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Abstract
Schrödinger Bridges (SB) have recently gained
the attention of the ML community as a promising
extension of classic diffusion models which is also
interconnected to the Entropic Optimal Transport
(EOT). Recent solvers for SB exploit the pervasive
bridge matching procedures. Such procedures aim
to recover a stochastic process transporting the
mass between distributions given only a transport
plan between them. In particular, given the EOT
plan, these procedures can be adapted to solve
SB. This fact is heavily exploited by recent works
giving rise to matching-based SB solvers. The cor-
nerstone here is recovering the EOT plan: recent
works either use heuristical approximations (e.g.,
the minibatch OT) or establish iterative matching
procedures which by the design accumulate the
error during the training. We address these limita-
tions and propose a novel procedure to learn SB
which we call the optimal Schrödinger bridge
matching. It exploits the optimal parameteriza-
tion of the diffusion process and provably recovers
the SB process (a) with a single bridge matching
step and (b) with arbitrary transport plan as the
input. Furthermore, we show that the optimal
bridge matching objective coincides with the re-
cently discovered energy-based modeling (EBM)
objectives to learn EOT/SB. Inspired by this ob-
servation, we develop a light solver (which we
call LightSB-M) to implement optimal matching
in practice using the Gaussian mixture parameter-
ization of the adjusted Schrödinger potential. We
experimentally showcase the performance of our
solver in a range of practical tasks. The code for
our solver can be found at https://github.
com/SKholkin/LightSB-Matching.
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Figure 1: Unpaired adult → child translation with our
LightSB-M solver applied in the latent space of ALAE
(Pidhorskyi et al., 2020) for 1024x1024 FFHQ images (Kar-
ras et al., 2019). Our LightSB-M solver converges on 4 cpu
cores in several minutes.
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1. Introduction
Diffusion models are a powerful type of generative models
that show an impressive quality of image generation (Ho
et al., 2020; Rombach et al., 2022). However, they still have
several directions for improvement on which the research
community is actively working. Some of these directions
are: speeding up the generation (Wang et al., 2022; Song
et al., 2023), application to the image-to-image transfer (Liu
et al., 2023a) extension to unpaired image transfer (Meng
et al., 2021) or domain adaptation (Vargas et al., 2021),
including biological tasks with single cell data.

A promising approach to advance these directions is the
development of new theoretical frameworks for learning
flows and diffusions. Recently proposed novel techniques
such as flow (Lipman et al., 2022) and bridge (Shi et al.,
2023) matching for flow and diffusion-based models show
promising potential for further extending and improving
generative and translation models. Furthermore, by exploit-
ing theoretical links between flow and diffusion models
with Optimal Transport (Villani, 2008, OT) and Schrödinger
Bridge (Léonard, 2013, SB) problems, several new methods
have been proposed to speed up the inference (Liu et al.,
2023b), to improve the quality of image generation (Liu
et al., 2023a), and to solve unpaired image and domain
translations (De Bortoli et al., 2021; Shi et al., 2023).

Recent approaches (Tong et al., 2023; Shi et al., 2023; Liu
et al., 2022) to OT and SB problems based on flow and
bridge matching either use iterative bridge matching-based
procedures or employ heuristic approximations (e.g., the
minibatch OT) to recover the SB through its relation to
the Entropic OT problem. Unfortunately, iterative methods
imply solving a sequence of time-consuming optimization
problems and experience error accumulation. In turn, mini-
batch OT approximations can lead to biased solutions.

Contributions. We show that the above-mentioned issues
can be eliminated. We do this by proposing a novel bridge
matching-based approach to solve the SB in one iteration.

1. We propose a new bridge matching-based approach
to solve the SB problem. Our approach exploits the
novel ”optimal” projection for stochastic processes that
projects directly onto the set of SBs (M3.1).

2. Based on the new theoretical results, we develop a
new fast solver for the SB problem. We use the ”light”
parameterization for SBs (Korotin et al., 2024) and our
new theory on ”optimal” projections to solve the SB
problem in one bridge matching iteration (M3.2).

3. We perform extensive comparisons of this new solver
on many setups where SB solvers are widely used,
including the SB benchmark (M5.2), single-cell data
(M5.3) and unpaired image translation (M5.4).

Notations. The notations of our paper mostly follow those
used by the LightSB’s authors in their work (Korotin et al.,
2024). We work in RD, which is the D-dimensional Eu-
clidean space equipped with the Euclidean norm ∥ · ∥. We
use P(RD) to denote the absolutely continuous Borel prob-
ability distributions whose variance and differential entropy
are finite. To denote the density of p ∈ P(RD) at a point
x ∈ RD, we use p(x). We useN (x|µ,Σ) to denote the den-
sity at a point x ∈ RD of the normal distribution with mean
µ ∈ RD and covariance 0 ≺ Σ ∈ RD×D. We write KL (·∥·)
to denote the Kullback-Leibler divergence between two dis-
tributions. In turn, H(·) denotes the differential entropy of
a distribution. We use Ω to denote the space of trajectories,
i.e., continuous RD-valued functions of t ∈ [0, 1]. We write
P(Ω) to denote the probability distributions on the trajec-
tories Ω whose marginals at t = 0 and t = 1 belong to
P(RD); this is the set of stochastic processes. We use dWt

to denote the differential of the standard Wiener process
W ∈ P(Ω). For a process T ∈ P(Ω), we denote its joint
distribution at t = 0, 1 by πT ∈ P(RD × RD). In turn,
we use T|x0,x1

to denote the distribution of T for t ∈ (0, 1)
conditioned on T ’s values x0, x1 at t = 0, 1.

2. Preliminaries
We start with recalling the main concepts of the Schrödinger
Bridge problem (M2.1). Next, we discuss the SB solvers
which are the most relevant to our study (M2.2, 2.3).

2.1. Background on Schrödinger Bridges
To begin with, we recall the SB problem with the Wiener
prior and its equivalent Entropic Optimal Transport problem
with the quadratic cost. We start from the latter as it is
easier to introduce and interpret. For a detailed discussion
of both these problems, we refer to (Léonard, 2013; Chen
et al., 2016). Next, we describe the computational setup for
learning SBs, which we consider in the paper.

Entropic Optimal Transport (EOT) with the quadratic
cost. Consider distributions p0 ∈ P(RD), p1 ∈ P(RD).
For ϵ > 0, the EOT problem with the quadratic cost is
to find the minimizer of

min
π∈Π(p0,p1)

∫
RD

∫
RD

∥x0 − x1∥2

2
π(x0, x1)dx0dx1− ϵH(π), (1)

where Π(p0, p1) is the set of the transport plans, i.e., proba-
bility distributions on RD×RD whose marginals are p0 and
p1, respectively. The minimizer π∗ of (1) exists, is unique,
and is absolutely continuous; it is called the EOT plan.

Schrödinger Bridge with the Wiener Prior. Consider the
Wiener process W ϵ ∈ P(Ω) with volatility ϵ > 0 which
starts at p0 at t = 0. Its differential satisfies the stochas-
tic differential equation (SDE): dW ϵ

t =
√
ϵdWt. The SB
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problem with the Wiener prior W ϵ between p0, p1 is

min
T∈F(p0,p1)

KL (T∥W ϵ) , (2)

where F(p0, p1) ⊂ P(Ω) is the subset of stochastic pro-
cesses which start at distribution p0 (at t = 0) and end at
p1 (at t = 1). There exists a unique minimizer T ∗. Fur-
thermore, it is a diffusion process described by the SDE:
dxt = g∗(xt, t)dt+ dW ϵ

t (Léonard, 2013, Prop. 2.3). The
optimal process T ∗ is called the Schrödinger Bridge and
g∗ : RD × [0, 1]→ RD is the optimal drift.

Relation of EOT and SB. EOT (1) and SB (2) are closely
related to each other. It holds that the joint marginal dis-
tribution πT∗

of T ∗ at times 0, 1 coincides with the EOT
plan π∗ solving (1), i.e., πT∗

= π∗. Hence, the solution π∗

of the EOT problem (1) can be recovered from T ∗. Thus,
SB can be viewed as a dynamic extension of EOT: a user
is interested not only in the optimal mass transport plan π∗,
but in the entire time-dependent mass transport process T ∗.

Given just the optimal plan π∗, one may also complete it
to get the full process T ∗. It suffices to consider a process
whose join marginal distribution at t = 0, 1 is π∗ and the
trajectory distribution T ∗

|x0,x1
at t ∈ (0, 1) conditioned on

the ends (x0, x1) coincides with the Wiener Prior’s, i.e.,
T ∗
|x0,x1

= W ϵ
|x0,x1

. The latter is known as the Brownian
Bridge (Pinsky & Karlin, 2011, Sec. 8.3.3). Thus, we obtain
T ∗ =

∫
RD×RD W ϵ

|x0,x1
dπ∗(x0, x1). This strategy does not

directly give the optimal drift g∗, but it can recovered by
other means, e.g., with the bridge matching (M2.3).

Characterization for EOT and SB solutions. It is known
that the EOT plan π∗ can be represented through the input
density p0 and a function v∗ : RD → R+:

π∗(x0, x1) = p0(x0)︸ ︷︷ ︸
=π∗(x0)

· exp
(
⟨x0, x1⟩/ϵ

)
v
∗
(x1)/cv∗ (x0)︸ ︷︷ ︸

=π∗(x1|x0)

, (3)

where cv∗(x0)
def
=

∫
RD exp

(
⟨x0, x1⟩/ϵ

)
v∗(x1)dy. Following

the notation of (Korotin et al., 2024), we call v∗ the adjusted
Schrödinger potential. The optimal drift of T ∗ can also be
expressed using v∗. Namely,

g∗(xt, t) = ϵ∇xt
log

(∫
RD

N (x′|xt, (1− t)ϵID)

exp
(∥x′∥2

2ϵ

)
v∗(x′)dx′

)
, (4)

see (Korotin et al., 2024, M2, 3) for a deeper discussion.
Note that v∗ is defined up to the multiplicative constant.

Computational SB/EOT setup. In practice, distributions
p0 and p1 are usually not available explicitly but only
through their empirical samples {x1

0, . . . , x
N
0 } ∼ p0 and

{x1
1, . . . , x

M
1 } ∼ p1. The typical task is to obtain a good

approximation ĝ ≈ g∗ of the drift of SB process T ∗ or ex-
plicitly/implicitly approximate the EOT plan’s conditional
distributions π̂(·|x0) ≈ π∗(·|x0) for all x0 ∈ RD. This
is needed to do the out-of-sample estimation, i.e., for new
(test) points xnew

0 ∼ p0 sample x1 ∼ π∗(·|xnew
0 ) or simu-

late T ∗’s trajectories staring at a point xnew
0 at time t = 0.

This setup widely appears in generative modeling (De Bor-
toli et al., 2021; Gushchin et al., 2023a) and analysis of
biological single cell data (Vargas et al., 2021; Koshizuka &
Sato, 2022; Tong et al., 2023).

The setup above is usually called the continuous EOT or SB
and should not be confused with the discrete setup, which
is widely studied in the discrete OT literature (Peyré et al.,
2019; Cuturi, 2013). There one is mostly interested in com-
puting the EOT plan directly between the empirical samples
(probably weighted), i.e., match them with each other. There
is usually no need in the out-of-sample estimation.

2.2. Energy-based EOT/SB Solvers
Given a good approximation of the optimal potential v∗, one
may approximate the conditional EOT plans and the optimal
drift via (3) and (4), respectively (using v∗’s approximation).
Inspired by the idea above, papers (Korotin et al., 2024;
Mokrov et al., 2024) provide related approaches to learn
this potential. They show that v∗ can be learned via solving

L0(v)
def
= min

v

{∫
RD

log cv(x0)p0(x0)dx0

−
∫
RD

log v(x1)p1(x1)dy
}
, (5)

where cv(x)
def
=

∫
RD exp

(
⟨x, y⟩/ϵ

)
v(y)dy. This objective

magically turns to be equal up to an additive v-independent
constant to KL (π∗∥πv) = KL (T ∗∥Sv), where

πv(x0, x1)
def
= p0(x0)

exp
(
⟨x0, x1⟩/ϵ

)
v(x1)

cv(x0)︸ ︷︷ ︸
=πv(x1|x0)

, (6)

is an approximation of the optimal plan constructed by v
instead of v∗ in (3). In turn, Sv ∈ P(Ω) is a process with
joint marginal (at t = 0, 1) is πv and S|x0,x1

= W ϵ
|x0,x1

. Its
drift gv can be recovered by using (4) with v instead of v∗.

Here we use the letter S instead of T to denote the pro-
cess, and this is for a reason. With mild assumptions on v,
the process Sv is the Schrödinger bridge between p0 and
pv(x1)

def
=

∫
RD πv(x0, x1)dx0, i.e., its marginal at t = 1.

This follows from the EOT benchmark constructor theorem
(Gushchin et al., 2023b, Theorem 3.2). Hence, minimiza-
tion (5) can be viewed as the optimization over processes
Sv , which are SBs determined by their potential v.

Unfortunately, the optimization of (5) is tricky. While
the potential v can be directly parameterized, e.g., with
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a neural network vθ, the key challenge is to compute cv,
which is a non-trivial integral. Note that due to (3), one has
π∗(x1|x0=0) ∝ v∗(y), i.e., v∗ is an unnormalized density
of some distribution. This fact is exploited in (Mokrov et al.,
2024; Korotin et al., 2024) to establish ways to optimize (5).

Energy-guided EOT solver (EgNOT). In (Mokrov et al.,
2024), the authors find out that, informally, objective (5)
aims to find an unnormalized density v∗ by optimizing KL
divergence. Therefore, it resembles the objectives of Energy-
based Models (LeCun et al., 2006, EBM). Inspired by this
discovery, the authors show how the standard EBM ap-
proaches can be modified to optimize (5) and later sample
from the learned plan πv . The limitation of the approach is
the necessity to use time-consuming MCMC techniques.

Light Schrödinger Bridge solver (LightSB). In (Korotin
et al., 2024), they use the fact from (Gushchin et al., 2023b)
that the Gaussian parameterization

vθ(x1) =

K∑
k=1

αkN (x1|µk, ϵΣk) (7)

for v provides a closed form analytic expression for cθ.
This removes the necessity to use time-consuming MCMC
approaches at both the training and the inference. Further-
more, Gaussian parameterization provides the closed form
expression for the drift of Sv and allows lightspeed sam-
pling from conditional distributions πv(x1|x0), see (Korotin
et al., 2024, Propositions 3.2, 3.3).

2.3. Bridge matching Procedures for EOT/SB
Recovering SB process from EOT plan (OT-
CFM). Since every SB solution is given by the EOT
plan π∗ and the Brownian Bridges W ϵ

|x0,x1
, i.e.,

T ∗ =
∫
RD×RD W ϵ

|x0,x1
dπ∗(x0, x1), solution of the

EOT problem π∗ already provides a way to sample from
marginal distributions pT∗(xt, t) of T ∗ at each time
t ∈ [0, 1]. The authors of (Tong et al., 2023) propose to use
this property to recover the drift g∗(xt, t) of the process T ∗

using flow (Lipman et al., 2022) and score matching tech-
niques. They use the flow matching to fit the drift g◦(xt, t)
of the probability flow ODE for marginals pT∗(xt, t) (at
time t) of the process T ∗, i.e., g◦(xt, t) for which the con-
tinuity equation ∂pT∗ (xt,t)

∂t = −∇ · (pT∗(xt, t)g
◦(xt, t))

holds. In turn, score matching is used to fit the score
functions ∇ log pT∗(xt, t) of marginal distributions.
Then they recover the Schrödinger bridge drift by using
the relationship between the probability flow ODE
and the SDE representation of stochastic processes:
g◦(xt, t) +

ϵ
2∇ log pT∗(xt, t) = g∗(xt, t).

Unfortunately, the solution of the EOT problem π∗ for two
arbitrary distributions p0 and p1 is unknown. The authors
use the discrete (minibatch) OT between empirical distribu-

tions p̂0
def
=

∑N
n=1 δxn and p̂1

def
=

∑M
m=1 δym constructed by

available samples instead. However, the empirical EOT plan
π̂ may be highly biased from the true π∗. This potentially
leads to undesirable errors in approximating SB.

Learning SB process without EOT solution (DSBM).
Another matching method has been proposed by (Shi
et al., 2023) to get the SB without knowing the EOT
plan π∗. To begin with, for any π ∈ Π(p0, p1), de-
fine Tπ (called the reciprocal process of π) as a mix-
ture of Brownian Bridges with weights given by π, i.e.,
Tπ =

∫
RD×RD W ϵ

|x0,x1
dπ(x0, x1).

To get π∗ and T ∗, the authors alternate between two projec-
tions of stochastic processes: the reciprocal and the Marko-
vian. For a process T ∈ P(Ω), its reciprocal projection is a
mixture of Brownian bridges given by the plan πT :

projR(T )
def
=

∫
RD×RD

W ϵ
|x0,x1

dπT (x, y). (8)

This is a reciprocal process with the same joint marginal πT

at times t = 0, 1 as T (one may write projR(T ) = TπT ).

Consider any reciprocal process Tπ. Its Markovian projec-
tion projM(Tπ) is a diffusion process defined by an SDE
dxt = g(xt, t)dt+

√
ϵdWt, that preserves all time marginals

of Tπ . Its drift function is analytically given by:

g(xt, t) =

∫
RD

x1 − xt

1− t
pTπ (x1|xt)dx1, (9)

where pTπ
denotes the distribution of Tπ. Drift (9) is a

solution to the following optimization problem:

min
g

∫ 1

0

∫
RD×RD

||g(xt, t)−
x1 − xt

1− t
||2dpTπ

(xt, x1)dt (10)

and can be learned by sampling (x0, x1) ∼ π, xt ∼W ϵ
|x0,x1

and parametrizing g by a neural network. This procedure is
the so-called bridge matching procedure.

The authors prove (Shi et al., 2023, Theorem 8) that a se-
quence (T l)l∈N constructed by alternating the projections

T 2l+1 = projM(T 2l+2), T 2l = projR(T 2l+1), (11)

with T 0 = Tπ and any π ∈ Π(p0, p1) converges to the SB
solution T ∗ between p0 and p1. When ϵ→0, the Markovian
projection transforms into the well-known flow matching
procedure (Lipman et al., 2022), and the whole iterative
procedure becomes the Rectified Flow (Liu et al., 2022).

Markovian projection (9) is the bottleneck of the iterative
procedure. In practice, the method uses a neural net to learn
the drift of the projection. This introduces approximation er-
rors at each iteration. The errors lead to differences between
the process Tn’s marginal distribution at time t = 1 and
the actual p1. These errors accumulate after each iteration
and affect convergence, motivating the search for a bridge
matching procedure that converges in a single iteration.
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3. Light and Optimal SB Matching Solver
In M3.1, we present the main theoretical development of our
paper – the optimal Schrödinger bridge matching method.
Next, in M3.2, we propose our novel LightSB-M solver,
which implements the method in practice. In M3.3, we
discuss its connections with the related EOT/SB solvers. In
Appendix A we provide proofs of all theorems.

3.1. Theory. Optimal Schrödinger Bridge Matching
Our algorithm is based on the properties of KL projections
of stochastic processes on the set S of Schrödinger Bridges:

S def
=

{
S ∈ P(Ω) such that ∃pS0 , pS1 ∈ P(RD)

for which S = argmin
T∈F(pS

0 ,pS
1 )

KL (T∥W ϵ)
}
. (12)

In addition to reciprocal and Markovian projections, we
define a new ”optimal projection” (OP). Consider any plan
π ∈ Π(p0, p1), e.g., independent, minibatch, optimal, etc.
Given a reciprocal process Tπ , its projection is the process

projS(Tπ)
def
= argmin

S∈S
KL (Tπ∥S) . (13)

We prove that optimal projection allows to obtain the solu-
tion of Schrödinger Bridge in just one projection step.

Theorem 3.1 (OP of a reciprocal process). The optimal
projection of a reciprocal process Tπ, given by a joint dis-
tribution π ∈ Π(p0, p1) leads to the Schrödinger Bridge T ∗

between the distributions p0 and p1, i.e.:

projS(Tπ) = argmin
S∈S

KL (Tπ∥S) = T ∗. (14)

To implement this in practice, we need to (a) have a tractable
estimator of KL (Tπ∥S) and (b) be able to optimize over S .
We denote S(p0) as the subset of S of processes which start
at p0 at t = 0. Since T ∗ ∈ S(p0), it suffices to optimize
over S(p0) in (14). As it was noted in the background
M2.2, processes S ∈ S(p0) are determined by their adjusted
Schrödinger potential v. We will write Sv instead of S for
convenience.

Theorem 3.2 (Tractable objective for the OP). For the SB
Sv ∈ S(p0) and a reciprocal process Tπ with π ∈ Π(p0, p1)
the optimal projection objective (13) is

KL (Tπ∥Sv) = C(π)+ (15)

1

2ϵ

∫ 1

0

∫
RD×RD

||gv(xt, t)−
x1 − xt

1− t
||2dpTπ (xt, x1)dt,

where gv is the drift of Sv given by (4) (with v instead of
v∗). Here the constant C(π) does not depend on Sv .

This result provides an opportunity to optimize Sv via fitting
its drift gv. Indeed, we can estimate KL (Tπ∥Sv) up to
a constant by sampling from Tπ. To sample from Tπ, it
is sufficient to sample a pair (x0, x1) ∼ π and then to
sample xt from the Brownian bridge W ϵ

|x0,x1
. The natural

remaining question is how to parameterize the drifts of the
SB processes Sv ∈ S. We explain this in the section below.

3.2. Practice. LightSB-M Optimization Procedure
To solve the Schrödinger Bridge between two distributions
p0 and p1 by using optimal projection (13) and its tractable
objective (15), we use any plan π ∈ Π(p0, p1) accessible by
samples. It can be the independent plan, i.e., just indepen-
dent samples from p0, p1, any minibatch OT plan, i.e., the
one obtained by solving discrete OT on minibatch from p0
and p1, etc. To optimize over Schrödinger Bridges Sv ∈ S ,
we use the parametrization of v as a Gaussian mixture (7)
from LightSB (M2.2), which for every vθ provides gθ

def
= gvθ

(4) in a closed form (Korotin et al., 2024, Proposition 3.3):

gθ(x, t) = ϵ∇x log
(
N (x|0, ϵ(1− t)ID)

K∑
k=1

{
αkN (rk|0, ϵΣk)N (h(x, t)|0, At

k)
})

(16)

with At
k

def
= t

ϵ(1−t)ID+
Σ−1

k

ϵ and hk(x, t)
def
= x

ϵ(1−t)+
1
ϵΣ

−1
k rk.

Using this parametrization and any π ∈ Π(p0, p1), we
optimize objective (15) with the stochastic gradient descent.

Algorithm 1 Light SB Matching (LightSB-M)
Input : plan π ∈ Π(p0, p1) accessible by samples; ad-

justed Schrödinger potential vθ parametrized by a
gaussian mixture (θ = {αk, µk,Σk}Kk=1).

Output : learned drift gθ approximating the optimal g∗.
repeat

Sample batch of pairs {xn
0 , x

n
1}Nn=0 ∼ π;

Sample batch {tn}Nn=0 ∼ U [0, 1];
Sample batch {xn

t }Nn=0 ∼W ϵ
|x0,x1

;

Lθ ← 1
N

∑N
n=1 ||gθ(xn

t , tn)− 1
1−tn

(xn
1 − xn

t )||2;
Update θ using ∂Lθ

∂θ ;
until converged;

The training procedure is described in Algorithm 1. We
recall that the Brownian bridge W ϵ

|x0,x1
has time marginals

pBB(xt|x0, x1)
def
= N (xt|tx1+(1− t)x0, ϵt(1− t)ID), i.e.

has a normal distribution with a scalar covariance matrix.

After learning the drift gv(x, t) of the Schrödinger Bridge
SDE dxt = gv(xt, t)dt +

√
ϵdWt, one can use any SDE

solver to infer trajectories. For example, one can use the
simplest and most popular Euler-Maruyama scheme (Kloe-
den et al., 1992, M9.2). However, SDE solvers introduce
some errors due to discrete approximations. Using the
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LightSB parameterization of Schrödinger bridges from (Ko-
rotin et al., 2024), we can sample trajectories without having
to solve the learned SDE numerically. To do so, we first sam-
ple from the learned plan πv(x1|x0) given by (6) and then
sample the trajectory of the Brownian bridge W ϵ

|x0,x1
using

it’s self-similarity property (Korotin et al., 2024, M3.2). We
recall that the self-similarity of the Brownian bridge means
that if we have a trajectory x0, xt1 , ..., xtL , x1, we can sam-
ple a new point at time tl < t < tl+1 by using the following
property of the Brownian bridge:

xt∼N
(
xt|xtl+

t′ − tl
tl+1− tl

(xtl+1
− xtl),ϵ

(t′−tl)(tl+1−t′)
tl+1 − tl

)
.

3.3. Connections to the Most Related Prior Works
DSBM (Shi et al., 2023). Schrödinger Bridge T ∗ between
p0 and p1 is the only process that simultaneously is Marko-
vian and reciprocal (Léonard, 2013, Proposition 2.3). This
fact lies at the core of DSBM’s iterative approach of alter-
nating Markovian and reciprocal projections. In turn, our
optimal projection (13) provides the SB in one step, project-
ing a process on the set of processes that are both reciprocal
and Markovian, i.e., Schrödinger Bridges.

OT-CFM (Tong et al., 2023). Our optimal projection (13)
of a reciprocal process of Tπ with any π ∈ Π(p0, p1) is the
same Schrödinger Bridge between p0 and p1. Thus, optimal
projection does not depend on the choice of the plan π. In
turn, OT-CFM provides theoretical guarantees of finding the
Schrödinger Bridge only if one chooses as plan π the EOT
plan π∗, which is unknown for arbitrary distributions p0, p1.
EgNOT/LightSB (Mokrov et al., 2024; Korotin et al., 2024).
Our main objective (13) resembles objective (5) of EgNOT
and LightSB as the latter equals KL (T ∗∥Sv) up to a con-
stant. At the same time, our objective allows to use any
reciprocal process Tπ instead of T ∗ = Tπ∗ . Interestingly,
our obtained tractable bridge matching objective turns out
to be closely related to the EgNOT/LightSB objective (5).
Theorem 3.3 (Equivalence to EgNOT/LightSB objective).
The OP objective (15) for a reciprocal process Tπ and π ∈
Π(p0, p1) is equivalent to LightSB objective L0 (5):

1

2ϵ

∫ 1

0

∫
RD×RD

||gv(xt, t)−
x1 − xt

1− t
||2dpTπ

(xt, x1)dt =

C̃(π) + L0(v).

One interesting conclusion from this equivalence is that
our LightSB-M solver automatically inherits the theoretical
generalization and approximation properties of the LightSB
solver; see (Korotin et al., 2024, M3) for details about them.

4. Other Related Works
Here, we overview other existing works related to solving
SB/EOT. Unlike the works described above, these are less

relevant to our study. Still, we want to highlight some
aspects of other solvers related to our solver.

4.1. Iterative proportional fitting (IPF) solvers.
There are several Schrödinger Bridge solvers (Vargas et al.,
2021; De Bortoli et al., 2021; Chen et al., 2021a) for con-
tinuous probability distributions based on the Iterative Pro-
portional Fitting (IPF) procedure (Fortet, 1940; Kullback,
1968; Ruschendorf, 1995). The IPF procedure is related to
the Sinkhorn algorithm (Cuturi, 2013) and, as was recently
shown in work (Vargas & Nüsken, 2023), coincides with
the expectation-maximization (EM) algorithm (Dempster
et al., 1977). All these three IPF-based SB solvers consist of
iterative reversing of Markovian processes and differ only
in particular methods to fit a reversion of a process by a neu-
ral network. The first two (Vargas et al., 2021; De Bortoli
et al., 2021) methods use similar mean-matching proce-
dures, while the last (Chen et al., 2021a) utilizes a different
approach which includes the estimation of a divergence.

In (Shi et al., 2023) the authors show, that due to iterative
nature of one of these solvers (De Bortoli et al., 2021) it can
diverge, due to errors accumulation on each iteration. Fur-
thermore, the authors of (Vargas & Nüsken, 2023) show that
these solvers tend to lose the information of Wiener Prior of
Schrödinger Bridge and converge to the Markovian process
that does not solve the SB problem. In turn, our approach
eliminates the need for iterative learning of a sequence of
Markovian processes and is free from the possible issues
with divergence or obtaining a biased solution.

4.2. EOT solvers and EOT-based SB solvers.
Recall that EOT and SB problems are closely related: SB
solutions can be recovered from EOT solutions by using
Brownian Bridge W ϵ

|x0,x1
or recovering the drift g(xt, t),

e.g., as in (Tong et al., 2023). Due to this, we also give a
quick overview of EOT solvers for continuous distributions.
Several works (Genevay et al., 2016; Seguy et al., 2018;
Daniels et al., 2021) consider solving the EOT problem
by utilizing the classic dual EOT problem (Genevay et al.,
2019). Classic dual EOT problem for continuous p0 and p1
is an unconstrained maximization problem over dual vari-
ables, also called potentials, which can be parameterized by
neural networks and trained. After training, these potentials
can be used to directly sample from distribution π∗(x1|x0)
by using additional score model for∇x log p1(x) (Daniels
et al., 2021) or to train neural network model to predict con-
ditional expectation Eπ∗(x1|x0)x1, i.e., the barycentric pro-
jection. However, the main disadvantage of these methods is
that in practice, dual EOT problem cannot be solved by neu-
ral networks for practically meaningful (small) coefficients
ϵ due to numerical errors of calculating dual EOT objective
since it includes terms in form Ex0∼p0,x1∼p1

exp( f(x0,x1)
ϵ ).
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(a) x ∼ p0, y ∼ p1. (b) ϵ = 0.01. (c) ϵ = 0.1. (d) ϵ = 1.

Figure 2: The process Sθ learned with LightSB-M (ours) in Gaussian→Swiss roll example (M5.1).

There is also one SB solver based on the theory of EOT dual
problem (Gushchin et al., 2023a). This solver directly fits
the drift g of the Schrödinger Bridge by using a maximin
reformulation of the dual EOT problem and its link to the SB
problem. This allows to overcome the numerical problems
and solve SB for practically meaningful values of ϵ.

Our solver is also based on solving EOT and SB using
the theory behind the dual EOT problem. Thanks to using
parametrization of adjusted Schrödinger potential as in (Ko-
rotin et al., 2024) instead of EOT potentials as in (Seguy
et al., 2018; Daniels et al., 2021) and using novel optimiza-
tion objective based on bridge matching, our method over-
comes numerical issues of the previously developed dual
EOT-based methods without the maximin optimization.

4.3. Other SB solvers.
The authors of (Kim et al., 2024) propose a different mini-
max SB solver by considering the self-similarity of the SB
in learning objectives and an additional consistency regular-
ization. While showing good results, their approach requires
using neural estimation of entropy, which involves solving
additional optimization problem at every minimization step.

All previously considered solvers are designed to solve SB
as a problem of finding the optimal translation between two
distributions p0, p1 without any paired data from them, but
there are also several SB solvers (Liu et al., 2023a; Somnath
et al., 2023) for setups with paired trained data such as the
super-resolution. In fact, the concept of bridge matching
was introduced in (Liu et al., 2023a) but for the paired setup.
The authors work under the assumption that the available
paired data is a good approximation of the EOT plan and
propose using Bridge matchi to recover the SB from this
data, which makes their method related to (Tong et al., 2023).
As noted earlier, our solver provably recovers SB using data
provided by arbitrary plan π between p0 and p1.

5. Experimental Illustrations
To evaluate our new LightSB-M solver, we considered sev-
eral setups from related works. The code for our solver is

written in PyTorch and available at https://github.
com/SKholkin/LightSB-Matching. For each ex-
periment, we present a separate self-explaining Jupyter note-
book, which can be used to reproduce the results of our
solver. We provide the technical details in Appendix B.

5.1. Qualitative 2D Example
We start our evaluation with an illustrative 2D setup. We
solve the SB between a Gaussian distribution p0 and a Swiss
roll p1. We run our LightSB-M solver with mini-batch (MB)
discrete OT as plan π for different values of the coefficient ϵ
and present the results in Figure 2. As expected, we see that
the amount of noise in the trajectories and the stochasticity
of the learned map are proportional to coefficient ϵ. The
technical details of this setup are given in Appendix B.1.

5.2. Quantitative Evaluation on the SB Benchmark
We use the SB mixtures benchmark proposed by (Gushchin
et al., 2023b, M4) to experimentally verify that our approach
based on the optimal projection is indeed able to solve the
Schrödinger Bridge between p0 and p1 by using any re-
ciprocal process Tπ, π ∈ Π(p0, p1). The benchmark pro-
vides continuous probability distribution pairs p0, p1 for
dimensions D ∈ {2, 16, 64, 128} with the known EOT plan
π∗(x0, x1) for parameter ϵ ∈ {0.1, 1.10}. To evaluate the
quality of the SB solution (EOT plan) we use cBW2

2-UVP
metric as suggested by the authors (Gushchin et al., 2023b,
M5). Additionally, we study how well the solvers restore the
target distribution p1 in Appendix B.3.

We provide results of our LightSB-M solver with indepen-
dent (ID) and mini-batch discrete OT (MB) as π in Tπ for
mixture benchmark pairs in Table 1. Since the benchmark
provides the ground truth EOT plan π∗ (GT), we also run
our solver with it. Note that we have access to the GT EOT
plan thanks to the benchmark, and in regular setups there
is, of course, no access to it. As shown in the Table 1, our
solver demonstrates comparable performance to the best
among other solvers for all considered plans π. As noted
in (Korotin et al., 2024, M5.2), the mixture parameterization
used by LightSB and which we adapt in our LightSB-M
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ϵ = 0.1 ϵ = 1 ϵ = 10

Solver Type D=2 D=16 D=64 D=128 D=2 D=16 D=64 D=128 D=2 D=16 D=64 D=128

Best solver on benchmark† Varies 1.94 13.67 11.74 11.4 1.04 9.08 18.05 15.23 1.40 1.27 2.36 1.31

LightSB† KL minimization 0.03 0.08 0.28 0.60 0.05 0.09 0.24 0.62 0.07 0.11 0.21 0.37
DSBM

Bridge matching

5.2 16.8 37.3 35 0.3 1.1 9.7 31 3.7 105 3557 15000
SF2M-Sink 0.54 3.7 9.5 10.9 0.2 1.1 9 23 0.31 4.9 319 819

LightSB-M (ID, ours) 0.04 0.18 0.77 1.66 0.09 0.18 0.47 1.2 0.12 0.19 0.36 0.71
LightSB-M (MB, ours) 0.02 0.1 0.56 1.32 0.09 0.18 0.46 1.2 0.13 0.18 0.36 0.71
LightSB-M (GT, ours) 0.02 0.1 0.49 1.16 0.09 0.18 0.47 1.2 0.13 0.18 0.36 0.69

Table 1: Comparisons of cBW2
2-UVP ↓ (%) between the optimal plan π∗ and the learned plan πθ on the EOT/SB benchmark (M5.2).

The best metric over bridge matching solvers is bolded. Results marked with † are taken from (Korotin et al., 2024).

Solver type Solver
DIM 50 100 1000

Langevin-based (Mokrov et al., 2024)† [1 GPU V100] 2.39 ± 0.06 (19 m) 2.32 ± 0.15 (19 m) 1.46 ± 0.20 (15 m)
Minimax (Gushchin et al., 2023a)† [1 GPU V100] 2.44 ± 0.13 (43 m) 2.24 ± 0.13 (45 m) 1.32 ± 0.06 (71 m)

IPF (Vargas et al., 2021)† [1 GPU V100] 3.14 ± 0.27 (8 m) 2.86 ± 0.26 (8 m) 2.05 ± 0.19 (11 m)
KL minimization LightSB (Korotin et al., 2024)† [4 CPU cores] 2.31 ± 0.27 (65 s) 2.16 ± 0.26 (66 s) 1.27 ± 0.19 (146 s)

Bridge matching

DSBM (Shi et al., 2023) [1 GPU V100] 2.46 ± 0.1 (6.6 m) 2.35 ± 0.1 (6.6 m) 1.36 ± 0.04 (8.9 m)
SF2M-Sink (Tong et al., 2023) [1 GPU V100] 2.66 ± 0.18 (8.4 m) 2.52 ± 0.17 (8.4 m) 1.38 ± 0.05 (13.8 m)

LightSB-M (ID, ours) [4 CPU cores] 2.347 ± 0.11 (58 s) 2.174 ± 0.08 (60 s) 1.35 ± 0.05 (147 s)
LightSB-M (MB, ours) [4 CPU cores] 2.33 ± 0.09 (80 s) 2.172 ± 0.08 (80 s) 1.33 ± 0.05 (176 s)

Table 2: Energy distance (averaged for two setups and 5 random seeds) on the MSCI dataset (M5.3) along with 95%-confidence interval
(± intervals) and average training times (s - seconds, m - minutes). The best bridge matching solver according to the mean value is

bolded. Results marked with † are taken from (Korotin et al., 2024).

solver may introduce some inductive bias, since it uses the
analogous principles used to construct the benchmark.

We empirically see that our LightSB-M solver finds the
same (optimal) solution for all considered plans π.

Baselines. We present results for other bridge match-
ing methods such as DSBM (Shi et al., 2023), which
uses Markovian and reciprocal projections, and SF2M-Sink
(Tong et al., 2023), which uses an approximation of the
EOT plan by the Sinkhorn algorithm (Cuturi, 2013). On the
setups with ϵ = 10 both methods exibits difficulties due to
the necessity to learn SDE with high magnitude. On the se-
tups with ϵ = 0.1 and ϵ = 1, SF2M-Sink works better than
DSBM. This result may seem counterintuitive at first, since
DSBM methods should find the true SB solution, while
SF2M-Sink should find some approximation to it based on
how close the minibatch discrete EOT approximates the GT
EOT plan. One possible reason is that DSBM simply re-
quires more iterations of Markovian/reciprocal projections.
However, in our experiments we observe that increasing the
number of iterations does not improve the quality.

We provide an additional study of dynamic metrics and the
inference speed of our solver in Appendix B.3.

5.3. Quantitative Evaluation on Biological Data
We evaluate our algorithm on the inference of cell tra-
jectories from unpaired single-cell data problem, where
OT/SB is widely used (Vargas et al., 2021; Tong et al.,
2023; Koshizuka & Sato, 2022). We consider the recent
high-dimensional single-cell setup provided by (Tong et al.,
2023) based on the dataset from the Kaggle competition

”Open Problems - Multimodal Single-Cell Integration.” This
dataset provides single-cell data from four human donors on
days 2, 3, 4 and 7 and describes the gene expression levels
of distinct cells. The task of this setup is to learn a tra-
jectory model for the cell dynamics, given only unpaired
samples at two time points, representing distributions p0
and p1. As in related works (Tong et al., 2023; Korotin et al.,
2024), we use PCA projections of the original data with
DIM ∈ {50, 100, 1000} components.

In our experiments, we consider two setups by taking data
from two different days as p0, p1 to solve the Shrödinger
Bridge and one intermediate day for evaluation. The first
setup includes data from day 2 as p0, data from day 4 as p1,
and data from day 3 for evaluation, while the second setup
includes data from day 3 as p0, data from day 7 as p1, and
data from day 4 for evaluation. At evaluation, we use learned
models to sample one trajectory for each cell from the initial
distribution p0 and then compare the predicted distribution
at the intermediate time point with the ground truth data
distribution. For comparison, we use energy distance (Rizzo
& Székely, 2016) and present results in Table 2.

We see that our LightSB-M’s solution with independent (ID)
and minibatch discrete OT (MB) plans for Tπ provides the
same metrics since it learns the same solution, as follows
from the developed theory. It also shows performance on the
same level as other neural network-based matching methods
such as DSBM and SF2M-Sink, but converges faster even
without using GPU similar to the LightSB solver.

In Appendix B.2, we provide the technical details for this
setup and additional results for different values of ϵ.
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(a) Adult → Child (b) Man → Woman

Figure 3: Unpaired translation between subsets of FFHQ dataset (1024x1024) performed by various SB solvers (M5.4) in the
latent space of ALAE (Pidhorskyi et al., 2020).

5.4. Comparison on Unpaired Image-to-image Transfer
Another popular setup that involves learning a translation
between two distributions without paired data is image-to-
image translation (Zhu et al., 2017). Methods based on
SB show promising results in solving this problem thanks
to the perfect theoretical agreement of this setup with the
SB formulation (Shi et al., 2023). Due to the used parame-
terization based on Gaussian mixture, learning the transla-
tion between low-dimensional image manifolds is difficult
for LightSB-M. Fortunately, many approaches use autoen-
coders (Rombach et al., 2022) for more efficient generation
and translation. We follow the setup of (Korotin et al., 2024)
with the pre-trained ALAE autoencoder (Pidhorskyi et al.,
2020) on 1024× 1024 FFHQ dataset (Karras et al., 2019).

We present the qualitative results of our solver with dis-
crete minibatch OT plan (MB) and independent plan (ID)
in Fig 3. For comparison, we also provide results of DSBM
and SF2M-Sink. Our LightSB-M solver converges to nearly
the same solution for both ID and MB plans and demon-
strates good results. The samples provided by DSBM are
close to the samples of LightSB-M, which is expected since
both methods provide theoretical guarantees for solving the
SB problem. Samples obtained by SF2M-Sink slightly dif-
fer, probably due to the bias of the discrete EOT plans. We
provide additional examples of translation in Appendix B.4.
The details of the baselines are given in Appendix B.5.

6. Discussion
Potential impact. Our main contribution is methodological:
we show that one may perform just a single (but optimal)
bridge matching step to learn SB. This finding helps us
eliminate limitations of existing bridge matching-based ap-
proaches, such as heuristical minibatch OT approximations

or error accumulation during training. We believe that this
insight is a significant step towards developing novel effi-
cient computational approaches for SB/EOT tasks.

Limitations. Given an adjusted Schrödinger potential v, it
may be not easy to compute the drift gv (4) of Sv needed to
perform the optimal SB matching. We employ the Gaussian
mixture parameterization for v for which this drift gv is
analytically known (16). This allows to easily implement
our optimal SB matching in practice and obtain a fast bridge
matching based solver. Still such a parameterization some-
times may be not sufficient, e.g., for large-scale generative
modeling tasks. We point to developing ways to use more
general parameterization of v to our optimal SB matching,
e.g., neural-network-based, as a promising research avenue.
We show possible steps in this direction in Appendix C.

One other limitation of our LightSB-M solver is that it is
applicable to a limited set of priors. In this paper, we only
consider the Wiener prior, which is one of the most popular
priors used for SB. However, our method can be applied to
other priors by changing the variables. These include Arith-
metic Brownian Motion and Geometric Brownian Motion,
also known as the Black-Scholes model, which is widely
used in mathematical finance. Developing light solvers for
Scrödinger Bridges with more general priors is a promising
direction for the future research.
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A. Proofs
Proof of Theorem 3.1. Let p0, p1 denote the marginals of π. Let π∗ be the EOT plan between p0, p1. Let pS0 , p

S
1 denote the

distribution of S at t = 0 and t = 1, respectively. We use the fact that each element S of S is a reciprocal process with some
EOT plan πS ∈ Π(pS0 , p

S
1 ), i.e. S =

∫
W ϵ

|x0,x1
dπS(x0, x1), recall M2.1. In turn, πS can be represented through the input

density pS0 and the potential vS as in (6), i.e.:

πS(x0, x1) = pS0 (x0)
exp

(
⟨x0, x1⟩/ϵ

)
vS(x1)

cvS (x0)
(17)

We derive:

KL (Tπ∥S) = KL
(
π∥πS

)
+

∫
RD×RD

KL
(
Tπ|x0,x1

∥S|x0,x1

)
π(x0, x1)dx0dx1 = (18)

KL
(
π∥πS

)
+

∫
RD×RD

KL
(
W ϵ

|x0,x1
∥W ϵ

|x0,x1

)
︸ ︷︷ ︸

=0

π(x0, x1)dx0dx1 = (19)

∫
RD×RD

log π(x0, x1)

log πS(x0, x1)
π(x0, x1)dx0dx1 =∫

RD×RD

log π(x0, x1)π(x0, x1)dx0dx1 −
∫
RD×RD

log πS(x0, x1)π(x0, x1)dx0dx1 =

−H(π)−
∫
RD×RD

log πS(x0, x1)π(x0, x1)dx0dx1 = (20)

−H(π)−
∫
RD×RD

log
(
pS0 (x0)

exp
(
⟨x0, x1⟩/ϵ

)
vS(x1)

cvS (x0)

)
π(x0, x1)dx0dx1 = (21)

−H(π)−
∫
RD×RD

(
log pS0 (x0) + ⟨x0, x1⟩+ log vS(x1)− log cvS (x0)

)
π(x0, x1)dx0dx1 =

−H(π)−
∫
RD×RD

⟨x0, x1⟩π(x0, x1)dx0dx1

−
∫
RD×RD

(
log pS0 (x0)− log cvS (x0)

)
π(x0, x1)dx0dx1 −

∫
RD×RD

log vS(x1)π(x0, x1)dx0dx1 =

−H(π)−
∫
RD×RD

⟨x0, x1⟩π(x0, x1)dx0dx1 −
∫
RD

log vS(x1)
( ∫

RD

π(x0|x1)dx0

)
︸ ︷︷ ︸
=1=

∫
RD π∗(x0|x1)dx0

π(x1)︸ ︷︷ ︸
=π∗(x1)

dx1

−
∫
RD

{
(log pS0 (x0)− log cvS (x0))

∫
RD

π(x1|x0)dx1︸ ︷︷ ︸
=1=

∫
RD π∗(x1|x0)dx1

}
π(x0)︸ ︷︷ ︸
=π∗(x0)

dx0 =

−H(π)−
∫
RD×RD

⟨x0, x1⟩π(x0, x1)dx0dx1 −
∫
RD

log vS(x1)
( ∫

RD

π∗(x0|x1)dx0

)
π∗(x1)dx1

−
∫
RD

{
(log pS0 (x0)− log cvS (x0))

∫
RD

π∗(x1|x0)dx1

}
π∗(x0)dx0 =

−H(π)−
∫
RD×RD

⟨x0, x1⟩π(x0, x1)dx0dx1 −
∫
RD×RD

log vS(x1)π
∗(x0, x1)dx0dx1

−
∫
RD×RD

(
log pS0 (x0)− log cvS (x0)

)
π∗(x0, x1)dx0dx1 =

−H(π)−
∫
RD×RD

⟨x0, x1⟩π(x0, x1)dx0dx1

12
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+

∫
RD×RD

⟨x0, x1⟩π∗(x0, x1)dx0dx1 −
∫
RD×RD

⟨x0, x1⟩π∗(x0, x1)dx0dx1︸ ︷︷ ︸
=0

−
∫
RD×RD

(
log pS0 (x0) + log vS(x1)− log cvS (x0)

)
π∗(x0, x1)dx0dx1 =

−H(π)−
∫
RD×RD

⟨x0, x1⟩π(x0, x1)dx0dx1 +

∫
RD×RD

⟨x0, x1⟩π∗(x0, x1)dx0dx1

−
∫
RD×RD

(
log pS0 (x0) + ⟨x0, x1⟩+ log vS(x1)− log cvS (x0)

)
π∗(x0, x1)dx0dx1 =

−H(π)−
∫
RD×RD

⟨x0, x1⟩π(x0, x1)dx0dx1 +

∫
RD×RD

⟨x0, x1⟩π∗(x0, x1)dx0dx1

−
∫
RD×RD

log
(
pS0 (x0)

exp
(
⟨x0, x1⟩/ϵ

)
vS(x1)

cvS (x0)︸ ︷︷ ︸
πS(x1|x0)

)
π∗(x0, x1)dx0dx1 =

−H(π)−
∫
RD×RD

⟨x0, x1⟩(π(x0, x1)− π∗(x0, x1))dx0dx1 −
∫
RD×RD

log πS(x0, x1)π
∗(x0, x1)dx0dx1

+

∫
RD×RD

log π∗(x0, x1)π
∗(x0, x1)dx0dx1 −

∫
RD×RD

log π∗(x0, x1)π
∗(x0, x1)dx0dx1︸ ︷︷ ︸

=0

=

−H(π)−
∫
RD×RD

⟨x0, x1⟩(π(x0, x1)− π∗(x0, x1))dx0dx1 −
∫
RD×RD

log π∗(x0, x1)π
∗(x0, x1)dx0dx1︸ ︷︷ ︸

def
=Ĉ(π)

+

∫
RD×RD

log
π∗(x0, x1)

πS(x0, x1)
π∗(x0, x1)dx0dx1︸ ︷︷ ︸

=KL(π∗∥πS)

=

Ĉ(π) + KL
(
π∗∥πS

)
.

In (18) we use disintegration theorem for KL divergence to distinguish process plan πS and ”inner part” (Vargas et al., 2021,
Appendix C, D). In transition from (18) to (19) we notice, that Tπ|x0,x1

= W ϵ
|x0,x1

and S|x0,x1
= W ϵ

|x0,x1
, since Tπ is a

reciprocal process as well as Schrödinger Bridge S. In transition from (20) to (21) we use the fact, that πS is given by (17).
Since

KL (Tπ∥S) = Ĉ(π) + KL
(
π∗∥πS

)
,

the minimum of KL (Tπ∥S) is achieved for S such that πS = π∗, i.e., when S is the SB between p0 and p1.

Proof of Theorem 3.2. We start by using a Pythagorean theorem for Markovian projection (Shi et al., 2023, Lemma 6)

KL (Tπ∥Sv) = KL (Tπ∥projM(Tπ)) + KL (projM(Tπ)∥Sv) , (22)

where the drift gM of the Markoian projection projM(Tπ) is given by (9):

gM(xt, t) =

∫
RD

x1 − xt

1− t
dpTπ (x1|xt). (23)

We use the expression of KL between Markovian processes starting from the same distribution p0 through their drifts (Pavon
& Wakolbinger, 1991) and note that Markovian projection preserve the time marginals pTπ

(xt):

KL (projM(Tπ)∥Sv) =
1

2ϵ

∫ 1

0

∫
RD

||gv(xt, t)− gM(xt, t)||2dpTπ (xt)dt (24)
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Then we substitute gM by (23):

KL (projM(Tπ)∥Sv) =
1

2ϵ

∫ 1

0

∫
RD

||gv(xt, t)− gM(xt, t)||2dpTπ
(xt)dt =

1

2ϵ

∫ 1

0

∫
RD

||gv(xt, t)−
∫
RD

x1 − xt

1− t
dpTπ

(x1|xt)||2dpTπ
(xt)dt =

1

2ϵ

∫ 1

0

∫
RD

{
||gv(xt, t)||2 − 2⟨gv(xt, t),

∫
RD

x1 − xt

1− t
dpTπ

(x1|xt)⟩
}
dpTπ

(xt)dt+

1

2ϵ

∫ 1

0

∫
RD

||
∫
RD

x1 − xt

1− t
dpTπ (x1|xt)||2dpTπ (xt)dt︸ ︷︷ ︸

def
=C′(π)

=

1

2ϵ

∫ 1

0

∫
RD

{
||gv(xt, t)||2 − 2⟨gv(xt, t),

∫
RD

x1 − xt

1− t
dpTπ

(x1|xt)⟩
}
dpTπ

(xt)dt+ C ′(π) =

1

2ϵ

∫ 1

0

∫
RD

∫
RD

{
||gv(xt, t)||2 − 2⟨gv(xt, t),

x1 − xt

1− t
⟩
}
dpTπ

(x1|xt)dpTπ
(xt)︸ ︷︷ ︸

dpTπ (xt,x1)

dt+ C ′(π) =

1

2ϵ

∫ 1

0

∫
RD

∫
RD

{
||gv(xt, t)||2 − 2⟨gv(xt, t),

x1 − xt

1− t
⟩
}
dpTπ (xt, x1)dt+ C ′(π) =

1

2ϵ

∫ 1

0

∫
RD

∫
RD

{
||gv(xt, t)−

x1 − xt

1− t
||2

}
dpTπ (xt, x1)dt−

1

2ϵ

∫ 1

0

∫
RD

∫
RD

||x1 − xt

1− t
||2dpTπ

(xt, x1)dt+ C ′(π)︸ ︷︷ ︸
def
=C′′(π)

=

1

2ϵ

∫ 1

0

∫
RD

∫
RD

{
||gv(xt, t)−

x1 − xt

1− t
||2

}
dpTπ

(xt, x1)dt+ C ′′(π)

Thus,

KL (Tπ∥Sv) = KL (Tπ∥projM(Tπ)) + C ′(Tπ)︸ ︷︷ ︸
def
=C(π)

+

1

2ϵ

∫ 1

0

∫
RD

∫
RD

{
||gv(xt, t)−

x1 − xt

1− t
||2

}
dpTπ

(xt, x1)dt =

C(π) +
1

2ϵ

∫ 1

0

∫
RD

∫
RD

{
||gv(xt, t)−

x1 − xt

1− t
||2

}
dpTπ

(xt, x1)dt. (25)

Proof of Theorem 3.3. From Theorem 3.2 it follows that:

KL (Tπ∥Sv) = C(π) +
1

2ϵ

∫ 1

0

∫
RD

∫
RD

{
||gv(xt, t)−

x1 − xt

1− t
||2

}
dpTπ

(xt, x1)dt. (26)

In turn, from the proof of Theorem (3.1) it holds that:

KL (Tπ∥Sv) = Ĉ(π) + KL
(
π∗∥πSv

)
. (27)

From the (Korotin et al., 2024, Propositon 3.1) it follows that KL
(
π∗∥πS

v

)
= L0(v)−L∗, where L∗ is a constant depending

on distirbutions p0, p1 and value ϵ. Hence, we combine these two expressions and get

1

2ϵ

∫ 1

0

∫
RD

∫
RD

{
||gv(xt, t)−

x1 − xt

1− t
||2

}
dpTπ (xt, x1)dt = C̃(π) + L0(v),

where C̃(π)
def
= Ĉ(π)− L∗ − C(π).

14



Light and Optimal Schrödinger Bridge Matching

B. Experiments details and extra results
We build our LightSB-M implementation upon LightSB official implementation https://github.com/ngushchin/
LightSB. All the parametrization, optimization and initialization details are the same as (Korotin et al., 2024) if not stated
otherwise. In the Mini-batch (MB) setting, discrete OT algorithm ot.emd is taken from POT library (Flamary et al., 2021).
The batch size is always 128.

B.1. Qualitative 2D setup hyperparameters

We use K = 250 potentials and Adam optimizer with lr = 10−3 in all the cases to train LightSB-M.

B.2. Evaluation on Biological Single-cell Data.

We follow the same setup as (Korotin et al., 2024) and use their code and data from https://github.com/
ngushchin/LightSB. All models are trained with ϵ = 0.1 if not stated otherwise. For completeness, we provide
additional results of our solver trained with the independent plan with different values of the parameter ϵ, see Table 3.

ϵ
DIM 50 100 1000

0.3 2.37± 0.11 2.169± 0.11 1.310± 0.06
0.1 2.347± 0.11 2.174± 0.08 1.35± 0.05
0.03 2.349± 0.09 2.32± 0.09 1.279± 0.05
0.01 2.404± 0.12 2.28± 0.07 1.309± 0.04

Table 3: Energy distance (averaged for two setups and 5 random seeds) on the MSCI dataset (M5.3) along with
95%-confidence interval (± intervals) for LightSB-M (ID).

B.3. Evaluation on the Schrodinger Bridge Benchmark

Here we first provide an additional evaluation of solvers using target matching and dynamic metrics. Then we study the
speed of inference in our LightSB-M solver using the Brownian bridge vs. using the Euler–Maruyama simulation.

Target metric evaluation. We additionally study how well each solver map initial distribution p0 into p1 by measuring the
metric BW2

2-UVP also proposed by the authors of the benchmark (Gushchin et al., 2023b, M4). We present the results in
Table 4. We observe that our method performs better than other bridge-matching approaches.

ϵ = 0.1 ϵ = 1 ϵ = 10

Solver Type D=2 D=16 D=64 D=128 D=2 D=16 D=64 D=128 D=2 D=16 D=64 D=128

Best solver on benchmark† Varies 0.016 0.05 0.25 0.22 0.005 0.09 0.56 0.12 0.01 0.02 0.15 0.23

LightSB† KL minimization 0.005 0.017 0.037 0.069 0.004 0.01 0.03 0.07 0.03 0.04 0.17 0.30
DSBM

Bridge matching

0.03 0.18 0.7 2.26 0.04 0.09 1.9 7.3 0.26 102 3563 15000
SF2M-Sink 0.04 0.18 0.39 1.1 0.07 0.3 4.5 17.7 0.17 4.7 316 812

LightSB-M (ID, ours) 0.02 0.03 0.2 0.46 0.005 0.04 0.11 0.27 0.07 0.03 0.11 0.21
LightSB-M (MB, ours) 0.005 0.07 0.27 0.63 0.002 0.04 0.12 0.36 0.04 0.07 0.11 0.23
LightSB-M (GT, ours) 0.02 0.03 0.21 0.55 0.011 0.03 0.11 0.26 0.016 0.04 0.09 0.21

Table 4: Comparisons of BW2
2-UVP ↓ (%) between the ground truth target distribution p1 and learned target distribution πθ(x1). The

best metric over bridge matching solvers is bolded. Results marked with † are taken from (Korotin et al., 2024).

Dynamic metrics evaluation. Following the authors of the benchmark paper (Gushchin et al., 2023b, Appendix F), we
provide additional metrics for the learned dynamic of the Schrödinger Bridge. The authors of the benchmark measure
forward KL(T ∗||S) and reversed KL(S||T ∗) divergences between the ground-truth process T ∗ and the learned process S.
To do so, they define two auxiliary values:

L2
fwd[t] = Ext∼T∗∥g∗(xt, t)− gS(xt, t)∥2, L2

rev[t] = Ext∼S∥g∗(xt, t)− gS(xt, t)∥2,

and use the fact, that KL(T ∗||S) = 1
2ϵ

∫ 1

0
L2

fwd[t]dt and KL(S||T ∗) = 1
2ϵ

∫ 1

0
L2

rev[t]dt. The values of L2
fwd[t] and L2

rev[t] for
the range of t ∈ [0, 1] are plotted in Figure 4. We observe that LightSB-M has a lower error L2

fwd[t] and L2
rev[t] as well as

KL(T ∗||S) and KL(S||T ∗) in approximating the ground-truth optimal drift g∗(Xt, t) than other algorithm including DSBM
(Shi et al., 2023) and SF2M (Tong et al., 2023). Values of KL(T ∗||S) and KL(S||T ∗) are given in the Table 5. Since L2

fwd[t]
and L2

rev[t] are lower for most times for our algorithm, KL(T ∗||S) and KL(S||T ∗) are lower for our LightSB-M algorithm.
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Figure 4: Dynamic KL evaluation. L2
fwd[t] and L2

bwd[t] values w.r.t. time for different algorithms. Results denoted as ”Best
solver (benchmark)” are taken from the benchmark paper (Gushchin et al., 2023b)

Solver LightSBM (ID, ours) Best solver (benchmark) SF2M DSBM
KL(T ∗||S) 0.0093 1.64 0.6422 0.2950
KL(S∥|T ∗) 0.0099 49.65 1.0765 0.39

Table 5: Dynamic KL values for different algorithms. Results denoted as ”Best solver (benchmark)” are taken from the
benchmark paper (Gushchin et al., 2023b).

Study of the efficiency of the sampling. Here we measure the performance of sampling (time and cBW2
2-UVP ↓) directly

from the learned plan πθ(x1|x0) versus sampling by the Euler-Maruyama algorithm (Kloeden et al., 1992, M9.2) and using
the drift function gθ(xt, t). We conduct our experiments on the benchmark setup with ϵ = 0.1 and D = 16. We present our
results in the Table 6 and Table 7:

Inference type Time
Euler-Maruyama, 3 steps 0.046 ± 0.053 sec

Euler-Maruyama, 10 steps 0.19 ± 0.14 sec
Euler-Maruyama, 30 steps 0.365 ± 0.08 sec

Euler-Maruyama, 100 steps 1.268 ± 0.3 sec
Euler-Maruyama, 300 steps 3.931 ± 0.34 sec
Euler-Maruyama, 1000 steps 12.61 ± 1.32 sec
Sampling from the plan πθ 0.00058 ± 0.0001 sec

Table 6: Time measurements for LightSB-M sampling using the SDE approach (Euler-Maruyama) and direct sampling from
the plan πθ on SB Benchmark (Gushchin et al., 2023b) with ϵ = 0.1 and D = 16. The number of steps for Euler-Maruyama

is the number of SDE solver discretization steps. Results are averaged over 5 runs with std provided after ±.

As we can see from the obtained results, the Euler-Maruyama approach requires up to 500 steps to accurately solve the
Schrödinger Bridge SDE. Thanks to the special form of the SDE provided by the used parametrization, we can directly
sample from πθ(x1|x0). This is orders of magnitude faster than the full simulation of the trajectories.

B.4. Evaluation on unpaired image-to-image translation.

We follow the same setup as (Korotin et al., 2024) and use their code and data from https://github.com/
ngushchin/LightSB. All models are trained with ϵ = 0.1 if not stated otherwise.

According to (Korotin et al., 2024) we first split the FFHQ data into train (first 60k) and test (last 10k) images. Then we
create subsets of males, females, children and adults in both train and test subsets. For training we first use the ALAE
encoder to extract 512 dimensional latent vectors for each image and then train our solver on the extracted latent vectors. At
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Inference type cBW2
2-UVP ↓

Euler-Maruyama, 10 steps 1.53
Euler-Maruyama, 50 steps 0.22
Euler-Maruyama, 100 steps 0.126
Euler-Maruyama, 200 steps 0.102
Euler-Maruyama, 500 steps 0.09
Sampling from the plan πθ 0.09

Table 7: cBW2
2-UVP ↓ measurements for LightSB-M sampling using SDE approach (Euler-Maruyama) and sampling from

the plan πθ on SB Benchmark (Gushchin et al., 2023b) with ϵ = 0.1 and D = 16. Number of steps for Euler-Maruyama
means number of SDE solver discretization steps.

the inference stage, we first extract the latent vector from the image, translate it by LightSB-M, and then decode the mapped
vector to produce the mapped image. In Figure 7, we provide extra examples for our LigthSB-M and other baselines.

Test FID values. The FID values for our man→ woman FFHQ image translation setup are provided in Table 8. We measure
FID values between decoded translated latents and encoded-decoded true images from the FFHQ dataset. For all considered
solvers, we use the same value of the coefficient ϵ = 0.1, which produces moderate diversity in the generated images. The
FID values are similar for all methods, which align with the good quality of images given in Figure 3.

Solver LightSBM (ID, ours) LightSBM (MB, ours) DSBM SF2M-Sink
FID 0.852 0.859 0.859 0.8613

Table 8: FID values on unpaired man → woman translation for different solvers applied in the latent space of ALAE
(Pidhorskyi et al., 2020) for 1024x1024 FFHQ images. (Karras et al., 2019)

Different values of ϵ. We provide extra male→ female results for a wide range of values ϵ ∈ {0.01, 0.1, 1, 10}) in the
Figure 8 below. We observe that our solver shows the expected behavior by providing more diversity for larger ϵ.

B.5. Baselines

DSBM (Shi et al., 2023). Implementation is taken from official repo

https://github.com/yuyang-shi/dsbm-pytorch

For forward and backward drift approximations, instead of those used in the official repository, we use MLP neural networks
with positional encoding as they give better results. Number of inner gradient steps for Markovian Fitting Iteration is
10000, number of Markovian Fitting Iterations is 10. Adam optimizer (Kingma & Ba, 2014) with lr = 10−4 is used for
optimization.

SF2M-Sink (Tong et al., 2023). Implementation is taken from official repo

https://github.com/atong01/conditional-flow-matching

For drift and score function approximation, we use MLP neural networks with positional encoding instead of those used in
the official repository, as they give better results. Number of gradient updates 50000 for SB benchmark and Single-cell Data
experiments and 20000 for unpaired image-to-image translation. Adam optimizer (Kingma & Ba, 2014) with lr = 10−4 is
used for optimization.

LightSB’s results are taken from the paper (Korotin et al., 2024).

C. Neural Network parametrization
Our LightSB-M is based on the Gaussian mixture parametrization. However, it is not the only way to implement optimal
projection in practice. Here, we additionally propose a method to use neural network parametrization. We call this
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modification of our algorithm Hard Schrödinger Bridge Matching, or HardSB-M.

To begin with, we discuss another type of Schrödinger potential for better clarity. In the main text, we utilize the more
convenient adjusted Schrödinger potential v since it simplifies the usage of Gaussian Mixture approximation. However, in
the literature, the more popular way is the usage of the Schrödinger potential φ (Chen et al., 2021b, Eq. 4.11), which has a
one-to-one correspondence with the adjusted Schrödinger potential v:

φ(x, t = 1) = φ(x) = v(x) exp(
||x||2

2ϵ
). (28)

Furthermore, the drift g(x, t) of the Schrödinger Bridge with potential φ(x) is given by:

g(xt, t) = ϵ∇xt log

∫
RD

N (x′|xt, (1− t)ϵID) exp
(∥x′∥2

2ϵ

)
v(x′)dx′ =

ϵ∇xt
log

∫
RD

N (x′|xt, (1− t)ϵID)φ(x′)dx′. (29)

Below we use this non adjusted Schrödinger potential and denote φ(x, t = 1) as φ(x) to make derivations more concise.
We parametrize this potential by a neural network φθ(x) and use (29) to derive the drift gθ given by φθ(x).

C.1. Drift Estimation

In the case of neural parametrization of φθ (or vθ), computation of drift gθ(xt, t) (29) becomes a non-trivial task since it is
no longer a convolution of a Gaussian mixture with a Gaussian distribution. We propose two ways to tackle this issue.

Variant 1. Monte Carlo (MC) estimator. First, we recap SB drift expression (29) which for parametrized Schrödinger
potential φθ states that the drift gθ(xt, t) is given by:

gθ(xt, t) = ϵ∇xt
log

∫
RD

N (x′|xt, (1− t)ϵID)φθ(x
′)dx′

By using the reparametrization trick (introducing x′ def
= z

√
(1− t)ϵ+ xt), we get

gθ(xt, t) = ϵ∇xt
log

∫
RD

N (z|0, ID)φθ(z
√
(1− t)ϵ+ xt)dz =

ϵ

∫
RD ∇xt

(
φθ(z

√
(1− t)ϵ+ xt)

)
N (z|0, ID)dz∫

RD

(
φθ(z

√
(1− t)ϵ+ xt)

)
N (z|0, ID)dz

= ϵ
Ez∼N (z|0,ID)

[
∇xt

(
φθ(z

√
(1− t)ϵ+ xt)

)]
Ez∼N (z|0,ID)

[(
φθ(z

√
(1− t)ϵ+ xt)

)] .

Then we can estimate gθ(xt, t) just by drawing samples {z}Nn=1 and {z}Mm=1 from N (z|0, ID) and using:

gθ(xt, t) ≈
1
N

∑N
n=1∇xt

(
φθ(zn

√
(1− t)ϵ+ xt)

)
1
M

∑M
m=1

(
φθ(zn

√
(1− t)ϵ+ xt)

)
Calculation of the gradient of loss KL (Tπ∥Sφθ

) given by (15) w.r.t. the parameters is straightforward using auto-
differentiation software.

Variant 2. Monte Carlo Markov Chain (MCMC) estimator. The MC estimator proposed above is biased. We also
suggest a non-biased estimator based on sampling from the unnormalized density below.

Theorem C.1 (HardSB-M drift expression). The drift g(x, t) for the Schrodinger potential φ(x) is given by:

g(xt, t) =
1

1− t

(
Ex′∼pφ(x′|xt)[x

′]− xt

)
, (30)

where pφ(x′|xt) ∝ exp (−∥x′−xt∥2

2ϵ(1−t) )φ(x′).

To estimate drift by Theorem C.1, one needs to sample from unnormalized density pφ(x′|xt). To do this, one may use the
standard Unadjusted Langevin Algorithm (ULA), also known as just Langevin Dynamics (Roberts & Tweedie, 1996).
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C.2. Loss Gradient Estimation

To optimize the objective (15), one needs to compute its gradient w.r.t. the parameters θ which also involves∇θgθ(xt, t).
With the MC estimator for gθ(xt, t), the gradient∇θgθ(xt, t) is trivially computed using automatic differentiation. However,
with the MCMC estimator proposed in Theorem C.1 the way to compute∇θgθ(xt, t) is not trivial. We propose an unbiased
gradient of loss estimator via sampling from unnormalized density. For this, we need the following theorem.

Theorem C.2 (HardSB-M loss gradient expression). The gradient of (15) for the Schrodinger potential φθ(x) is given
by:

1

ϵ

∫ 1

0

∫
RD×RD

{
(∇θgθ(xt, t))

⊤(gθ(xt, t)−
x1 − xt

1− t
)
}
dpTπ

(xt, x1)dt,

where

∇θgθ(xt, t) =
1

1− t
∇θEpφθ (x′|xt)[x

′].

In turn,∇θEpφθ (xt)[x
′] can be computed via

∇θEpφθ (x′|xt)[x
′] = Epφθ (x′|xt)

[
x′{∇θ logφθ(x

′)− Ex′′∼pφθ (x′′|xt)[∇θ logφθ(x
′′)]}

]
.

To use this theorem in practice, we first estimate gθ(xt, t) by MCMC using (30) from Theorem C.1. Then, we estimate the
gradient of the objective by using the Theorem C.2. At both stages, samples from pφθ (x′|xt) can be drawn, e.g., using the
Unadjusted Langevin Algorithm (Roberts & Tweedie, 1996, ULA).

C.3. Inference after model training

There are several inference approaches, e.g., Energy-Based and SDE Based.

Energy based inference. We can sample directly from the EOT plan (3) using generic MCMC samplers similar to EgNOT
(Mokrov et al., 2024). After sampling the end point x1 given the start point x0, the trajectories can be infered using self
similarity property (Korotin et al., 2024, M3.2) of the Brownian Bridge W ϵ

|x0,x1
.

SDE based inference. Given the way to estimate drift gθ of the Schrödinger Bridge e.g. by MC (Appendix C.1) or MCMC
(Appendix C.1) approaches, one can use any SDE solver to simulate trajectories. For example, one can use the simplest and
most popular Euler-Maruyama scheme (Kloeden et al., 1992, M9.2).

One can combine these approaches by sampling an MCMC proposal used for Energy Based inference via SDE simulation.

C.4. Toy 2D experimental illustration

We use the same setups as in M5.1 with ϵ ∈ {0.03, 0.1, 1} and provide results for MC estimation in Figure 5 and for MCMC
estimation in Figure 6. The Schrödinger potential φθ(x) : RD → R+ is parametrized using exp(NNθ), where NNθ is a
MLP. We test both MC and MCMC approaches.

Hyperparameters. For both MC and MCMC estimators, we use MLP with two hidden layers of widths [256, 256] with
torch.nn.SiLU activations as NNθ. During training, Adam optimizer (Kingma & Ba, 2014) with lr = 10−4 is used,
batch size is 128, model is trained for 105 loss gradient updates.

MC estimator. During training and inference, we use 1000 MC samples. Inference is held with SDE simulation using
1000 Euler-Maruyama discretization steps for ϵ = 1 and 100 Euler-Maruyama discretization steps for other ϵ. Due to the
necessity to compute exp(NNθ) which may have very high values, we use double precision torch.DoubleTensor for
all MC-related calculations.

MCMC estimator. During training and inference to estimate gθ by (30) we use 100 samples drawn using Unadjusted
Langevin Algorithm (ULA) with 50 steps and step size η = 0.001. The inference was performed in two steps: first, the SDE
simulation was performed with gθ estimation by ULA, and then the result was used as a proposal for energy-based sampling
from the EOT plan, (3). SDE simulaion was held using 100 Euler-Maruyama discretization steps (ULA settings are the
same as for training) and Energy Based sampling from EOT plan using ULA with with 1000 steps and step size η = 10−4.
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(a) x ∼ p0, y ∼ p1. (b) ϵ = 0.03. (c) ϵ = 0.1. (d) ϵ = 1.

Figure 5: The process Sθ learned by HardSB-M (ours) with MC drift estimator Gaussian→Swiss roll example.

(a) x ∼ p0, y ∼ p1. (b) ϵ = 0.03. (c) ϵ = 0.1. (d) ϵ = 1.

Figure 6: The process Sθ learned by HardSB-M (ours) with MCMC drift estimator Gaussian→Swiss roll example.

C.5. Proofs

Proof of Theorem C.1. We denote by Zxt,(1−t)ϵ
def
=

∫
RD exp

(
− ∥x′−xt∥2

2(1−t)ϵ

)
dx′ the normalization constant of the normal

distribution N (x′|xt, (1− t)ϵID). For a potential φθ(x), the corresponding drift g(xt, t) is given by (29):

g(xt, t) = ϵ∇xt
log

∫
RD

N (x′|xt, (1− t)ϵID)φ(x′)dx′

We will proceed with this equality to obtain an unbiased estimator. We proceed as follows:

g(xt, t) = ϵ∇xt log

∫
RD

N (x′|xt, (1− t))φ(x′)dx′ =

ϵ∇xt
log

∫
RD

1

Zxt,(1−t)ϵ
exp

(
− ∥x

′ − xt∥2

2(1− t)ϵ

)
φ(x′)dx′ =

ϵ
∇xt

∫
RD

1
Zxt,(1−t)ϵ

exp
(
− ∥x′−xt∥2

2(1−t)ϵ

)
φ(x′)dx′∫

RD
1

Zxt,(1−t)ϵ
exp

(
− ∥x′′−xt∥2

2(1−t)ϵ

)
φ(x′′)dx′′

=

ϵ
∇xt

∫
RD exp

(
− ∥x′−xt∥2

2(1−t)ϵ

)
φ(x′)dx′∫

RD exp
(
− ∥x′′−xt∥2

2(1−t)ϵ

)
φ(x′′)dx′′

=

ϵ

∫
RD ∇xt

{
exp

(
− ∥x′−xt∥2

2(1−t)ϵ

)}
φ(x′)dx′∫

RD exp
(
− ∥x′′−xt∥2

2(1−t)ϵ

)
φ(x′′)dx′′

=
[
∇xf(x) = f(x)∇x log f(x)

]
= (31)

ϵ

∫
RD

∇xt

{−∥x′ − xt∥2

2(1− t)ϵ

} exp
(
− ∥x′−xt∥2

2(1−t)ϵ

)
φ(x′)dx′∫

RD exp
(
− ∥x′′−xt∥2

2(1−t)ϵ

)
φ(x′′)dx′′

=

[
pφ(x′|xt) ∝ exp (−∥x

′ − xt∥2

2ϵ(1− t)
)φ(x′)

]
=
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ϵ

∫
RD

∇xt

{−∥x′ − xt∥2

2(1− t)ϵ

}
pφ(x′|xt)dx

′ =

ϵEx′∼pφ(x′|xt)

[ x′ − xt

(1− t)ϵ

]
=

1

(1− t)

(
Ex′∼pφ(x′|xt)[x

′]− xt

)
. (32)

In line (31), we use log-derivatve trick.

Proof of Theorem C.2. We derive

∇θ
1

ϵ

∫ 1

0

∫
RD×RD

∥gθ(xt, t)−
x1 − xt

1− t
∥2dpTπ(xt,x1)dt =

1

ϵ

∫ 1

0

∫
RD×RD

{
(∇θgθ(xt, t))

⊤(gθ(xt, t)−
x1 − xt

1− t
)
}
dpTπ(xt,x1)dt. (33)

Now we recap the result of Theorem C.1: gθ(x, t) = 1
(1−t)

(
Ex′∼pφθ (x′|xt)[x

′]− xt

)
. Now we derive∇θgθ(x, t):

∇θgθ(xt, t) =
1

(1− t)

(
∇θEx′∼pφθ (x′|xt)[x

′]
)
=

[
Z(xt, φθ)

def
=

∫
RD

exp
(
− ∥x

′ − xt∥2

2(1− t)ϵ

)
φθ(x

′)dx
]
=

=
1

(1− t)

(
∇θ

∫
RD

x′
exp

(
− ∥x′−xt∥2

2(1−t)ϵ

)
φθ(x

′)

Z(xt, φθ)
dx′) =

=
1

(1− t)

( ∫
RD

x′∇θ

{exp (− ∥x′−xt∥2

2(1−t)ϵ

)
φθ(x

′)

Z(xt, φθ)

}
dx′) = [

∇θfθ(·) = fθ(·)∇θ log fθ(·)
]
= (34)

=
1

(1− t)

(
∇θEx′∼pφθ (x′|xt)

[
x′∇θ(−

∥x′ − xt∥2

2(1− t)ϵ
+ logφθ(x

′)− logZ(xt, φθ))
])

=

=
1

(1− t)

(
∇θEx′∼pφθ (x′|xt)

[
x′(∇θ

{
logφθ(x

′)
}
−∇θ logZ(xt, φθ))

])
=

=
1

(1− t)

(
∇θEx′∼pφθ (x′|xt)

[
x′∇θ

({
logφθ(x

′)
}
−

∫
RD ∇θ

(
exp

{
− ∥x′′−xt∥2

2ϵ(1−t)

}
φθ(x

′′)
)
dx′′

Z(xt, φθ)
)
])

=

=
[
∇θfθ(·) = fθ(·)∇θ log fθ(·)

]
= (35)

=
1

(1− t)

(
∇θEx′∼pφθ (x′|xt)

[
x′(∇θ

{
logφθ(x

′)
}
−

∫
RD exp

{
− ∥x′′−xt∥2

2ϵ(1−t)

}
φθ(x

′′)∇θ logφθ(x
′′)dx′′

Z(xt, φθ)

)])
=

=
1

(1− t)

(
∇θEx′∼pφθ (x′|xt)

[
x′(∇θ logφθ(x

′)− Ex′′∼pφθ (x′′|xt)

[
∇θ logφθ(x

′′)
]))

. (36)

In lines (34) and (35), we use the log-derivative trick.
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(a) Man → Woman.

(b) Adult → Child.

Figure 7: Additional examples of image-to-image translation.
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Figure 8: Image-to-image experiments with ϵ ∈ {0.01, 0.1, 1, 10}.
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