − τ

)
d→ N(0, v2CLB), (30)

with

v2CLB = P(S ̸= ∅)E
( (Y1 − µ1)

2

P(Z(S) = 1 | X)
+

(Y0 − µ0)
2

P(Z(S) = 0 | X)

)
. (31)

To compare v2CLB and v2Meta, we first prove Lemma A.3.

Lemma A.3. The function f(t1, . . . , tK) = (t−1
1 + . . .+ t−1

K )
−1

with ti > 0, i = 1, . . . ,K is concave.

Proof. We directly prove it by showing that its hessian matrix is negative semi-definite. Denoting ∇2f = {Hkj}1≤k,j≤K ,
we have that

Hkj =


2t−4

k

(
∑K

r=1 t−1
r )

3 − 2t−3
k

(
∑K

r=1 t−1
r )

2 if k = j

2t−2
k t−2

j

(
∑K

r=1 t−1
r )

3 if k ̸= j.
(32)

By taking out the common factor we get that

1

2

( K∑
r=1

t−1
r

)3

∇2f(t1, . . . , tK) =

t
−2
1
...
t−2
K

(
t−2
1 . . . t−2

K

)
− (

K∑
r=1

t−1
r )


t−3
1

t−3
2

. . .
t−3
K

 . (33)

The second term is negative definite. The first term only gets one non-zero eigenvalue, with the corresponding eigenvector
v = (t−2

1 , . . . , t−2
K ). We only need to verify that v⊤∇2fv ≤ 0. We have that

1

2

( K∑
r=1

t−1
r

)3

v⊤∇2f(t1, . . . , tK)v⊤ =
( K∑

k=1

t−4
k

)2

− (

K∑
k=1

t−1
k )(

K∑
k=1

t−7
k )

= 2
∑
k<j

t−4
k t−4

j −
∑
k<j

(
t−1
k t−7

j + t−7
k t−1

j

)
≤ 0,

where the last line is by using the AM-GM inequality and getting that t−1
k t−7

j + t−1
j t−7

k ≥ 2t−4
k t−4

j . This shows that ∇2f
is negative semi-definite, which means that f is concave.
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We use Jensen inequality and get that

v2Meta =
2

N
∑K

k=1

{
E
[

(Y1−µ1)
2

2e(k,1)(X)

]
+ E

[
(Y0−µ0)

2

2e(k,0)(X)

]}−1

≥ 1

N
∑K

k=1

{
E
[
(Y1−µ1)

2

e(k,1)(X)

]}−1 +
1

N
∑K

k=1

{
E
[
(Y0−µ0)

2

e(k,0)(X)

]}−1

≥ E
[ 1

N
∑K

k=1

{
(Y1−µ1)

2

e(k,1)(X)

}−1

]
+ E

[ 1

N
∑K

k=1

{
(Y0−µ0)

2

e(k,0)(X)

}−1

]

= E
[ (Y1 − µ1)

2

N
∑K

k=1 e
(k,1)(X)

]
+ E

[ (Y0 − µ0)
2

N
∑K

k=1 e
(k,0)(X)

]
= v2CLB,

where we use Jensen twice at the second and the third lines.

A.4. Proof of Theorem 3

Proof. The proof relies on the definition of independence and Assumption 1. Using py,s to denote the joint density function
for (Y (1), Y (0)) and S, and py , Ps as their marginal distributions, we have that

py,s{(Y (1), Y (0)), S | X} = py{(Y (1), Y (0)) | X}Ps{S | X}.

Take expectation conditional on P(S = (k, z) | X) = e(k,z)(X), and use the tower property of cognitional expectation,
we get that, for the L.H.S.,

E
[
py,s{(Y (1), Y (0)), S | X}

∣∣∣ e(k,z)(X)
]
= py,s

{
(Y (1), Y (0)), S | e(k,z)(X)

}
;

for the R.H.S.,

E
[
py{(Y (1), Y (0)) | X}Ps{S | X}

∣∣∣ e(k,z)(X)
]
= E

[
py{(Y (1), Y (0)) | X}

∣∣∣ e(k,z)(X)
]
e(k,z)(X)

= py

{
(Y (1), Y (0)) | e(k,z)(X)

}
e(k,z)(X)

= py

{
(Y (1), Y (0)) | e(k,z)(X)

}
Ps

{
S | e(k,z)(X)

}
.

This shows that
(Y (1), Y (0)) ⊥⊥ S | e(k,z)(X).

For the second part, similarly, using tower property, we have that

E
[
py,z{(Y (1), Y (0)), Z(S) | X}

∣∣∣ P[Z(S) | X]
]
= py,s

{
(Y (1), Y (0)), S | P[Z(S) | X]

}
;

for the R.H.S.,

E
[
py{(Y (1), Y (0)) | X}Pz{Z(S) | X}

∣∣∣ Pz{Z(S) | X}
]

=E
[
py{(Y (1), Y (0)) | X}

∣∣∣ e(k,z)(X)
]
e(k,z)(X)

=py

{
(Y (1), Y (0)) | Pz{Z(S) | X}

}
Pz{Z(S) | X}

=py

{
(Y (1), Y (0)) | Pz{Z(S) | X}

}
P
{
Z(S) | Pz{Z(S) | X}

}
.

This shows that
(Y (1), Y (0)) ⊥⊥ Z(S) | P{Z(S) | X}.
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A.5. Proof of Proposition 4 and 5

We only provide the proof for Proposition 4. For the proof of Proposition 5, see Zhao & Percival (2017) and Lin et al.
(2021).

Proof. Suppose that another distribution (S′, X ′, Y ′
1 , Y

′
0) generates the same observed distribution p(x), p(x | S = (k, 1)),

and p(x | S = (k, 0)) for all k. Using Bayes’ theorem,

P(S′ = (k, 1) | X ′) =
p(x′ | S′ = (k, 1))P(S′ = (k, 1))

p(x′)

=
p(x | S = (k, 1))P(S′ = (k, 1))

p(x)

= P(S = (k, 1) | X)
P(S′ = (k, 1))

P(S = (k, 1))
.

This shows that e(k,z)(X) is identifiable up to a constant, but P(S = ∅) is not identifiable.

A.6. Proof of Theorem 6

We first give the formulas for µ̂(k)
0 :

δ̂
(k)
Meta−AIPW,0 =

1

N̂
(k)
Meta,0

∑
i∈D(k)

(Zi)[Yi −m1(Xi)]

e(k,1)(Xi)
, δ̂

(k)
CLB−AIPW,1 =

1

N̂
(k)
CLB,1

∑
i∈D(k)

(1− Zi)[Yi −m1(Xi)]∑K
r=1 e

(r,1)(Xi)
.

Proof. Consider the following estimator using the true outcome and propensity score models:

τ̃CLB−AIPW =
1

N (t)

∑
i∈D(t)

[
m1(X

(t)
i )−m0(X

(t)
i )

]
+

1

N̂CLB

K∑
k=1

N̂
(k)
CLB δ̃

(k)
CLB, (34)

with

δ̃
(k)
CLB−DR =

1

N̂
(k)
CLB

∑
i∈D(k)

[Z(Si)(Yi −m1(Xi))∑K
r=1 e

(r,1)(Xi)
− (1− Z(Si))(Yi −m0(Xi))∑K

r=1 e
(r,0)(Xi)

]
, (35)

where m1, m0, and e are true models. We first prove Lemma A.4.

Lemma A.4. We have that √
NS(τ̂CLB−AIPW − τ̃CLB−AIPW)

d→ 0. (36)

Proof. Similar to the proof of Theorem 2, using Lemma A.2, we have that

√
N(τ̂CLB−AIPW − τ̂CLB−AIPW−HT)

d→ 0 and
√
N(τ̃CLB−AIPW − τ̃CLB−AIPW−HT)

d→ 0, (37)

with

τ̂CLB−AIPW−HT

=
1

N (t)

∑
i∈D(t)

[
m̂1(X)− m̂0(X)

]
+

1

N

N∑
i=1

[Z(Si)(Yi − m̂1(Xi))∑K
r=1 ê

(r,1)(Xi)
− (1− Z(Si))(Yi − m̂0(Xi))∑K

r=1 ê
(r,0)(Xi)

]
,

and

τ̃CLB−AIPW−HT

=
1

N (t)

∑
i∈D(t)

[
m1(X)−m0(X)

]
+

1

N

N∑
i=1

[Z(Si)(Yi −m1(X))

P(Z(Si) = 1 | Xi)
− (1− Z(Si))(Yi −m0(X))

P(Z(Si) = 0 | Xi)

]
.
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We decompose τ̂CLB−AIPW−HT − τ̃CLB−AIPW−HT

τ̂CLB−AIPW−HT − τ̃CLB−AIPW−HT

=
1

N

N∑
i=1

[ Z(Si)

P(Z(Si) = 1 | Xi)
− Z(Si)∑K

r=1 ê
(r,1)(Xi)

]
(Yi − m̂1(Xi))

− 1

N

N∑
i=1

[ 1− Z(Si)

P(Z(Si) = 0 | Xi)
− 1− Z(Si)∑K

r=1 ê
(r,0)(Xi)

]
(Yi − m̂0(Xi))

+
1

N

N∑
i=1

{[ Z(Si)

P(Z(Si) = 1 | Xi)

][
m1(Xi)− m̂1(Xi)

]
− E

[
m1(Xi)− m̂1(Xi)

]}
− 1

N

N∑
i=1

{[ 1− Z(Si)

P(Z(Si) = 0 | Xi)

][
m0(Xi)− m̂0(Xi)

]
− E

[
m0(Xi)− m̂0(Xi)

]}
+

1

N (t)

∑
i∈D(t)

{[
m̂1(X

(t)
i )−m1(X

(t)
i )

]
− E

[
m̂1(X)−m1(X)

]}
+

1

N (t)

∑
i∈D(t)

{[
m̂0(X

(t)
i )−m0(X

(t)
i )

]
− E

[
m̂0(X)−m0(X)

]}
.

Denote the above terms as ∆1, . . . ,∆6. We bound each of them.

|∆1| ≤

√√√√√ 1

N

N∑
i=1

Z(Si)
2
[
P(Z(Si) = 1 | Xi)−

∑K
r=1 ê

(r,1)(Xi)
]2

P(Z(Si) = 1 | Xi)
2
[
∑K

r=1 ê
(r,1)(Xi)]

2

√√√√ 1

N

N∑
i=1

[
Yi(1)−m1(Xi)

]2

≤

√√√√c−2

N

N∑
i=1

[
P(Z(Si) = 1 | Xi)−

K∑
r=1

ê(r,1)(Xi)
]2√√√√ 1

N

N∑
i=1

[
Yi(1)−m1(Xi)

]2
,

By taking expectation and applying Jensen inequality, we get that

E[
√
N |∆1|] ≤

√
N

√√√√c−2E
[
P(Z(S) = 1 | X)−

K∑
r=1

e(r,1)(X)
]2√

E
{[
Y (1)−m1(X)

]2}
≤ N1/2−ξm−ξe → 0,

as N → ∞. This shows that
√
N |∆1|

P→ 0. We could prove that
√
N∆2

P→ 0 with the same manner. Using the Bernstein
Inequality for bounded random variables (Vershynin, 2018), we have that

P
{√

N |∆3| ≥ t/c
}
≤ P

{√
N
∣∣∣ N∑
i=1

[
m1(Xi)− m̂1(Xi)

]
− E

[
m1(Xi)− m̂1(Xi)

]∣∣∣ ≥ t
}

≤ 2 exp
(
− t2/2∑N

i=1 Var[m̂1(Xi)−m1(Xi)]/N +MY t/(3
√
N)

)
≤ 2 exp

(
− t2/2

E{[m̂1(X)−m1(X)]
2}+MY t/(3

√
N)

)
≤ 2 exp

(
− t2/2

N−2ξm +N−1/2MY t/3

)
→ 0,

for any t > 0 and N → ∞. This proves that
√
N∆3

P→ 0. We could prove that
√
N∆4

P→ 0 with the same manner. At
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last, for ∆5, we have that

P
{√

N |∆3| ≥ t
}
≤ 2 exp

(
− t2/2∑

i∈D(t) Var[m̂1(Xi)−m1(Xi)]/N (t) +MY t/(3
√
N (t))

)
≤ 2 exp

(
− t2/2

E{[m̂1(X)−m1(X)]
2}+MY t/(3

√
N (t))

)
≤ 2 exp

(
− t2/2

(N (t))
−2ξm + (N (t))

−1/2
MY t/3

)
→ 0,

for any t > 0 and N → ∞. This proves that
√
N∆5

P→ 0. We could prove that
√
N∆6

P→ 0 with the same manner.
Combining ∆1, . . . ,∆6 with Equation (37) together, we finish the proof of Lemma A.4.

By Lemma A.4, we only need to consider τ̃CLB−AIPW. Using CLT, we have that

√
N(τ̃CLB−AIPW − τ)

d→ N(0, v2CLB−AIPW), (38)

since

E(τ̃CLB−AIPW) = E
[
m1(X

(t))−m0(X
(t))

]
+ E

[Z(S)(Y1 −m1(X))

P(Z(S) = 1 | X)
− (1− Z(S))(Y0 −m0(X))

P(Z(S) = 0 | X)

]
= E[Y1 − Y0],

and with

v2CLB−AIPW = Var
[√

N(τ̃CLB−AIPW − τ)
]

=
N

N (t)Var
[
m1(X

(t))−m0(X
(t))

]
+
N

N
Var

[Z(S)(Y1 −m1(X))

P(Z(S) = 1 | X)
− (1− Z(S))(Y0 −m0(X))

P(Z(S) = 0 | X)

]
= λ−1E

[
[m1(X)−m0(X)]

2
]
− λ−1τ2 + E

[ (Y1 −m1(X))
2

P(Z(S) = 1 | X)
+

(Y0 −m0(X))
2

P(Z(S) = 0 | X)

]
.

This proves Theorem 6.

A.7. Proof of Theorem 7

It is a direct result from Appendix B.2 in Foster & Syrgkanis (2020).
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B. Experiments
B.1. Extra Details

For the incorrect scenario, using subscript i to denote different dimensions of X , we let X ′
1 = X1X2, X ′

2 = X2
2 , and

X ′
3 = X3/max {1, X ′

1}. Using X ′ as the regressors for misspecified propensity and outcome models.

B.2. Ablations

We provide the KL−MSE plots with misspecified models in Figure 5. All experiment settings are the same with Figure
2, but we perturb the models. We construct false models also with X ′. The results show the same trend with Figure 2. It
is worth noting that in Figure 5a, the AIPW estimator has similar variance with Meta-IPW when KL distance is large. We
attribute this result to numerical instability, as we find there are occasionally divergent learned parameters due to extreme
heterogeneity. The CLB-IPW estimator maintains low MSE against heterogeneity.

(a) True PS; False OM
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(b) False PS; True OM
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(c) False PS; False OM
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Figure 5: The mean squared error changing with heterogeneity. We use X ′ for all misspecified models. When both models
fail to fit the data, there’s no theoretical guarantee and all estimators have huge mean squared error. The better performance
of Meta-IPW there is meaningless.
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